SlideShare ist ein Scribd-Unternehmen logo
1 von 56
Dr. Uri Mahlab 1
Dr. Uri Mahlab 2
Information
source
Transmitter Channel Receiver Decision
Communication system
Dr. Uri Mahlab 3
Information
source
Pulse
generator
Trans
filter
channel
(X(t
(XT(t
Timing
Receiver
filter
Clock
recovery
network
A/D
+
Channel noise
n(t)
Output
Block diagram of an Binary/M-ary signaling
scheme
+
HT(f)
HR(f)
Y(t)
Hc(f)
Dr. Uri Mahlab 4
Information
source
Pulse
generator
Trans
filter
(X(t (XT(t
Timing
Block diagram Description
HT(f)
{dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}
Tb
Tb
)
t
(
pg
Tb
)
t
(
pg
Tb
For bk=1
For bk=0








;
"
0
"
a
;
"
1
"
a
ak
k
k
d
if
d
if
Dr. Uri Mahlab 5
Information
source
Pulse
generator
Trans
filter
(X(t (XT(t
Timing
Block diagram Description (Continue - 1)
HT(f)
{dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}
Tb
Tb
)
t
(
pg
Tb
For bk=1
For bk=0
Transmitter
filter
Tb
)
t
(
pg
Tb
Dr. Uri Mahlab 6
Information
source
Pulse
generator
Trans
filter
(X(t (XT(t
Timing
Block diagram Description (Continue - 2)
HT(f)
{dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}
Tb






k
b
g
k kT
t
p
a
t
X )
(
)
(
Tb
100110
2Tb
3Tb 4Tb
5Tb
t
6Tb
Dr. Uri Mahlab 7
Information
source
Pulse
generator
Trans
filter
(X(t (XT(t
Timing
Block diagram Description (Continue - 3)
HT(f)
{dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1}
Tb






k
b
g
k kT
t
p
a
t
X )
(
)
(
Tb
100110
2Tb
3Tb 4Tb
5Tb
t
6Tb
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Dr. Uri Mahlab 8
Information
source
Pulse
generator
Trans
filter
(X(t
Timing
Block diagram Description (Continue - 4)
HT(f)
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Channel noise n(t)
+
t
Receiver
filter
HR(f)
Dr. Uri Mahlab 9
Block diagram Description (Continue - 5)
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
t
 



k
b
d
r
k t
n
kT
t
t
p
A
t
Y )
(
)
(
)
( 0
Dr. Uri Mahlab 10
Information
source
Pulse
generator
Trans
filter
channel
(X(T (Xt(T
Timing
Receiver
filter
Clock
recovery
network
A/D
+
Channel noise
n(t)
Output
Block diagram of an Binary/M-ary signaling
scheme
+
HT(f)
HR(f)
Y(t)
Hc(f)
 



k
b
d
r
k t
n
kT
t
t
p
A
t
Y )
(
)
(
)
( 0
Dr. Uri Mahlab 11
Block diagram Description
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
t
1 0 0 0 1 0
1 0 0 1 1 0
t
Dr. Uri Mahlab 12
Information
source
Pulse
generator
Trans
filter
channel
(X(t
(XT(t
Timing
Receiver
filter
Clock
recovery
network
A/D
+
Channel noise
n(t)
Output
Block diagram of an Binary/M-ary signaling
scheme
+
HT(f)
HR(f)
Y(t)
Hc(f)
Dr. Uri Mahlab 13
Trans
filter
channel
Pg(t)
Receiver
filter
Explanation of Pr(t)
HT(f) HR(f)
Hc(f)
 



k
b
d
r
k t
n
kT
t
t
p
A
t
Y )
(
)
(
)
( 0
Pr(t)
HT(f) Hc(f) HR(f)
Pg(f) Pr(f)
1
)
0
(
pr 
Dr. Uri Mahlab 14
The output of the pulse generator X(t),is given by
   
T
p
a b
g
k
k
k
t
t
X 
 



Pg(t) is the basic pulse whose amplitude ak depends on
.the kth input bit
Dr. Uri Mahlab 15
For tm =mTb+td and td is the total time delay in the
system, we get.
t
t
t
 
tm
Y
t1
t2
t3
tm
The input to the A/D converter is
 



k
b
d
r
k t
n
kT
t
t
p
A
t
Y )
(
)
(
)
( 0
Dr. Uri Mahlab 16
   
   
t
n
T
p
A
A
t m
0
b
r
m
K
k
m
m
k
m
Y 


 

t
 
tm
Y
t1
t2
t3
tm
The output of the A/D converter at the sampling time
tm =mTb+td
 



k
b
d
r
k t
n
kT
t
t
p
A
t
Y )
(
)
(
)
( 0
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Dr. Uri Mahlab 17
   
   
t
n
T
p
A
A
t m
0
b
r
m
K
k
m
m
k
m
Y 


 

t
 
tm
Y
t1
t2
t3
tm
ISI - Inter Symbol
Interference
Dr. Uri Mahlab 18
Trans
filter
channel
Pg(t)
Receiver
filter
Explanation of ISI
HT(f) HR(f)
Hc(f)
Pr(t)
Pg(f) Pr(f)
Trans
filter
channel
Receiver
filter
HT(f) HR(f)
Hc(f)
t
f
Fourier
Transform
BandPass
Filter
f
Fourier
Transform
t
Dr. Uri Mahlab 19
Explanation of ISI - Continue
t
f
Fourier
Transform
BandPass
Filter
f
Fourier
Transform
t
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Dr. Uri Mahlab 20
-The pulse generator output is a pulse waveform






