Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

2010 assessment review_homework_1-4-done

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
H 2016   2018
H 2016 2018
Wird geladen in …3
×

Hier ansehen

1 von 63 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie 2010 assessment review_homework_1-4-done (20)

Anzeige

Aktuellste (20)

2010 assessment review_homework_1-4-done

  1. 1. Assessment Review Homework <ul><li>Homework #1 </li></ul><ul><li>Homework #2 </li></ul><ul><li>Homework #3 </li></ul><ul><li>Homework #4 </li></ul><ul><li>Homework #5 </li></ul>
  2. 2. Assessment Review Homework #1
  3. 3. Assessment Review HW #1 <ul><li>What equation represents the relationship between x and y ? </li></ul><ul><li>A) y = 2x </li></ul><ul><li>B) y = 4x </li></ul><ul><li>C) y = x + 6 </li></ul><ul><li>D) y = 2x + 2 </li></ul>Check each equation with two points: <ul><li>(2,8) </li></ul><ul><li>y = x + 6 </li></ul><ul><li>8 = 2 + 6 </li></ul><ul><li> 8 = 8 YES </li></ul>(x , y) <ul><li>(6,12) </li></ul><ul><li> y = x + 6 </li></ul><ul><li>12 = 6 + 6 </li></ul><ul><li>12 = 12 YES </li></ul>(x , y) 2 2 y = m x + b y = 1 x + ?
  4. 4. 2) Complete the function table below with the missing values for y. Based on the function table, write a function rule that shows the relationship between x and y. Answer ___________ y = m x + b 19 23 4 1 y = 4 x + ? 0 b y = 4 x + -1 y = 4 x + -1 -1 Bring x back to 0 .
  5. 5. <ul><li>3) The table below shows a relationship between x and y. </li></ul><ul><li>Which equation shows the relationship between x and y ? </li></ul><ul><ul><li>A) y = 3x </li></ul></ul><ul><ul><li>B) x = 3y </li></ul></ul><ul><ul><li>C) y = x + 4 </li></ul></ul><ul><ul><li>D) x = y + 4 </li></ul></ul>y = m x + b 3 y = 1 x + ? 3 b y = 1 x + 4 3 -1 1 1 5 1 4 0 Bring x back to 0 .
  6. 6. 4) Plot the ordered pairs from the table onto the graph paper below. Then draw a line segment connecting the points. Line Segment: No Arrows Need to Label Graph Pool Being Filled 160 180 Time (min) Water (gal) 180 160 140 120 100 80 60 40 20 0 0 1 2 3 4 5 6 7 8
  7. 7. 5) Graph the line with equation y = 2x – 3. a) Slope: m = 2 b) y-intercept: b = -3
  8. 8. 6) Given the linear equation, y = -2x + 3, identify the slope and y-intercept. m = ________ b = ________ Coordinates of y-intercept: _______ What does the slope tell you? _____________________________ What does the y-intercept tell you? Down 2 to the Right 1 -2 3 (0,3) Point where line crosses y-axis
  9. 9. A) 2 - 6 h B) 2h - 6 C) 6 - 2h D) 6h - 2 7) This month, Drew worked six hours less than twice the number of hours, h , he worked last month. What expression represents the number of hours Drew worked this month? 6 - 2h LESS THAN  REVERSE ORDER 6 - 2h
  10. 10. 8) Luisa works in her grandfather’s jewelry shop. She deposits her earnings in a savings account. Her savings account balances for five of the last six weeks are shown in the function table below. Part A: According to the data in the function table, write a function rule that shows how much money Luisa saves each week. Rule ______________ y = m x + b y = 110 x + ? y = 110 x + 400 b = 110 w + 400 110 1 b x y Don’t forget to change equation using b and w !!! 0 400 Week (w) Savings Balance (b) 1 $510 2 $620 3 $730 4 $840 5 ? 6 $1,060
