SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
Invention Journal of Research Technology in Engineering & Management (IJRTEM)
ISSN: 2455-3689
www.ijrtem.com Volume 2 Issue 9 ǁ September 2018 ǁ PP 60-63
|Volume 2| Issue 9 | www.ijrtem.com | 60 |
GREEN CHEMISTRY: A PRIMER
Matthew N. O. Sadiku1
, Sarhan M. Musa1
, and Osama M. Musa2
1
Roy G. Perry College of Engineering Prairie View A&M University Prairie View, TX 77446
2
Ashland Inc. Bridgewater, NJ 08807
ABSTRACT: With mounting concerns over the state of our planet, there is continuing demand that chemists
and chemical engineers should develop greener chemical processes and products. In the 1990s, with the
growing awareness of the hazardous impacts of the chemical industry, the green chemistry revolution was
launched by American chemists Paul T. Anastas and John Warner. Green chemistry is the kind of chemistry that
seeks to minimize pollution, conserve energy, and promote environmentally friendly production. This paper
provides a brief introduction to green chemistry.
KEY WORDS: green chemistry, sustainable chemistry, green engineering
I. INTRODUCTION
The chemical industry touches every aspect of our modern life. Our quality of life depends on chemical products
and processes. Unfortunately, the chemical industry’s traditional approach to producing goods has been
regarded unsafe and unsustainable. Green chemistry efficiently utilizes materials, eliminates waste, and
minimizes the use of hazardous processes and substances. It plays a transformative role in the chemical industry.
The concept of green chemistry is a relatively new idea. Green chemistry involves the development of chemical
products and processes that reduce or eliminate the use of hazardous substances. Green chemistry is also known
as sustainable chemistry, clean chemistry, and benign by design chemistry [1]. It focuses on the environmental
impact of chemical products and processes. It reduces toxicity, minimizes waste, and saves energy.
Green chemistry is not confined to the industrial sector. It applies to all areas of chemistry including organic
chemistry, inorganic chemistry, biochemistry, analytical chemistry, and physical chemistry. It is an
interdisciplinary area drawing on knowledge from chemists, chemical engineers, toxicologists, and ecologists. It
has evolved from being an academic research effort to become a practice supported by academia, industry, and
government. In the United States, regulatory programs play a major role in shaping the development of green
chemistry. The Environmental Protection Agency (EPA) was formed in 1970 and charged with protecting
human and environmental health through setting and enforcing environmental regulations. The EPA has played
a significant role in fostering green chemistry through its pollution prevention programs and funding. The EPA
also demands that chemists and engineers should design chemical processes and products in a way that prevents
pollution and avoids the creation of toxic by-products and waste. Since 1996, the United States has given an
annual award, the Presidential Green Chemistry Challenge Award, to promote and reward significant
achievements in green chemistry.
II. PRINCIPLES OF GREEN CHEMISTRY
In 1998, Paul Anastas and John C. Warner published twelve principles to guide the practice of green chemistry.
The principles address a wide range of approaches to reduce the environmental and health impacts of chemical
production. They provide an early template for what would make a greener chemical or product. The twelve
principles are illustrated in Figure 1 and explained as follows [2-4]:
1. Prevention: Preventing waste is better than treating or cleaning up waste after it is created.
2. Atom economy: Synthetic methods should try to maximize the incorporation of all materials (atoms) used
in the process into the final product.
3. Less hazardous chemical syntheses: Synthetic methods should avoid using or generating substances toxic to
humans and/or the environment.
4. Designing safer chemicals: Chemical products should be designed to achieve their desired function while
being as non-toxic as possible.
5. Safer solvents and auxiliaries: Auxiliary substances should be avoided wherever possible and as non-
hazardous as possible when they must be used.
6. Design for energy efficiency: Energy requirements should be minimized, and processes should be
conducted at ambient temperature and pressure whenever possible.
GREEN CHEMISTRY: A PRIMER.
|Volume 2| Issue 9 | www.ijrtem.com | 61 |
7. Use of renewable feedstocks: Whenever it is practical to do so, renewable feedstocks or raw materials are
preferable to non-renewable ones.
8. Reduce derivatives: Unnecessary generation of derivatives, such as the use of protecting groups, should be
minimized or avoided if possible; such steps require additional reagents, lessen atom economy, and may
generate additional waste.
9. Catalysis: Catalytic reagents that can be used in small quantities to repeat a reaction are superior to
stoichiometric reagents (ones that are consumed in a reaction).
10. Design for degradation: Chemical products should be designed so that they do not pollute the environment;
when their function is complete, they should break down into non-harmful products.
11. Real-time analysis for pollution prevention: Analytical methodologies need to be further developed to
permit real-time, in-process monitoring and control before hazardous substances form.
12. Inherently safer chemistry for accident prevention: Whenever possible, the substances in a process, and the
forms of those substances, should be chosen to minimize risks such as explosions, fires, and accidental
releases.
These principles are being put into practice in all walks of science since they provide a recipe for efficient
manufacturing and a safe environment.
III. APPLICATIONS
Green chemistry is impacting the chemical industry and other sectors such as agriculture, healthcare,
automotive, electronics, energy, and materials.
‱ Pharmaceutical industry: Green chemistry is a strong ally with the pharmaceutical industry. The main
goal of green chemistry is to reduce or eliminate waste in the manufacture of drugs. The pharmaceutical
industry was among the first to recognize the value of green chemistry. For example, a pharmaceutical
company can produce more ibuprofen in less time and with less energy, resulting in increased profits. Green
chemistry can also be used to develop innovative drug delivery methods [5]. The pharmaceutical industry is
seeking ways to develop medicines with less harmful side-effects.
‱ Agriculture: Sustainable agriculture meets the demands for agricultural output at socially acceptable
economic and environmental costs. The use of fertilizers can be reduced by timing it to the needs of the
crop, lowering the environmental impact of large-scale agricultural operations.
‱ Energy: Green chemistry also plays an important role in alternate energy via the production of solar cells,
fuel cells, and batteries for energy storage. Transportation alone accounts for one fourth of energy
consumption and two thirds of oil usage in the US. The photovoltaic industry is leading the clean-energy
sector.
‱ Leisure industry: Chemistry provides inexpensive materials for golf, fishing, etc. Tourism activities can
have negative impacts when the environment is unable to cope with the increased population due to tourist
visitors. Tourism can contribute to the depletion of natural resources such as water, food, and energy and
increase the local generation of waste. Green chemistry can contribute to the sustainability of the leisure
industry [6].