k
b
g
k kT
t
p
a
t
X )
(
)
(






a
a
a
p
k
g 1
)
0
(
If kth input bit is 1
if kth input bit is 0
 



k
b
d
r
k t
n
kT
t
t
p
A
t
Y )
(
)
(
)
( 0
-The A/D converter input Y(t)
Dr. Uri Mahlab 21
Data
rate
Error
rate
Transmitted
power
Noise
power
Noise
Spectral
density
System
complexity
TypeofImportantParametersInvolvedInTheDesign
OfaPAMSystem
Dr. Uri Mahlab 22
5.2 BASEBAND BINARY PAM SYSTEMS
Pulse shapes
pg(t)
pr(t) HR(f) HT(t)
Design of a baseband
binary PAM system
- minimize the combined effects of inter symbol
interference and noise in order to achieve minimum
probability of error for given data rate.
Dr. Uri Mahlab 23









0
n
for
0
0
n
for
1
)
nT
(
p b
r
5.2.1 Baseband pulse shaping
The ISI can be eliminated by proper choice
of received pulse shape pr (t).
Doe’s not Uniquely Specify Pr(t) for all
values of t.
Dr. Uri Mahlab 24













0
n
for
0
0
n
for
1
)
nT
(
p
Then
T
2
/
1
f
for
T
)
T
k
f
(
P
if
b
r
k
b
b
b
r
 













k
T
2
/
)
1
k
2
(
T
2
/
)
1
k
2
(
r
r
r
r
b
b
df
)
ft
2
j
exp(
)
f
(
p
)
t
(
p
df
)
ft
2
j
exp(
)
f
(
p
)
t
(
p
Theorem
Proof
To meet the constraint, Fourier Transform Pr(f) of Pr(t), should
satisfy a simple condition given by the following theorem
Dr. Uri Mahlab 25
 
 








b
b
b
b
T
2
/
1
T
2
/
1
k b
b
r
b
r
k
T
2
/
1
T
2
/
1
b
b
r
b
r
df
)
fnT
2
j
exp(
))
T
k
f
(
p
(
)
nT
(
p
'
df
)
nT
'
f
2
j
exp(
)
T
k
'
f
(
p
)
nT
(
p
 



k
T
k
T
k
b
r
b
r
b
b
df
t
fnT
j
f
p
nT
p
2
/
)
1
2
(
2
/
)
1
2
(
)
2
exp(
)
(
)
( 
 




b
b
T
2
/
1
T
2
/
1
b
b
b
r
n
)
n
sin(
df
)
fnT
2
j
exp(
T
)
nT
(
p
Which verify that the Pr(t) with a transform Pr(f)
Satisfy ZERO ISI
Dr. Uri Mahlab 26
The condition for removal of ISI given in the theorem is called
Nyquist (Pulse Shaping) Criterion






m
k
m
0
b
r
k
m
m )
t
(
n
)
T
)
k
m
((
P
A
A
)
t
(
Y









0
n
for
0
0
n
for
1
)
nT
(
p b
r
Tb 2Tb
-Tb
-2Tb
1



n
)
n
sin(
)
nT
(
p b
r
Dr. Uri Mahlab 27
The Theorem gives a condition for the removal of ISI using a Pr(f) with
a bandwidth larger then rb/2/.
ISI can’t be removed if the bandwidth of Pr(f) is less then rb/2.
HT(f) Hc(f) HR(f)
Pg(f) Pr(f)
Tb 2Tb
3Tb 4Tb
5Tb
t
6Tb
Dr. Uri Mahlab 28
Rate of decay
of pr(t)
Shaping filters
pr(t)
Particular choice of Pr(t) for a
given application
The smallest values near Tb, 2Tb, …
In such that timing error (Jitter)
will not Cause large ISI
Shape of Pr(f) determines the ease
with which shaping filters can be
realized.
Dr. Uri Mahlab 29
A Pr(f) with a smooth roll - off characteristics is preferable
over one with arbitrarily sharp cut off characteristics.
Pr(f) Pr(f)
Dr. Uri Mahlab 30
In practical systems where the bandwidth available for
transmitting data at a rate of rb bitssec is between rb2 to rb
Hz, a class of pr(t) with a raised cosine frequency
characteristic is most commonly used.
A raise Cosine Frequency spectrum consist of a flat amplitude portion and a roll off
portion that has a sinusoidal form.
 










































t
r
t
r
sin
)
t
4
(
1
t
2
cos
)
t
(
P
)
f
(
P
FT
2
r
f
2
r
2
/
r
f
,
0
),
2
r
f
(
4
cos
T
2
/
r
f
,
T
)
f
(
P
b
b
2
r
r
1
b
b
b
b
2
b
b
b
r
Dr. Uri Mahlab 31
raised cosine frequency characteristic
Dr. Uri Mahlab 32
The BW occupied by the pulse spectrum is B=rb/2+.
The minimum value of B is rb/2 and the maximum value is rb.
Larger values of  imply that more bandwidth is required for a
given bit rate, however it lead for faster decaying pulses, which
means that synchronization will be less critical and will not
cause
large ISI.
 =rb/2 leads to a pulse shape with two convenient properties.
The half amplitude pulse width is equal to Tb, and there are zero
crossings at t=3/2Tb, 5/2Tb…. In addition to the zero crossing
at Tb, 2Tb, 3Tb,…...
Summary
Dr. Uri Mahlab 33
5.2.2
Optimum transmitting and receiving
filters
pulse shaping noise immunity
HT ,HR
The transmitting and receiving filters are chosen to provide
a proper
Dr. Uri Mahlab 34
)
2
2
exp(
)
(
)
(
)
(
)
( d
r
c
R
T
g ft
j
f
P
K
f
H
f
H
f
p 