  11. 11. 8) Part B Based on the table, how much money is in Luisa’s savings account in week 5? Show Work Answer $__________ 950 b = 110 w + 400 Plug in w =5 b = 110(5) + 400 b = 550 + 400 b = 950 950 Week (w) Savings Balance (b) 1 $510 2 $620 3 $730 4 $840 5 ? 6 $1,060 840 +110 950
  12. 12. 9) Find the greatest common factor (GCF) of 12x and (4x 2 + 8x). GCF: 4: 1, 4 12: 1, 2, 3, 4, 6, 12 8: 1,2,4,8 GCF: x: x x 2 : x x x: x GCF: 4x
  13. 13. 10) Steve drew figure ABCD. He plans to create figure A'B'C'D' by reflecting it over the x-axis. Label the new figure A'B'C'D‘. What are the coordinates of A’? ________ D’ A’ B’ C’ (-9,-7)
  14. 14. A dd M ultiply Multiply to +8 (1)(8) (2)(4) (-1)(-8) (-2)(-4) 11) Factor into two binomials Step #1 Step #2 Step #3 (x +4 )(x +2 ) or (x +2 )(x +4 ) Which pair adds up to +6?
  15. 15. 12) In the diagram below, line f and line h are parallel, and line n is a transversal. a) Name two angles that are vertical angles. b) Name two angles that are corresponding angles. c) Name two angles that are alternate interior angles.  5 and  8  6 and  7  2 and  6  4 and  8  4 and  5  3 and  6
  16. 16. 13) Graph a line with the given values. x -4 -2 0 4 y 0 1 2 4
  17. 17. Assessment Review Homework #2
  18. 18. 1) Which figure below shows a reflection? Rotation Translation Translation Reflection
  19. 19. 2) Gary drew a triangle on the coordinate grid shown below. If Gary reflects the triangle in the y-axis, what will be the new coordinates of the vertices of the triangle? Which figure below shows a reflection? A) (-1, -1), (4, -3), (-5, 1) B) (-1, -1), (-4, -3), (-5, -1) C) (-1, 1), (-4, 3), (5, -1) D) (1, 1), (4, 3), (5, 1)
  20. 20. 3) Triangle ABC and triangle A’ B’C’ are plotted on the coordinate plane below. What is the name of the transformation applied to triangle ABC that resulted in triangle A’B’C’?  A’B’C is a reflection over the y-axis.
  21. 21. 4) Which property does the equation below demonstrate? 7(x - 4) = 7x - 28 A) Associative B) Commutative C) Distributive D) Identity 7(x) 7(-4) +
  22. 22. 5) Ana drew two figures on the coordinate grid shown below. Which transformation did Ana apply to Figure A to get Figure B ? 6 5 4 3 2 1 This is a SLIDE!!! <ul><li>A) Rotated by 90 o </li></ul><ul><li>Dilated by 6 </li></ul><ul><li>Reflected in the y-axis </li></ul><ul><li>D) Translated 6 units to the left </li></ul>
  23. 23. A) 4k + 5 B) 5k - 4 C) 5k + 4 D) 5k(k + 4) 6) Cindy has four more than five times as many cousins as Kathy, k. Which expression represents how many cousins Cindy has compared with Kathy? 4 + 5x 4 + 5k or 5k + 4
  24. 24. <ul><li>7) Which verbal expression is the same as </li></ul><ul><ul><li>A) two more than half of six </li></ul></ul><ul><ul><li>B) six more than half of a number </li></ul></ul><ul><ul><li>C) the sum of a number and two plus six </li></ul></ul><ul><ul><li>D) six more than the product of a number and two </li></ul></ul>2 +1/2(6) 6 + 1/2n n + 2 + 6 6 + 2n
