SlideShare ist ein Scribd-Unternehmen logo
1 von 50
WEL COME
TO
SEMINAR SERIES
2015-16
1
Seminar Presentation
on
Major Advisor
Dr. V. M. Patel
Assistant Research Scientist
Pulses and Castor Research Station
N. A.U., Navsari
Co-Guide
Dr. Sonal Tripathi
Associate Professor
Dept. of Soil Sci. and Agril. Chemistry
N. M. College of Agriculture
N. A.U., Navsari
Speaker
Mr. Joshi Jigarkumar R.
III Sem., M. Sc. (Agri.)
Reg. No:- 2010114038
Dept. of Agronomy
N. M. College of Agriculture
NAU, Navsari
NUTRIENT MANAGEMENT IN
LEGUME CROPS
2
Introduction
 Legumes are members of the Fabaceae or bean family,
include several important food crops such as peas, beans,
soybeans, cowpea, chickpea, greengram, blackgram, lentil,
peanuts etc.
 The global legume production, area and productivity during
2014 was 395 million tonnes, 218 million ha and 1811 kg/ha
respectively.
 India is the forth largest producer of legumes next to
USA, Brazil and Argentina accounting about 10 present
of total production in the world
 India is producing about 40 million tonnes of legumes
from an area of 42 million hectare with average
productivity 955 kg/ha (Anonymous 2014).
3
 Nutritionally, legume seeds are two to three times richer
in protein than cereal grains. Some legumes, such as
soybeans and groundnut are also the rich source of oil.
 The inadequate supply of protein is the major problem not
only in India but in all the developing countries of world
 The legumes are cheap and easily available sources of
protein which compare very well in the nutritive values
with other sources of proteins.
 Legumes occupy an extensive area in India but the yields
are low compared to other countries.
 For increasing the production, productivity & protein
content of legumes, an efficient and effective nutrient
management is required.
4
Global top five legume Producing
Countries - 2014
USA
25%
Brazil
23%
Argentina
14%
India
10%
China
8%
Other
20%
Source : Ministry of Agriculture, Govt. of India.
5
Sr. No. Year
Area
(Million Hectares)
Production
(Million tonnes)
Yield
(Kg/ha)
1 2005-06 36.84 29.65 804
2 2006-07 37.14 27.91 751
3 2007-08 38.8 35.53 915
4 2008-09 37.76 31.65 838
5 2009-10 38.49 30.05 780
6 2010-11 41.86 39.24 937
7 2011-12 39.83 36.26 910
8 2012-13 39.3 37.71 959
9 2013-14 42.75 40.84 955
Source : Ministry of Agriculture, Government of India
Area, Production and productivity of Total legume in India
(2005-06 to 2013-14)
6
Name Area
(m ha)
Production
(m tonne)
Yield
(kg/ha)Common Scientific
Soybean Glycine max 11.7164 11.8608 1012
Groundnut Arachis hypogaea 5.5052 9.71390 1764
Chickpea Cicer arietinum 9.9274 9.5263 960
Pigeon pea Cajunus cajan 3.9049 3.1744 813
Urad Vigna mungo 4.018 1.700 423
Mung bean Vigna radiate 3.156 1.610 510
Lentil Lens culinaris 1.450 1.160 800
Moth bean Vigna aconitifolia 1.483 0.409 266
Other legume 3.624 2.561 706
Total/average 42.751 40.843 955
Source: Ministry of Agriculture, Government of India database (2013-2014)
Status of major grain legumes of India
(2013-14)
7
Area, production and productivity of major legume in Gujarat
(2013-14)
Sr.
No.
States
Area
(m ha)
Production
(m tonne)
Productivity
(kg/ha)
1 Groundnut 1.843 4.9176 2668
2 Chickpea 0.247 0.309 1251
3 Pigeon pea 0.210 0.209 995
4 Green Gram 0.183 0.103 564
5 Black gram 0.091 0.060 655
6 Soybean 0.060 0.044 733
7 Other legume 0.030 0.018 595
Total Gujarat 2.664 5.6606 2124
Source : Ministry of Agriculture, Govt. of India. 8
Importance of Legume Crops
Important reasons for their cultivation include:
Suitability for human and animal consumption
Adaptability for inter or mixed cropping
Agronomic management of legumes is relatively easy
Input (especially nitrogen fertilizer) requirement is
lower compared to other crops
They produce substantial amounts of organic nitrogen
increase soil organic matter, improve soil porosity
and structure, recycle nutrients, maintain soil pH,
reduce soil compaction.
9
 It is a system used to manage the amount, form,
placement and timing of the application of nutrients
(whether as manure, commercial fertilizer or other
form of nutrients) to plants.
Nutrient management
10
Essential plant nutrients
Element
Forms absorbed by
plants
Concentration in
plant dry matter
C Co2 40-45 %
H H2O 6 %
O O2, H2O 40-45 %
N NH4
+ & NO3
- 4.0 %
P H2PO4
- & HPO4
-2 0.5 %
K K+ 4.0 %
Mg Mg+2 0.5 %
S SO4
-2 0.5 %
Ca Ca+2 1.0 %
Fe Fe+2 & Fe+3 200 ppm
Mn Mn+2 200 ppm
Zn Zn+2 30 Ppm
B H3BO3 & H2BO3
- 60 ppm
Cu Cu+2 10 ppm
Mo MoO4
-2 2 ppm
Cl Cl- 3000 ppm
Ni Ni+ ---- 11
Deficiency of nutrient in legume
12
 Decreasing total cultivated area and increase population.
 To improve productivity.
 To maintain the growth and vigor of the plant.
 To increase the fertilizer use efficiency.
 To obtain higher yield and higher return.
 To reduce the cost of production.
 Improve the quality of produce.
 To earn the foreign exchange.
13
Four R principles of nutrient
management
1. Right Source: Ensure a balanced supply of essential
nutrients.
2. Right Rate: Assess and make decisions based on soil
nutrient supply and plant demand.
3.Right Time: Assess and make decisions based on the
dynamics of crop uptake, soil supply, nutrient loss risks.
4. Right place: manage spatial variability within the field
to meet site-specific crop needs and limit potential losses
from the field.
14
Atmospheric nitrogen
15
Bio-fertilizer application in legumes
Seed treatment:
 Clean seed on a cemented floor or gunny
bag
 Prepare culture by bio-fertilizer and water
(1:2)
 Sprinkled culture on the heap of the seed
and mix by hand so thin coated
 Spread the seed under shade sometime for
drying.
 Sow immediately
Soil application
 10-15 packets (200 gm.) are mixed with40-
60 kg of organic fertilizer or soil for one
acre land.
 Mixture sprinkled with water or
broadcasted into the soil at sowing time or
standing crop.
16
Integrated nutrient management
0
5000
10000
15000
20000
25000
30000
N P K Total
Thousandtonnes
year
Source : Ministry of Agriculture, Govt. of India.
Consumption of fertilisers in terms of Nutrients (N, P and K) in India (1950-1951 to
2013-2014)
INM involves the integrated use of mineral fertilizer through with organic
manures/ industrial agricultural waste and bio-fertilizer in suitable combination each
other to optimize input use and maximize production
17
18
Table 1: Effect of fertility levels and bio-fertilizers on yield and quality
attributes of groundnut
Treatments
Pod yield
(kg/ha)
Kernel yield
(kg/ha)
Haulm yield
(kg/ha)
Oil
content
(%)
Protein
content
(%)
Fertility levels
T1 Control 2512 1598 4148 47.25 24.08
T2 100 % RDF 3086 2039 5024 48.28 25.53
T3 50% RDF 2809 1842 4609 47.43 24.64
T4 FYM@8t/ha + 50% RDF 3394 2364 5410 49.52 25.99
T5 VC@ 3t/ha + 50% RDF 3468 2430 5443 50.28 26.16
C.D. (P=0.05) 92 106 182 1.09 0.36
Biofertlizer
T1 Control 2923 1897 4787 47.80 24.91
T2 Rhizobium 3170 2182 5060 48.80 25.56
T3 PSB 3069 2084 4934 49.07 25.37
C.D. (P=0.05) 80 92 157 0.95 0.31
VC-vermicompost; PSB- phosphate solubilise Bactria; RDF 20:40:00 NPK kg/ha
Bikaner (Rajasthan) Ola et al. (2013)
20
Table 2: Effect of organic, inorganic sources of P and its method of application
on yield and quality of groundnut (pooled over 4 year)
Treatment
Pod
yield
(kg/ha
Haulm
yield
(kg/ha)
Protein
content
(%)
Oil content
(%)
T1 control 1710 2316 24.17 46.0
T2 RDP as DAP (broadcasting) 2001 2686 26.10 46.7
T3 RDP as DAP (Placement) 2182 2779 26.27 46.8
T4 RDP as P-EC (broadcasting) 2260 2826 26.31 47.1
T5 RDP as P-EC (placement) 2441 2967 26.79 47.3
T6 RDP as P- VC (broadcasting) 2367 2943 26.60 47.2
T7 RDP as P- VC (placement) 2535 3103 27.04 47.8
S.Em. ± 64 71 0.12 0.19
C.D. (P=0.05) 141 156 0.26 0.42
Rajasthan Singh et al. (2014)
RDF – 20:40:40 NPS kg/ha; P-VC: P enriched Vermicompost - 1.27 t/ha; P-EC: P enriched
Compost - 1.39 t/ha 21
Table 3: Effect of green manure and phosphorus on growth and yield of groundnut
at harvest stage
Treatment
Plant
height (cm)
Dry matter
accumulation
(g/plant)
LAI
Pod yield
(t/ha)
Green manuring
Without green manure 39.11 21.83 1.19 1.84
With green manure 43.86 24.42 1.26 2.07
C.D. (P=0.05) 0.59 0.31 0.01 0.03
Phosphorus levels (kg/ha)
0 kg/ha 37.45 18.87 1.11 1.66
30 kg/ha 43.43 23.95 1.23 2.08
60 kg/ha 43.58 26.55 1.35 2.13
C.D. (P=0.05) 0.90 0.39 0.06 0.06
Green manuring:-rice bean (Vigna umbellata); common dose of N and K 80:40 kg/ha
