SlideShare ist ein Scribd-Unternehmen logo
1 von 78
Breeding for quality traits in minor millets
MAJOR GUIDE
Dr. M. M. Talpada
Associate Research Scientist
Cotton research Station,
Kukada,
J.A.U., Junagadh
MINOR GUIDE
Dr. M. H. Sapovadiya
Assistant Research Scientist
Departments of Genetics &
Plant Breeding,
College of Agriculture,
J.A.U., Junagadh
SPEAKER
Jay Khaniya
M.Sc. (Agri.) 3rd Sem.
Reg. no.: 2010117052
Genetics & Plant Breeding,
College of Agriculture,
J.A.U., Junagadh
Date:
Sept. 29th, 2018 Time: 16:00 to 17:00Course No.: GP 591
http://milletindia.org/3Proverb from Old Kannada
INTRODUCTION
BREEDING FOR QUALITY TRAITS
OBJECTIVES AND CONSTRAINS
BREEDING METHODS AND CASE STUDIES
ACHIEVEMENTS AND CONCLUSION04
03
02
01
•Minor millets are small-seeded species crops, grown
around the world for food and fodder.
•Minor millets are high energy, nutritious foods
comparable to other cereals.
•Some of them are even better with regard to protein
and mineral content.
•They are particularly low in phytic acid and rich in
dietary fiber, iron, calcium and B vitamins.
Introduction
5
(1) Finger millet
(2) Foxtail millet
(3) Barnyard millet(5) Kodo millet
(6) Little millet
(4) Proso millet
6 http://www.aicrpsm.res.in/photos&video.html
Figure 1
•Grown well in adverse soil and climatic condition.
•Shorter crop duration.
•Some of them are suitable for contingency plan.
•They are also more nutritious than major cereals.
•Finger millet is highly tolerant to alkalinity, even >pH 11.0.
•Foxtail millet, Proso millet & Little millet is suitable for
both drought and water logging condition.
•Kodo millet & Proso millet is highly drought resistant.
7
Special features of Minor millets
http://vikaspedia.in/health/nutrition/nutritive-value-of-foods/nutritive-value-of-
cereals-and-millets/small-millets-not-2018small2019-in-nutrition
Table 1: Vernacular names of minor millets
English Finger millet Little millet Kodo millet
Foxtail/ Italian
millet
Barnyard
millet
Proso millet
Gujarati Nagli, Bavto Gajro, Kuri Kodra Kang Sama Cheno
Hindi Mandua Kutki Kodon Kangni, Kakum Sanwa, Jhangon Barre
Sanskrit
Nandimukhi,
Madhuli
- Kodara Kanguni Shyama Chiná
Kannada Ragi Same Harka Navane Oodalu Baragu
Tamil Kelvaragu Samai Varagu Tenai Kuthiravaali Panivaragu
Telugu Ragulu Samalu Arikelu, Arika Korra, Korralu
Udalu,
Kodisama
Varigulu,
Varagalu
Malayalam Moothari Chama Varagu Thina - Panivaragu
Marathi Nachni Sava Kodra Kang, Rala Shamul Vari
Bengali Mandua Kangani Kodo Kaon Shamula Cheena
Oriya Mandia Suan Kodua Kanghu, Kora Khira Chinna
Punjabi
Mandhuka,
Mandhal
Swank Kodra Kangni Swank Cheena
Kashmiri - Ganuhaar - Shol - Pingu
8
https://slideplayer.com/slide/4417823/
Figure 2: Minor millet growing area in India
9
10
Finger millet, 17.1, 66%
Little millet, 2.91, 11%
Barnyard millet, 1.95, 8%
Foxtail millet, 1, 4%
Kodo millet, 2.35, 9%
Proso millet, 0.42, 2%
Area (Lakh ha)
Finger millet Little millet Barnyard millet Foxtail millet Kodo millet Proso millet
https://www.youtube.com/watch?v=_M4UznoQXvE (2018)
Figure 3: Minor millet growing area in India
Area: 25.73 lakh ha
Production: 24.04 lakh ton
Productivity: 2269 kg/ha
0
1000
2000
3000
4000
5000
6000
1951-55 1956-60 1961-65 1966-70 1971-75 1976-80 1981-85 1986-90 1991-95 1996-00 2001-05 2006-10 2011-2015
Figure 4: Quinquennial area, production and
productivity of small millets in India
Area ('000 ha) Production ('000 t) Productivity (kg/ha)
1)Almora (Uttarakhand) – Barnyard millet
2)Dholi (Bihar) – Proso millet
3)Dindori (MP) – Kodo millet
4)Semiliguda (Orissa) - Little millet
5)Nandyal (AP) – Foxtail millet
Annual Progress Report: 2017-18, ICAR-AICRP on Small Millets, Bengaluru11
0
20
40
60
80
100
120
140
160
180
200
Figure 5: Sate-wise area, production and
productivity Small millets in India: 2015-16
Area ('000 ha) Production ('000 t) Productivity ('00 kg/ha)
Nutritive value of Indian foods, NIN, 2007Annual Progress Report: 2017-18, ICAR-AICRP on Small Millets, Bengaluru12
0
500
1000
1500
2000
2500
3000
1951-55 1956-60 1961-65 1966-70 1971-75 1976-80 1981-85 1986-90 1991-95 1996-00 2001-05 2006-10 2011-2015
Figure 6: Quinquennial area, production and
productivity of Finger millet in India
Area ('000 ha) Production ('000 t) Productivity (kg/ha)
Nutritive value of Indian foods, NIN, 2007Annual Progress Report: 2017-18, ICAR-AICRP on Small Millets, Bengaluru13
• 15m ha and India’s share is 20%
• Finger millet: 25 countries with 4 - 5 m ha for beverage &
food; India’s share is 40%
• Foxtail millet: 4 - 5 m ha, China tops and CMS based
hybrids with high yield potential
• Proso millet: 3 - 4 m ha, mostly in Eurasian countries
• Barnyard millet: 0.3 - 0.4 m ha mostly in India and Japan
• Little millet & Kodo millet: Heritage crops of India
• Export potential – as bird feed and organic millets worth of
100 crore, India’s share is negligible
GLOBAL SCENARIO
AICSMIP, Bangalore14
Table 2: Optimum agrarian conditions for minor millets
Crop
Optimum
soil type
Height
range (m)
Temperature pH
Soil salinity
(dS/m)
Rainfall
required (cm)
Maturity time
(days)
Finger
millet
Rich loam to
upland shallow
soils
Sea level to
2300
26-29℃
(decline growth
below 20℃)
4.5 to 7.5 11-12 50-60 90-120
Foxtail
millet
Sandy to loamy
soils
Sea level to
2000
5-35℃
( Best16-25℃)
5.5 to 7.0 6 30-70 75-90
Proso
millet
Sandy loam,
slightly acidic,
saline, low-
fertility soil
1200 to 3500
above sea level
20-30℃ 5.5 to 6.5 - 20-50 60-90
Barnyard
millet
Medium to
heavy soils
Sea level to
2000
15-33℃
(Best 27-33℃)
4.6 to 7.4 3-5 - 45-70
Little
millet
- Up to 2100 - - - - 80-85
Kodo
millet
Fertile to
marginal soils
Up to 1500 25-27℃ - - 80-120 100-140
Kumar et al. (2018)
Agric & Food Secur (2018) 7:31
https://doi.org/10.1186/s40066-018-0183-3 15
• Finger millet / African millet / Keppai
/ Mutthair / Thamida / Nacheni / Crow
footed millet
• Finger millet is an important staple
food in parts of East and Central Africa,
and India, particularly in Karnataka.
• Place of Origin : East Africa
• The genus Eleusine consists of eleven
species.
• E. indica is considered as one of the
parent for the tetraploid E.africana.
E.coracana were mutants selected from
of E. africana.
E. indica (2n=18) x Closely related taxon
Chromosome doubling
E. africana (2n=36)
mutant
E. coracana (2n=36) tetraploid
introgression
http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%
20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec07.pdf
16
Figure 7
• Dwarf Setaria/ Foxtail bristle grass/ Giant
Setaria/ Green foxtail/ Italian millet/
German millet/ Hungarian millet.
• Second-most widely planted species of
millet, and the most important in East Asia
( approx. six million tons).
• Place of origin: China
• Annual grass with slim, vertical, leafy
stems (3.9 to 6.6 ft).
• Its grain is used for human consumption
and as feed for poultry and cage birds.
• It can tolerate water logging.
http://exploreit.icrisat.org/profile/Small%20millets/187
https://en.wikipedia.org/wiki/Foxtail_millet17
Figure 8
http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%
20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf
http://exploreit.icrisat.org/profile/Small%20millets/187
https://en.wikipedia.org/wiki/Proso_millet
• Boom corn millet/ Common millet/ Broomtail
millet/ Hog millet/ Kashfi millet/ Red millet/
White millet.
• Manchuria and Transcocasia (7000 years
ago), Europe (3000 years ago) then followed
to Near East and India.
• It has a C4 photosynthesis (Thermophilic).
The seeds are small and can be cream, yellow,
orange-red, or brown in colour.
• Inflorescence is a drooping panicle.
• The spikelet contain two flower partially
enclosed by the glumes.
• The flowers open between 10 AM to 12 noon.
The spikelet open and close within 7 minutes.
• The anthesis begins from tip of the panicle
and proceeds down wards.
18
Figure 9
• Billion dollar grasses/ Moraiaya/ Jhangora/
Bhagar/ Samo.
• Wild ancestor is E. colona but exact date or
region of domestication is uncertain.
• Domesticated about 4,000 years ago in India
and Japan (E. esculenta).
• The anthers are purple in colour.
• Order of flowering is from tip to the bottom of
panicle.
• Anthesis - 5 AM to 10 AM.
• The grains are cooked in water, like rice, or
boiled with milk and sugar.
• Fermented for Beer and eaten in fast. http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%
20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf
http://exploreit.icrisat.org/profile/Small%20millets/187
https://en.wikipedia.org/wiki/Echinochloa_frumentacea
19
Figure 10
• Cow grass/ rice grass/ ditch millet/ Native
Paspalum / Indian Crown Grass.
• It’s domesticated in India almost 3,000 years