Green chemistry is also regarded as a powerful tool for evaluating the environmental impact of nanotechnology.
IV. METRICS
To measure the environmental impact of chemical processes and track green chemistry progress, some tools are
needed. Green chemistry can be defined using metrics which can be used to quantify greener processes and
products. In other words, the metrics are used to determine how green is green [7]. Such an effort would require
the collaboration of chemists, policy makers, educators, and businesses [8]. These metrics include ones for
mass, energy, hazardous substance reduction, and life cycle environmental impacts.
V. BENEFITS AND CHALLENGES
Green chemistry is a tool for achieving sustainability. It is sustainable in the sense that it serves the needs of
today’s generation without endangering the ability of future generation to meet their own needs. Green
chemistry is beneficial to our planet. Adopting green chemistry gives us an opportunity to create a safer
laboratory and living environment. It provides greater efficiency in the chemical industry. It has the potential to
improve the quality of different technologies used in chemical industry.
GREEN CHEMISTRY: A PRIMER.
|Volume 2| Issue 9 | www.ijrtem.com | 62 |
Going green can benefit us in the following ways [9]. Using sustainable and renewable resources for reactants
and catalysts preserves resources for future generations. When less waste is produced in a reaction, there is less
potentially hazardous material being released into the environment. Avoiding the creation of hazardous
environmental situations will lessen the likelihood of class actions lawsuits, which are expensive and damaging
to a company’s reputation. The green chemistry revolution presents several challenges to chemists and chemical
engineers. The major challenges confronted by green chemistry innovations include [10]: economic and
financial, (2) regulatory, (3) technical, (4) organizational, (5) cultural, and (6) definition and metrics. A large
part of the chemical industry is capital-intensive. Large companies are slow and reluctant to switch to new
technologies due to the upfront costs involved. It is also a challenge for industries to synthesize non-harmful
products since the harmful traits are often linked to the desired functionality of the products.
Some potential downsides of green chemistry include the following [9]. When new, greener reactions are
developed, new equipment or even entirely new chemical plants may be necessary. The set-up costs can be
prohibitive. Unintended consequences can also have severe impacts on the public. Older chemical processes
have been around long enough that their potential hazards are well understood. Newer materials may appear
greener at first, but problems may reveal themselves later.
VI. CONCLUSION
Green chemistry, also known as environmentally benign chemistry, focuses on the design of chemical processes
and products to minimize their inherent hazard. It has emerged as an important aspect of all chemistry and it is
the future of chemistry. The main goal of green chemistry is to reduce or eliminate waste in the manufacture of
chemicals and its allied products. The chemical industry has risen to the occasion by replacing traditional
processes with greener alternatives. The successful implementation of green chemistry requires the cooperation
of the academia, industry, government, and society. Chemical societies worldwide have recognized the
importance of green chemistry. They promote it through journals, conferences, educational activities, and the
formation of the Green Chemistry Institute chapters. Several institutions now offer courses and degrees on green
chemistry. Today’s students will significantly benefit from the introduction of green chemistry in the curriculum
[11, 12]. More information about green chemistry can be found in Green Chemistry and Current Opinion in
Green and Sustainable Chemistry, two journals exclusively devoted to it. One should also consult books in [3,
13-17] and several other books in Amazon.com.
REFERENCES
[1] M. A. Korany et al., “Green chemistry: Analytical and chromatography,” Journal of Liquid
Chromatography & Related Technologies, 2017, 40 (16), 839-852.
[2] “Green chemistry,” Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Green_chemistry
[3] P. T. Anastas and J. C. Warner, Green Chemistry Theory and Practice. Oxford University Press, New
York (2000).
[4] “J. Hill et al., “Challenges for Chemical Education: Engaging with Green Chemistry and nvironmental
Sustainability”, The Chemist, 2013, 86, 25-31 or http://www.theaic.org/pub_thechemist_journals/Vol-
86-No-1/Vol-86-No1-Article-5.html
[5] R K. Sindhu et al., “Applications of green chemistry in pharmaceutical chemistry and day to day life,”
Archives of Medical and Pharmaceutical Sciences Research, vol. 1, no. 2, 2017, pp. 39-44.
[6] D. Pleissner, “Green chemistry and the leisure industry: New business models for sustainability,”
Current Opinion in Green and Sustainable Chemistry, vol. 8, 2017, pp. 1-4.
[7] M. Tobiszewski et al., “Green chemistry metrics with special reference to green analytical chemistry,”
Molecules, vol. 20, 2015, pp. 10928-10946.
[8] J. A. Tickner and M. Becker, “Mainstreaming green chemistry: The need for metrics,” Current Opinion
in Green and Sustainable Chemistry, vol. 1, 2016, pp. 1-4.
[9] “The pros and cons of green alternatives in chemical manufacturing,” August 2017,
https://www.boropharm.com/pros-cons-green-alternatives-chemical-manufacturing/
[10] K. J. M. Matus et al., “Barriers to the implementation of green chemistry in the United States,”
Environmental Science & Technology, vol. 46, 2012, pp. 10892-10899.
[11] D. L. Hjeresen, D. L. Schutt, and J. M. Boose, “Green chemistry and education,” Journal of Chemical
Education, vol. 77, no. 12, December 2000, pp. 1543- 1547.
[12] S. A. Kennedy. “Design of a dynamic undergraduate green chemistry course.,” Journal of Chemical
Education, vol. 93, 2016, pp. 645-649.
[13] P. Tundo, A. Perosa, and F. Zecchini (eds.), Methods and Reagents for Green Chemistry – An
Introduction. John Wiley & Sons, 2007.
GREEN CHEMISTRY: A PRIMER.
|Volume 2| Issue 9 | www.ijrtem.com | 63 |
[14] J. H. Clark and D. Macquarrie (eds.), Handbook of Green Chemistry and Technology. Blackwell
Science, 2002.
[15] B. Torok and T. Dransfield, Green Chemistry: An Inclusive Approach. Elsevier, 2017.
[16] M. A. Ryan and M. Tinnesand, Introduction to Green Chemistry. Washington, DC: American
Chemical Society, 2002.
[17] M. Lancaster, Green Chemistry: An Introductory Text: Cambridge, UK: Royal Society of Chemistry,
vol. 2, 2010.
AUTHORS
Matthew N.O. Sadiku is a professor in the Department of Electrical and Computer Engineering at Prairie View
A&M University, Prairie View, Texas. He is the author of several books and papers. His areas of research
interest include computational electromagnetics and computer networks. He is a fellow of IEEE.
Sarhan M. Musa is a professor in the Department of Engineering Technology at Prairie View A&M
University, Texas. He has been the director of Prairie View Networking Academy, Texas, since 2004. He is an
LTD Sprint and Boeing Welliver Fellow.
Osama M. Musa is currently Vice President and Chief Technology Officer for Ashland Inc. Dr. Musa also
serves as a member of the Advisory Board at Manhattan College’s Department of Electrical and Computer
Engineering as well as a member of the Board of Trustees at Chemists' Club of NYC. Additionally, he sits on
the Advisory Board of the International Journal of Humanitarian Technology (IJHT).
Figure 1. The principles of green chemistry [4].