-One of design constraints that we have for selecting the filters
is the relationship between the Fourier transform of pr(t) and
pg(t).
In order to design optimum filter Ht(f) & Hr(f), we will assume that Pr(f),
Hc(f) and Pg(f) are known.
Where td, is the time delay Kc normalizing constant.
Portion of a baseband PAM system
Dr. Uri Mahlab 35
If we choose Pr(t) {Pr(f)} to produce Zero ISI we are left
only to be concerned with noise immunity, that is will choose
HT(f) Hc(f) HR(f)
Pg(f) Pr(f)
    effects
noise
of
minimum

)
f
(
H
and
)
f
(
H R
T
Dr. Uri Mahlab 36
Noise Immunity
Problem definition:
For a given :
•Data Rate - rb
•Transmission power - ST
•Noise power Spectral Density - Gn(f)
•Channel transfer function - Hc(f)
•Raised cosine pulse - Pr(f)
Choose
    effects
noise
of
minimum

)
f
(
H
and
)
f
(
H R
T
Dr. Uri Mahlab 37
Error probability Calculations
At the m-th sampling time the input to the A/D is:






m
k
m
0
b
r
k
m
m )
t
(
n
)
T
)
k
m
((
P
A
A
)
t
(
Y
We decide:
0
)
t
(
Y
"
0
"
0
)
t
(
Y
"
1
"
m
m


if
if
   
   
"1"
sent
To
sent
was
"1"
"0"
sent
To
sent
was
"0"
ob
Pr
0
)
t
(
Y
ob
Pr
ob
Pr
0
)
t
(
Y
ob
Pr
P
m
m
error






Dr. Uri Mahlab 38
"
0
"
)
t
(
A
)
t
(
Y
"
1
"
)
t
(
A
)
t
(
Y
m
m
m
m
if
n
if
n
0
0






A=aKc
    5
.
0
ob
Pr
ob
Pr 

 "1"
sent
To
"0"
sent
To
   
 
A
)
t
(
n
ob
Pr
A
)
t
(
n
ob
Pr
2
1
P m
0
m
0
error 




The noise is assumed to be zero mean Gaussian at the receiver input
then the output should also be Zero mean Gaussian with variance No
given by:
df
)
f
(
H
)
f
(
G
N
2
R
n
0 




Dr. Uri Mahlab 39
 
   
 
0
2
0
2
N
2
/
)
A
n
0
N
2
/
n
0
e
N
2
1
e
N
2
1 




0 A
   
 







b
N
2
/
)
z
0
error dz
e
N
2
1
b
n
ob
Pr
P 0
2
y(tm)
b
Dr. Uri Mahlab 40
 
   
 
0
2
m
0
2
m N
2
/
)
A
)
t
(
y
0
N
2
/
)
A
)
t
(
y
0
e
N
2
1
e
N
2
1 





-A A
 
0
)
t
(
Y
ob
Pr
P m
error 
  
0
)
t
(
Y
ob
Pr m 
y(tm)
0
y(tm)
Dr. Uri Mahlab 41
 
   
 
0
2
m
0
2
m N
2
/
)
A
)
t
(
y
0
N
2
/
)
A
)
t
(
y
0
e
N
2
1
e
N
2
1 





-A A
y(tm)
Vreceived
VTransmit
Dr. Uri Mahlab 42
 
 
 
   

































u
2
0
N
/
A
2
e
A
N
/
x
z
0
2
0
A
x
0
2
0
e
dz
2
/
z
exp
2
1
u
Q
N
A
Q
dz
2
/
z
exp
2
1
P
dx
N
2
/
x
exp
N
2
1
dx
N
2
/
x
exp
N
2
1
2
/
1
P
0
0
Dr. Uri Mahlab 43
 
   



















u
2
0
N
/
A
2
e
dz
2
/
z
exp
2
1
u
Q
N
A
Q
dz
2
/
z
exp
2
1
P
0
U
Q(u)
   








u
u
2
dz
2
/
z
exp
2
1
u
Q
dz=
Dr. Uri Mahlab 44
Ratio
Noise
to
Signal
N
A
0

Perror decreases as 0
N
/
A increase
Hence we need to maximize the signal
to noise Ratio
Thus for maximum noise immunity the filter transfer functions HT(f)
and HR(f) must be xhosen to maximize the SNR
Dr. Uri Mahlab 45
Optimum filters design calculations
We will express the SNR in terms of HT(f) and HR(f)
We will start with the signal:






k
b
g
k kT
t
p
a
t
X )
(
)
(
 
b
2
g
2
2
k
b
g
X
T
)
f
(
p
a
a
E
T
)
f
(
p
)
f
(
G 

The psd of the transmitted signal is given by::
)
f
(
G
)
f
(
H
)
f
(
G X
2
T
X 

Dr. Uri Mahlab 46
df
)
f
(
H
)
f
(
P
T
K
A
S
df
)
f
(
H
)
f
(
P
T
a
S
2
T
2
g
b
2
c
2
T
a
K
A
a
K
A
2
T
2
g
b
2
T
c
k
c
k
