Bhubaneswar (Odisha) Kar and Ram (2015)
22
Table 4: Yield and economics as influenced by different nutrient management
practices in summer groundnut (pooled over 2 year)
Treatment
Pod yield
(kg/ha)
Gross
returns
(Rs./ha)
Net
returns
(Rs./ha)
BCR
ratio
T1 100% RDF 1966 98300 78100 4.59
T2 100% RDF + FYM 7.5 t/ha 2169 108450 88550 5.45
T3 75% RDF + 25% RDF TD at 30 DAS 1738 86900 68500 4.72
T4 75% RDF + 25% RDF TD at 30 DAS + FYM 7.5 t/ha 1909 95450 69910 3.74
T5 150% RDF 1822 91100 72538 4.91
T6 150% RDF + FYM 7.5 t/ha 1801 90050 63388 3.38
T7 100% RDF + 50% RDF TD at 30 DAS 1802 90100 69738 4.42
T8
100% RDF + 50% RDF TD at 30 DAS + FYM 7.5
t/ha
2006 100300 78798 4.66
T9 75% RDF + 75% RDF TD at 30 DAS 1721 86050 67248 4.58
T10 75% RDF + 75% RDF TD at 30 DAS + FYM 7.5 t/ha 1602 80100 53198 2.98
S.Em. ± 40 --- --- ---
C. D. (P=0.05) 114 --- --- ---
Vyara (Gujarat) Madhubala and Kedarnath (2015)
RDF- 25:50:00 N:P:K kg/ha; TD- top dressing; DAS- days after sowing 23
Table 5: Effect of organic manures on yield, economics and available N in soil
after harvest of summer groundnut
Treatment
Pod yield
(kg/ha)
Haulm
yield
(kg/ha)
Cost of
cultivation
(Rs./ha)
Net
return
(Rs./ha)
BCR
Available
N (kg/ha)
T1 Control 1917 2885 30549 59114 2.94 240.00
T2 FYM 5 t/ha 2626 4475 38049 87130 3.29 261.67
T3 BC 3 t/ha 2374 3884 39549 72889 2.84 257.00
T4 NADEP compost 3 t/ha 2020 3637 38049 59115 2.55 242.00
T5 VC 1.5 t/ha 2446 3907 38049 77371 3.03 258.33
T6 FYM 2.5 t/ha + NC 0.3 t/ha 2147 3659 36999 65347 2.77 250.00
T7 BC 1.5 t/ha + NC 0.3 t/ha 2162 3803 37749 65843 2.74 252.00
T8
NADEP compost 1.5 t/ha +
NC 0.3 t/ha
2008 3709
36999 60011 2.62
241.33
T9 VC 0.75 t/ha + NC 0.3 t/ha 2125 3757 36999 64906 2.75 244.00
T10
BC 1.25 t/ha + VC 165 kg/ha
+ CC 75 kg/ha
2197 3830
35724 69389 2.94
259.00
S.Em. ± 96 246.8 --- --- --- 5.08
C.D. (P=0.05) 284 733.3 --- --- --- 15.10
Initial value 241.0
Navsari (Gujarat) Kanara (2015)
BC: Biocompost; VC: vermicompost; NC: Neem cake; CC: castor cake 24
Table 6: Effect of land configuration, integrated nutrient management and
biocompost on growth, yield quality and economics of summer soybean
Treatments
Seed yield
(kg/ha)
Stover yield
(kg/ha)
Cost of cultivation
(Rs./ha)
Net return
(Rs./ha)
BCR
Land configuration
Raised bed 1193 2205 12557 31222 2.49
Flat bed 1102 2023 11557 28855 2.50
S.Em. ± 30.63 58.20 --- --- ---
C.D. (P=0.05) 90.02 171.17 --- --- ---
Integrated nutrient management
RDF (30:60:00 NPK kg/ha) 1144 2087 13810 28692 2.07
75% RDF + Biofertlizer (PSB
+ Rhizobium)
1151 2142 13247 29019 2.19
S.Em. ± 30.63 58.20 --- --- ---
C.D. (P=0.05) NS NS --- --- ---
Biocompost
Control 1100 2026 11557 28795 2.49
Biocompost 10t/ha 1195 2203 14207 29633 2.08
S.Em. ± 30.63 60.02 --- --- ---
C.D. (P=0.05) 90.02 171.17 --- --- ---
NAU (Navsari) Shinde (2012) 26
Table 7: Effect of P, S and Co fertilization on yield and quality of soybean
Treatment
No. of
pod/plant
Seed yield
(q/ha)
Stover yield
(q/ha)
Protein content
(%)
Phosphorus (kg/ha)
P1 30 kg/ha 156.6 23.5 34.4 36.15
P2 60 kg/ha 199.5 28.2 37.9 38.76
P3 90 kg/ha 200.1 30.2 41.4 40.03
C.D. (P=0.05) 12.5 2.61 2.0 1.56
Sulphur (kg/ha)
S1 15 kg/ha 181.6 26.9 36.0 38.24
S2 30kg/ha 201.1 27.6 39.8 38.39
C.D. (P=0.05) 10.2 NS 1.6 NS
Cobalt (kg/ha)
C1 1 kg/ha 186.51 27.3 37.1 38.36
C2 2 kg/ha 196.2 27.4 38.7 38.27
C.D. (P=0.05) NS NS 1.6 NS
Medziphema (Nagaland) Bhattacharjee et al. (2013)
27
Table 8: Effect of nutrient management on yield and economics of soybean
(Pooled over 2 year)
Treatment
Seed
yield
(t/ha)
Stover
yield
(t/ha)
Cost of
cultivation
(Rs./ha)
Net
return
(Rs./ha)
BCR
T1 Control 2.06 3.73 19940 22720 1.14
T2 50 % RDF 2.26 3.93 21250 25220 1.19
T3 100 % RDF 2.44 4.11 22500 27500 1.22
T4
100 % RDF + 30 kg
N/ha
2.87 4.46 22900 35760 1.56
T5
50 % RDF + 2.5 t/ha
PM
2.59 4.24 22800 30320 1.33
T6 50 % RDF + 5 t/ha PM 2.90 4.57 24350 34810 1.43
S.Em. ± 0.01 0.01 - --- ---
C.D. (P=0.05) 0.02 0.03 - --- ---
RDF- 30:26.2:33.2 NPK kg/ha; PM - poultry manure
Agra (Uttar Pradesh) Singh et al. (2013)
28
Table 9: Effect of organic manures and fertility levels on yield and availability
Nutrient status in soil after harvest of soybean (Pooled over 2 year)
Treatment Seed yield(t/ha)
Nutrient status of soil after harvest (kg/ha)
N P K
Organic manures
F1 Control 1.05 326.9 20.1 239.0
F2 FYM @ 5 t/ha 1.27 342.1 21.7 251.3
F3 VC @ 2.5 t/ha 1.50 349.2 21.8 256.6
F4
FYM @ 2.5 t/ha + VC
@ 1.25 t/ha
1.82 359.6 23.0 262.3
SEm ± 0.03 2.8 0.6 3.1
C.D. (P=0.05) 0.09 8.2 1.7 8.9
Fertility levels
T1 Control 1.19 325.6 20.4 239.6
T2 50 % RDF 1.45 343.8 21.3 254.4
T3 100% RDF 1.59 363.8 23.2 262.9
S.Em. ± 0.03 2.4 0.5 2.7
C.D. (P=0.05) 0.07 7.1 1.5 7.8
Initial nutrient 333 23 250
Palampur (Himachal Pradesh) Rana and Badiyala (2014)
RDF- 20:25.8:33.2 NPK kg/ha; VC- vermicompost 29
Table 10(A): Effect of bio-organics and chemical fertilizers on yield and quality
of chickpea
Treatment No. of
pod/
plant
Seed
yield
(kg/ha)
Straw
yield
(kg/ha)
Protein
content
(%)
Net
return
(Rs./ha)
Bio-organics
T1 Rhizobium + Azoctobactor + PSB 59.45 1446 2239 18.14 40699
T2 FYM 5 t/ha 80.10 1802 2650 19.05 52053
T3 T1 + T2 103.55 2322 2834 19.40 69775
T4 FYM 2 t/ha + Castor cake 0.5 t/ha 110.94 2761 2751 19.48 84814
C.D. (P=0.05) 3.70 138.94 178.92 NS ---
Chemical Fertilizers
F1 Control 81.88 1851 2441 17.95 55659
F2 50% RDF 85.43 2045 2570 18.74 61895
F3 75% RDF 89.14 2162 2618 18.99 65695
F4 100% RDF 97.60 2272 2844 20.39 69348
C.D. (P=0.05) 3.70 138.94 178.92 1.49 ---
Anand (Gujarat) Shukla et al. (2013)
Recommended dose of fertilizer (25:50:00 NPK kg/ha) 31
Table 10(B): Effect of bio-organics and chemical fertilizers on post harvest
available nutrients in soil
0
50
100
150
200
250
300
T1 T2 T3 T4 F1 F2 F3 F4
219.91
233.11
258.4
237.17
218.47
233.11 243.01 254
28.45 25.93 31.46 30.48 27.79 28.05 29.5 30.99
Available N (kg/ha) Available P (kg/ha)
kg/ha
Bio- organic Chemical fertilizer
Anand (Gujarat) Shukla et al. (2013)
Bio- organic (T1: Rhizobium + Azotobacter + PSB, T2: FYM 5 t/ha, T3: FYM 5 t/ha +
Rhizobium + Azotobacter + PSB, T4: FYM 2 t/ha + castor cake 0.5 t/ha) and Chemical
fertilizer (F1: No fertilizer, F2: 50% of RDF, F3: 75% of RDF, F4: 100% RDF)
initial nutrient status: N (198 kg/ha) and P O (24.2 kg/ha) 32
Table 11: Effect of seed inoculation through bio-fertilizers and molybdenum/
cobalt on yield and economics of chickpea (pooled data 3 year)
Treatment Seed
yield
(kg/ha
Straw
yield
(kg/ha)
Gross
return
(Rs./ha)
Net
return
(Rs./ha)
BCR
T1 RDF (20:40:00 NPK kg/ha) 1538 1712 54857 36731 2.03
T2 RDF + Rhizobium + PSB 1805 2105 64438 46161 2.52
T3 RDF + 1.0 g ammonium molybdate/kg
seed + Rhizobium + PSB
1882 2120 67142 48146 2.53
T4 RDF + 2.0 g ammonium molybdate/kg
seed + Rhizobium + PSB
1832 2022 65333 45617 2.30
T5 RDF + 2.0 g CoSO4/kg seed + Rhizobium
+ PSB
1752 1963 62498 43022 2.20
T6 RDF + 2.0 g ammonium molybdate/kg
seed + 2.0 g CoSO4/kg seed + Rhizobium +
PSB
1727 1971 61628 40712 1.95
S.Em. ± 41.2 130.7 --- --- ---
C.D. (P=0.05) 116 NS --- --- ---
Junagadh (Gujarat) Poonia and Pithia (2014)
PSB - phosphate solubilizing bacteria; CoSO4 - Cobalt sulphate 33
Table 12: Effect of sulphur and phosphorus management on yield, quality
and post harvest soil nutrient status of soil
Treatment
Seed yield
(kg/ha)
Protein
content (%)
Post harvest soil nutrients
status (kg/ha)
N P2O5 S
Sulphur levels (S)
S1 0 kg S/ha 720 17.27 223.85 45.10 20.68
S2 20 kg S/ha 807 18.14 231.26 47.76 22.75
S3 40 kg S/ha 783 21.60 233.77 47.71 25.31
S.Em. ± 10.75 0.56 0.43 0.50 0.399
C.D. (P=0.05) 30.94 1.62 1.24 1.45 1.15
Phosphorus management (P)
P1 Control 614 15.50 225.98 42.76 19.65
P2 PSB alone 714 16.91 228.51 45.71 21.84
P3 25 kg P2O5 /ha 855 20.38 230.50 47.93 24.06
P4 25 kg P2O5 /ha + PSB 899 22.50 233.97 51.02 26.10
S.Em. ± 12.41 0.65 0.45 0.58 0.461
C.D. (P=0.05) 35.72 1.87 1.44 1.67 1.33
Anand (Gujarat) Patel et al. (2014)
34
Table 13(A): Effect of land configuration, fertilizer rates and farm yard manure application
on growth, yield and quality of green gram Pooled over two year)
Treatment
Plant
height
(cm)
No. of
nodules/pla
nt
No. of
pods/plant
Seed yield
(t/ha)
Stover yield
(t/ha)
Protein
content (%)
Land configuration
Flat bed 41.6 16.2 22.8 0.83 2.12 19.6
Raised bed 44.2 17.2 25.6 0.93 2.27 29.5
S.Em. ± 0.7 0.3 0.4 0.01 0.04 0.3