Weitere Àhnliche Inhalte

Was ist angesagt?

Notes On Green Chemistry
Notes On Green ChemistryNotes On Green Chemistry
Notes On Green Chemistry
classe4ach
 
Green chemistry durga
Green chemistry durgaGreen chemistry durga
Green chemistry durga
chemistrymespni
 

Was ist angesagt? (20)

Green Chemistry
Green ChemistryGreen Chemistry
Green Chemistry
 
Intro to green chemistry
Intro to green chemistryIntro to green chemistry
Intro to green chemistry
 
Green chemistry
Green chemistryGreen chemistry
Green chemistry
 
Green chemistry
Green chemistryGreen chemistry
Green chemistry
 
Introduction to green chemistry
Introduction to green chemistryIntroduction to green chemistry
Introduction to green chemistry
 
Green chemistry
Green chemistryGreen chemistry
Green chemistry
 
Sustainability & Green Chemistry in Pharma
Sustainability & Green Chemistry in PharmaSustainability & Green Chemistry in Pharma
Sustainability & Green Chemistry in Pharma
 
Kathe Skyline Green Chemistry
Kathe   Skyline Green ChemistryKathe   Skyline Green Chemistry
Kathe Skyline Green Chemistry
 
Green chemistry
Green chemistryGreen chemistry
Green chemistry
 
Introduction to green chemistry
Introduction  to green chemistryIntroduction  to green chemistry
Introduction to green chemistry
 