  25. 25. 8) Melissa drew the shape on the grid shown below. Draw the reflection of this shape in the x-axis. Label the coordinates of each point on the new figure. Explain how you determined the reflection of the shape. (4,-2) (6,-6) (4,-8) (2,-6) I counted how many boxes each point was away from the x-axis. I then counted that many boxes on the other side of the x-axis. I plotted the new point. OR I kept the same x-coordinate and negated the y-coordinate for each point. 2 boxes to x-axis 2 boxes away from x-axis 6 boxes to x-axis 6 boxes away from x-axis
  26. 26. 9) A translation has the rule (x- 2, y+1). If the point R at ( 7 , -4 ) is put through the translation, what are the coordinates of its image location at R’? (x – 2, y + 1) R’( 7 – 2 , -4 + 1) R’( 5 , -3
  27. 27. 10) Shawn drew figure ABCD. He plans to create figure A'B'C'D' by translating figure ABCD 6 units down and 4 units to the right. On the coordinate plane below, draw and label Shawn's figure A'B'C'D'. (MARCH 2009) D’ A’ B’ C’ Next Shawn plans to create a figure A”B”C”D” by translating figure A’B’C’D’ 2 units up and 8 units to the right. What will be the coordinates of point A’’? A’’(3,3) A’’(3,3)
  28. 28. 11) Simplify. (3x 2 y 3 )(-4xy -4 ) (3)(-4)= -12 x 2  x= x 3 y 3  y -4 =y -1 -12x 3 y -1 Explain using the laws of exponents how you arrived at your answer. I multiplied 3 & -4 and got -12. I multiplied powers by keeping base and adding the exponents.
  29. 29. A dd M ultiply Multiply to -12 (1)(-12) (2)(-6) (3)(-4) (-1)(12) (-2)(6) (-3)(4) 12) Factor into two binomials Step #1 Step #2 Step #3 (x +3 )(x -4 ) or (x -4 )(x +3 ) Which pair adds up to -1?
  30. 30. 13) Find the product of the two binomials (x – 6) and (3x + 7) 3x 2 -18x +7x - 42 3x x +7 -6 3x 2 3x 2 - 11x - 42 +7x -18x -42 Multiply (x - 6)(3x + 7)
  31. 31. A) 2 + d – 3 B) 3 + d – 2 C) 2d – 3 D) 3 – 2d 14) Janine’s dog weighs three pounds less than twice the weight of Wanda’s dog, d. Which expression represents the weight of Janine’s dog? 3 - 2d LESS THAN  REVERSE ORDER 3 - 2d
  32. 32. 15) Erika is assigned to graph the line of the equation y = 2x+1. Use Erika’s equation to complete the table below for the given values of x. Using the information from the table, graph the line of the equation y =2x+1 on the coordinate plane below. Be sure to plot all points from the table and draw a line connecting the points. y=2x+1 x y -2 -3 -1 -1 0 1 2 5 4 9
  33. 33. Assessment Review Homework #3
  34. 34. <ul><li>What is the product of (2a 2 b 3 c 6 ) and (4ab 4 c 2 )? </li></ul>(2a 2 b 3 c 6 ) (4ab 4 c 2 ) MULTIPLY 2∙4 ∙a 2 ∙a∙ b 3 ∙b 4 ∙c 6 ∙c 2 8 a 3 b 7 c 8 MULTIPLY Powers  Multiply Coefficients. Keep Base & Add Exponents “ I multiplied 2(4) to get 8. I multiplied powers by keeping the base and added the exponents.”
  35. 35. 2) What is the quotient of ? <ul><li>3x 2 y 2 z 2 </li></ul><ul><li>3x 2 y 4 z 5 </li></ul><ul><li>12x 2 y 2 z 2 </li></ul><ul><li>12x 2 y 4 z 5 </li></ul>DIVIDE Dividing Powers  Divide Coefficients. Keep Base & Subtract Exponents “ I divided 18 by 6 to get 3. I divided powers with same base by keeping the base and subtracted the exponents.”
  36. 36. 3) Solve for x in the equation below. 2(x + 6) = 8x - 42 Show your work. Answer __________ USE CALCULATOR!! 6 6 x = 9 2x +12 = 8x - 42 2(x + 6) = 8x - 42 +12 = 6x - 42 54 = 6x Multiply Cancel 2x x = 9 -2x -2x +42 +42 Cancel -42 x + 6 2 2x +12 Distribute