ago.
• Place of origin: Tropical Africa.
• Monocot and an annual grass that grows to
heights of approx. four feet.
• Humid habitats of the tropics and sub tropics.
• The fiber content of the whole grain is very high.
• The spikelet are highly cleistogamous.
• Only 10-15% of spikelet open under Coimbatore
condition.
• Spikelet at the middle of spikes open first,
gradually spread to either ends (2:30-3:00AM to
continue till sunrise). http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%20
&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf
http://exploreit.icrisat.org/profile/Small%20millets/187
https://en.wikipedia.org/wiki/Paspalum_scrobiculatum20
Figure 11
• It is an annual herbaceous plant, which
grows straight or with folded blades to a
height of 30 cm to 1 m.
• Place of origin: India
• Little millet is a reliable fast-growing crop
that is early maturing and resistant to adverse
Agri-climatic conditions.
• It’s green part is suitable for cattle and straw
in construction.
• At the Indus Valley Civilization sites of
Harappa and Farmana, the millet
assemblage was dominated by little millet
(over 10,000 grains).
http://exploreit.icrisat.org/profile/Small%20millets/187
https://en.wikipedia.org/wiki/Panicum_sumatrense21
Figure 12
Food grain
names
Carbohydrates
(g)
Protein
(g)
Fat (g)
Energy
(KCal)
Crude
fiber (g)
Mineral
water (g)
Ca (mg) P (mg) Fe (mg)
Finger millet 72.0 7.3 1.3 328 3.6 2.7 344 283 3.9
Kodo millet 65.9 8.3 1.4 309 9.0 2.6 27 188 0.5
Proso millet 70.4 12.5 1.1 341 2.2 1.9 14 206 0.8
Foxtail millet 60.9 12.3 4.3 331 8.0 3.3 31 290 2.8
Little millet 67.0 7.7 4.7 341 7.6 1.5 17 220 9.3
Barnyard
millet
65.5 6.2 2.2 307 9.8 4.4 20 280 5.0
Wheat
(whole)
71.2 11.8 1.5 346 1.2 1.5 41 306 5.3
Rice (raw,
milled)
78.2 6.8 0.5 345 0.2 0.6 10 160 0.7
Nutritive value of Indian foods, NIN, 2007
Table 3: Nutritional composition of millets compared to fine cereals (per 100g)
22
Nutritional importance
• Alkaline, one of the least allergic and easily digestible.
• Phosphorus help in fat metabolism, body tissue repair and creating
energy.
• Magnesium help to reduce the chance heart attacks.
• Fiber from whole grains has been shown to protect against cancer.
• Niacin in millets can help to lower cholesterol.
• Protect against childhood asthma.
• It can help to lower risk of diabetes.
• It act as a prebiotic to feed important micro flora in our inner
ecosystem.
Summer school on postharvest and value addition of millets for the development
of functional foods to combat disorders (2015) TNAU, Coimbatore.23
Ragi
Laddu
Ragi snacks
http://millets.res.in/m_recipes/Millets_Recipes-
A_Healthy_choice.pdf & Google24
Figure 13
Ragi Idli
Ragi Roti
http://millets.res.in/m_recipes/Millets_Recipes-
A_Healthy_choice.pdf & Google25
Figure 14
Millet Upma
Millet Sweet
http://millets.res.in/m_recipes/Millets_Recipes-
A_Healthy_choice.pdf & Google
26
Figure 15
• High protein content.
• High Calcium, Iron and Zinc content (Macro and Micro nutrients).
• High beta-carotene content.
• High fiber content.
• Low fat content.
• High hydrolytic enzymatic activity during malting (finger millet).
• Development of amber seed colour and good flour colour finger millet.
• High storability, uniformity in size and shape of the grains.
• High popping percent and volume expansion during puffing.
• High fodder quality.
• Low anti-nutritional factors.
Objectives for Quality Improvement
https://www.slideshare.net/varshagaitonde9/elucine-coracana-ragi27
• Polygenic traits.
• Continuous variation.
• Complex ploidy level.
• Require higher technical skill in crossing.
• Higher cost for lab testing.
• Improvement of one trait may affect the other important trait like
yield.
• Hybridization is very difficult in case of small millets.
• Very Small flower structure.
• Cleistogamous nature.
Constrain in relation to quality breeding
https://www.slideshare.net/varshagaitonde9/elucine-coracana-ragi28
• Interavarietal improvement
• Mass selection
• Pureline selection
• Intervarietal improvement
• Natural hybridization
• Contact method
• Use of marker plant types
• Protogyny
• Polycrosses
• Induction & utilization of
sterility
• Controlled hybridization
Breeding Methods
http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf
•Recombination breeding
•Pedigree selection
•Mutation breeding
• Rectification of characters
• Inducing polygenic variations
• Inducing sterility
29
Sr. No. Method of breeding Variety developed
1 Mass selection
Gidda and Hullubelle (Ragi, Karnataka), Saluchodi
(Ragi, AP), Udamalpet and Guddapah rajampet (Ragi,
TN), Murky and Nagkantna (Ragi, Sikkim), V-27 and
V-306 (Proso millet, AP), Koraput local (Little millet,
Orissa)
2 Pureline selection
Maximum Finger millet varieties, 13 Foxtail millet
varieties (Central Seed Committee, 1985), Kodo millet
(13), Little millet (10), Proso millet (12), Barnyard
millet (7)
http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf30
Table : Varieties developed by different breeding method
Name of
culture/Check
and cereals
Crude fiber % Ca (mg) Fe (mg) P (mg)
GNV-3
(little millet)
3.56 242.70 3.86 410.9
GV-2
(little millet,
check)
3.34 155.70 3.77 404.3
Rice 0.20 45 - 160
Wheat 1.20 41 4.90 306
Patil et al. (2016)Waghai, India
Table 4: Nutritional value of variety GNV-3 (little millet) as
compared to check and other cereals
31
•Natural hybridization
• Very low degree of natural cross pollination was observed in Foxtail millet
(Patil, 1952) and Little millet (Dwivedi, 1947).
•Protogyny
• IPS 147, IPS 197, IPS 427 etc.
• Controlled pollination could also be effected
•Induction and utilization of sterility
•Recurrent radiations and interplanting
•GOT will reveal the natural hybrids
•Controlled hybridization
•Aims at sterilizationor removal of anthers and controlled pollination
http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf32
Hybrid Duration 1950-60 1960-70 1970-80 1980-85
I x I
Early Udaya - K7 5-6
Mid -late Puma Annapurna - -
Late - Cauvery
Shakti,
HPB 7-6
-
E x I
Early - - - Indaf-9
Mid -late - -
CO-9,
Indaf-5
-
Late - -
Indaf-1
Indaf-3
K-5
Indaf-6
Indaf-7
Indaf-8
Indaf-11
HR-911
E x E
Early - - HR-374 -
Late CO-6 - - -
Table 5: Hybrid derivatives of Finger millet in India
http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf
I × I : Indian × Indian
E × I : Exotic × Indian
E × E : Exotic × Exotic
Early : < 100 days
Mid-late : 100-110 days
Late : > 110 days
33
AICRP – minor millets
• Formerly - All India Coordinated Small Millets Improvement
Project (AICSMIP).
• The major small millet growing areas - the tribal and hill
regions in the country.
• Dealing its research in 14 centers & 19 cooperating centers.
1. Berhampur (Odisha)
2. Dindori (MP)
3. Dholi (Bihar)
4. Jagdalpur (Chhattisgarh)
5. Kolhapur (Maharashtra)
6. Mandya (Karnataka)
7. Nandyal (AP)
8. Ranchi (Jharkhand)
9. Ranichauri (Uttarakhand)
10.Rewa (MP)
11.Vizianagaram (AP)
12.Athiyandal (TN)
13.Mysore (Karnataka)
14.Waghai (Gujarat)
http://millets.res.in/aicrp_small.php
http://www.aicrpsm.res.in/About%20Us/Mandate/Mandate.pdf
34
Sr.
No.
Genotypes Tannins (per cent) Phytates (mg/100g)
1 Indaf-5 0.40 260
2 GPU-28 0.32 275
3 ML-197 0.54 320
4 ML-365 0.20 240
5 ML-553 0.44 250
6 ML-426 0.30 246
7 ML-31 0.44 301.50
8 ML-322 0.34 242
SEm ± 1.375 3.209
CD at 5 % 4.484 10.46
Bangalore, India Shashi et al. (2006)
Table 6: Antinutritional composition of finger millet genotypes
36
Sr. No. Characters GCV PCV Heritability (%)
Genetic advance as a %
of mean
1 Plant height (cm) 10.16 10.48 94 20.2
2 No. of effective tillers/plant 5.85 31.64 3.4 2.4
3 Days to 50% flowering (days) 12.43 12.46 99.5 25.5
4 Days to maturity (days) 9.50 12.64 56.5 14.7
5 No. of fingers/ear 19.04 21.12 81.3 35.4
6 Length of finger (cm) 15.98 17.65 82 29.7
7 Grain yield/plant (g) 19.05 22.65 70.8 33.1
8 1000 grain weight (g) 6.57 6.87 91.3 13
9 Grain yield/plot (g) 20.08 20.25 98.4 40
10 Grain yield/ha (q) 19.84 19.97 98.7 40.6
11 Straw yield/plot (kg) 24.07 24.11 99.6 48.7
12 Straw yield/ha (q) 23.97 24.00 99.8 181
13 Harvest Index (%) 12.75 12.91 97.5 25.9
14 Protein content (%) 14.18 14.46 96.1 29.2
15 Albumin content (%) 28.58 36.34 61.9 46.6
16 Globulin content (%) 32.28 39.56 66 54.4
17 Prolamin content (%) 17.11 18.37 86.7 32.5
18 Glutelin content (%) 16.17 17.60 84.4 30.4
19 Calcium content (mg/100g) 37.99 38.76 96.1 76.7
20 Iron content (mg/100g) 34.30 34.48 99 70.3
Table 7: GCV, PCV, Heritability and Genetic advance as a % of mean of forty finger millet genotype for twenty characters
Dapoli, India Jawale (2014) Ph.D. thesis37
Sr. No. Characters Mean Range Genotype