Green chemistry science
Green chemistry scienceGreen chemistry science
Green chemistry science
 
Green chemistry (GLT SBM)
Green chemistry (GLT SBM)Green chemistry (GLT SBM)
Green chemistry (GLT SBM)
 
Notes On Green Chemistry
Notes On Green ChemistryNotes On Green Chemistry
Notes On Green Chemistry
 
Green chem original ppt
Green chem original pptGreen chem original ppt
Green chem original ppt
 
GREEN CHEMISTRY
GREEN CHEMISTRYGREEN CHEMISTRY
GREEN CHEMISTRY
 
Green chemistry
Green chemistryGreen chemistry
Green chemistry
 
Green chemistry: Production of electricity from Ammonia
Green chemistry: Production of electricity from AmmoniaGreen chemistry: Production of electricity from Ammonia
Green chemistry: Production of electricity from Ammonia
 
Green chemistry ppt jon
Green chemistry ppt jonGreen chemistry ppt jon
Green chemistry ppt jon
 
Green Chemistry
Green ChemistryGreen Chemistry
Green Chemistry
 
Green chemistry durga
Green chemistry durgaGreen chemistry durga
Green chemistry durga
 

Ähnlich wie GREEN CHEMISTRY: A PRIMER

Green chemistry, current and future issues
Green chemistry, current and future issuesGreen chemistry, current and future issues
Green chemistry, current and future issues
Alfi Nugraha
 
Group assignment about green technology SM (1).pptx
Group assignment about green technology SM (1).pptxGroup assignment about green technology SM (1).pptx
Group assignment about green technology SM (1).pptx
rickysaputra50
 
Synthesis of green energy sources and renewable energy consumption
Synthesis of green energy sources and renewable energy consumptionSynthesis of green energy sources and renewable energy consumption
Synthesis of green energy sources and renewable energy consumption
SouvikJana39
 
green_chemistry and waste minimisation at source.ppt
green_chemistry and waste minimisation at source.pptgreen_chemistry and waste minimisation at source.ppt
green_chemistry and waste minimisation at source.ppt
RashmiSanghi1
 
C11 1 intro to gc techniques_final
C11 1 intro to gc techniques_finalC11 1 intro to gc techniques_final
C11 1 intro to gc techniques_final
Dir Jan
 
Principles of green chemistry
Principles of green chemistryPrinciples of green chemistry
Principles of green chemistry
Dr.Amr Abouzied
 
Green-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.ppt
Green-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.pptGreen-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.ppt
Green-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.ppt
RouoofGanie
 

Ähnlich wie GREEN CHEMISTRY: A PRIMER (20)

Introduction of green chemistry ss.pptx
Introduction of green chemistry ss.pptxIntroduction of green chemistry ss.pptx
Introduction of green chemistry ss.pptx
 
Green chemistry – The Chemical Industries' Way To Go Green
Green chemistry – The Chemical Industries' Way To Go GreenGreen chemistry – The Chemical Industries' Way To Go Green
Green chemistry – The Chemical Industries' Way To Go Green
 
Green chemistry, current and future issues
Green chemistry, current and future issuesGreen chemistry, current and future issues
Green chemistry, current and future issues
 
Green Chemistry
Green ChemistryGreen Chemistry
Green Chemistry
 
green chemistry
green chemistrygreen chemistry
green chemistry
 
GREEN CHEMISTRY [IS A SOLUTION TO ENVIRONMENT PROBLEM?]
GREEN CHEMISTRY [IS A SOLUTION TO ENVIRONMENT PROBLEM?]GREEN CHEMISTRY [IS A SOLUTION TO ENVIRONMENT PROBLEM?]
GREEN CHEMISTRY [IS A SOLUTION TO ENVIRONMENT PROBLEM?]
 
FINAL green chemistry 30th august - 2023 (1).pptx
FINAL green chemistry  30th august - 2023 (1).pptxFINAL green chemistry  30th august - 2023 (1).pptx
FINAL green chemistry 30th august - 2023 (1).pptx
 
INTRODUCTION TO Green chemistry ppt
INTRODUCTION TO Green chemistry pptINTRODUCTION TO Green chemistry ppt
INTRODUCTION TO Green chemistry ppt
 
Green chemistry in pharmaceuticals
Green chemistry in pharmaceuticalsGreen chemistry in pharmaceuticals
Green chemistry in pharmaceuticals
 
Group assignment about green technology SM (1).pptx
Group assignment about green technology SM (1).pptxGroup assignment about green technology SM (1).pptx
Group assignment about green technology SM (1).pptx
 
green chemistry.ppt
green chemistry.pptgreen chemistry.ppt
green chemistry.ppt
 
Synthesis of green energy sources and renewable energy consumption
Synthesis of green energy sources and renewable energy consumptionSynthesis of green energy sources and renewable energy consumption
Synthesis of green energy sources and renewable energy consumption
 
green_chemistry and waste minimisation at source.ppt
green_chemistry and waste minimisation at source.pptgreen_chemistry and waste minimisation at source.ppt
green_chemistry and waste minimisation at source.ppt
 