  37. 37. 4) Simplify the expression below. DIVIDE Dividing Powers  Keep Base & Subtract Exponents “ I divided 36 by 12 to get 3. I divided powers with same base by keeping the base and subtract the exponents.” <ul><li>24x 4 y 3 </li></ul><ul><li>3x 4 y </li></ul><ul><li>C) </li></ul><ul><li>D) </li></ul>
  38. 38. <ul><li>5) Multiply the two binomials below. </li></ul><ul><li>(2x – 3)(2x + 3) </li></ul><ul><ul><li>A) 4x 2 +9 </li></ul></ul><ul><ul><li>B) 4x 2 – 9 </li></ul></ul><ul><ul><li>C) 4x 2 – 6x – 9 </li></ul></ul><ul><ul><li>D) 4x 2 –12x + 9 </li></ul></ul>4x 2 + 6x -6x -9 2x 2x +3 -3 4x 2 4x 2 - 9 +6x -6x -9 Multiply
  39. 39. <ul><li>6) What is the product of the expression below? </li></ul><ul><li>(3x – 7)(3x + 2) </li></ul><ul><ul><li>A) 9x 2 -15x -14 </li></ul></ul><ul><ul><li>B) 9x 2 +15x+14 </li></ul></ul><ul><ul><li>C) 9x 2 -15x +14 </li></ul></ul><ul><ul><li>D) 9x 2 +15x -14 </li></ul></ul>9x 2 -21x+ 6x -14 3x 3x +2 -7 9x 2 9x 2 - 15x-14 +6x -21x -14 Multiply
  40. 40. Always smallest exponent GCF: 6 (Biggest) Second: List factors of x 3 and x 4 x 3 : x x x x 4 : x x x x GCF: 6x 3 7) What is the greatest common factor of 18x 3 and 24x 4 ? GCF: x 3 First: List factors of 18 and 24 18: 1, 2, 3, 6, 9, 18 24: 1, 2, 3, 4, 6, 8,12, 24
  41. 41. A dd M ultiply Multiply to -18 (1)(-18) (2)(-9) (3)(-6) (-1)(18) (-2)(9) (-3)(6) <ul><li>8) Factor x 2 + 3x – 18 into two binomials. </li></ul><ul><ul><li>A) (x + 9)(x - 2) </li></ul></ul><ul><ul><li>B) (x – 9)(x + 2) </li></ul></ul><ul><ul><li>C) (x + 6)(x – 3) </li></ul></ul><ul><ul><li>D) (x – 6)(x + 3) </li></ul></ul>(x -3)(x+6) or (x +6)(x- 3) Step #1 Step #2 Step #3 Which pair adds up to 3?
  42. 42. <ul><li>9) Simplify the expression below. </li></ul><ul><li>2 -3 </li></ul><ul><ul><ul><li>A) -6 </li></ul></ul></ul><ul><ul><ul><li>B) 1/6 </li></ul></ul></ul><ul><ul><ul><li>C) 1/8 </li></ul></ul></ul><ul><ul><ul><li>D) -8 </li></ul></ul></ul>Flip Base & Make Exponent POSITIVE NEGATIVE Exponents
  43. 43. <ul><li>10) Katie converts the outside temperature from degrees Fahrenheit, F, to degrees Celsius, C. She uses the formula below to convert the </li></ul><ul><li>temperature. </li></ul><ul><ul><li>If the outside temperature is 50 degrees Fahrenheit, what is the outside temperature in degrees Celsius? </li></ul></ul><ul><ul><ul><li>A) 2 </li></ul></ul></ul><ul><ul><ul><li>B) 5 </li></ul></ul></ul><ul><ul><ul><li>C) 9 </li></ul></ul></ul><ul><ul><ul><li>D) 10 </li></ul></ul></ul>Plug F = 50
  44. 44. 11) Factor the expression below using the greatest common factor (GCF). 18n 6 – 12n 4 + 6n A) 6n(3n 5 -2n 3 + 1) B) 6n(3n 5 -2n 3 + n) C) 6n(12n 6 -6n 3 + 1) D) 6n(12n 6 -6n 3 + n) GCF: 18:1, 2, 3, 6, 9, 18 12: 1, 2, 3, 4 ,6, 12 6: 1, 2, 2, 3, 6 GCF: n 6 : n ,n , n , n ,n ,n n 4 : n ,n ,n ,n n: n You can check by multplying answer out GCF: 6n 3n( ? ) =18n 6 -12n 4 +3n
  45. 45. 12) Simplify the expression 3a 2 + 5a-11 – 11a 2 + 2a – 12 +1 -8 a 2 +3 a Rewrite without Parenthesis + - – 3a 2 +5a - 11 - 11a 2 -2a +12 3a 2 - 11a 2 +5a -2a - 11 +12
  46. 46. 13) Solve, graph, and check -8x – 8 < -3x + 12 Variables on Different Sides Cancel Smaller +3x +3x -5x - 8 < 12 +8 +8 -5x < 20 -5 -5 x > 4 Check -8x – 8 < -3x + 12 -8 (5) – 8 < -3 (5) + 12 – 48 < -3  Divide by Negative Flip Inequality Directio 4 5 6