C.D. (P=0.05) 2.0 0.8 1.0 0.04 0.11 NS
Inorganic fertilizers
75% RDF 41.9 16.2 22.9 0.83 2.13 19.7
100% RDF 44.0 17.2 25.5 0.93 2.27 20.2
S.Em. ± 0.7 0.3 0.4 0.01 0.04 0.3
C.D. (P=0.05) 2.0 0.8 1.1 0.04 0.11 NS
FYM (t/ha)
0 @ t/ha 41.1 16.1 22.9 0.83 2.08 19.3
5 @ t/ha 44.7 17.3 25.4 0.93 2.31 20.2
S.Em. ± 0.7 0.3 0.4 0.01 0.04 0.3
C.D. (P=0.05) 2.0 0.8 1.1 0.04 0.11 0.8
Navsari (Gujarat) Jat et al. (2012)
Recommended dose of fertilizer (20:40:00 NPK kg/ha) 36
Table 13(B): Effects of fertilizer rates and farm yard manure application on available
NPK in soil after harvest of green gram (Pooled data of two year)
238.2
251.7
238
252
17.1 17.9 17.1 17.9
295.8 304.2
291
308.9
0
50
100
150
200
250
300
350
75% RDF 100 % RDF 0 t/ha 5 t/ha
Available N (kg/ha) Available P (kg/ha) Available k (kg/ha)
kg/ha
Chemical fertilizer FYM
Navsari (Gujarat) Jat et al. (2012)
Recommended dose of fertilizer (20:17.6:00 NPK kg/ha)
initial nutrient status: N(225 kg/ha), P2O5(15.41 kg/ha) and K2O N(291 kg/ha) 37
Table 14: Seed yield and soil health as influenced by sowing time and integrated
nutrient management in summer mungbean (Pooled over two year)
Treatment
Seed yield
(kg/ha)
pH
(%)
EC
(ds/m)
OM
(%)
Nutrient status of soil after
harvest (kg/ha)
N P K
Sowing time
5th April 1217 5.04 0.037 1.60 226.01 12.74 142.65
15th April 1009 4.98 0.036 1.56 224.77 10.84 141.98
S.Em. ± 71 0.07 0.001 0.01 2.72 0.87 2.86
C.D. (P=0.05) 105 NS NS NS NS NS NS
Integrated nutrient management
Control 905 4.82 0.034 1.44 221.08 8.75 137.32
100 % RDF 1067 5.00 0.036 1.62 225.42 12.62 142.21
50 % RDF + 50 % RDN (VC) + PSB 1367 5.20 0.041 1.69 229.67 14.00 147.42
S.Em. ± 10 0.06 0.0004 0.01 1.40 0.28 1.40
C.D. (P=0.05) 30 0.16 0.0011 0.03 4.04 0.80 4.02
Initial value 5.3 --- --- 225.3 12.40 140.0
Nagaland Kumar et al. (2015)
RDF– 20:40:00 NPK kg/ha; PSB – Phosphate solubilizing bacteria; EC – electric
conductivity; OM – organic matter 38
Table 15: Effect of integrated nutrient management on yield and nutrient uptake
of greengram under rainfed condition
Treatment
Seed yield
(kg/ha)
Straw
yield
(kg/ha)
Total uptake (kg/ha)
N P K
T1 Control 437 1535 12.06 1.12 4.30
T2 100% RRN (FYM) 692 2396 15.48 1.52 4.60
T3 100% RRN (Vermicompost) 710 2418 17.48 2.49 7.25
T4 100% RRN (Poultry manure) 730 2440 21.38 3.05 8.66
T5 50% RDF + 100% RRN (FYM) 944 3028 27.40 3.30 9.15
T6
50% RDF + 100% RRN
(Vermicompost)
957 3047 28.13 3.72 10.06
T7
50% RDF + 100% RRN
(Poultry manure)
1002 3102 30.86 3.97 10.24
T8 100% RDF 855 2788 23.48 3.08 8.69
S.Em. ± 32 106 0.894 0.127 0.431
C.D. (P=0.05) 99 322 2.712 0.386 1.309
Recommended dose of fertilizer (20:17:00 NPK kg/ha);RRN-Recommended rate of nitrogen
Varanasi (U.P) Singh et al. (2015)
39
Table 16: Effect of Integrated nutrient management on yield and economics of
summer greengram
Treatment`
Seed yield
(kg/ha)
Stover
yield
(kg/ha)
Net return
(Rs./ha)
BCR
T1 Control 581 1493 23659 2.67
T2 20 kg P2O5/ha (SSP) 703 1651 30385 3.01
T3 40 kg P2O5/ha (SSP) 802 1921 35955 3.25
T4 20 kg P2O5/ha (DAP) 698 1626 29922 2.97
T5 40 kg P2O5/ha (DAP) 765 1810 33287 3.05
T6 20 kg P2O5/ha (DAP) + gypsum @ 100 kg/ha 703 1621 30220 2.99
T7 40 kg P2O5/ha (DAP) + gypsum @ 200 kg/ha 786 1863 34231 3.06
T8 20 kg P2O5/ha (DAP) + FYM @ 5 t/ha 730 1732 26776 2.31
T9 20 kg P2O5/ha (SSP) + FYM @ 5 t/ha 741 1706 27497 2.35
T10 20 kg P2O5/ha (DAP) + PSB 751 1768 33281 3.18
T11 20 kg P2O5/ha (SSP) + PSB 775 1892 35082 3.31
T12 FYM @ 10 t/ha + PSB 705 1720 20896 1.85
S.Em. ± 21.1 53.4 --- ---
C.D. (P=0.05) 60.7 153.6 --- ---
Anand (Gujarat) ` Rathour et al. (2015)
40Common dose of N (20 kg/ha)
Table 17: Seed yield and economics of pigeon pea as influenced by integrated
nutrient management (Pooled over 2 year)
Varanasi (U.P) Kumawat et al. (2013)
RDF – 20:40:20:20 NPK and S kg/ha; NVC – Nitrogen through vermicompost
Treatment
Seed yield
(t/ha)
Gross
return (x
103 Rs./ha)
net return
( x 10 3
Rs./ha)
BCR
T1 Control 1.20 81.600 63.7 3.6
T2 100% RDF 1.67 106.900 87.4 4.5
T3 50% RDF + 50% NVC 1.72 109.500 88.9 4.3
T4 100% RDF + 50% NVC 1.89 118.700 97.4 4.6
T5 50% RDF + 100% NVC 1.72 110.900 88.6 4.0
T6 100% RDF + 5 kg Zn/ha 1.68 108.800 89.2 4.5
T7 50% RDF + 50% NVC + 5 kg Zn/ha 2.01 124.900 104.2 5.0
T8 100% RDF + 50% NVC + 5 kg Zn/ha 2.10 130.700 109.3 5.1
T9 50% RDF + 100% NVC+5 kg Zn/ha 2.07 128.500 106.0 4.8
S.Em. ± 0.03 1.5 1.6 0.08
C.D. (P=0.05) 0.08 4.5 4.5 0.022
42
Table 18: Effect of plant geometry and fertility levels on pigeon pea cv. ICPH
2671
Treatment
Plant height
(cm)
Pod/plant
Seed yield
(q/ha)
Stalk yield
(q/ha)
Plant geometry
S1 60 x 30 cm 210.50 167.57 21.88 109.76
S2 90 x 30 cm 202.92 185.59 24.58 107.73
S3 90 x 45 cm 205.76 190.49 25.65 91.39
S.Em. ± 2.41 2.46 0.61 1.30
C.D. (P=0.05) NS 7.36 1.82 3.88
Fertility levels
T1 25:50 N & P2O5 kg/ha 204.01 169.78 22.28 101.02
T2 37.5:75 N & P2O5 kg/ha 204.40 178.31 24.09 102.83
T3 50:100 N & P2O5 kg/ha 210.77 195.56 25.74 105.02
S.Em. ± 2.96 3.01 0.74 1.59
C.D. (P=0.05) NS 9.02 2.23 NS
Dharwad (Karnataka) Meena et al. (2013)
43
Table 19: Effect of INM on seed yield and Physico-chemical properties of soil
after harvest of pigeon pea
Treatment
Seed yield
(t/ha)
Bulk
density
(g/cc)
Organic
carbon
(g/kg)
Nutrients status of soil
after harvest (kg/ha)
N P K
Integrated nutrient management
F1 100% RDF 1.55 1.30 3.9 171.8 12.6 58.6
F2 100% RDF + VC @ 2.5 t/ha 1.82 1.25 4.3 176.2 14.2 61.8
F3 100% RDF + FYM @ 5 t/ha 1.83 1.24 4.4 178.6 14.9 63.4
S.Em. ± 0.06 --- --- --- --- ---
C.D. (P=0.05) 0.13 --- --- --- --- ---
Bio fertilizer
B1 No PSB 1.70 1.27 4.1 174.6 13.1 60.4
B2 PSB 1.78 1.25 4.3 176.4 14.7 62.0
S.Em. ± 0.05 --- --- --- --- ---
C.D. (P=0.05) NS --- --- --- --- ---
Initial value 1.32 3.6 162.4 12.2 56.2
Muzaffarpur (Bihar) Pandey et al. (2013)
RDF – 20:40:20 NPK kg/ha; VC – vermicompost 44
Table 20: Effect of fertilizers and biofertilizers on growth and yield of cowpea
Treatments
Plant
height
(cm)
Branches/
plant
Seed
yield
(kg/ha)
Straw
yield
(kg/ha)
Net
return
(Rs./ha)
BCR
fertilizer
T1 Control 50.8 7.19 737 1573 10725 1.55
T2 50% RDF 55.3 8.04 785 1773 12239 1.77
T3 75% RDF 59.9 8.74 885 1920 14551 2.10
T4 100% RDF 61.6 9.26 924 2020 15533 2.25
C.D. (P=0.05) 4.36 0.68 40 134 865 0.12
Biofertilizers
T1 Control 52.0 7.14 740 1629 11566 1.80
T2 Rhizobium 57.8 8.66 850 1876 13817 2.02
T3 PSB 56.4 8.22 812 1768 12636 1.79
T4 Rhizobium + PSB 61.6 9.21 920 2012 15030 2.06
C.D. (P=0.05) 4.36 0.68 40 134 865 0.12
RDF – (20:40:00 NPK k/ha); PSB - phosphate solubilizing bacteria
Jobner (Rajasthan) Khandelwal et al. (2013)
46
Table 21: Effect of vermicompost and biofertilizers on yield and nutrients
status in soil after harvest of cowpea
Treatments
Seed yield
(q/ha)
Organic
carbon (%)
Nutrients status of soil after harvest (kg/ha)
N P K
Vermicompost levels
T1 Control 8.87 0.239 120.79 15.95 149.64
T2 2.0 t/ha 11.54 0.251 132.05 18.85 162.54
T3 4.0 t/ha 13.57 0.262 141.24 20.55 172.72
T4 6.0 t/ha 14.25 0.269 149.68 21.10 179.11
S.Em. ± 0.34 0.003 3.20 0.34 2.53
C.D. (P=0.05) 0.98 0.009 9.13 0.96 7.22
Biofertilizers
T1 Control 10.50 0.245 121.53 15.86 150.26
T2 Rhizobium 12.15 0.256 135.42 19.80 169.53
T3 PSB 11.93 0.253 131.14 19.90 164.70
T4 Rhizobium + PSB 13.65 0.267 155.67 20.89 179.54
S.Em. ± 034 0.003 3.20 0.34 2.53
C.D. (P=0.05) 0.98 0.009 9.13 0.96 7.22
Initial value 123.4 15.8 151.2
Jobner (Rajasthan) Khan et al. (2013) 47
Table 22: Effect of nitrogen and phosphorus levels on yields and economics of
cowpea
Treatment No. of
pod/plant
Seed yield
(kg/ha)
Straw yield
(kg/ha)
Net returns
(Rs./ha)
BCR
Nitrogen
N1 Control 10.12 769 1915 8676 2.11
N2 20 kg/ha 11.04 1013 2125 13270 2.64
N3 30 kg/ha 11.38 1018 2133 13243 2.61
N4 40 kg/ha 11.58 1022 2141 13198 2.58
S.Em. ± 0.24 26 47 - -
C.D. (P=0.05) 0.68 74 135 - -
Phosphorous
P1 Control 10.35 725 1834 7949 2.01
P2 40 kg/ha 10.96 1049 2128 12519 2.34
P3 60 kg /ha 11.31 1061 2143 12202 2.21
P4 80 kg/ha 11.50 1070 2150 11744 2.08
S.Em. ± 0.24 26 47 - -
C.D. (P=0.05) 0.68 74 135 - -
Junagadh (Gujarat) Verma et al. (2014) 48
Application of required dose of nutrients
through selection of proper sources i.e. organic,
inorganic, biological and their combination at
right time through appropriate methods can
increase the production and improve nutritional
quality of legume crops with sustaining the soil
fertility status.
49
INM in legumes