C11 1 intro to gc techniques_final
C11 1 intro to gc techniques_finalC11 1 intro to gc techniques_final
C11 1 intro to gc techniques_final
 
C11 1 intro to gc techniques_final-web
C11 1 intro to gc techniques_final-webC11 1 intro to gc techniques_final-web
C11 1 intro to gc techniques_final-web
 
green_chemistry.ppt
green_chemistry.pptgreen_chemistry.ppt
green_chemistry.ppt
 
Presentation1
Presentation1Presentation1
Presentation1
 
Principles of green chemistry
Principles of green chemistryPrinciples of green chemistry
Principles of green chemistry
 
importance of green chemistry in science
importance of green chemistry in scienceimportance of green chemistry in science
importance of green chemistry in science
 
Green-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.ppt
Green-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.pptGreen-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.ppt
Green-Chemistry_Dr.S.Syed-Shafi-16-10-2019-1.ppt
 

Mehr von journal ijrtem

Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...
Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...
Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...
journal ijrtem
 
A study on financial aspect of supply chain management
A study on financial aspect of supply chain management	A study on financial aspect of supply chain management
A study on financial aspect of supply chain management
journal ijrtem
 
Social Media Role in Improving Customer Relationship Management: An Empirical...
Social Media Role in Improving Customer Relationship Management: An Empirical...Social Media Role in Improving Customer Relationship Management: An Empirical...
Social Media Role in Improving Customer Relationship Management: An Empirical...
journal ijrtem
 

Mehr von journal ijrtem (20)

The effect of functionalized carbon nanotubes on thermalmechanical performanc...
The effect of functionalized carbon nanotubes on thermalmechanical performanc...The effect of functionalized carbon nanotubes on thermalmechanical performanc...
The effect of functionalized carbon nanotubes on thermalmechanical performanc...
 
Development Issues and Problems of Selected Agency in Sorsogon, An investigat...
Development Issues and Problems of Selected Agency in Sorsogon, An investigat...Development Issues and Problems of Selected Agency in Sorsogon, An investigat...
Development Issues and Problems of Selected Agency in Sorsogon, An investigat...
 
Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...Positive and negative solutions of a boundary value problem for a fractional ...
Positive and negative solutions of a boundary value problem for a fractional ...
 
ORGANIC FOODS
ORGANIC FOODSORGANIC FOODS
ORGANIC FOODS
 
MOLECULAR COMPUTING
MOLECULAR COMPUTINGMOLECULAR COMPUTING
MOLECULAR COMPUTING
 
THE ESSENCE OF INDUSTRY 4.0
THE ESSENCE OF INDUSTRY 4.0THE ESSENCE OF INDUSTRY 4.0
THE ESSENCE OF INDUSTRY 4.0
 
Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...
Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...
Rural Livelihood and Food Security: Insights from Srilanka Tapu of Sunsari Di...
 
Augmented Tourism: Definitions and Design Principles
Augmented Tourism: Definitions and Design PrinciplesAugmented Tourism: Definitions and Design Principles
Augmented Tourism: Definitions and Design Principles
 
A study on financial aspect of supply chain management
A study on financial aspect of supply chain management	A study on financial aspect of supply chain management
A study on financial aspect of supply chain management
 
Existence results for fractional q-differential equations with integral and m...
Existence results for fractional q-differential equations with integral and m...Existence results for fractional q-differential equations with integral and m...
Existence results for fractional q-differential equations with integral and m...
 
Multi products storage using randomness
Multi products storage using randomnessMulti products storage using randomness
Multi products storage using randomness
 
Study of desalination processes of seawater from the desalination plant of La...
Study of desalination processes of seawater from the desalination plant of La...Study of desalination processes of seawater from the desalination plant of La...
Study of desalination processes of seawater from the desalination plant of La...
 
Effect of Cash Management on The Financial Performance of Cooperative Banks i...
Effect of Cash Management on The Financial Performance of Cooperative Banks i...Effect of Cash Management on The Financial Performance of Cooperative Banks i...
Effect of Cash Management on The Financial Performance of Cooperative Banks i...
 
Technical expertise on the cause of engine failure of the Mitsubishi Pajero S...
Technical expertise on the cause of engine failure of the Mitsubishi Pajero S...Technical expertise on the cause of engine failure of the Mitsubishi Pajero S...
Technical expertise on the cause of engine failure of the Mitsubishi Pajero S...
 
Clustering based Time Slot Assignment Protocol for Improving Performance in U...
Clustering based Time Slot Assignment Protocol for Improving Performance in U...Clustering based Time Slot Assignment Protocol for Improving Performance in U...
Clustering based Time Slot Assignment Protocol for Improving Performance in U...
 