And the average transmitted power ST is
df
)
f
(
H
)
f
(
P
T
K
S
A
2
T
2
g
b
2
c
T
2






The average output noise power of n0(t) is given by:
df
)
f
(
H
)
f
(
G
N
2
R
n
o 




Dr. Uri Mahlab 47
The SNR we need to maximize is
)
f
(
H
)
f
(
H
)
f
(
H
)
f
(
P
where
df
)
f
(
H
)
f
(
H
)
f
(
P
df
)
f
(
H
)
f
(
G
T
S
N
A
T
R
c
r
2
R
c
2
r
2
R
n
b
T
o
2



















Or we need to minimize
 
2
2
R
c
2
r
2
R
n min
df
)
f
(
H
)
f
(
H
)
f
(
P
df
)
f
(
H
)
f
(
G
min 



















 







Dr. Uri Mahlab 48
Using Schwartz’s inequality
2
2
2
df
)
f
(
W
)
f
(
V
df
)
f
(
W
df
)
f
(
V 













The minimum of the left side equaity is reached when
V(f)=const*W(f)
If we choose :
)
f
(
H
)
f
(
H
)
f
(
P
)
f
(
W
)
f
(
G
)
f
(
H
)
f
(
V
c
R
r
2
/
1
n
R


Dr. Uri Mahlab 49
when
minimized
is
2

constant
positive
arbitrary
an
K
)
f
(
P
)
f
(
H
K
)
f
(
G
)
f
(
P
K
)
f
(
H
)
f
(
G
)
f
(
H
)
f
(
P
K
)
f
(
H
2
g
c
2
/
1
n
r
2
c
2
T
2
/
1
n
c
r
2
R



The filter should have alinear phase response in a total time delay of td
Dr. Uri Mahlab 50
Finally we obtain the maximum value of the SNR to be:






































max
o
2
error
2
c
2
/
1
n
r
b
T
max
o
2
N
A
Q
P
df
)
f
(
H
)
f
(
G
)
f
(
P
T
S
N
A
Dr. Uri Mahlab 51
For AWGN with
and
pg(f) is chosen such that it does not change much over the
bandwidth of interest we get.
)
f
(
H
)
f
(
p
K
)
f
(
H
)
f
(
H
)
f
(
p
K
)
f
(
H
c
r
2
2
T
c
r
1
2
R


Rectangular pulse can be used at the input of HT(f).


 




elsewhere
0
T
;
2
/
t
for
1
)
t
(
p
b
g
2
/
)
f
(
Gn 

Dr. Uri Mahlab 52
5.2.3 Design procedure and Example
The steps involved in the design procedure.
Example:Design a binary baseband PAM system to
transmit data at a a bit rate of 3600 bits/sec with a bit
error probability less than .
10 4

The channel response is given by:





elewhere
f
for
f
Hc
_
0
2400
10
)
(
2

The noise spectral density is Hz
watt
f
Gn /
10
)
( 14


Dr. Uri Mahlab 53
Solution:
Hz
watt
f
G
Hz
B
p
bits
r
n
e
b
/
10
)
(
2400
10
sec
/
3600
4
4






If we choose a braised cosine pulse spectrum with
600
6
/ 
 b
r













 2400
1200
),
1200
(
2400
cos
2400
,
0
3600
1
1200
,
3600
1
)
( 2


f
f
f
f
f
pr

Dr. Uri Mahlab 54
We choose a pg(t)












 









973
.
0
)
2400
(
,
)
0
(
)
sin
(
)
(
)
10
)(
28
.
0
(
10
/
;
,
0
1200
,
1
)
( 4
g
g
g
b
g
p
p
f
f
f
p
T
elsewhere
t
t
p

2
/
1
2
/
1
1
)
(
)
(
)
(
)
(
f
P
f
H
f
p
K
f
H
r
R
r
T


We choose
)
(
)
(
)
(
)
(
)
(
)
10
)(
3600
( 3
1
f
p
f
H
f
H
f
H
f
p
K
r
R
c
T
g 


Dr. Uri Mahlab 55
Plots of Pg(f),Hc(f),HT(f),HR(f),and Pr(f).
Dr. Uri Mahlab 56
To maintain a 4
10

e
P
2
4
14
2
2
/
1
max
0
2
max
0
2
max
0
2
4
max
0
2
max
0
2
)
(
10
10
)
06
.
14
)(
3600
(
)
(
)
(
)
(
)
(
1
06
.
14
)
/
(
75
.
3
)
/
(
10
)
/
(
(
)
/
(







































df
f
P
df
f
H
f
G
f
P
N
A
T
S
N
A
N
A
N
A
Q
N
A
r
c
n
r
b
T
For Pr(f) with raised cosine shape 



1
)
( df
f
Pr
And hence dBm
ST 23
)
10
)(
3600
)(
06
.
14
( 10


 
Which completes the design.