1 Protein content (%) 8.67 (%) 6.41-11.55 OEB 101 (11.55), ACPR 2 (11.08) & RAU 8 (10.85)
2 Albumin content (%) 1.20 (%) 0.61-1.85
OEB 101 (1.81), VR 847 (1.81), DPI 20114 (1.64), VL
326 (1.64), OEB 22 (1.64), VL 322 (1.64), RAU 8
(1.64), VR 708 (1.64), DM1 (1.64), GPU 58 (1.64),
PES 110 (1.64) and MR 33 (1.64)
3 Globulin content (%) 1.23 (%) 0.61-1.85 L 112 (1.85), RAU 8 (1.85) and VR 822 (1.85)
4 Prolamin content (%) 4.00 (%) 2.67-5.36
VR 846 (5.35), QEB 101 (5.35), ACPR I (4.94) and
VR 768
(4.94)
5 Glutelin content (%) 3.64 (%) 2.67-4.73
L 221 (4.73), VR 708 (4.73), DM 7 (4.73) and GPU 56
(4.73)
6 Calcium content (mg/100g)
362.33
(mg/100g)
186.67-600.00
L 84 (600.00), ACPR 1 (600.00) and OEB 101
(586.67)
7 Iron content (mg/100g)
14.99
(mg/100g)
7.50-28.00 DPI 20132 (28.00), VL 149 (26.23) and L 48 (25.50)
Table 8: Superior genotypes out forty genotypes of Finger millet for particular quality trait
Dapoli, India Jawale (2014) Ph.D. thesis38
• Manimozi et al.(2015) studied 30 genotypes of the little millet for Zn, Ca and
Fe content at Tamil nadu, India.
• The zinc content was ranged from 2.04 to 8.00 mg/g with a mean of 5.23
mg/g.
• Wide variation in iron content was observed and it ranged from 1.49 to 23.38
mg/g with a mean of 4.95 mg/g.
• The grain calcium content ranged from 1.14 to 13.15 mg/g with a mean of
3.90 mg/g.
• The genotypes TNPsu 25 (8.00 mg/g), TNPsu 23 (7.42 mg/g), TNPsu
21(6.95 mg/g) and TNPsu 9 (6.85 mg/g) had higher zinc content.
• Similarly the accessions TNPsu 25 (23.38 mg/g) and TNPsu 22 (19.22
mg/g) were superior in grain iron content.
• The genotypes CO3 (13.15 mg/g), CO2 (8.45 mg/g), TNPsu 141 (8.23 mg/g)
and CO (Samai) 4 (6.52 mg/g) were superior in grain calcium content.
Zn, Ca and Fe analysis in different genotype of little millet
Tamil nadu, India Manimozi et al. (2015)39
Coimbatore, India Savitha et al. (2013)Tamil nadu, India Manimozi et al. (2015)
Rich in Zn
Rich in Fe
Rich in Fe and Zn
Figure 16: Variation in Fe and Zn content
40
Coimbatore, India Savitha et al. (2013)Tamil nadu, India Manimozi et al. (2015)
Rich in Ca
Rich in Ca and Zn
Figure 17: Variation in Ca and Zn content
41
Results…
- Zinc, iron and calcium rich genotypes viz., TNPsu 25, TNPsu 23,
TNPsu 22 and TNPsu 141 could be involved in hybridization with
agronomically superior accessions to combine grain nutrients (zinc,
iron and calcium) and grain yield.
- Genotypes with poor content of nutrients viz., TNPsu 28, TNPsu 27,
MS 4700 and MS 1003 identified in this study could be an ideal
material for molecular understanding of the metal homeostasis in
little millet.
Tamil nadu, India Manimozi et al. (2015)42
Sr. No. No. of genotypes Genotypes
1 60
WWN-40, WWN-41, WWN-57, WN-625, WWN-50, WN-619, WN-617, WN-630, WWN-
47, WN-612, WWN-49, WWN-38, WN-596, WN-618, WN-623, WN-594, WN-605,
WWN-45, WN-624, WN-606, WWN-52, WN-592, WWN-56, WWN-48, WN-621, GN-4,
WN-587, WWN-53, WN-593, WN-603, WN-601, WWN-43, WN-610, WWN-46, GNN-6,
WWN-39, GN-5, WN-609 WWN-54, WWN-55, WN-614, WN-604, WN-589, WN-590,
WN-629, WWN-51, WN-607, WN-628, WN-626, WN-627, WN-608, WN-599, WN-611,
WN-620, WN-598, WN-597, WN-602, WN-600, WN-615
2 1 WN-586
3 1 WN-622
4 1 WN-588
5 1 WN-591
6 1 WN-616
7 2 WWN-42, WWN-44
8 1 WN-595
Table 9: The distribution of 68 genotypes of Finger millet into eight different clusters
Waghai, India Devalya (2015) M.Sc. Thesis43
Sr. No. Character GCV% PCV%
Heritability (Broad
sense %)
Genetic
advance
% of mean
1 Days to 50% flowering 6.28 7.54 69.30 10.77
2 Days to maturity 4.87 5.97 66.60 8.19
3 Plant height (cm) 5.02 6.45 60.60 8.06
4 Number of productive tillers per plant 16.14 18.95 72.60 28.34
5 Number of fingers per ear 10.50 12.95 65.80 17.54
6 Main ear head length (cm) 14.30 15.83 81.70 26.64
7 1000-Grain weight (g) 6.90 8.02 74.00 12.23
8 Grain yield per plant (g) 16.70 19.61 72.50 29.30
9 Straw yield per plant (g) 16.56 19.58 71.50 28.86
10 Harvest index (%) 3.35 6.28 28.50 3.69
11 Protein content (%) 4.16 5.14 65.50 (High) 6.94 (Low)
12 Iron content (ppm) 9.96 10.36 92.40 (Very High) 19.72 (Medium)
13 Calcium content (%) 3.48 5.35 42.40 (Medium) 4.67 (Low)
Table 10: Genotypic and phenotypic coefficient of variation (GCV & PCV), heritability and genetic advance as per
cent of mean for thirteen traits in 68 genotypes of Finger millet
Waghai, India Devalya (2015) M.Sc. Thesis44
Cluster
No.
Days to
50%
floweri
ng
Days to
maturi
ty
Plant
height
(cm)
No. of
produc
tive
tillers/
plant
No. of
fingers
/ear
Main
ear
head
length
1000-
grain
weight
(g)
Grain
yield/pl
ant (g)
Straw
yield/pl
ant (g)
Harves
t Index
(%)
Protein
content
(%)
Iron
content
(ppm)
Ca
content
(%)
1 81.09 118.59 103.66 2.14 8.59 9.24 2.67 7.34 25.75 22.30 6.91 52.23 0.33
2 70.67 107.00 100.00 2.40 7.53 6.23 2.59 7.13 24.47 22.57 6.33 43.93 0.32
3 73.33 109.00 103.53 2.60 10.87 9.99 3.02 9.61 30.90 23.01 6.98 55.47 0.31
4 72.67 109.67 107.33 1.87 5.53 9.13 2.84 6.00 21.10 22.16 6.35 43.33 0.30
5 83.33 120.33 113.93 2.53 7.67 8.12 2.68 9.34 30.90 24.59 7.04 41.00 0.32
6 72.67 108.67 92.40 1.67 8.80 10.02 3.06 6.37 21.25 25.06 7.25 40.40 0.30
7 81.33 119.17 96.87 2.70 7.93 7.78 3.05 8.45 31.42 25.80 7.01 55.93 0.34
8 92.67 131.00 91.87 2.27 5.80 5.47 2.81 5.93 21.00 25.44 6.83 42.00 0.33
Table 11: Cluster means for thirteen characters in 68 genotypes of Finger millet
Waghai, India Devalya (2015) M.Sc. Thesis45
Association Analysis in Germplasm and F2 Segregating Population of Barnyard
Millet (Echinochloa frumentacea) for Biometrical and Nutritional Traits
TN, India Renganathan et al. (2017)46
• The experiments material included, forty germplasm from various sources,
three parental materials ACM 331, ACM 333 and MA 10 that utilized for
hybridization were based on variation in iron and zinc content (ACM 331 low
in Fe and Zn, where ACM 333 and MA 10 are rich in both), and F2
segregating population of ACM 331 x ACM 333 (Cross 1) and ACM 331x
MA 10 (Cross 2) material.
• Plant height (PH), flag leaf length (FL), flag leaf breadth (FB), ear head
length (EL), ear head breadth (EB), number of racemes (NR), single ear head
weight (SEW), length of lower raceme (LR), number of leaves per tiller
(NOL), stem girth (SG), thousand grain weight (TW) iron (Fe), zinc (Zn) and
single plant yield (GYP).
Variables PH FL FB EL EB NR SEW NPT TW NOL LR SG Fe Zn GYP
PH 1.000 0.595* 0.623* 0.761* 0.546* 0.458* 0.594* 0.291 0.293 0.721* 0.206 0.517* 0.082 0.117 0.631*
Cross 1 1.000 0.282 0.239 0.599* 0.107 -0.058 -0.124 0.210 0.207 0.318 0.250 0.264 -0.135 0.026 0.164
Cross 2 1.000 -0.242 -0.112 0.055 -0.060 0.066 -0.043 0.057 -0.248 0.110 -0.047 -0.033 0.110 0.150 0.104
FL 1.000 0.799* 0.565* 0.345* 0.538* 0.593* 0.365* 0.285 0.589* 0.049 0.614* 0.272 0.341* 0.620*
Cross 1 1.000 0.599* 0.406* 0.394* 0.293 0.165 0.045 -0.048 0.382* 0.421* -0.113 0.071 0.209 0.214
Cross 2 1.000 0.616* 0.604* 0.583* 0.412* 0.622* 0.199 -0.043 -0.158 0.453* 0.090 -0.258 -0.379* 0.244
FB 1.000 0.588* 0.302 0.651* 0.736* 0.465* 0.493* 0.683* -0.009 0.537* 0.294 0.322* 0.731*
Cross 1 1.000 0.386* 0.179 0.387* 0.100 0.314 0.258 0.150 0.098 -0.080 0.061 -0.023 0.549*
Cross 2 1.000 0.358* 0.579* 0.107 0.463* 0.325* -0.003 -0.002 0.151 0.209 -0.006 -0.077 0.439*
EL 1.000 0.638* 0.668* 0.593* 0.238 0.427* 0.531* 0.287 0.603* 0.115 0.107 0.660
Cross 1 1.000 0.563* 0.571* 0.464* 0.157 -0.004 -0.047 0.325* 0.069 -0.276 -0.197 0.051
Cross 2 1.000 0.298 0.026 0.152 0.066 0.212 0.361* 0.424* 0.027 -0.006 0.038 0.131
EB 1.000 0.381* 0.386* 0.016 0.210 0.225 0.527* 0.233 0.262 0.299 0.492*
Cross 1 1.000 -0.187 -0.094 0.204 0.303 0.232 0.713* 0.202 0.111 0.096 0.143
Cross 2 1.000 0.231 0.433* 0.274 0.030 -0.122 0.343* 0.130 -0.180 -0.349* 0.267
NR 1.000 0.785* 0.317* 0.480* 0.572* -0.020 0.492* 0.151 0.133 0.804*
Cross 1 1.000 0.581* 0.329 -0.289 0.094 -0.239 0.062 0.091 0.022 0.319
Cross 2 1.000 0.358* 0.011 0.036 0.080 0.127 0.096 -0.154 -0.307* -0.187
SEW 1.000 0.311 0.502* 0.718* -0.055 0.367* 0.218 0.232 0.838*
Cross 1 1.000 0.158 -0.422* 0.189 -0.132 -0.139 0.374* 0.280 0.036
Cross 2 1.000 0.199 -0.081 0.411* 0.384* 0.139 -0.194 -0.226 0.247
NPT 1.000 0.158 0.550* -0.038 0.355* 0.019 0.023 0.423*
Cross 1 1.000 0.193 0.037 0.078 0.189 0.039 -0.118 0.450*
Cross 2 1.000 -0.212 0.389* 0.218 0.065 0.144 0..080 0.764*
TW 1.000 0.423* -0.132 0.336* 0.117 0.030 0.583*
Cross 1 1.000 -0.154 0.125 0.151 -0.076 -0.197 0.300
Cross 2 1.000 -0.245 -0.021 -0.131 0.200 -0.024 -0.161
NOL 1.000 -0.097 0.511* 0.081 0.091 0.699*
Cross 1 1.000 0.380* 0.191 0.175 0.074 0.133
Cross 2 1.000 -0.158 0.158 0.128 0.301* 0.110
LR 1.000 0.257 0.254 0.255 0.067
Cross 1 1.000 -0.001 -0.023 0.180 0.097
Cross 2 1.000 0.216 -0.066 -0.013 0.307*