Design and Implementation of Smart Bell Notification System using IoT
Design and Implementation of Smart Bell Notification System using IoT	Design and Implementation of Smart Bell Notification System using IoT
Design and Implementation of Smart Bell Notification System using IoT
 
Assessment of the Water Quality of Lake Sidi Boughaba (Ramsar Site 1980) Keni...
Assessment of the Water Quality of Lake Sidi Boughaba (Ramsar Site 1980) Keni...Assessment of the Water Quality of Lake Sidi Boughaba (Ramsar Site 1980) Keni...
Assessment of the Water Quality of Lake Sidi Boughaba (Ramsar Site 1980) Keni...
 
The case of a cyclist and tractor traffic accident
The case of a cyclist and tractor traffic accident	The case of a cyclist and tractor traffic accident
The case of a cyclist and tractor traffic accident
 
A Smart Approach for Traffic Management
A Smart Approach for Traffic Management	A Smart Approach for Traffic Management
A Smart Approach for Traffic Management
 
Social Media Role in Improving Customer Relationship Management: An Empirical...
Social Media Role in Improving Customer Relationship Management: An Empirical...Social Media Role in Improving Customer Relationship Management: An Empirical...
Social Media Role in Improving Customer Relationship Management: An Empirical...
 

KĂŒrzlich hochgeladen

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar â‰ŒđŸ” Delhi door step de...
Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar  â‰ŒđŸ” Delhi door step de...Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar  â‰ŒđŸ” Delhi door step de...
Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar â‰ŒđŸ” Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 

KĂŒrzlich hochgeladen (20)

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar â‰ŒđŸ” Delhi door step de...
Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar  â‰ŒđŸ” Delhi door step de...Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar  â‰ŒđŸ” Delhi door step de...
Call Now ≜ 9953056974 â‰ŒđŸ” Call Girls In New Ashok Nagar â‰ŒđŸ” Delhi door step de...
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 