Weitere ähnliche Inhalte

Ähnlich wie basebandcom11-3 (1).ppt

Time reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkTime reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkSébastien Popoff
 
Characterization of the Wireless Channel
Characterization of the Wireless ChannelCharacterization of the Wireless Channel
Characterization of the Wireless ChannelSuraj Katwal
 
Nyquist criterion for distortion less baseband binary channel
Nyquist criterion for distortion less baseband binary channelNyquist criterion for distortion less baseband binary channel
Nyquist criterion for distortion less baseband binary channelPriyangaKR1
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxHamzaJaved306957
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomAmirKhan877722
 
Seminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentationSeminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentationdouglaslyon
 
Lecture 4-6.pdf
Lecture 4-6.pdfLecture 4-6.pdf
Lecture 4-6.pdfFaruque13
 
3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdfMelakuDinku
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation pptsanjeev2419
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerJim Jenkins
 
Seismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingSeismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingHarshal Pende
 
Vidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systemsVidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systemsanilkurhekar
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformSandilya Sridhara
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Prateek Omer
 

Ähnlich wie basebandcom11-3 (1).ppt (20)

Time reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias FinkTime reversed acoustics - Mathias Fink
Time reversed acoustics - Mathias Fink
 
Characterization of the Wireless Channel
Characterization of the Wireless ChannelCharacterization of the Wireless Channel
Characterization of the Wireless Channel
 
M4.pdf
M4.pdfM4.pdf
M4.pdf
 
Nyquist criterion for distortion less baseband binary channel
Nyquist criterion for distortion less baseband binary channelNyquist criterion for distortion less baseband binary channel
Nyquist criterion for distortion less baseband binary channel
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
 
Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
Fourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of TelecomFourier Transform in Signal and System of Telecom
Fourier Transform in Signal and System of Telecom
 
sampling.ppt
sampling.pptsampling.ppt
sampling.ppt
 
Seminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentationSeminar 20091023 heydt_presentation
Seminar 20091023 heydt_presentation
 
Lecture 4-6.pdf
Lecture 4-6.pdfLecture 4-6.pdf
Lecture 4-6.pdf
 
3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf3008_Lecture8_Digital Demodulation.pdf
3008_Lecture8_Digital Demodulation.pdf
 
Pulse Modulation ppt
Pulse Modulation pptPulse Modulation ppt
Pulse Modulation ppt
 
Signal Processing Assignment Help
Signal Processing Assignment HelpSignal Processing Assignment Help
Signal Processing Assignment Help
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course Sampler
 
meee.docx
meee.docxmeee.docx
meee.docx
 
Seismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modellingSeismic presentation for Dip correction for convolution modelling
Seismic presentation for Dip correction for convolution modelling
 
00e isi
00e isi00e isi
00e isi
 
Vidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systemsVidyalankar final-essentials of communication systems
Vidyalankar final-essentials of communication systems
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63
 

Kürzlich hochgeladen

22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086anil_gaur
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 

Kürzlich hochgeladen (20)