Weitere ähnliche Inhalte

Was ist angesagt?

Integarted nutrient management
Integarted nutrient managementIntegarted nutrient management
Integarted nutrient managementAnkush Singh
 
Integrated Nutrient Management (INM)
Integrated Nutrient Management (INM)Integrated Nutrient Management (INM)
Integrated Nutrient Management (INM)Vikas Kashyap
 
Integrated Nutrient Management and Balanced Fertilization by Bhanumahi (CCSH...
Integrated Nutrient Management  and Balanced Fertilization by Bhanumahi (CCSH...Integrated Nutrient Management  and Balanced Fertilization by Bhanumahi (CCSH...
Integrated Nutrient Management and Balanced Fertilization by Bhanumahi (CCSH...MahanteshKamatyanatti
 
NUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDYNUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDYSHRAVAN KUMAR REDDY
 
Secondary and micronutrient management in organic farming
Secondary and micronutrient management in organic farmingSecondary and micronutrient management in organic farming
Secondary and micronutrient management in organic farmingpujithasudhakar
 
modern concept of Fertilizer evaluationn -.pptx
modern concept  of Fertilizer evaluationn -.pptxmodern concept  of Fertilizer evaluationn -.pptx
modern concept of Fertilizer evaluationn -.pptxRamnathPotai
 
Determination of nutrient need for yield potentiality of crop plants
Determination of nutrient need for yield potentiality of crop plantsDetermination of nutrient need for yield potentiality of crop plants
Determination of nutrient need for yield potentiality of crop plantsPreetam Rathore
 
potassium dynamics
potassium dynamicspotassium dynamics
potassium dynamicsDipak Patel
 
Agronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUEAgronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUESUNITA MEHER
 
Crop residue management in rice based cropping system
Crop residue management in rice based cropping systemCrop residue management in rice based cropping system
Crop residue management in rice based cropping systemP.K. Mani
 
Soil conditioners and amendments
Soil conditioners and amendmentsSoil conditioners and amendments
Soil conditioners and amendmentsMahtab Rashid
 
Cropping system interactions
Cropping system interactionsCropping system interactions
Cropping system interactionsThims957
 
Flooded soils – formation, characteristics and management
Flooded soils – formation, characteristics and managementFlooded soils – formation, characteristics and management
Flooded soils – formation, characteristics and managementMahiiKarthii
 
sustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping systemsustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping systemRajni Sinha
 
Contingency Crop Planning
Contingency Crop PlanningContingency Crop Planning
Contingency Crop PlanningAkash Singh
 

Was ist angesagt? (20)

Integarted nutrient management
Integarted nutrient managementIntegarted nutrient management
Integarted nutrient management
 
Integrated Nutrient Management (INM)
Integrated Nutrient Management (INM)Integrated Nutrient Management (INM)
Integrated Nutrient Management (INM)
 
Yield and Environmental Stresses
Yield and Environmental StressesYield and Environmental Stresses
Yield and Environmental Stresses
 
Integrated Nutrient Management and Balanced Fertilization by Bhanumahi (CCSH...
Integrated Nutrient Management  and Balanced Fertilization by Bhanumahi (CCSH...Integrated Nutrient Management  and Balanced Fertilization by Bhanumahi (CCSH...
Integrated Nutrient Management and Balanced Fertilization by Bhanumahi (CCSH...
 
NUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDYNUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDY
 
Secondary and micronutrient management in organic farming
Secondary and micronutrient management in organic farmingSecondary and micronutrient management in organic farming
Secondary and micronutrient management in organic farming
 
inm in rice
 inm in rice inm in rice
inm in rice
 
Soil Fertility Evaluation.pptx
Soil Fertility Evaluation.pptxSoil Fertility Evaluation.pptx
Soil Fertility Evaluation.pptx
 
modern concept of Fertilizer evaluationn -.pptx
modern concept  of Fertilizer evaluationn -.pptxmodern concept  of Fertilizer evaluationn -.pptx
modern concept of Fertilizer evaluationn -.pptx
 
Determination of nutrient need for yield potentiality of crop plants
Determination of nutrient need for yield potentiality of crop plantsDetermination of nutrient need for yield potentiality of crop plants
Determination of nutrient need for yield potentiality of crop plants
 
potassium dynamics
potassium dynamicspotassium dynamics
potassium dynamics
 
Agronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUEAgronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUE
 
DRYLAND FARMING
DRYLAND FARMING DRYLAND FARMING
DRYLAND FARMING
 
Crop residue management in rice based cropping system
Crop residue management in rice based cropping systemCrop residue management in rice based cropping system
Crop residue management in rice based cropping system
 
Soil conditioners and amendments
Soil conditioners and amendmentsSoil conditioners and amendments
Soil conditioners and amendments
 
Cropping system interactions
Cropping system interactionsCropping system interactions
Cropping system interactions
 
Flooded soils – formation, characteristics and management
Flooded soils – formation, characteristics and managementFlooded soils – formation, characteristics and management
Flooded soils – formation, characteristics and management
 
sustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping systemsustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping system
 
Soil health
Soil healthSoil health
Soil health
 
Contingency Crop Planning
Contingency Crop PlanningContingency Crop Planning
Contingency Crop Planning
 

Ähnlich wie INM in legumes

Role of organics in balanced fertilization
Role of organics in balanced fertilizationRole of organics in balanced fertilization
Role of organics in balanced fertilizationRushang9904585475
 
Integrated nutrient management influence on crop yields in dryland agriculture
Integrated nutrient management influence on crop yields  in dryland agricultureIntegrated nutrient management influence on crop yields  in dryland agriculture
Integrated nutrient management influence on crop yields in dryland agriculturearchana reddy
 
Nutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptxNutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptxanju bala
 
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIESORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIESSHRAVAN KUMAR REDDY
 
Impact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farmingImpact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farmingAshish Patel
 
Soil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in IndiaSoil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in IndiaICARDA
 
Integrated nutrient management approaches under system of rice intensificatio...
Integrated nutrient management approaches under system of rice intensificatio...Integrated nutrient management approaches under system of rice intensificatio...
Integrated nutrient management approaches under system of rice intensificatio...Ashutosh Pal
 
Organic Farming.ppt
Organic Farming.pptOrganic Farming.ppt
Organic Farming.pptRohitKarde2
 
Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...PRAVEEN KUMAR
 
Effect of nutrient management on nutrient availability, ghg emission and grow...
Effect of nutrient management on nutrient availability, ghg emission and grow...Effect of nutrient management on nutrient availability, ghg emission and grow...
Effect of nutrient management on nutrient availability, ghg emission and grow...Ashutosh Pal
 
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementCK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementC. Dotaniya
 
chethan biofortification.pptx
chethan biofortification.pptxchethan biofortification.pptx
chethan biofortification.pptxCHETHAN BABU R T
 
integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...2436524365
 
COMPARATIVE ADVANTAGE OF SRI OVER TRANSPLANTED RICE IN TERMS OF YIELD A...
COMPARATIVE  ADVANTAGE  OF SRI  OVER TRANSPLANTED  RICE  IN TERMS OF YIELD  A...COMPARATIVE  ADVANTAGE  OF SRI  OVER TRANSPLANTED  RICE  IN TERMS OF YIELD  A...
COMPARATIVE ADVANTAGE OF SRI OVER TRANSPLANTED RICE IN TERMS OF YIELD A...P.K. Mani
 

Ähnlich wie INM in legumes (20)

Role of organics in balanced fertilization
Role of organics in balanced fertilizationRole of organics in balanced fertilization
Role of organics in balanced fertilization
 
Integrated nutrient management influence on crop yields in dryland agriculture
Integrated nutrient management influence on crop yields  in dryland agricultureIntegrated nutrient management influence on crop yields  in dryland agriculture
Integrated nutrient management influence on crop yields in dryland agriculture
 
Nutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptxNutrient management in kharif fodder crops.pptx
Nutrient management in kharif fodder crops.pptx
 
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIESORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
ORGANIC NUTRIENT SYSTEM DYNAMICS AND STRATEGIES
 
Impact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farmingImpact of nutrient management practices on feasibility of organic farming
Impact of nutrient management practices on feasibility of organic farming
 
Soil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in IndiaSoil Health, the Missing Link in Sustainable Pulse Production in India
Soil Health, the Missing Link in Sustainable Pulse Production in India
 
Nutrient mining
Nutrient miningNutrient mining
Nutrient mining
 
Integrated nutrient management approaches under system of rice intensificatio...
Integrated nutrient management approaches under system of rice intensificatio...Integrated nutrient management approaches under system of rice intensificatio...
Integrated nutrient management approaches under system of rice intensificatio...
 
Role of sulphur in oilseed crop
Role of sulphur in oilseed cropRole of sulphur in oilseed crop
Role of sulphur in oilseed crop
 
Organic Farming.ppt
Organic Farming.pptOrganic Farming.ppt
Organic Farming.ppt
 
INM MUSTARD
INM MUSTARDINM MUSTARD
INM MUSTARD
 
Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...
 
Effect of nutrient management on nutrient availability, ghg emission and grow...
Effect of nutrient management on nutrient availability, ghg emission and grow...Effect of nutrient management on nutrient availability, ghg emission and grow...
Effect of nutrient management on nutrient availability, ghg emission and grow...
 
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementCK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
 
Response of micronutrient application in soybean under Indian condition
Response of micronutrient application in soybean under Indian conditionResponse of micronutrient application in soybean under Indian condition
Response of micronutrient application in soybean under Indian condition
 
1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics
 
Straw management
Straw management Straw management
Straw management
 
chethan biofortification.pptx
chethan biofortification.pptxchethan biofortification.pptx
chethan biofortification.pptx
 
integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...integrated nutrient management on productivity and soil fertility in rice bas...
integrated nutrient management on productivity and soil fertility in rice bas...
 
COMPARATIVE ADVANTAGE OF SRI OVER TRANSPLANTED RICE IN TERMS OF YIELD A...
COMPARATIVE  ADVANTAGE  OF SRI  OVER TRANSPLANTED  RICE  IN TERMS OF YIELD  A...COMPARATIVE  ADVANTAGE  OF SRI  OVER TRANSPLANTED  RICE  IN TERMS OF YIELD  A...
COMPARATIVE ADVANTAGE OF SRI OVER TRANSPLANTED RICE IN TERMS OF YIELD A...
 

Kürzlich hochgeladen

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Kürzlich hochgeladen (20)