GREEN CHEMISTRY: A PRIMER

  • 1. Invention Journal of Research Technology in Engineering & Management (IJRTEM) ISSN: 2455-3689 www.ijrtem.com Volume 2 Issue 9 ǁ September 2018 ǁ PP 60-63 |Volume 2| Issue 9 | www.ijrtem.com | 60 | GREEN CHEMISTRY: A PRIMER Matthew N. O. Sadiku1 , Sarhan M. Musa1 , and Osama M. Musa2 1 Roy G. Perry College of Engineering Prairie View A&M University Prairie View, TX 77446 2 Ashland Inc. Bridgewater, NJ 08807 ABSTRACT: With mounting concerns over the state of our planet, there is continuing demand that chemists and chemical engineers should develop greener chemical processes and products. In the 1990s, with the growing awareness of the hazardous impacts of the chemical industry, the green chemistry revolution was launched by American chemists Paul T. Anastas and John Warner. Green chemistry is the kind of chemistry that seeks to minimize pollution, conserve energy, and promote environmentally friendly production. This paper provides a brief introduction to green chemistry. KEY WORDS: green chemistry, sustainable chemistry, green engineering I. INTRODUCTION The chemical industry touches every aspect of our modern life. Our quality of life depends on chemical products and processes. Unfortunately, the chemical industry’s traditional approach to producing goods has been regarded unsafe and unsustainable. Green chemistry efficiently utilizes materials, eliminates waste, and minimizes the use of hazardous processes and substances. It plays a transformative role in the chemical industry. The concept of green chemistry is a relatively new idea. Green chemistry involves the development of chemical products and processes that reduce or eliminate the use of hazardous substances. Green chemistry is also known as sustainable chemistry, clean chemistry, and benign by design chemistry [1]. It focuses on the environmental impact of chemical products and processes. It reduces toxicity, minimizes waste, and saves energy. Green chemistry is not confined to the industrial sector. It applies to all areas of chemistry including organic chemistry, inorganic chemistry, biochemistry, analytical chemistry, and physical chemistry. It is an interdisciplinary area drawing on knowledge from chemists, chemical engineers, toxicologists, and ecologists. It has evolved from being an academic research effort to become a practice supported by academia, industry, and government. In the United States, regulatory programs play a major role in shaping the development of green chemistry. The Environmental Protection Agency (EPA) was formed in 1970 and charged with protecting human and environmental health through setting and enforcing environmental regulations. The EPA has played a significant role in fostering green chemistry through its pollution prevention programs and funding. The EPA also demands that chemists and engineers should design chemical processes and products in a way that prevents pollution and avoids the creation of toxic by-products and waste. Since 1996, the United States has given an annual award, the Presidential Green Chemistry Challenge Award, to promote and reward significant achievements in green chemistry. II. PRINCIPLES OF GREEN CHEMISTRY In 1998, Paul Anastas and John C. Warner published twelve principles to guide the practice of green chemistry. The principles address a wide range of approaches to reduce the environmental and health impacts of chemical production. They provide an early template for what would make a greener chemical or product. The twelve principles are illustrated in Figure 1 and explained as follows [2-4]: 1. Prevention: Preventing waste is better than treating or cleaning up waste after it is created. 2. Atom economy: Synthetic methods should try to maximize the incorporation of all materials (atoms) used in the process into the final product. 3. Less hazardous chemical syntheses: Synthetic methods should avoid using or generating substances toxic to humans and/or the environment. 4. Designing safer chemicals: Chemical products should be designed to achieve their desired function while being as non-toxic as possible. 5. Safer solvents and auxiliaries: Auxiliary substances should be avoided wherever possible and as non- hazardous as possible when they must be used. 6. Design for energy efficiency: Energy requirements should be minimized, and processes should be conducted at ambient temperature and pressure whenever possible.
  • 2. GREEN CHEMISTRY: A PRIMER. |Volume 2| Issue 9 | www.ijrtem.com | 61 | 7. Use of renewable feedstocks: Whenever it is practical to do so, renewable feedstocks or raw materials are preferable to non-renewable ones. 8. Reduce derivatives: Unnecessary generation of derivatives, such as the use of protecting groups, should be minimized or avoided if possible; such steps require additional reagents, lessen atom economy, and may generate additional waste. 9. Catalysis: Catalytic reagents that can be used in small quantities to repeat a reaction are superior to stoichiometric reagents (ones that are consumed in a reaction). 10. Design for degradation: Chemical products should be designed so that they do not pollute the environment; when their function is complete, they should break down into non-harmful products. 11. Real-time analysis for pollution prevention: Analytical methodologies need to be further developed to permit real-time, in-process monitoring and control before hazardous substances form. 12. Inherently safer chemistry for accident prevention: Whenever possible, the substances in a process, and the forms of those substances, should be chosen to minimize risks such as explosions, fires, and accidental releases. These principles are being put into practice in all walks of science since they provide a recipe for efficient manufacturing and a safe environment. III. APPLICATIONS Green chemistry is impacting the chemical industry and other sectors such as agriculture, healthcare, automotive, electronics, energy, and materials. ‱ Pharmaceutical industry: Green chemistry is a strong ally with the pharmaceutical industry. The main goal of green chemistry is to reduce or eliminate waste in the manufacture of drugs. The pharmaceutical industry was among the first to recognize the value of green chemistry. For example, a pharmaceutical company can produce more ibuprofen in less time and with less energy, resulting in increased profits. Green chemistry can also be used to develop innovative drug delivery methods [5]. The pharmaceutical industry is seeking ways to develop medicines with less harmful side-effects. ‱ Agriculture: Sustainable agriculture meets the demands for agricultural output at socially acceptable economic and environmental costs. The use of fertilizers can be reduced by timing it to the needs of the crop, lowering the environmental impact of large-scale agricultural operations. ‱ Energy: Green chemistry also plays an important role in alternate energy via the production of solar cells, fuel cells, and batteries for energy storage. Transportation alone accounts for one fourth of energy consumption and two thirds of oil usage in the US. The photovoltaic industry is leading the clean-energy sector. ‱ Leisure industry: Chemistry provides inexpensive materials for golf, fishing, etc. Tourism activities can have negative impacts when the environment is unable to cope with the increased population due to tourist visitors. Tourism can contribute to the depletion of natural resources such as water, food, and energy and increase the local generation of waste. Green chemistry can contribute to the sustainability of the leisure industry [6]. Green