22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 

basebandcom11-3 (1).ppt

  • 2. Dr. Uri Mahlab 2 Information source Transmitter Channel Receiver Decision Communication system
  • 3. Dr. Uri Mahlab 3 Information source Pulse generator Trans filter channel (X(t (XT(t Timing Receiver filter Clock recovery network A/D + Channel noise n(t) Output Block diagram of an Binary/M-ary signaling scheme + HT(f) HR(f) Y(t) Hc(f)
  • 4. Dr. Uri Mahlab 4 Information source Pulse generator Trans filter (X(t (XT(t Timing Block diagram Description HT(f) {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1} Tb Tb ) t ( pg Tb ) t ( pg Tb For bk=1 For bk=0         ; " 0 " a ; " 1 " a ak k k d if d if
  • 5. Dr. Uri Mahlab 5 Information source Pulse generator Trans filter (X(t (XT(t Timing Block diagram Description (Continue - 1) HT(f) {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1} Tb Tb ) t ( pg Tb For bk=1 For bk=0 Transmitter filter Tb ) t ( pg Tb
  • 6. Dr. Uri Mahlab 6 Information source Pulse generator Trans filter (X(t (XT(t Timing Block diagram Description (Continue - 2) HT(f) {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1} Tb       k b g k kT t p a t X ) ( ) ( Tb 100110 2Tb 3Tb 4Tb 5Tb t 6Tb
  • 7. Dr. Uri Mahlab 7 Information source Pulse generator Trans filter (X(t (XT(t Timing Block diagram Description (Continue - 3) HT(f) {dk}={1,1,1,1,0,0,1,1,0,0,0,1,1,1} Tb       k b g k kT t p a t X ) ( ) ( Tb 100110 2Tb 3Tb 4Tb 5Tb t 6Tb Tb 2Tb 3Tb 4Tb 5Tb t 6Tb
  • 8. Dr. Uri Mahlab 8 Information source Pulse generator Trans filter (X(t Timing Block diagram Description (Continue - 4) HT(f) Tb 2Tb 3Tb 4Tb 5Tb t 6Tb Tb 2Tb 3Tb 4Tb 5Tb t 6Tb Channel noise n(t) + t Receiver filter HR(f)
  • 9. Dr. Uri Mahlab 9 Block diagram Description (Continue - 5) Tb 2Tb 3Tb 4Tb 5Tb t 6Tb Tb 2Tb 3Tb 4Tb 5Tb t 6Tb t      k b d r k t n kT t t p A t Y ) ( ) ( ) ( 0
  • 10. Dr. Uri Mahlab 10 Information source Pulse generator Trans filter channel (X(T (Xt(T Timing Receiver filter Clock recovery network A/D + Channel noise n(t) Output Block diagram of an Binary/M-ary signaling scheme + HT(f) HR(f) Y(t) Hc(f)      k b d r k t n kT t t p A t Y ) ( ) ( ) ( 0
  • 11. Dr. Uri Mahlab 11 Block diagram Description Tb 2Tb 3Tb 4Tb 5Tb t 6Tb Tb 2Tb 3Tb 4Tb 5Tb t 6Tb t 1 0 0 0 1 0 1 0 0 1 1 0 t
  • 12. Dr. Uri Mahlab 12 Information source Pulse generator Trans filter channel (X(t (XT(t Timing Receiver filter Clock recovery network A/D + Channel noise n(t) Output Block diagram of an Binary/M-ary signaling scheme + HT(f) HR(f) Y(t) Hc(f)
  • 13. Dr. Uri Mahlab 13 Trans filter channel Pg(t) Receiver filter Explanation of Pr(t) HT(f) HR(f) Hc(f)      k b d r k t n kT t t p A t Y ) ( ) ( ) ( 0 Pr(t) HT(f) Hc(f) HR(f) Pg(f) Pr(f) 1 ) 0 ( pr 
  • 14. Dr. Uri Mahlab 14 The output of the pulse generator X(t),is given by     T p a b g k k k t t X       Pg(t) is the basic pulse whose amplitude ak depends on .the kth input bit
  • 15. Dr. Uri Mahlab 15 For tm =mTb+td and td is the total time delay in the system, we get. t t t   tm Y t1 t2 t3 tm The input to the A/D converter is      k b d r k t n kT t t p A t Y ) ( ) ( ) ( 0
  • 16. Dr. Uri Mahlab 16         t n T p A A t m 0 b r m K k m m k m Y       t   tm Y t1 t2 t3 tm The output of the A/D converter at the sampling time tm =mTb+td      k b d r k t n kT t t p A t Y ) ( ) ( ) ( 0 Tb 2Tb 3Tb 4Tb 5Tb t 6Tb
  • 17. Dr. Uri Mahlab 17         t n T p A A t m 0 b r m K k m m k m Y       t   tm Y t1 t2 t3 tm ISI - Inter Symbol Interference
  • 18. Dr. Uri Mahlab 18 Trans filter channel Pg(t) Receiver filter Explanation of ISI HT(f) HR(f) Hc(f) Pr(t) Pg(f) Pr(f) Trans filter channel Receiver filter HT(f) HR(f) Hc(f) t f Fourier Transform BandPass Filter f Fourier Transform t
  • 19. Dr. Uri Mahlab 19 Explanation of ISI - Continue t f Fourier Transform BandPass Filter f Fourier Transform t Tb 2Tb 3Tb 4Tb 5Tb t 6Tb
  • 20. Dr. Uri Mahlab 20 -The pulse generator output is a pulse waveform       k b g k kT t p a t X ) ( ) (       a a a p k g 1 ) 0 ( If kth input bit is 1 if kth input bit is 0      k b d r k t n kT t t p A t Y ) ( ) ( ) ( 0 -The A/D converter input Y(t)
  • 21. Dr. Uri Mahlab 21 Data rate Error rate Transmitted power Noise power Noise Spectral density System complexity TypeofImportantParametersInvolvedInTheDesign OfaPAMSystem
  • 22. Dr. Uri Mahlab 22 5.2 BASEBAND BINARY PAM SYSTEMS Pulse shapes pg(t) pr(t) HR(f) HT(t) Design of a baseband binary PAM system - minimize the combined effects of inter symbol interference and noise in order to achieve minimum probability of error for given data rate.
  • 23. Dr. Uri Mahlab 23          0 n for 0 0 n for 1 ) nT ( p b r 5.2.1 Baseband pulse shaping The ISI can be eliminated by proper choice of received pulse shape pr (t). Doe’s not Uniquely Specify Pr(t) for all values of t.