SG 1.000 0.157 0.109 0.571*
Cross 1 1.000 -0.164 0.034 0.253
Cross 2 1.000 -0.128 -0.097 0.019
Fe 1.000 0.937* 0.203
Cross 1 1.000 0.713* 0.057
Cross 2 1.000 0.499* 0.217
Zn 1.000 0.206
Cross 1 1.000 0.061
Cross 2 1.000 0.133
TN, India Renganathan et al. (2017)47
Table 12: Correlation coefficients for fifteen biometrical and nutritional characters for 40
germplasm and F2 of cross I & cross II in barnyard millet
Hybridization
https://www.nature.com/subjects/plant-hybridization
Plant hybridization is the process of
crossbreeding between genetically
dissimilar parents to produce a
hybrid.
OR
It is the method in which we made
cross between two genetically
superior parents to get higher
heterosis.
48
Figure 18
Russian method is followed. The principle in this method is to induce
artificial flower opening by increasing the temperature 1-20 C and immersing the
panicle in normal cold water prevent anther dehiscence but flowers will open.
• Select the panicle which first commenced flowering
• Remove the already opened florets
• Rub the selected panicle in between hands to increase the temperature by 1 to 20C
for two minutes.
• Immerse the panicle in cold water
• The flowers will open but anthers will not dehisce
• Take out panicle from water and remove unopened flower
• From opened florets remove anthers
Emasculation Techniques in Small Millets
http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%
20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf49
•Planting date is adjusted so as to
synchronize flowering of male
and female parents.
•Select male ear which is just
flowered.
•Surround two female fingers with
all male fingers very loosely and
tie it in such way that allow
proper aeration.
Contact Method of Pollination
http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%
20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf50
Figure 19
Table 13: Nutritional Quality characters of TNAU 946
Sr. No. Particulars (%) CO (Ra) 14 CO 13 GPU 28 CO 9
1) Crude protein 12.43 10.54 12.81 11.29
2) Crude fat 3.50 3.0 2.80 3.00
3) Crude fiber 31.00 25.00 25.00 20.00
4) Ca 0.66 0.61 0.64 0.63
Joel et al. (2005)TNAU, Coimbatore
TNAU 946 is a cross derivative between Malawi 1305 x CO 13. This is a medium duration culture falling into the
maturity group of 105-110 days.
51
TNAU, Coimbatore Nirmalakumari et al. (2010)
Table 14: Grain quality characteristics of Proso millet variety TNAU-164 (TNAU 137 × CO-4)
Quality characteristics TNAU-164 TNAU-155 GPUP-21 K-1
Parameters
a) Nutritional qualities
Protein ( g/100g) 12.9 12.7 12.5 12.4
Carbohydrate(g /100g) 72.0 71.9 71.7 70.6
Oil (g/100g) 3.5 3.3 3.4 3.0
Crude fibre (g/100g) 7.0 7.1 7.3 7.4
Mineral matter (g/100g) 2.4 2.1 2.1 1.9
Potassium (g/100g) 2.1 2.0 1.8 1.9
Phosphorus (mg/100g) 213 207 205.0 200.
Calcium (mg/100g) 17.2 17.0 15.6 14.0
Iron (mg/100g) 11.4 11.2 11.2 11.2
carotene ( g/g) 126 118 110.0 106.3
52
TNAU, Coimbatore Nirmalakumari et al. (2010)
Table 15: Grain quality characteristics of Proso millet variety TNAU-164 (TNAU 137 × CO-4)
Quality characteristics TNAU-164 TNAU-155 GPUP-21 K-1
Parameters
b) Cooking qualities
Water uptake (ml) 950 943 945 926
Cooking time (min) 26 30 26 25
Initial Volume (ml) 100 100 100 105
Cooked volume (ml) 755 730 710 640
Initial weight (g) 100 100 100 100
Cooked weight (g) 742 737 700 682
c) Fodder characteristics
Dry matter (%) 22.13 21.3 20.56 19.50
Crude protein (%) 7.35 6.58 6.95 5.76
Crude fibre (%) 19.25 20.12 20.68 24.34
Potassium (%) 3.10 2.90 3.10 3.01
Phosphorus (%) 0.22 0.17 0.15 0.14
Mineral matter (%) 2.31 2.2 2.00 1.85
53
Hybrid
Protein content (%) Fe content (mg/100g) Zn content (mg/100g)
di dii diii di dii diii di dii diii
CO(Ra) 14 X PR 202 8.46 ** 3.72 ** 3.72 ** 85.77** 70.88** 103.49** -5.98** -11.80** 0.66
CO(Ra) 14 X KM 252 6.40 ** 1.95 * 1.95 * 87.54** 43.68** 43.68** 4.31** -2.84** 12.60**
CO(Ra) 14 X K 7 13.11 ** 10.80 ** 10.80 ** 123.08** 101.34** 101.34** 0.83 -4.06** 6.24**
RAU 8 X PR 202 3.62 ** - 2.91 ** - 11.39 ** 201.10** 116.14** 157.39** 4.35** 2.40** 16.87**
RAU 8 X KM 252 3.22 ** - 3.46 ** - 11.53 ** 141.94** 138.89** 27.15** 4.03** 1.32** 17.42**
RAU 8 X K 7 - 0.80 - 9.14 ** - 12.86 ** 94.31** 59.77** 28.63** -3.48** -3.86** 6.46**
PES 110 X PR 202 0.53 - 0.28 - 8.99 ** 25.98** -7.22** 10.48** -8.26** -8.83** 4.05**
PES 110 X KM 252 1.42 0.40 - 8.00 ** 134.85** 128.40** 28.63** -2.06** -3.40** 11.94**
PES 110 X K 7 - 0.44 - 3.61 ** - 7.55 ** 148.53** 111.19** 70.03** -0.98* -1.85** 10.62**
VR 708 X PR 202 0.04 -0.04 -8.62** 108.28** 101.35** 139.78** -8.46** -18.50** 19.17**
VR 708 X KM 252 -1.17 -1.29 -9.54** 441.25** 435.10** 184.81** -23.28** -31.24** 0.55
VR 708 X K 7 -2.60** -4.88** -8.77** 266.73** 201.84** 143.01** -17.22** -27.27** 6.35**
GPU 28 X PR 202 2.73** 0.04 -3.65** 157.26** 157.11** 206.18** -16.23** -17.75** -6.13**
GPU 28 X KM 252 1.59 -0.88 -4.53** 181.50** 103.73** 142.34** -7.95** -10.30** 3.94**
GPU 28 X K 7 -1.05 -1.26 -4.90** 70.62** 43.05** 70.16** 6.20** 5.84** 17.20**
GPU 48 X PR 202 1.21 -0.66 -5.86** 108.41** 39.84** 66.53** -3.18** -3.45** 10.19**
GPU 48 X KM 252 2.23** 0.54 -4.72** 216.74** 179.55** 48.79** -15.47** -16.35** -3.07**
GPU 48 X K 7 0.21 -0.38 -4.46** 107.10** 55.93** 25.54** -6.89** -8.01** 4.38**
OEB 259 X PR 202 -3.28** -8.84** -16.80** 106.01** 39.39** 65.99** 4.89** 1.82** 16.21**
OEB 259 X KM 252 -7.46** -12.95** -20.23** 222.99** 189.14** 53.90** 9.37** 5.39** 22.12**
OEB 259 X K 7 1.69 -6.34** -10.17** 130.48** 75.46** 41.26** 3.92** 2.37** 13.36**
Table 16: Expression of Relative heterosis (di), Heterobeltiosis (dii) and standard heterosis (diii) for Protein content, iron content, zinc content in finger millet
Coimbatore, India Savitha et al. (2013)55
Parents/
characters
Days to
50%
floweri
ng
Plant
height
(cm)
Number
of
producti
ve tillers
per plant
Number
of fingers
per ear
head
Longest
finger
length
(cm)
Thousan
d grain
weight
(g)
Seed
protein
content
%
Harvest
index
Singel
plant dry
fodder
yield (g)
Single
plant
grain
yield (g)
CO 9 -1.19 ** -6.56** -0.20* 0.03 -1.20** 0.02 0.19** 0.19* -0.04 -0.02
RIL 156 -5.22 ** -5.18** -0.22** -0.52** -0.44** -0.15** 0.43** -1.02** 0.68** -0.37**
TNAU 1039 -1.00** -5.89** 0.29** 0.12 -0.17** -0.12** -0.44** 2.31** -1.09** 0.92**
GPU 45 -0.67** -2.54** -0.62** -0.12 0.12* 0.23** -0.02* -1.25** 0.80** -0.67**
PRM 801 5.19** 8.03** -0.95** -0.52** -0.14* 0.13** -0.48** -3.12** 1.43** -1.40**
VL 149 1.85** 3.98** 0.73** 0.28** 1.14** 0.00 -0.21** 1.48** -0.71** 0.54**
CO 14 1.04** 8.17** 0.98** 0.73** 0.68** -0.11** 0.54** 1.41** -1.23** 1.00**
SE 0.09 0.5 0.08 0.07 0.05 0.01 0.01 0.08 0.07 0.07
Table 17: GCA effects of parents for different traits in finger millet
Coimbatore, India Priyadarshini et al. (2010)57
Hybrids
Days to 50%
flowering
Plant height
(cm)
Number of
productive
tillers per
plant
Number of
fingers per
ear head
Longest
finger
length (cm)
Thousand
grain
weight (g)
Seed
protein
content %
Harvest
index
Single
plant dry
fodder
yield (g)
Single plant
grain yield
(g)
CO-9 x RILL 156 -0.59** -5.26** -0.25 0.70** 0.74** -0.14** -1.72** -0.17 0.38** 0.21*
CO-9 x TNAU 1039 4.52** 4.76** -0.38** -0.60** -0.12 -0.04* 0.01 -2.73** 1.85** -0.71**
CO-9 x GPU-45 2.85** 5.61** 0.13 -0.89** 0.02 0.25** -2.10** -1.01** 0.83** -0.46**
CO-9 x PRM 801 -1.33** 1.00 0.19 0.37** 0.65** 0.17** 0.86** 1.82** -0.16 1.27**
CO-9 x VL 149 0.67** -2.01** 1.22** -0.13 -0.73** 0.20** -0.57** 5.06** -2.53** 2.07**
CO-9 x CO-14 5.15** -0.14 1.44** 0.25** 0.16* -0.08** -1.13** 6.74** -2.51** 2.56**
RIL-156 x TNAU-1039 1.56** 9.01** 1.27** 0.28** -0.25** -0.01 0.21** 0.72** 0.22* 0.70**
RIL-156 xGPU-45 0.22 11.33** 1.11** -0.38** 0.39** -0.05** -0.81** -0.75** 0.41** 0.03
RIL-156 x PRM-801 -3.30** -8.89** 0.02 -0.45** 0.65** -0.16** 0.92** 0.36** 0.47** 0.50**
RIL-156 x VL-149 -1.63** 0.97 0.44** 0.45** 0.31** 0.10** 0.19** 1.26** -0.38** 0.71**
RIL-156 x CO-14 -2.48** -2.72** 0.28** 0.10 -0.34** 0.02 0.80** 0.59** 0.18* -0.19*
TNAU-1039 x GPU-45 -0.33** -20.56** -1.14** 0.75** 0.12 0.35** -1.21** 3.78** -1.71** 1.05**
TNAU-1039 x PRM-801 2.81** 17.27** 0.20* 0.25* -0.21** 0.04* 0.29** 2.04** -2.75** 1.02**
TNAU-1039 x VL-149 -8.52** 9.45** 0.62** 0.59** 0.51** -0.22** -0.75** 2.79** -1.43** 1.06**
TNAU-1039 x CO-14 -0.04 18.36** 2.36** 0.97** 0.80** 0.29** -1.90** 4.12** -1.26** 1.89**
GPU-45 x PRM-801 -1.85** -21.21** 0.47** 0.29** -0.07 0.06** -0.03* 2.22** -0.47** 0.51**
GPU-45 x VL-149 2.48** 6.04** -0.24* 0.96** 0.55** -0.27** 2.80** -2.04** 1.06** -0.42**
GPU-45 x CO- 14 -8.04** 7.88** -0.19 1.28** 0.67** -0.06** 0.65** 4.43** -1.39** 1.87**