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

INM in legumes

  • 2. Seminar Presentation on Major Advisor Dr. V. M. Patel Assistant Research Scientist Pulses and Castor Research Station N. A.U., Navsari Co-Guide Dr. Sonal Tripathi Associate Professor Dept. of Soil Sci. and Agril. Chemistry N. M. College of Agriculture N. A.U., Navsari Speaker Mr. Joshi Jigarkumar R. III Sem., M. Sc. (Agri.) Reg. No:- 2010114038 Dept. of Agronomy N. M. College of Agriculture NAU, Navsari NUTRIENT MANAGEMENT IN LEGUME CROPS 2
  • 3. Introduction  Legumes are members of the Fabaceae or bean family, include several important food crops such as peas, beans, soybeans, cowpea, chickpea, greengram, blackgram, lentil, peanuts etc.  The global legume production, area and productivity during 2014 was 395 million tonnes, 218 million ha and 1811 kg/ha respectively.  India is the forth largest producer of legumes next to USA, Brazil and Argentina accounting about 10 present of total production in the world  India is producing about 40 million tonnes of legumes from an area of 42 million hectare with average productivity 955 kg/ha (Anonymous 2014). 3
  • 4.  Nutritionally, legume seeds are two to three times richer in protein than cereal grains. Some legumes, such as soybeans and groundnut are also the rich source of oil.  The inadequate supply of protein is the major problem not only in India but in all the developing countries of world  The legumes are cheap and easily available sources of protein which compare very well in the nutritive values with other sources of proteins.  Legumes occupy an extensive area in India but the yields are low compared to other countries.  For increasing the production, productivity & protein content of legumes, an efficient and effective nutrient management is required. 4
  • 5. Global top five legume Producing Countries - 2014 USA 25% Brazil 23% Argentina 14% India 10% China 8% Other 20% Source : Ministry of Agriculture, Govt. of India. 5
  • 6. Sr. No. Year Area (Million Hectares) Production (Million tonnes) Yield (Kg/ha) 1 2005-06 36.84 29.65 804 2 2006-07 37.14 27.91 751 3 2007-08 38.8 35.53 915 4 2008-09 37.76 31.65 838 5 2009-10 38.49 30.05 780 6 2010-11 41.86 39.24 937 7 2011-12 39.83 36.26 910 8 2012-13 39.3 37.71 959 9 2013-14 42.75 40.84 955 Source : Ministry of Agriculture, Government of India Area, Production and productivity of Total legume in India (2005-06 to 2013-14) 6
  • 7. Name Area (m ha) Production (m tonne) Yield (kg/ha)Common Scientific Soybean Glycine max 11.7164 11.8608 1012 Groundnut Arachis hypogaea 5.5052 9.71390 1764 Chickpea Cicer arietinum 9.9274 9.5263 960 Pigeon pea Cajunus cajan 3.9049 3.1744 813 Urad Vigna mungo 4.018 1.700 423 Mung bean Vigna radiate 3.156 1.610 510 Lentil Lens culinaris 1.450 1.160 800 Moth bean Vigna aconitifolia 1.483 0.409 266 Other legume 3.624 2.561 706 Total/average 42.751 40.843 955 Source: Ministry of Agriculture, Government of India database (2013-2014) Status of major grain legumes of India (2013-14) 7
  • 8. Area, production and productivity of major legume in Gujarat (2013-14) Sr. No. States Area (m ha) Production (m tonne) Productivity (kg/ha) 1 Groundnut 1.843 4.9176 2668 2 Chickpea 0.247 0.309 1251 3 Pigeon pea 0.210 0.209 995 4 Green Gram 0.183 0.103 564 5 Black gram 0.091 0.060 655 6 Soybean 0.060 0.044 733 7 Other legume 0.030 0.018 595 Total Gujarat 2.664 5.6606 2124 Source : Ministry of Agriculture, Govt. of India. 8
  • 9. Importance of Legume Crops Important reasons for their cultivation include: Suitability for human and animal consumption Adaptability for inter or mixed cropping Agronomic management of legumes is relatively easy Input (especially nitrogen fertilizer) requirement is lower compared to other crops They produce substantial amounts of organic nitrogen increase soil organic matter, improve soil porosity and structure, recycle nutrients, maintain soil pH, reduce soil compaction. 9
  • 10.  It is a system used to manage the amount, form, placement and timing of the application of nutrients (whether as manure, commercial fertilizer or other form of nutrients) to plants. Nutrient management 10
  • 11. Essential plant nutrients Element Forms absorbed by plants Concentration in plant dry matter C Co2 40-45 % H H2O 6 % O O2, H2O 40-45 % N NH4 + & NO3 - 4.0 % P H2PO4 - & HPO4 -2 0.5 % K K+ 4.0 % Mg Mg+2 0.5 % S SO4 -2 0.5 % Ca Ca+2 1.0 % Fe Fe+2 & Fe+3 200 ppm Mn Mn+2 200 ppm Zn Zn+2 30 Ppm B H3BO3 & H2BO3 - 60 ppm Cu Cu+2 10 ppm Mo MoO4 -2 2 ppm Cl Cl- 3000 ppm Ni Ni+ ---- 11
  • 12. Deficiency of nutrient in legume 12
  • 13.  Decreasing total cultivated area and increase population.  To improve productivity.  To maintain the growth and vigor of the plant.  To increase the fertilizer use efficiency.  To obtain higher yield and higher return.  To reduce the cost of production.  Improve the quality of produce.  To earn the foreign exchange. 13
  • 14. Four R principles of nutrient management 1. Right Source: Ensure a balanced supply of essential nutrients. 2. Right Rate: Assess and make decisions based on soil nutrient supply and plant demand. 3.Right Time: Assess and make decisions based on the dynamics of crop uptake, soil supply, nutrient loss risks. 4. Right place: manage spatial variability within the field to meet site-specific crop needs and limit potential losses from the field. 14
  • 16. Bio-fertilizer application in legumes Seed treatment:  Clean seed on a cemented floor or gunny bag  Prepare culture by bio-fertilizer and water (1:2)  Sprinkled culture on the heap of the seed and mix by hand so thin coated  Spread the seed under shade sometime for drying.  Sow immediately Soil application  10-15 packets (200 gm.) are mixed with40- 60 kg of organic fertilizer or soil for one acre land.  Mixture sprinkled with water or broadcasted into the soil at sowing time or standing crop. 16
  • 17. Integrated nutrient management 0 5000 10000 15000 20000 25000 30000 N P K Total Thousandtonnes year Source : Ministry of Agriculture, Govt. of India. Consumption of fertilisers in terms of Nutrients (N, P and K) in India (1950-1951 to 2013-2014) INM involves the integrated use of mineral fertilizer through with organic manures/ industrial agricultural waste and bio-fertilizer in suitable combination each other to optimize input use and maximize production 17
  • 18. 18
  • 19.
  • 20. Table 1: Effect of fertility levels and bio-fertilizers on yield and quality attributes of groundnut Treatments Pod yield (kg/ha) Kernel yield (kg/ha) Haulm yield (kg/ha) Oil content (%) Protein content (%) Fertility levels T1 Control 2512 1598 4148 47.25 24.08 T2 100 % RDF 3086 2039 5024 48.28 25.53 T3 50% RDF 2809 1842 4609 47.43 24.64 T4 FYM@8t/ha + 50% RDF 3394 2364 5410 49.52 25.99 T5 VC@ 3t/ha + 50% RDF 3468 2430 5443 50.28 26.16 C.D. (P=0.05) 92 106 182 1.09 0.36 Biofertlizer T1 Control 2923 1897 4787 47.80 24.91 T2 Rhizobium 3170 2182 5060 48.80 25.56 T3 PSB 3069 2084 4934 49.07 25.37 C.D. (P=0.05) 80 92 157 0.95 0.31 VC-vermicompost; PSB- phosphate solubilise Bactria; RDF 20:40:00 NPK kg/ha Bikaner (Rajasthan) Ola et al. (2013) 20
  • 21. Table 2: Effect of organic, inorganic sources of P and its method of application on yield and quality of groundnut (pooled over 4 year) Treatment Pod yield (kg/ha Haulm yield (kg/ha) Protein content (%) Oil content (%) T1 control 1710 2316 24.17 46.0 T2 RDP as DAP (broadcasting) 2001 2686 26.10 46.7 T3 RDP as DAP (Placement) 2182 2779 26.27 46.8 T4 RDP as P-EC (broadcasting) 2260 2826 26.31 47.1 T5 RDP as P-EC (placement) 2441 2967 26.79 47.3 T6 RDP as P- VC (broadcasting) 2367 2943 26.60 47.2 T7 RDP as P- VC (placement) 2535 3103 27.04 47.8 S.Em. ± 64 71 0.12 0.19 C.D. (P=0.05) 141 156 0.26 0.42 Rajasthan Singh et al. (2014) RDF – 20:40:40 NPS kg/ha; P-VC: P enriched Vermicompost - 1.27 t/ha; P-EC: P enriched Compost - 1.39 t/ha 21
  • 22. Table 3: Effect of green manure and phosphorus on growth and yield of groundnut at harvest stage Treatment Plant height (cm) Dry matter accumulation (g/plant) LAI Pod yield (t/ha) Green manuring Without green manure 39.11 21.83 1.19 1.84 With green manure 43.86 24.42 1.26 2.07 C.D. (P=0.05) 0.59 0.31 0.01 0.03 Phosphorus levels (kg/ha) 0 kg/ha 37.45 18.87 1.11 1.66 30 kg/ha 43.43 23.95 1.23 2.08 60 kg/ha 43.58 26.55 1.35 2.13 C.D. (P=0.05) 0.90 0.39 0.06 0.06 Green manuring:-rice bean (Vigna umbellata); common dose of N and K 80:40 kg/ha Bhubaneswar (Odisha) Kar and Ram (2015) 22