  • 24. Dr. Uri Mahlab 24              0 n for 0 0 n for 1 ) nT ( p Then T 2 / 1 f for T ) T k f ( P if b r k b b b r                k T 2 / ) 1 k 2 ( T 2 / ) 1 k 2 ( r r r r b b df ) ft 2 j exp( ) f ( p ) t ( p df ) ft 2 j exp( ) f ( p ) t ( p Theorem Proof To meet the constraint, Fourier Transform Pr(f) of Pr(t), should satisfy a simple condition given by the following theorem
  • 25. Dr. Uri Mahlab 25             b b b b T 2 / 1 T 2 / 1 k b b r b r k T 2 / 1 T 2 / 1 b b r b r df ) fnT 2 j exp( )) T k f ( p ( ) nT ( p ' df ) nT ' f 2 j exp( ) T k ' f ( p ) nT ( p      k T k T k b r b r b b df t fnT j f p nT p 2 / ) 1 2 ( 2 / ) 1 2 ( ) 2 exp( ) ( ) (        b b T 2 / 1 T 2 / 1 b b b r n ) n sin( df ) fnT 2 j exp( T ) nT ( p Which verify that the Pr(t) with a transform Pr(f) Satisfy ZERO ISI
  • 26. Dr. Uri Mahlab 26 The condition for removal of ISI given in the theorem is called Nyquist (Pulse Shaping) Criterion       m k m 0 b r k m m ) t ( n ) T ) k m (( P A A ) t ( Y          0 n for 0 0 n for 1 ) nT ( p b r Tb 2Tb -Tb -2Tb 1    n ) n sin( ) nT ( p b r
  • 27. Dr. Uri Mahlab 27 The Theorem gives a condition for the removal of ISI using a Pr(f) with a bandwidth larger then rb/2/. ISI can’t be removed if the bandwidth of Pr(f) is less then rb/2. HT(f) Hc(f) HR(f) Pg(f) Pr(f) Tb 2Tb 3Tb 4Tb 5Tb t 6Tb
  • 28. Dr. Uri Mahlab 28 Rate of decay of pr(t) Shaping filters pr(t) Particular choice of Pr(t) for a given application The smallest values near Tb, 2Tb, … In such that timing error (Jitter) will not Cause large ISI Shape of Pr(f) determines the ease with which shaping filters can be realized.
  • 29. Dr. Uri Mahlab 29 A Pr(f) with a smooth roll - off characteristics is preferable over one with arbitrarily sharp cut off characteristics. Pr(f) Pr(f)
  • 30. Dr. Uri Mahlab 30 In practical systems where the bandwidth available for transmitting data at a rate of rb bitssec is between rb2 to rb Hz, a class of pr(t) with a raised cosine frequency characteristic is most commonly used. A raise Cosine Frequency spectrum consist of a flat amplitude portion and a roll off portion that has a sinusoidal form.                                             t r t r sin ) t 4 ( 1 t 2 cos ) t ( P ) f ( P FT 2 r f 2 r 2 / r f , 0 ), 2 r f ( 4 cos T 2 / r f , T ) f ( P b b 2 r r 1 b b b b 2 b b b r
  • 31. Dr. Uri Mahlab 31 raised cosine frequency characteristic
  • 32. Dr. Uri Mahlab 32 The BW occupied by the pulse spectrum is B=rb/2+. The minimum value of B is rb/2 and the maximum value is rb. Larger values of  imply that more bandwidth is required for a given bit rate, however it lead for faster decaying pulses, which means that synchronization will be less critical and will not cause large ISI.  =rb/2 leads to a pulse shape with two convenient properties. The half amplitude pulse width is equal to Tb, and there are zero crossings at t=3/2Tb, 5/2Tb…. In addition to the zero crossing at Tb, 2Tb, 3Tb,…... Summary
  • 33. Dr. Uri Mahlab 33 5.2.2 Optimum transmitting and receiving filters pulse shaping noise immunity HT ,HR The transmitting and receiving filters are chosen to provide a proper
  • 34. Dr. Uri Mahlab 34 ) 2 2 exp( ) ( ) ( ) ( ) ( d r c R T g ft j f P K f H f H f p    -One of design constraints that we have for selecting the filters is the relationship between the Fourier transform of pr(t) and pg(t). In order to design optimum filter Ht(f) & Hr(f), we will assume that Pr(f), Hc(f) and Pg(f) are known. Where td, is the time delay Kc normalizing constant. Portion of a baseband PAM system
  • 35. Dr. Uri Mahlab 35 If we choose Pr(t) {Pr(f)} to produce Zero ISI we are left only to be concerned with noise immunity, that is will choose HT(f) Hc(f) HR(f) Pg(f) Pr(f)     effects noise of minimum  ) f ( H and ) f ( H R T
  • 36. Dr. Uri Mahlab 36 Noise Immunity Problem definition: For a given : •Data Rate - rb •Transmission power - ST •Noise power Spectral Density - Gn(f) •Channel transfer function - Hc(f) •Raised cosine pulse - Pr(f) Choose     effects noise of minimum  ) f ( H and ) f ( H R T
  • 37. Dr. Uri Mahlab 37 Error probability Calculations At the m-th sampling time the input to the A/D is:       m k m 0 b r k m m ) t ( n ) T ) k m (( P A A ) t ( Y We decide: 0 ) t ( Y " 0 " 0 ) t ( Y " 1 " m m   if if         "1" sent To sent was "1" "0" sent To sent was "0" ob Pr 0 ) t ( Y ob Pr ob Pr 0 ) t ( Y ob Pr P m m error      
  • 38. Dr. Uri Mahlab 38 " 0 " ) t ( A ) t ( Y " 1 " ) t ( A ) t ( Y m m m m if n if n 0 0       A=aKc     5 . 0 ob Pr ob Pr    "1" sent To "0" sent To       A ) t ( n ob Pr A ) t ( n ob Pr 2 1 P m 0 m 0 error      The noise is assumed to be zero mean Gaussian at the receiver input then the output should also be Zero mean Gaussian with variance No given by: df ) f ( H ) f ( G N 2 R n 0     