PRM- 801 x VL-149 4.63** -6.84** -0.12 -0.35** -0.56** 0.39** -0.70** -0.82** 1.00** 0.04
PRM- 801 x CO-14 3.78** -1.80** -0.17 -1.66** 0.77** -0.07** 0.54** -2.81** 1.03** -2.04**
VL-149 x CO-14 0.44** -1.91** 2.06** 0.74** -0.14* -0.24** 0.98** 4.15** -1.78** 1.25**
SE 0.11 0.66 0.10 0.10 0.07 0.02 0.01 0.11 0.09 0.09
Table 18: Specific combining ability effects of parents for different traits in finger millet
Coimbatore, India Priyadarshini et al. (2010)58
Characters High GCA effect High SCA effect
Seed protein %
CO(Ra)14,
GPU-48 &
GPU-28
OEB 259 x K 7 &
CO(Ra)14 x K 7
Fe content (mg/100g)
GPU-28 &
VR-708
RAU 8 x PR 202 ,
GPU 28 x PR 202 &
VR 708 x KM 252
Zn content (mg/100g)
VR-708 &
RAU-8
GPU 28 x K 7,
VR 708 x PR 202 &
GPU 48 x PR 202
Table 19: Superior hybrids with high GCA, high SCA value
Coimbatore, India Savitha et al. (2013)59
Molecular method
to detect
polymorphism
GeneticMarkers Classical
Markers
Morphological
Markers
Cytological
Markers
Biochemical
Markers
Molecular
Markers
*Southern blotting
*Nuclear acid hybridization (RFLP, drDNA)
*PCR (Single and Paired)
*DNA Sequencing (RFLP, AFLP, RAPD, SSR, SNP,
etc.)
https://www.slideshare.net/SureshAntre
/molecular-marker-and-its-applications
61
Pantnagar, India Panwar et al. (2010)
Figure 20: RAPD profile of 52 finger millet genotypes generated by random primer (RAPD-15). The lanes
represent, lane L, 100-bp ladder; lanes 1-52 (finger millet genotypes), lane M, marker (EcoRI/HindIII)
Variation in Ca content in Finger millet
62
(0.4kb)
(1.2kb)
SR. No.
Name of
primer
Range of
markers (kb)
Polymorphic
bands/total no.
of bands
%
Polymorphism
PIC
1 RAPD-10 2-0.40 4/7 57.11 0.269
2 RAPD-12 3-0.30 7/11 63.63 0.484
3 RAPD-15 2.7-0.40 5/9 55.55 0.467
4 RAPD-4 1.3-0.35 1/3 33.33 0.449
5 RAPD-9 3-0.600 3/6 50.00 0.141
6 RAPD-36 1.5-0.550 5/8 62.5 0.281
7 RAPD-21 1.8-0.300 4/7 57.14 0.267
8 RAPD-11 1.6-0.400 6/11 54.54 0.427
9 RAPD-31 3-0.400 4/8 50.00 0.364
10 RAPD-30 2.7-0.350 9/15 60.00 0.500
11 RAPD-14 1.5-0.700 0/5 00 0.209
Total 48/90 543.8
Average 4.36/8.18 49.43 0.351
Pantnagar, India Panwar et al. (2010)
Table 20: Eleusine coracana: summary of genetic diversity study using RAPD primers
63
Pantnagar, India Panwar et al. (2010)
Figure 21: SSR profile of 52 finger millet genotypes generated by primer (SSR-6). The lanes
represent, lane L, 100-bp ladder; lanes 1-52 (finger millet genotypes), lane M, marker
(EcoRI/HindIII)
64
(1.0kb)
Sr. No.
Name of
primer
Range of
markers
(kb)
Polymorphic
bands/total
no. of bands
%
Polymorphis
m
PIC
1 SSR-01 4-0.7 7/12 58 0.721
2 SSR-02 3-0.6 9/15 60 0.758
3 SSR-06 4.2-0.7 6/10 60 0.523
4 SSR-08 1.2-0.4 6/15 40 0.511
5 SSR-10 1.9-0.53 6/18 33 0.274
Total 34/70 251 -
Average 6.8/14 50.2 0.557
Pantnagar, India Panwar et al. (2010)
Table 21: Eleusine coracana: summary of genetic diversity study using SSR primers
65
Pantnagar, India Panwar et al. (2010)
Figure 22: Cytochrome P450 gene based primer profile of 52 finger millet genotypes generated by primer combination
cyt09(F) and cyt010(R). The lanes represent lane L, 100-bp ladder; lanes 1-52 (finger millet genotypes), lane M,
marker (EcoRI/HindIII)
66
(0.4kb)
Sr. No. Number of primer TM Reference
Range of
markers (kb)
Polymorphic bands per
total no. of bands
%
polymorphism
PIC
1
CYP2B6(F)
CYP2B6(R)
66
66
Inui et al. (2000) 2.0-0.40 9/13 69.23 0.480
2
CYP2C19(F)
Hem2c19(R)
55
55
Inui et al. (2000) 3.0-0.35 3/5 60 0.499
3
CYT01(F)
CYT02(R)
62.3
63.6
Kumar et al. (1997) 3.5-0.10 9/15 60 0.355
4
CYT03(F)
CYT04R)
60
59
Kumar et al. (1997) 3.5-0.40 10/16 62.5 0.311
5
CYT05(F)
CYT6(R)
59
59
Kumar et al. (1997) 3.0-0.40 3/7 42.85 0.499
6
CYT07(F)
CYT08(R)
60
60
Kumar et al. (1997) 3.5-0.15 3/8 37.50 0.493
7
CYT09(F)
CYT10(R)
63
63
Kumar et al. (1997) 2.0-0.15 10/15 66.66 0.470
8
CYT011(F)
CYT12(R)
60
59
Kumar et al. (1997) 3.0-0.35 7/10 70 0.368
9
CYT013(F)
CYT014(R)
64
64
Kumar et al. (1997) 3.5-0.10 7/12 58.33 0.491
10
CYT015(F)
CYT016(R)
61
61
Kumar et al. (1997) 2.5-0.30 6/10 60 0.500
Total
Average
10 primers
67/111
6.7/11.1
587
58.7
0.406
Pantnagar, India Panwar et al. (2010)
Table 22: Eleusine coracana: summary of genetic diversity study using cytochrome P450 gene based primers
67
Pantnagar, India Panwar et al. (2010)
Figure 23: UPGMA cluster analysis showing relationships among Eleusine coracana genotypes as revealed by data from
combination of RAPD, SSR and cytochrome P450 gene based marker
68
• Physical method
• Macroinjection
• Microinjection
• Particle bombardment
• Silica fibers
• Liposome mediated
• Chemical method
• Polyethylene Glycol
• Calcium Phosphate Dendrimers
• Biological method
• Agrobacterium mediated
• Virus mediated
Transgenic Methods
69
Figure 24
Inflorescence length (cm) Number of calli induced
Numbers of segment
inoculated
Callus induction efficiency
(%)a
0.5-1.0
169 187
90.72 ± 6.32148 175
139 143
1.1-1.5
86 137
59.90 ± 12.9848 105
89 125
1.6-2.0
19 46
40.78 ± 5.1234 96
26 57
>2.0
8 86
19.80 ± 14.3213 93
26 72
Table 23: Callus induction efficiency of immature inflorescence at different length in Foxtail millet.
Callus induction efficiency (%) was calculated as the number of embryogenic calli per 100 total segments inoculated.
a Each value represents mean ± standard error (SE) of three replicate.
Wang et al. (2011)Beijing, China 70
Inflorescence length (cm) Calli age (days) Differentiation efficiency (%)a
0.5 - 1.0
25 90.93 ± 7.33
50 75.33 ± 3.79
100 0
1.1 - 1.5
25 56.20 ± 13.19
50 36.04 ± 2.40
100 0
Table 24: Differentiation efficiency of calli of different ages induced from different-sized inflorescences.
Wang et al. (2011)Beijing, China 71
Differentiation efficiency (%) was calculated as the number of calli giving rise to green spots per 100 calli tested. a
Each value represents mean ± SE of three replicates.
Wang et al. (2011)Beijing, China 72
Figure 25: PCR and western blot analyses of SBgLR transgenic foxtail millet plants. (A) PCR analysis of genomic
DNA to detect the presence of the SBgLR gene. Lane 1, molecular weight marker; lane 2, positive control; lanes 3
to 8, plants showing amplification of the predicted 280 bp SBgLR-specific sequence; lane 9, non-transformed
plants; (b) western blot analysis of SBgLR protein expression in transgenic foxtail millet, probed with SBgLR.
Lanes 1 to 6, 50 μg protein from T0 transgenic foxtail millet mature seeds; lane 7, 50 μg protein from non-
transformed foxtail millet mature seeds.c
Sr.
No.
Variety Pedigree
Institute where
developed
Year of
release
Maturity
(Days)
Av. Yield
(Q/ha)
Area of
adaptation
Special features
1 GPU 48 GPU 26 x L-5
PC Unit,
Bengaluru
2005 95-100 28-30
Karnatak
a
Pigmentation on all plant
parts and highly resistant to
blast
2 KMR 340
OUAT-2 x
WRT-4
VC Farm,
Mandya,
UAS,Bengaluru
2016 90-95 35-40
Karnatak
a
White ragi variety,
specially for confectionary
purpose, resistant to blast
and blight diseases, tolerant
to stem borer and aphids
3 GN-5
Selection
from local
germplasm
WWN-20
Waghai,
Navsari
Agricultural
University
2016 120-130 25-27 Gujarat
Late maturing, White
colour seed, Moderately
resistant to leaf and finger
blast
4 GNN-7
GE 4172 x
VL Ragi 149
Waghai,
Navsari
Agricultural
University
2016 110-120 25-27
All Ragi
growing
areas of
country
White seed, Bold grain,
Non-lodging, Moderately
resistant to blast and foot
rot
Table 25: Salient features of released varieties of finger millet crops
http://millets.res.in/technologies/finger_millets_varieties.pdf74
o Largest collections of germplasm (15,861 accessions) up to 2012.
 8001 accessions of Finger millet (8)
 2766 of Foxtail millet
 1538 in Kodo millet (5)
o Practices for cultivation - different regions of the country.
o Management practices for aberrant weather conditions.
o Chemical measures to control diseases.
o Technology to mitigate the menace of shoot fly.
o Technologies of value addition to small millets.
 939 in Proso millet (5)
 1629 in Little millet (3)
 988 in Barnyard millet (1)
Major Research achievement- AICRP
http://millets.res.in/aicrp_small.php75
Conclusion
Quality improvement in small millets can be
successfully done by the use of hybridization followed by
selection. Due to small flower structure and cleistogamous
nature hybridization is very difficult, costly and time
consuming so there is need to develop male sterile lines. By
the use of transgenic methods quality improvement can be
achieve without losing agronomical traits and seasonal
limitations can also be nullified. Mutation breeding is also
very useful in minor millet for enhancing quality as well as
quantitative characters.
76
Breeding for quality traits in minor millets
Breeding for quality traits in minor millets