  47. 47. 14) Complete the table of values given the line below. (-2,-1) -1 0 2 (0,0) (2,1) (6,3) 6 4 (8,4) x y -2 0 1 3 8
  48. 48. 15) In the diagram below, line f and line h are parallel, and line n is a transversal. a) Name two angles that are vertical angles. b) Name two angles that are corresponding angles. c) Name two angles that are alternate interior angles.  5 and  8  6 and  7  2 and  6  4 and  8  4 and  5  3 and  6
  49. 49. Assessment Review Homework #4
  50. 50. 1) What is 18a 11 b 7 divided by 3a 3 b? Dividing Powers  Keep Base & Subtract Exponents “ I divided 18 by 3 to get 6. When dividing powers with same base you keep the base and subtract the exponents.”
  51. 51. 2) Simplify the expression below. <ul><li>4x 2 y 2 </li></ul><ul><li>4xy 2 </li></ul><ul><li>E) </li></ul>Dividing Powers  Keep Base & Subtract Exponents “ I divided 12 by 3 to get 4. When dividing powers with same base you keep the base and subtract the exponents.”
  52. 52. 3) Which expression is equivalent (14a - 4a) + (5a -3a)? Combine Like Terms 10a + 2a (14a- 4a) + (5a – 3a) 12a
  53. 53. 4) Simplify the expression 3x 2 +4x - 3 + -2x + 1 -2 3 x 2 +2 x Rewrite without Parenthesis 3x 2 4x -2x -3 +1 Need to show how signs change!
  54. 54. 5) Simplify the expression. (x 3 y 2 )(xy 4 ) x 4 y 6 MULTIPLY Powers  Keep Base & Add Exponents
  55. 55. 6) Simplify the expression. 5 7 5 2 5 9 MULTIPLY Powers  Keep Base & Add Exponents
  56. 56. 7) Simplify the expression. Dividing Powers  Divide Coefficients. Keep Base & Subtract Exponents “ I divided 3 by 6 to get ½ . When dividing powers with same base you keep the base and subtract the exponents.”
  57. 57. 8) Simplify the expression below . A) 9a 2 b B) 9a 4 b 2 C) 18a 2 b D) 18a 4 b 2 Combine Like Terms 3a 2 b + 6a 2 b 9a 2 b
  58. 58. 9) Simplify the expression 3a 2 + a – 7 + 9a 2 + 3a – 4 -3 -6 a 2 - 2 a Rewrite without Parenthesis + – – 3a 2 +a – 7 - 9a 2 -3a +4 3a 2 -9a 2 +a -3a - 7 +4
  59. 59. A dd M ultiply Multiply to -12 (1)(-12) (2)(-6) (3)(-4) (-1)(12) (-2)(6) (-3)(4) <ul><li>10) Factor x 2 + 4x – 12 into two binomials. </li></ul><ul><ul><li>A) (x + 4)(x - 3) </li></ul></ul><ul><ul><li>B) (x – 3)(x + 3) </li></ul></ul><ul><ul><li>C) (x + 6)(x – 2) </li></ul></ul><ul><ul><li>D) (x – 6)(x + 2) </li></ul></ul>Step #1 Step #2 Step #3 (x )(x ) or (x +6)(x- 2) -2 + 6 Which pair adds up to 4 ?
  60. 60. 11) On the coordinate plane below, draw the image of polygon ABCDE translated 8 units to the right and 4 units up. Label the image A'B'C'D'E'. (MARCH 2008) SLIDE!!! A’ B’ E’ D’ C’
  61. 61. 12) Write an equation that represents the table below. Answer ___________ y = m x + b +3 +2 x y -2 -5 0 -2 2 1 4 4 Wh y is “ y ” on top?
  62. 62. 13) Using the slope formula, , find slope of the line given two points A(3,4) and B(-3,-2). Show Work Slope: ____ Describe the slope: 1 Up 1 to the right 1 Wh y is “ y ” on top?
  63. 63. 14) Given the linear equation, y + 2x = 7, identify the slope and y-intercept. m = ________ b = ________ Coordinates of y-intercept: _______ What does the slope tell you? _____________________________ What does the y-intercept tell you? Down 2 to the Right 1 -2 7 (0,7) Point where line crosses y-axis -2x -2x y = -2x + 7

×