  • 39. Dr. Uri Mahlab 39         0 2 0 2 N 2 / ) A n 0 N 2 / n 0 e N 2 1 e N 2 1      0 A              b N 2 / ) z 0 error dz e N 2 1 b n ob Pr P 0 2 y(tm) b
  • 40. Dr. Uri Mahlab 40         0 2 m 0 2 m N 2 / ) A ) t ( y 0 N 2 / ) A ) t ( y 0 e N 2 1 e N 2 1       -A A   0 ) t ( Y ob Pr P m error     0 ) t ( Y ob Pr m  y(tm) 0 y(tm)
  • 41. Dr. Uri Mahlab 41         0 2 m 0 2 m N 2 / ) A ) t ( y 0 N 2 / ) A ) t ( y 0 e N 2 1 e N 2 1       -A A y(tm) Vreceived VTransmit
  • 42. Dr. Uri Mahlab 42                                            u 2 0 N / A 2 e A N / x z 0 2 0 A x 0 2 0 e dz 2 / z exp 2 1 u Q N A Q dz 2 / z exp 2 1 P dx N 2 / x exp N 2 1 dx N 2 / x exp N 2 1 2 / 1 P 0 0
  • 43. Dr. Uri Mahlab 43                          u 2 0 N / A 2 e dz 2 / z exp 2 1 u Q N A Q dz 2 / z exp 2 1 P 0 U Q(u)             u u 2 dz 2 / z exp 2 1 u Q dz=
  • 44. Dr. Uri Mahlab 44 Ratio Noise to Signal N A 0  Perror decreases as 0 N / A increase Hence we need to maximize the signal to noise Ratio Thus for maximum noise immunity the filter transfer functions HT(f) and HR(f) must be xhosen to maximize the SNR
  • 45. Dr. Uri Mahlab 45 Optimum filters design calculations We will express the SNR in terms of HT(f) and HR(f) We will start with the signal:       k b g k kT t p a t X ) ( ) (   b 2 g 2 2 k b g X T ) f ( p a a E T ) f ( p ) f ( G   The psd of the transmitted signal is given by:: ) f ( G ) f ( H ) f ( G X 2 T X  
  • 46. Dr. Uri Mahlab 46 df ) f ( H ) f ( P T K A S df ) f ( H ) f ( P T a S 2 T 2 g b 2 c 2 T a K A a K A 2 T 2 g b 2 T c k c k                 And the average transmitted power ST is df ) f ( H ) f ( P T K S A 2 T 2 g b 2 c T 2       The average output noise power of n0(t) is given by: df ) f ( H ) f ( G N 2 R n o     
  • 47. Dr. Uri Mahlab 47 The SNR we need to maximize is ) f ( H ) f ( H ) f ( H ) f ( P where df ) f ( H ) f ( H ) f ( P df ) f ( H ) f ( G T S N A T R c r 2 R c 2 r 2 R n b T o 2                    Or we need to minimize   2 2 R c 2 r 2 R n min df ) f ( H ) f ( H ) f ( P df ) f ( H ) f ( G min                             
  • 48. Dr. Uri Mahlab 48 Using Schwartz’s inequality 2 2 2 df ) f ( W ) f ( V df ) f ( W df ) f ( V               The minimum of the left side equaity is reached when V(f)=const*W(f) If we choose : ) f ( H ) f ( H ) f ( P ) f ( W ) f ( G ) f ( H ) f ( V c R r 2 / 1 n R  
  • 49. Dr. Uri Mahlab 49 when minimized is 2  constant positive arbitrary an K ) f ( P ) f ( H K ) f ( G ) f ( P K ) f ( H ) f ( G ) f ( H ) f ( P K ) f ( H 2 g c 2 / 1 n r 2 c 2 T 2 / 1 n c r 2 R    The filter should have alinear phase response in a total time delay of td
  • 50. Dr. Uri Mahlab 50 Finally we obtain the maximum value of the SNR to be:                                       max o 2 error 2 c 2 / 1 n r b T max o 2 N A Q P df ) f ( H ) f ( G ) f ( P T S N A
  • 51. Dr. Uri Mahlab 51 For AWGN with and pg(f) is chosen such that it does not change much over the bandwidth of interest we get. ) f ( H ) f ( p K ) f ( H ) f ( H ) f ( p K ) f ( H c r 2 2 T c r 1 2 R   Rectangular pulse can be used at the input of HT(f).         elsewhere 0 T ; 2 / t for 1 ) t ( p b g 2 / ) f ( Gn  
  • 52. Dr. Uri Mahlab 52 5.2.3 Design procedure and Example The steps involved in the design procedure. Example:Design a binary baseband PAM system to transmit data at a a bit rate of 3600 bits/sec with a bit error probability less than . 10 4  The channel response is given by:      elewhere f for f Hc _ 0 2400 10 ) ( 2  The noise spectral density is Hz watt f Gn / 10 ) ( 14  
  • 53. Dr. Uri Mahlab 53 Solution: Hz watt f G Hz B p bits r n e b / 10 ) ( 2400 10 sec / 3600 4 4       If we choose a braised cosine pulse spectrum with 600 6 /   b r               2400 1200 ), 1200 ( 2400 cos 2400 , 0 3600 1 1200 , 3600 1 ) ( 2   f f f f f pr 
  • 54. Dr. Uri Mahlab 54 We choose a pg(t)                        973 . 0 ) 2400 ( , ) 0 ( ) sin ( ) ( ) 10 )( 28 . 0 ( 10 / ; , 0 1200 , 1 ) ( 4 g g g b g p p f f f p T elsewhere t t p  2 / 1 2 / 1 1 ) ( ) ( ) ( ) ( f P f H f p K f H r R r T   We choose ) ( ) ( ) ( ) ( ) ( ) 10 )( 3600 ( 3 1 f p f H f H f H f p K r R c T g   
  • 55. Dr. Uri Mahlab 55 Plots of Pg(f),Hc(f),HT(f),HR(f),and Pr(f).
  • 56. Dr. Uri Mahlab 56 To maintain a 4 10  e P 2 4 14 2 2 / 1 max 0 2 max 0 2 max 0 2 4 max 0 2 max 0 2 ) ( 10 10 ) 06 . 14 )( 3600 ( ) ( ) ( ) ( ) ( 1 06 . 14 ) / ( 75 . 3 ) / ( 10 ) / ( ( ) / (                                        df f P df f H f G f P N A T S N A N A N A Q N A r c n r b T For Pr(f) with raised cosine shape     1 ) ( df f Pr And hence dBm ST 23 ) 10 )( 3600 )( 06 . 14 ( 10     Which completes the design.