Weitere ähnliche Inhalte

Was ist angesagt?

Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...CIAT
 
Synthetic-Composite Varieties & Hardw-w. law.pdf
Synthetic-Composite Varieties & Hardw-w. law.pdfSynthetic-Composite Varieties & Hardw-w. law.pdf
Synthetic-Composite Varieties & Hardw-w. law.pdfDr. Indrajay R. Delvadiya
 
Cotton, origin, Floral structure & biology, Breeding Techniques, Challenges
Cotton, origin, Floral structure & biology, Breeding Techniques, ChallengesCotton, origin, Floral structure & biology, Breeding Techniques, Challenges
Cotton, origin, Floral structure & biology, Breeding Techniques, ChallengesSrikanth H N
 
Diallele selective mating system
Diallele selective mating systemDiallele selective mating system
Diallele selective mating systemDev Hingra
 
Study in respect to origin distribution of species –wild relatives- and forms...
Study in respect to origin distribution of species –wild relatives- and forms...Study in respect to origin distribution of species –wild relatives- and forms...
Study in respect to origin distribution of species –wild relatives- and forms...Dr. Kaushik Kumar Panigrahi
 
maintainance of genetic purity methods of genetic purity testing
maintainance of genetic purity methods of genetic purity testingmaintainance of genetic purity methods of genetic purity testing
maintainance of genetic purity methods of genetic purity testingMPKV, RAHURI
 
Breeding of Pulses
Breeding of PulsesBreeding of Pulses
Breeding of PulsesNavneet Kaur
 
Genetic purity testing
Genetic purity testingGenetic purity testing
Genetic purity testingsunil kumar
 
Selection system: Biplots and Mapping genotyoe
Selection system: Biplots and Mapping genotyoeSelection system: Biplots and Mapping genotyoe
Selection system: Biplots and Mapping genotyoeAlex Harley
 
Breeding methods in cross pollinated crops
Breeding methods in cross pollinated cropsBreeding methods in cross pollinated crops
Breeding methods in cross pollinated cropsYashwanth Jv
 
Speed breeding presentation
Speed breeding presentationSpeed breeding presentation
Speed breeding presentationCharles Wesly
 
Pigeon pea Breeding- Crop Improvement kharif
Pigeon pea Breeding- Crop Improvement kharifPigeon pea Breeding- Crop Improvement kharif
Pigeon pea Breeding- Crop Improvement kharifDr.Pratibha Bisen
 
19. inbred lines development
19. inbred lines development19. inbred lines development
19. inbred lines developmentNaveen Kumar
 

Was ist angesagt? (20)

Okra Breeding Techniques
Okra Breeding TechniquesOkra Breeding Techniques
Okra Breeding Techniques
 
Hybrid breeding
Hybrid breedingHybrid breeding
Hybrid breeding
 
Wide cross and Bridge species
Wide cross and Bridge speciesWide cross and Bridge species
Wide cross and Bridge species
 
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
Participatory Plant Breeding, Biodiversity, Genetic Resources, Gender and Cli...
 