  • 23. Table 4: Yield and economics as influenced by different nutrient management practices in summer groundnut (pooled over 2 year) Treatment Pod yield (kg/ha) Gross returns (Rs./ha) Net returns (Rs./ha) BCR ratio T1 100% RDF 1966 98300 78100 4.59 T2 100% RDF + FYM 7.5 t/ha 2169 108450 88550 5.45 T3 75% RDF + 25% RDF TD at 30 DAS 1738 86900 68500 4.72 T4 75% RDF + 25% RDF TD at 30 DAS + FYM 7.5 t/ha 1909 95450 69910 3.74 T5 150% RDF 1822 91100 72538 4.91 T6 150% RDF + FYM 7.5 t/ha 1801 90050 63388 3.38 T7 100% RDF + 50% RDF TD at 30 DAS 1802 90100 69738 4.42 T8 100% RDF + 50% RDF TD at 30 DAS + FYM 7.5 t/ha 2006 100300 78798 4.66 T9 75% RDF + 75% RDF TD at 30 DAS 1721 86050 67248 4.58 T10 75% RDF + 75% RDF TD at 30 DAS + FYM 7.5 t/ha 1602 80100 53198 2.98 S.Em. ± 40 --- --- --- C. D. (P=0.05) 114 --- --- --- Vyara (Gujarat) Madhubala and Kedarnath (2015) RDF- 25:50:00 N:P:K kg/ha; TD- top dressing; DAS- days after sowing 23
  • 24. Table 5: Effect of organic manures on yield, economics and available N in soil after harvest of summer groundnut Treatment Pod yield (kg/ha) Haulm yield (kg/ha) Cost of cultivation (Rs./ha) Net return (Rs./ha) BCR Available N (kg/ha) T1 Control 1917 2885 30549 59114 2.94 240.00 T2 FYM 5 t/ha 2626 4475 38049 87130 3.29 261.67 T3 BC 3 t/ha 2374 3884 39549 72889 2.84 257.00 T4 NADEP compost 3 t/ha 2020 3637 38049 59115 2.55 242.00 T5 VC 1.5 t/ha 2446 3907 38049 77371 3.03 258.33 T6 FYM 2.5 t/ha + NC 0.3 t/ha 2147 3659 36999 65347 2.77 250.00 T7 BC 1.5 t/ha + NC 0.3 t/ha 2162 3803 37749 65843 2.74 252.00 T8 NADEP compost 1.5 t/ha + NC 0.3 t/ha 2008 3709 36999 60011 2.62 241.33 T9 VC 0.75 t/ha + NC 0.3 t/ha 2125 3757 36999 64906 2.75 244.00 T10 BC 1.25 t/ha + VC 165 kg/ha + CC 75 kg/ha 2197 3830 35724 69389 2.94 259.00 S.Em. ± 96 246.8 --- --- --- 5.08 C.D. (P=0.05) 284 733.3 --- --- --- 15.10 Initial value 241.0 Navsari (Gujarat) Kanara (2015) BC: Biocompost; VC: vermicompost; NC: Neem cake; CC: castor cake 24
  • 25.
  • 26. Table 6: Effect of land configuration, integrated nutrient management and biocompost on growth, yield quality and economics of summer soybean Treatments Seed yield (kg/ha) Stover yield (kg/ha) Cost of cultivation (Rs./ha) Net return (Rs./ha) BCR Land configuration Raised bed 1193 2205 12557 31222 2.49 Flat bed 1102 2023 11557 28855 2.50 S.Em. ± 30.63 58.20 --- --- --- C.D. (P=0.05) 90.02 171.17 --- --- --- Integrated nutrient management RDF (30:60:00 NPK kg/ha) 1144 2087 13810 28692 2.07 75% RDF + Biofertlizer (PSB + Rhizobium) 1151 2142 13247 29019 2.19 S.Em. ± 30.63 58.20 --- --- --- C.D. (P=0.05) NS NS --- --- --- Biocompost Control 1100 2026 11557 28795 2.49 Biocompost 10t/ha 1195 2203 14207 29633 2.08 S.Em. ± 30.63 60.02 --- --- --- C.D. (P=0.05) 90.02 171.17 --- --- --- NAU (Navsari) Shinde (2012) 26
  • 27. Table 7: Effect of P, S and Co fertilization on yield and quality of soybean Treatment No. of pod/plant Seed yield (q/ha) Stover yield (q/ha) Protein content (%) Phosphorus (kg/ha) P1 30 kg/ha 156.6 23.5 34.4 36.15 P2 60 kg/ha 199.5 28.2 37.9 38.76 P3 90 kg/ha 200.1 30.2 41.4 40.03 C.D. (P=0.05) 12.5 2.61 2.0 1.56 Sulphur (kg/ha) S1 15 kg/ha 181.6 26.9 36.0 38.24 S2 30kg/ha 201.1 27.6 39.8 38.39 C.D. (P=0.05) 10.2 NS 1.6 NS Cobalt (kg/ha) C1 1 kg/ha 186.51 27.3 37.1 38.36 C2 2 kg/ha 196.2 27.4 38.7 38.27 C.D. (P=0.05) NS NS 1.6 NS Medziphema (Nagaland) Bhattacharjee et al. (2013) 27
  • 28. Table 8: Effect of nutrient management on yield and economics of soybean (Pooled over 2 year) Treatment Seed yield (t/ha) Stover yield (t/ha) Cost of cultivation (Rs./ha) Net return (Rs./ha) BCR T1 Control 2.06 3.73 19940 22720 1.14 T2 50 % RDF 2.26 3.93 21250 25220 1.19 T3 100 % RDF 2.44 4.11 22500 27500 1.22 T4 100 % RDF + 30 kg N/ha 2.87 4.46 22900 35760 1.56 T5 50 % RDF + 2.5 t/ha PM 2.59 4.24 22800 30320 1.33 T6 50 % RDF + 5 t/ha PM 2.90 4.57 24350 34810 1.43 S.Em. ± 0.01 0.01 - --- --- C.D. (P=0.05) 0.02 0.03 - --- --- RDF- 30:26.2:33.2 NPK kg/ha; PM - poultry manure Agra (Uttar Pradesh) Singh et al. (2013) 28
  • 29. Table 9: Effect of organic manures and fertility levels on yield and availability Nutrient status in soil after harvest of soybean (Pooled over 2 year) Treatment Seed yield(t/ha) Nutrient status of soil after harvest (kg/ha) N P K Organic manures F1 Control 1.05 326.9 20.1 239.0 F2 FYM @ 5 t/ha 1.27 342.1 21.7 251.3 F3 VC @ 2.5 t/ha 1.50 349.2 21.8 256.6 F4 FYM @ 2.5 t/ha + VC @ 1.25 t/ha 1.82 359.6 23.0 262.3 SEm ± 0.03 2.8 0.6 3.1 C.D. (P=0.05) 0.09 8.2 1.7 8.9 Fertility levels T1 Control 1.19 325.6 20.4 239.6 T2 50 % RDF 1.45 343.8 21.3 254.4 T3 100% RDF 1.59 363.8 23.2 262.9 S.Em. ± 0.03 2.4 0.5 2.7 C.D. (P=0.05) 0.07 7.1 1.5 7.8 Initial nutrient 333 23 250 Palampur (Himachal Pradesh) Rana and Badiyala (2014) RDF- 20:25.8:33.2 NPK kg/ha; VC- vermicompost 29
  • 30.
  • 31. Table 10(A): Effect of bio-organics and chemical fertilizers on yield and quality of chickpea Treatment No. of pod/ plant Seed yield (kg/ha) Straw yield (kg/ha) Protein content (%) Net return (Rs./ha) Bio-organics T1 Rhizobium + Azoctobactor + PSB 59.45 1446 2239 18.14 40699 T2 FYM 5 t/ha 80.10 1802 2650 19.05 52053 T3 T1 + T2 103.55 2322 2834 19.40 69775 T4 FYM 2 t/ha + Castor cake 0.5 t/ha 110.94 2761 2751 19.48 84814 C.D. (P=0.05) 3.70 138.94 178.92 NS --- Chemical Fertilizers F1 Control 81.88 1851 2441 17.95 55659 F2 50% RDF 85.43 2045 2570 18.74 61895 F3 75% RDF 89.14 2162 2618 18.99 65695 F4 100% RDF 97.60 2272 2844 20.39 69348 C.D. (P=0.05) 3.70 138.94 178.92 1.49 --- Anand (Gujarat) Shukla et al. (2013) Recommended dose of fertilizer (25:50:00 NPK kg/ha) 31
  • 32. Table 10(B): Effect of bio-organics and chemical fertilizers on post harvest available nutrients in soil 0 50 100 150 200 250 300 T1 T2 T3 T4 F1 F2 F3 F4 219.91 233.11 258.4 237.17 218.47 233.11 243.01 254 28.45 25.93 31.46 30.48 27.79 28.05 29.5 30.99 Available N (kg/ha) Available P (kg/ha) kg/ha Bio- organic Chemical fertilizer Anand (Gujarat) Shukla et al. (2013) Bio- organic (T1: Rhizobium + Azotobacter + PSB, T2: FYM 5 t/ha, T3: FYM 5 t/ha + Rhizobium + Azotobacter + PSB, T4: FYM 2 t/ha + castor cake 0.5 t/ha) and Chemical fertilizer (F1: No fertilizer, F2: 50% of RDF, F3: 75% of RDF, F4: 100% RDF) initial nutrient status: N (198 kg/ha) and P O (24.2 kg/ha) 32
  • 33. Table 11: Effect of seed inoculation through bio-fertilizers and molybdenum/ cobalt on yield and economics of chickpea (pooled data 3 year) Treatment Seed yield (kg/ha Straw yield (kg/ha) Gross return (Rs./ha) Net return (Rs./ha) BCR T1 RDF (20:40:00 NPK kg/ha) 1538 1712 54857 36731 2.03 T2 RDF + Rhizobium + PSB 1805 2105 64438 46161 2.52 T3 RDF + 1.0 g ammonium molybdate/kg seed + Rhizobium + PSB 1882 2120 67142 48146 2.53 T4 RDF + 2.0 g ammonium molybdate/kg seed + Rhizobium + PSB 1832 2022 65333 45617 2.30 T5 RDF + 2.0 g CoSO4/kg seed + Rhizobium + PSB 1752 1963 62498 43022 2.20 T6 RDF + 2.0 g ammonium molybdate/kg seed + 2.0 g CoSO4/kg seed + Rhizobium + PSB 1727 1971 61628 40712 1.95 S.Em. ± 41.2 130.7 --- --- --- C.D. (P=0.05) 116 NS --- --- --- Junagadh (Gujarat) Poonia and Pithia (2014) PSB - phosphate solubilizing bacteria; CoSO4 - Cobalt sulphate 33
  • 34. Table 12: Effect of sulphur and phosphorus management on yield, quality and post harvest soil nutrient status of soil Treatment Seed yield (kg/ha) Protein content (%) Post harvest soil nutrients status (kg/ha) N P2O5 S Sulphur levels (S) S1 0 kg S/ha 720 17.27 223.85 45.10 20.68 S2 20 kg S/ha 807 18.14 231.26 47.76 22.75 S3 40 kg S/ha 783 21.60 233.77 47.71 25.31 S.Em. ± 10.75 0.56 0.43 0.50 0.399 C.D. (P=0.05) 30.94 1.62 1.24 1.45 1.15 Phosphorus management (P) P1 Control 614 15.50 225.98 42.76 19.65 P2 PSB alone 714 16.91 228.51 45.71 21.84 P3 25 kg P2O5 /ha 855 20.38 230.50 47.93 24.06 P4 25 kg P2O5 /ha + PSB 899 22.50 233.97 51.02 26.10 S.Em. ± 12.41 0.65 0.45 0.58 0.461 C.D. (P=0.05) 35.72 1.87 1.44 1.67 1.33 Anand (Gujarat) Patel et al. (2014) 34
  • 35.