chemistry is also regarded as a powerful tool for evaluating the environmental impact of nanotechnology. IV. METRICS To measure the environmental impact of chemical processes and track green chemistry progress, some tools are needed. Green chemistry can be defined using metrics which can be used to quantify greener processes and products. In other words, the metrics are used to determine how green is green [7]. Such an effort would require the collaboration of chemists, policy makers, educators, and businesses [8]. These metrics include ones for mass, energy, hazardous substance reduction, and life cycle environmental impacts. V. BENEFITS AND CHALLENGES Green chemistry is a tool for achieving sustainability. It is sustainable in the sense that it serves the needs of today’s generation without endangering the ability of future generation to meet their own needs. Green chemistry is beneficial to our planet. Adopting green chemistry gives us an opportunity to create a safer laboratory and living environment. It provides greater efficiency in the chemical industry. It has the potential to improve the quality of different technologies used in chemical industry.
  • 3. GREEN CHEMISTRY: A PRIMER. |Volume 2| Issue 9 | www.ijrtem.com | 62 | Going green can benefit us in the following ways [9]. Using sustainable and renewable resources for reactants and catalysts preserves resources for future generations. When less waste is produced in a reaction, there is less potentially hazardous material being released into the environment. Avoiding the creation of hazardous environmental situations will lessen the likelihood of class actions lawsuits, which are expensive and damaging to a company’s reputation. The green chemistry revolution presents several challenges to chemists and chemical engineers. The major challenges confronted by green chemistry innovations include [10]: economic and financial, (2) regulatory, (3) technical, (4) organizational, (5) cultural, and (6) definition and metrics. A large part of the chemical industry is capital-intensive. Large companies are slow and reluctant to switch to new technologies due to the upfront costs involved. It is also a challenge for industries to synthesize non-harmful products since the harmful traits are often linked to the desired functionality of the products. Some potential downsides of green chemistry include the following [9]. When new, greener reactions are developed, new equipment or even entirely new chemical plants may be necessary. The set-up costs can be prohibitive. Unintended consequences can also have severe impacts on the public. Older chemical processes have been around long enough that their potential hazards are well understood. Newer materials may appear greener at first, but problems may reveal themselves later. VI. CONCLUSION Green chemistry, also known as environmentally benign chemistry, focuses on the design of chemical processes and products to minimize their inherent hazard. It has emerged as an important aspect of all chemistry and it is the future of chemistry. The main goal of green chemistry is to reduce or eliminate waste in the manufacture of chemicals and its allied products. The chemical industry has risen to the occasion by replacing traditional processes with greener alternatives. The successful implementation of green chemistry requires the cooperation of the academia, industry, government, and society. Chemical societies worldwide have recognized the importance of green chemistry. They promote it through journals, conferences, educational activities, and the formation of the Green Chemistry Institute chapters. Several institutions now offer courses and degrees on green chemistry. Today’s students will significantly benefit from the introduction of green chemistry in the curriculum [11, 12]. More information about green chemistry can be found in Green Chemistry and Current Opinion in Green and Sustainable Chemistry, two journals exclusively devoted to it. One should also consult books in [3, 13-17] and several other books in Amazon.com. REFERENCES [1] M. A. Korany et al., “Green chemistry: Analytical and chromatography,” Journal of Liquid Chromatography & Related Technologies, 2017, 40 (16), 839-852. [2] “Green chemistry,” Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Green_chemistry [3] P. T. Anastas and J. C. Warner, Green Chemistry Theory and Practice. Oxford University Press, New York (2000). [4] “J. Hill et al., “Challenges for Chemical Education: Engaging with Green Chemistry and nvironmental Sustainability”, The Chemist, 2013, 86, 25-31 or http://www.theaic.org/pub_thechemist_journals/Vol- 86-No-1/Vol-86-No1-Article-5.html [5] R K. Sindhu et al., “Applications of green chemistry in pharmaceutical chemistry and day to day life,” Archives of Medical and Pharmaceutical Sciences Research, vol. 1, no. 2, 2017, pp. 39-44. [6] D. Pleissner, “Green chemistry and the leisure industry: New business models for sustainability,” Current Opinion in Green and Sustainable Chemistry, vol. 8, 2017, pp. 1-4. [7] M. Tobiszewski et al., “Green chemistry metrics with special reference to green analytical chemistry,” Molecules, vol. 20, 2015, pp. 10928-10946. [8] J. A. Tickner and M. Becker, “Mainstreaming green chemistry: The need for metrics,” Current Opinion in Green and Sustainable Chemistry, vol. 1, 2016, pp. 1-4. [9] “The pros and cons of green alternatives in chemical manufacturing,” August 2017, https://www.boropharm.com/pros-cons-green-alternatives-chemical-manufacturing/ [10] K. J. M. Matus et al., “Barriers to the implementation of green chemistry in the United States,” Environmental Science & Technology, vol. 46, 2012, pp. 10892-10899. [11] D. L. Hjeresen, D. L. Schutt, and J. M. Boose, “Green chemistry and education,” Journal of Chemical Education, vol. 77, no. 12, December 2000, pp. 1543- 1547. [12] S. A. Kennedy. “Design of a dynamic undergraduate green chemistry course.,” Journal of Chemical Education, vol. 93, 2016, pp. 645-649. [13] P. Tundo, A. Perosa, and F. Zecchini (eds.), Methods and Reagents for Green Chemistry – An Introduction. John Wiley & Sons, 2007.
  • 4. GREEN CHEMISTRY: A PRIMER. |Volume 2| Issue 9 | www.ijrtem.com | 63 | [14] J. H. Clark and D. Macquarrie (eds.), Handbook of Green Chemistry and Technology. Blackwell Science, 2002. [15] B. Torok and T. Dransfield, Green Chemistry: An Inclusive Approach. Elsevier, 2017. [16] M. A. Ryan and M. Tinnesand, Introduction to Green Chemistry. Washington, DC: American Chemical Society, 2002. [17] M. Lancaster, Green Chemistry: An Introductory Text: Cambridge, UK: Royal Society of Chemistry, vol. 2, 2010. AUTHORS Matthew N.O. Sadiku is a professor in the Department of Electrical and Computer Engineering at Prairie View A&M University, Prairie View, Texas. He is the author of several books and papers. His areas of research interest include computational electromagnetics and computer networks. He is a fellow of IEEE. Sarhan M. Musa is a professor in the Department of Engineering Technology at Prairie View A&M University, Texas. He has been the director of Prairie View Networking Academy, Texas, since 2004. He is an LTD Sprint and Boeing Welliver Fellow. Osama M. Musa is currently Vice President and Chief Technology Officer for Ashland Inc. Dr. Musa also serves as a member of the Advisory Board at Manhattan College’s Department of Electrical and Computer Engineering as well as a member of the Board of Trustees at Chemists' Club of NYC. Additionally, he sits on the Advisory Board of the International Journal of Humanitarian Technology (IJHT). Figure 1. The principles of green chemistry [4].