Breeding methods in sugarcane
Breeding methods in sugarcaneBreeding methods in sugarcane
Breeding methods in sugarcane
 
Synthetic-Composite Varieties & Hardw-w. law.pdf
Synthetic-Composite Varieties & Hardw-w. law.pdfSynthetic-Composite Varieties & Hardw-w. law.pdf
Synthetic-Composite Varieties & Hardw-w. law.pdf
 
Cotton, origin, Floral structure & biology, Breeding Techniques, Challenges
Cotton, origin, Floral structure & biology, Breeding Techniques, ChallengesCotton, origin, Floral structure & biology, Breeding Techniques, Challenges
Cotton, origin, Floral structure & biology, Breeding Techniques, Challenges
 
Diallele selective mating system
Diallele selective mating systemDiallele selective mating system
Diallele selective mating system
 
Study in respect to origin distribution of species –wild relatives- and forms...
Study in respect to origin distribution of species –wild relatives- and forms...Study in respect to origin distribution of species –wild relatives- and forms...
Study in respect to origin distribution of species –wild relatives- and forms...
 
Novel Plant Breeding
Novel Plant BreedingNovel Plant Breeding
Novel Plant Breeding
 
Heterosis Breeding in Rice (Hybrid Rice)
Heterosis Breeding in Rice (Hybrid Rice)Heterosis Breeding in Rice (Hybrid Rice)
Heterosis Breeding in Rice (Hybrid Rice)
 
maintainance of genetic purity methods of genetic purity testing
maintainance of genetic purity methods of genetic purity testingmaintainance of genetic purity methods of genetic purity testing
maintainance of genetic purity methods of genetic purity testing
 
Breeding of Pulses
Breeding of PulsesBreeding of Pulses
Breeding of Pulses
 
Genetic purity testing
Genetic purity testingGenetic purity testing
Genetic purity testing
 
Selection system: Biplots and Mapping genotyoe
Selection system: Biplots and Mapping genotyoeSelection system: Biplots and Mapping genotyoe
Selection system: Biplots and Mapping genotyoe
 
Pre breeding
Pre breedingPre breeding
Pre breeding
 
Breeding methods in cross pollinated crops
Breeding methods in cross pollinated cropsBreeding methods in cross pollinated crops
Breeding methods in cross pollinated crops
 
Speed breeding presentation
Speed breeding presentationSpeed breeding presentation
Speed breeding presentation
 
Pigeon pea Breeding- Crop Improvement kharif
Pigeon pea Breeding- Crop Improvement kharifPigeon pea Breeding- Crop Improvement kharif
Pigeon pea Breeding- Crop Improvement kharif
 
19. inbred lines development
19. inbred lines development19. inbred lines development
19. inbred lines development
 

Ähnlich wie Breeding for quality traits in minor millets

Millet research status and breeding program mes in Nepal
Millet research status and breeding program mes in NepalMillet research status and breeding program mes in Nepal
Millet research status and breeding program mes in Nepalhari paneru
 
Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...
Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...
Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...apaari
 
ADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATO
ADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATOADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATO
ADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATOpavanknaik
 
The diversity and Conservation strategies of Banana and Coconut.
The diversity and Conservation strategies of Banana and Coconut.The diversity and Conservation strategies of Banana and Coconut.
The diversity and Conservation strategies of Banana and Coconut.Dheeraj Sharma
 
Germplasm accession details of important crops in india bhendi, eggplant,sesa...
Germplasm accession details of important crops in india bhendi, eggplant,sesa...Germplasm accession details of important crops in india bhendi, eggplant,sesa...
Germplasm accession details of important crops in india bhendi, eggplant,sesa...TAMILNADU AGRICULTURE UNIVERSITY
 
Advances in Breeding of Major Field Crop
Advances in Breeding of Major Field CropAdvances in Breeding of Major Field Crop
Advances in Breeding of Major Field CropAkshay Deshmukh
 
Germplasm Conservation, Evaluation, Documentation, Distribution and Quaranti...
Germplasm  Conservation, Evaluation, Documentation, Distribution and Quaranti...Germplasm  Conservation, Evaluation, Documentation, Distribution and Quaranti...
Germplasm Conservation, Evaluation, Documentation, Distribution and Quaranti...VanangamudiK1
 
Biodiversity Conservation
Biodiversity ConservationBiodiversity Conservation
Biodiversity ConservationBusyFlori
 
Advances in Rice and Onion
Advances in Rice and Onion Advances in Rice and Onion
Advances in Rice and Onion Minakshi Neware
 
Nutritive value-of-moringa-stenopetala-and-moringa-oleifera
Nutritive value-of-moringa-stenopetala-and-moringa-oleiferaNutritive value-of-moringa-stenopetala-and-moringa-oleifera
Nutritive value-of-moringa-stenopetala-and-moringa-oleiferaSilentdisco Berlin
 
Biodiversity in Mango.pptx
 Biodiversity in Mango.pptx Biodiversity in Mango.pptx
Biodiversity in Mango.pptxShashwat Mahalle
 
Growth And Economic Parameters Of Eri Silkworm Rearing
Growth And Economic Parameters Of Eri Silkworm Rearing Growth And Economic Parameters Of Eri Silkworm Rearing
Growth And Economic Parameters Of Eri Silkworm Rearing Archana Das
 
Study in respect of origin distribution of species-wild relatives and forms ...
Study in respect of origin  distribution of species-wild relatives and forms ...Study in respect of origin  distribution of species-wild relatives and forms ...
Study in respect of origin distribution of species-wild relatives and forms ...Dr. Kaushik Kumar Panigrahi
 
Barley Processing Technology
Barley Processing TechnologyBarley Processing Technology
Barley Processing TechnologyMeena lather
 
Increased Potential of Protein Content of Waxy Corn
Increased Potential of Protein Content of Waxy CornIncreased Potential of Protein Content of Waxy Corn
Increased Potential of Protein Content of Waxy CornIJEAB
 
Barley Crop.ppt slidshare
 Barley Crop.ppt slidshare Barley Crop.ppt slidshare
Barley Crop.ppt slidshareSHIV SINGH YADAV
 
CULTIVATION PRACTICES OF MANGO
CULTIVATION PRACTICES OF MANGOCULTIVATION PRACTICES OF MANGO
CULTIVATION PRACTICES OF MANGORakesh Pattnaik
 

Ähnlich wie Breeding for quality traits in minor millets (20)

Millet research status and breeding program mes in Nepal
Millet research status and breeding program mes in NepalMillet research status and breeding program mes in Nepal
Millet research status and breeding program mes in Nepal
 
Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...
Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...
Underutilized Climate-smart Nutrient rich Small Millets for Food and Nutritio...
 
ADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATO
ADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATOADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATO
ADVANCES IN PRODUCTION TECHNOLOGY OF SWEET POTATO
 
The diversity and Conservation strategies of Banana and Coconut.
The diversity and Conservation strategies of Banana and Coconut.The diversity and Conservation strategies of Banana and Coconut.
The diversity and Conservation strategies of Banana and Coconut.
 
6. Casew.pptx
6. Casew.pptx6. Casew.pptx
6. Casew.pptx
 
Germplasm accession details of important crops in india bhendi, eggplant,sesa...
Germplasm accession details of important crops in india bhendi, eggplant,sesa...Germplasm accession details of important crops in india bhendi, eggplant,sesa...
Germplasm accession details of important crops in india bhendi, eggplant,sesa...
 
Advances in Breeding of Major Field Crop
Advances in Breeding of Major Field CropAdvances in Breeding of Major Field Crop
Advances in Breeding of Major Field Crop
 
Germplasm Conservation, Evaluation, Documentation, Distribution and Quaranti...
Germplasm  Conservation, Evaluation, Documentation, Distribution and Quaranti...Germplasm  Conservation, Evaluation, Documentation, Distribution and Quaranti...
Germplasm Conservation, Evaluation, Documentation, Distribution and Quaranti...
 
Biodiversity Conservation
Biodiversity ConservationBiodiversity Conservation
Biodiversity Conservation
 
Advances in Rice and Onion
Advances in Rice and Onion Advances in Rice and Onion
Advances in Rice and Onion
 
Nutritive value-of-moringa-stenopetala-and-moringa-oleifera
Nutritive value-of-moringa-stenopetala-and-moringa-oleiferaNutritive value-of-moringa-stenopetala-and-moringa-oleifera
Nutritive value-of-moringa-stenopetala-and-moringa-oleifera
 
Biodiversity in Mango.pptx
 Biodiversity in Mango.pptx Biodiversity in Mango.pptx
Biodiversity in Mango.pptx
 
Growth And Economic Parameters Of Eri Silkworm Rearing
Growth And Economic Parameters Of Eri Silkworm Rearing Growth And Economic Parameters Of Eri Silkworm Rearing
Growth And Economic Parameters Of Eri Silkworm Rearing
 
Learning Science
Learning ScienceLearning Science
Learning Science
 
Elucine coracana ragi
Elucine coracana  ragiElucine coracana  ragi
Elucine coracana ragi
 
Study in respect of origin distribution of species-wild relatives and forms ...
Study in respect of origin  distribution of species-wild relatives and forms ...Study in respect of origin  distribution of species-wild relatives and forms ...
Study in respect of origin distribution of species-wild relatives and forms ...
 