  • 36. Table 13(A): Effect of land configuration, fertilizer rates and farm yard manure application on growth, yield and quality of green gram Pooled over two year) Treatment Plant height (cm) No. of nodules/pla nt No. of pods/plant Seed yield (t/ha) Stover yield (t/ha) Protein content (%) Land configuration Flat bed 41.6 16.2 22.8 0.83 2.12 19.6 Raised bed 44.2 17.2 25.6 0.93 2.27 29.5 S.Em. ± 0.7 0.3 0.4 0.01 0.04 0.3 C.D. (P=0.05) 2.0 0.8 1.0 0.04 0.11 NS Inorganic fertilizers 75% RDF 41.9 16.2 22.9 0.83 2.13 19.7 100% RDF 44.0 17.2 25.5 0.93 2.27 20.2 S.Em. ± 0.7 0.3 0.4 0.01 0.04 0.3 C.D. (P=0.05) 2.0 0.8 1.1 0.04 0.11 NS FYM (t/ha) 0 @ t/ha 41.1 16.1 22.9 0.83 2.08 19.3 5 @ t/ha 44.7 17.3 25.4 0.93 2.31 20.2 S.Em. ± 0.7 0.3 0.4 0.01 0.04 0.3 C.D. (P=0.05) 2.0 0.8 1.1 0.04 0.11 0.8 Navsari (Gujarat) Jat et al. (2012) Recommended dose of fertilizer (20:40:00 NPK kg/ha) 36
  • 37. Table 13(B): Effects of fertilizer rates and farm yard manure application on available NPK in soil after harvest of green gram (Pooled data of two year) 238.2 251.7 238 252 17.1 17.9 17.1 17.9 295.8 304.2 291 308.9 0 50 100 150 200 250 300 350 75% RDF 100 % RDF 0 t/ha 5 t/ha Available N (kg/ha) Available P (kg/ha) Available k (kg/ha) kg/ha Chemical fertilizer FYM Navsari (Gujarat) Jat et al. (2012) Recommended dose of fertilizer (20:17.6:00 NPK kg/ha) initial nutrient status: N(225 kg/ha), P2O5(15.41 kg/ha) and K2O N(291 kg/ha) 37
  • 38. Table 14: Seed yield and soil health as influenced by sowing time and integrated nutrient management in summer mungbean (Pooled over two year) Treatment Seed yield (kg/ha) pH (%) EC (ds/m) OM (%) Nutrient status of soil after harvest (kg/ha) N P K Sowing time 5th April 1217 5.04 0.037 1.60 226.01 12.74 142.65 15th April 1009 4.98 0.036 1.56 224.77 10.84 141.98 S.Em. ± 71 0.07 0.001 0.01 2.72 0.87 2.86 C.D. (P=0.05) 105 NS NS NS NS NS NS Integrated nutrient management Control 905 4.82 0.034 1.44 221.08 8.75 137.32 100 % RDF 1067 5.00 0.036 1.62 225.42 12.62 142.21 50 % RDF + 50 % RDN (VC) + PSB 1367 5.20 0.041 1.69 229.67 14.00 147.42 S.Em. ± 10 0.06 0.0004 0.01 1.40 0.28 1.40 C.D. (P=0.05) 30 0.16 0.0011 0.03 4.04 0.80 4.02 Initial value 5.3 --- --- 225.3 12.40 140.0 Nagaland Kumar et al. (2015) RDF– 20:40:00 NPK kg/ha; PSB – Phosphate solubilizing bacteria; EC – electric conductivity; OM – organic matter 38
  • 39. Table 15: Effect of integrated nutrient management on yield and nutrient uptake of greengram under rainfed condition Treatment Seed yield (kg/ha) Straw yield (kg/ha) Total uptake (kg/ha) N P K T1 Control 437 1535 12.06 1.12 4.30 T2 100% RRN (FYM) 692 2396 15.48 1.52 4.60 T3 100% RRN (Vermicompost) 710 2418 17.48 2.49 7.25 T4 100% RRN (Poultry manure) 730 2440 21.38 3.05 8.66 T5 50% RDF + 100% RRN (FYM) 944 3028 27.40 3.30 9.15 T6 50% RDF + 100% RRN (Vermicompost) 957 3047 28.13 3.72 10.06 T7 50% RDF + 100% RRN (Poultry manure) 1002 3102 30.86 3.97 10.24 T8 100% RDF 855 2788 23.48 3.08 8.69 S.Em. ± 32 106 0.894 0.127 0.431 C.D. (P=0.05) 99 322 2.712 0.386 1.309 Recommended dose of fertilizer (20:17:00 NPK kg/ha);RRN-Recommended rate of nitrogen Varanasi (U.P) Singh et al. (2015) 39
  • 40. Table 16: Effect of Integrated nutrient management on yield and economics of summer greengram Treatment` Seed yield (kg/ha) Stover yield (kg/ha) Net return (Rs./ha) BCR T1 Control 581 1493 23659 2.67 T2 20 kg P2O5/ha (SSP) 703 1651 30385 3.01 T3 40 kg P2O5/ha (SSP) 802 1921 35955 3.25 T4 20 kg P2O5/ha (DAP) 698 1626 29922 2.97 T5 40 kg P2O5/ha (DAP) 765 1810 33287 3.05 T6 20 kg P2O5/ha (DAP) + gypsum @ 100 kg/ha 703 1621 30220 2.99 T7 40 kg P2O5/ha (DAP) + gypsum @ 200 kg/ha 786 1863 34231 3.06 T8 20 kg P2O5/ha (DAP) + FYM @ 5 t/ha 730 1732 26776 2.31 T9 20 kg P2O5/ha (SSP) + FYM @ 5 t/ha 741 1706 27497 2.35 T10 20 kg P2O5/ha (DAP) + PSB 751 1768 33281 3.18 T11 20 kg P2O5/ha (SSP) + PSB 775 1892 35082 3.31 T12 FYM @ 10 t/ha + PSB 705 1720 20896 1.85 S.Em. ± 21.1 53.4 --- --- C.D. (P=0.05) 60.7 153.6 --- --- Anand (Gujarat) ` Rathour et al. (2015) 40Common dose of N (20 kg/ha)
  • 41.
  • 42. Table 17: Seed yield and economics of pigeon pea as influenced by integrated nutrient management (Pooled over 2 year) Varanasi (U.P) Kumawat et al. (2013) RDF – 20:40:20:20 NPK and S kg/ha; NVC – Nitrogen through vermicompost Treatment Seed yield (t/ha) Gross return (x 103 Rs./ha) net return ( x 10 3 Rs./ha) BCR T1 Control 1.20 81.600 63.7 3.6 T2 100% RDF 1.67 106.900 87.4 4.5 T3 50% RDF + 50% NVC 1.72 109.500 88.9 4.3 T4 100% RDF + 50% NVC 1.89 118.700 97.4 4.6 T5 50% RDF + 100% NVC 1.72 110.900 88.6 4.0 T6 100% RDF + 5 kg Zn/ha 1.68 108.800 89.2 4.5 T7 50% RDF + 50% NVC + 5 kg Zn/ha 2.01 124.900 104.2 5.0 T8 100% RDF + 50% NVC + 5 kg Zn/ha 2.10 130.700 109.3 5.1 T9 50% RDF + 100% NVC+5 kg Zn/ha 2.07 128.500 106.0 4.8 S.Em. ± 0.03 1.5 1.6 0.08 C.D. (P=0.05) 0.08 4.5 4.5 0.022 42
  • 43. Table 18: Effect of plant geometry and fertility levels on pigeon pea cv. ICPH 2671 Treatment Plant height (cm) Pod/plant Seed yield (q/ha) Stalk yield (q/ha) Plant geometry S1 60 x 30 cm 210.50 167.57 21.88 109.76 S2 90 x 30 cm 202.92 185.59 24.58 107.73 S3 90 x 45 cm 205.76 190.49 25.65 91.39 S.Em. ± 2.41 2.46 0.61 1.30 C.D. (P=0.05) NS 7.36 1.82 3.88 Fertility levels T1 25:50 N & P2O5 kg/ha 204.01 169.78 22.28 101.02 T2 37.5:75 N & P2O5 kg/ha 204.40 178.31 24.09 102.83 T3 50:100 N & P2O5 kg/ha 210.77 195.56 25.74 105.02 S.Em. ± 2.96 3.01 0.74 1.59 C.D. (P=0.05) NS 9.02 2.23 NS Dharwad (Karnataka) Meena et al. (2013) 43
  • 44. Table 19: Effect of INM on seed yield and Physico-chemical properties of soil after harvest of pigeon pea Treatment Seed yield (t/ha) Bulk density (g/cc) Organic carbon (g/kg) Nutrients status of soil after harvest (kg/ha) N P K Integrated nutrient management F1 100% RDF 1.55 1.30 3.9 171.8 12.6 58.6 F2 100% RDF + VC @ 2.5 t/ha 1.82 1.25 4.3 176.2 14.2 61.8 F3 100% RDF + FYM @ 5 t/ha 1.83 1.24 4.4 178.6 14.9 63.4 S.Em. ± 0.06 --- --- --- --- --- C.D. (P=0.05) 0.13 --- --- --- --- --- Bio fertilizer B1 No PSB 1.70 1.27 4.1 174.6 13.1 60.4 B2 PSB 1.78 1.25 4.3 176.4 14.7 62.0 S.Em. ± 0.05 --- --- --- --- --- C.D. (P=0.05) NS --- --- --- --- --- Initial value 1.32 3.6 162.4 12.2 56.2 Muzaffarpur (Bihar) Pandey et al. (2013) RDF – 20:40:20 NPK kg/ha; VC – vermicompost 44
  • 45.
  • 46. Table 20: Effect of fertilizers and biofertilizers on growth and yield of cowpea Treatments Plant height (cm) Branches/ plant Seed yield (kg/ha) Straw yield (kg/ha) Net return (Rs./ha) BCR fertilizer T1 Control 50.8 7.19 737 1573 10725 1.55 T2 50% RDF 55.3 8.04 785 1773 12239 1.77 T3 75% RDF 59.9 8.74 885 1920 14551 2.10 T4 100% RDF 61.6 9.26 924 2020 15533 2.25 C.D. (P=0.05) 4.36 0.68 40 134 865 0.12 Biofertilizers T1 Control 52.0 7.14 740 1629 11566 1.80 T2 Rhizobium 57.8 8.66 850 1876 13817 2.02 T3 PSB 56.4 8.22 812 1768 12636 1.79 T4 Rhizobium + PSB 61.6 9.21 920 2012 15030 2.06 C.D. (P=0.05) 4.36 0.68 40 134 865 0.12 RDF – (20:40:00 NPK k/ha); PSB - phosphate solubilizing bacteria Jobner (Rajasthan) Khandelwal et al. (2013) 46
  • 47. Table 21: Effect of vermicompost and biofertilizers on yield and nutrients status in soil after harvest of cowpea Treatments Seed yield (q/ha) Organic carbon (%) Nutrients status of soil after harvest (kg/ha) N P K Vermicompost levels T1 Control 8.87 0.239 120.79 15.95 149.64 T2 2.0 t/ha 11.54 0.251 132.05 18.85 162.54 T3 4.0 t/ha 13.57 0.262 141.24 20.55 172.72 T4 6.0 t/ha 14.25 0.269 149.68 21.10 179.11 S.Em. ± 0.34 0.003 3.20 0.34 2.53 C.D. (P=0.05) 0.98 0.009 9.13 0.96 7.22 Biofertilizers T1 Control 10.50 0.245 121.53 15.86 150.26 T2 Rhizobium 12.15 0.256 135.42 19.80 169.53 T3 PSB 11.93 0.253 131.14 19.90 164.70 T4 Rhizobium + PSB 13.65 0.267 155.67 20.89 179.54 S.Em. ± 034 0.003 3.20 0.34 2.53 C.D. (P=0.05) 0.98 0.009 9.13 0.96 7.22 Initial value 123.4 15.8 151.2 Jobner (Rajasthan) Khan et al. (2013) 47
  • 48. Table 22: Effect of nitrogen and phosphorus levels on yields and economics of cowpea Treatment No. of pod/plant Seed yield (kg/ha) Straw yield (kg/ha) Net returns (Rs./ha) BCR Nitrogen N1 Control 10.12 769 1915 8676 2.11 N2 20 kg/ha 11.04 1013 2125 13270 2.64 N3 30 kg/ha 11.38 1018 2133 13243 2.61 N4 40 kg/ha 11.58 1022 2141 13198 2.58 S.Em. ± 0.24 26 47 - - C.D. (P=0.05) 0.68 74 135 - - Phosphorous P1 Control 10.35 725 1834 7949 2.01 P2 40 kg/ha 10.96 1049 2128 12519 2.34 P3 60 kg /ha 11.31 1061 2143 12202 2.21 P4 80 kg/ha 11.50 1070 2150 11744 2.08 S.Em. ± 0.24 26 47 - - C.D. (P=0.05) 0.68 74 135 - - Junagadh (Gujarat) Verma et al. (2014) 48
  • 49. Application of required dose of nutrients through selection of proper sources i.e. organic, inorganic, biological and their combination at right time through appropriate methods can increase the production and improve nutritional quality of legume crops with sustaining the soil fertility status. 49