Barley Processing Technology
Barley Processing TechnologyBarley Processing Technology
Barley Processing Technology
 
Increased Potential of Protein Content of Waxy Corn
Increased Potential of Protein Content of Waxy CornIncreased Potential of Protein Content of Waxy Corn
Increased Potential of Protein Content of Waxy Corn
 
Barley Crop.ppt slidshare
 Barley Crop.ppt slidshare Barley Crop.ppt slidshare
Barley Crop.ppt slidshare
 
CULTIVATION PRACTICES OF MANGO
CULTIVATION PRACTICES OF MANGOCULTIVATION PRACTICES OF MANGO
CULTIVATION PRACTICES OF MANGO
 

Mehr von Jay Khaniya

19. Immunochemistry (Biochemistry)
19. Immunochemistry (Biochemistry)19. Immunochemistry (Biochemistry)
19. Immunochemistry (Biochemistry)Jay Khaniya
 
18. Enzymes and coenzymes (Biochemistry)
18. Enzymes and coenzymes (Biochemistry)18. Enzymes and coenzymes (Biochemistry)
18. Enzymes and coenzymes (Biochemistry)Jay Khaniya
 
17. Vitamins and minerals (Biochemistry)
17. Vitamins and minerals (Biochemistry)17. Vitamins and minerals (Biochemistry)
17. Vitamins and minerals (Biochemistry)Jay Khaniya
 
16. Protein sequencing (Biochemistry)
16. Protein sequencing (Biochemistry)16. Protein sequencing (Biochemistry)
16. Protein sequencing (Biochemistry)Jay Khaniya
 
15. Nitrogen cycle and its related (Biochemistry)
15. Nitrogen cycle and its related (Biochemistry)15. Nitrogen cycle and its related (Biochemistry)
15. Nitrogen cycle and its related (Biochemistry)Jay Khaniya
 
14. Glycosylation chromatography and electrophoresis (Biochemistry)
14. Glycosylation chromatography and electrophoresis (Biochemistry)14. Glycosylation chromatography and electrophoresis (Biochemistry)
14. Glycosylation chromatography and electrophoresis (Biochemistry)Jay Khaniya
 
13. Protein synthesis and targeting (Biochemistry)
13. Protein synthesis and targeting (Biochemistry)13. Protein synthesis and targeting (Biochemistry)
13. Protein synthesis and targeting (Biochemistry)Jay Khaniya
 
12. Proteins (Biochemistry)
12. Proteins (Biochemistry)12. Proteins (Biochemistry)
12. Proteins (Biochemistry)Jay Khaniya
 
11. Metabolism of lipids (Biochemistry)
11. Metabolism of lipids (Biochemistry)11. Metabolism of lipids (Biochemistry)
11. Metabolism of lipids (Biochemistry)Jay Khaniya
 
10. Composition and metabolism of lipids (Biochemistry)
10. Composition and metabolism of lipids (Biochemistry)10. Composition and metabolism of lipids (Biochemistry)
10. Composition and metabolism of lipids (Biochemistry)Jay Khaniya
 
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...Jay Khaniya
 
8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...
8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...
8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...Jay Khaniya
 
7. Composition and metabolism of carbohydrates (Biochemistry)
7. Composition and metabolism of carbohydrates (Biochemistry)7. Composition and metabolism of carbohydrates (Biochemistry)
7. Composition and metabolism of carbohydrates (Biochemistry)Jay Khaniya
 
6. Glycolysis (Biochemistry)
6. Glycolysis (Biochemistry)6. Glycolysis (Biochemistry)
6. Glycolysis (Biochemistry)Jay Khaniya
 
5. Basics of Carbohydrates
5. Basics of Carbohydrates 5. Basics of Carbohydrates
5. Basics of Carbohydrates Jay Khaniya
 
4. Acid base balance (Biochemistry)
4. Acid base balance (Biochemistry)4. Acid base balance (Biochemistry)
4. Acid base balance (Biochemistry)Jay Khaniya
 
3. Structure and function of cell membrane (Biochemistry)
3. Structure and function of cell membrane (Biochemistry)3. Structure and function of cell membrane (Biochemistry)
3. Structure and function of cell membrane (Biochemistry)Jay Khaniya
 
2. Microscopy (Biochemistry)
2. Microscopy (Biochemistry)2. Microscopy (Biochemistry)
2. Microscopy (Biochemistry)Jay Khaniya
 
1. Introduction (Biochemistry)
1. Introduction (Biochemistry)1. Introduction (Biochemistry)
1. Introduction (Biochemistry)Jay Khaniya
 
8. Disease causing microorganisms (Microbiology)
8. Disease causing microorganisms (Microbiology)8. Disease causing microorganisms (Microbiology)
8. Disease causing microorganisms (Microbiology)Jay Khaniya
 

Mehr von Jay Khaniya (20)

19. Immunochemistry (Biochemistry)
19. Immunochemistry (Biochemistry)19. Immunochemistry (Biochemistry)
19. Immunochemistry (Biochemistry)
 
18. Enzymes and coenzymes (Biochemistry)
18. Enzymes and coenzymes (Biochemistry)18. Enzymes and coenzymes (Biochemistry)
18. Enzymes and coenzymes (Biochemistry)
 
17. Vitamins and minerals (Biochemistry)
17. Vitamins and minerals (Biochemistry)17. Vitamins and minerals (Biochemistry)
17. Vitamins and minerals (Biochemistry)
 
16. Protein sequencing (Biochemistry)
16. Protein sequencing (Biochemistry)16. Protein sequencing (Biochemistry)
16. Protein sequencing (Biochemistry)
 
15. Nitrogen cycle and its related (Biochemistry)
15. Nitrogen cycle and its related (Biochemistry)15. Nitrogen cycle and its related (Biochemistry)
15. Nitrogen cycle and its related (Biochemistry)
 
14. Glycosylation chromatography and electrophoresis (Biochemistry)
14. Glycosylation chromatography and electrophoresis (Biochemistry)14. Glycosylation chromatography and electrophoresis (Biochemistry)
14. Glycosylation chromatography and electrophoresis (Biochemistry)
 
13. Protein synthesis and targeting (Biochemistry)
13. Protein synthesis and targeting (Biochemistry)13. Protein synthesis and targeting (Biochemistry)
13. Protein synthesis and targeting (Biochemistry)
 
12. Proteins (Biochemistry)
12. Proteins (Biochemistry)12. Proteins (Biochemistry)
12. Proteins (Biochemistry)
 
11. Metabolism of lipids (Biochemistry)
11. Metabolism of lipids (Biochemistry)11. Metabolism of lipids (Biochemistry)
11. Metabolism of lipids (Biochemistry)
 
10. Composition and metabolism of lipids (Biochemistry)
10. Composition and metabolism of lipids (Biochemistry)10. Composition and metabolism of lipids (Biochemistry)
10. Composition and metabolism of lipids (Biochemistry)
 
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
 
8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...
8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...
8. Gluconeogenesis, Glycogenosis glycogen synthesis and cori cycle (Biochemis...
 
7. Composition and metabolism of carbohydrates (Biochemistry)
7. Composition and metabolism of carbohydrates (Biochemistry)7. Composition and metabolism of carbohydrates (Biochemistry)
7. Composition and metabolism of carbohydrates (Biochemistry)
 
6. Glycolysis (Biochemistry)
6. Glycolysis (Biochemistry)6. Glycolysis (Biochemistry)
6. Glycolysis (Biochemistry)
 
5. Basics of Carbohydrates
5. Basics of Carbohydrates 5. Basics of Carbohydrates
5. Basics of Carbohydrates
 
4. Acid base balance (Biochemistry)
4. Acid base balance (Biochemistry)4. Acid base balance (Biochemistry)
4. Acid base balance (Biochemistry)
 
3. Structure and function of cell membrane (Biochemistry)
3. Structure and function of cell membrane (Biochemistry)3. Structure and function of cell membrane (Biochemistry)
3. Structure and function of cell membrane (Biochemistry)
 
2. Microscopy (Biochemistry)
2. Microscopy (Biochemistry)2. Microscopy (Biochemistry)
2. Microscopy (Biochemistry)
 
1. Introduction (Biochemistry)
1. Introduction (Biochemistry)1. Introduction (Biochemistry)
1. Introduction (Biochemistry)
 
8. Disease causing microorganisms (Microbiology)
8. Disease causing microorganisms (Microbiology)8. Disease causing microorganisms (Microbiology)
8. Disease causing microorganisms (Microbiology)
 

Kürzlich hochgeladen

Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 

Kürzlich hochgeladen (20)

Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 

Breeding for quality traits in minor millets

  • 1.
  • 2. Breeding for quality traits in minor millets MAJOR GUIDE Dr. M. M. Talpada Associate Research Scientist Cotton research Station, Kukada, J.A.U., Junagadh MINOR GUIDE Dr. M. H. Sapovadiya Assistant Research Scientist Departments of Genetics & Plant Breeding, College of Agriculture, J.A.U., Junagadh SPEAKER Jay Khaniya M.Sc. (Agri.) 3rd Sem. Reg. no.: 2010117052 Genetics & Plant Breeding, College of Agriculture, J.A.U., Junagadh Date: Sept. 29th, 2018 Time: 16:00 to 17:00Course No.: GP 591
  • 4. INTRODUCTION BREEDING FOR QUALITY TRAITS OBJECTIVES AND CONSTRAINS BREEDING METHODS AND CASE STUDIES ACHIEVEMENTS AND CONCLUSION04 03 02 01
  • 5. •Minor millets are small-seeded species crops, grown around the world for food and fodder. •Minor millets are high energy, nutritious foods comparable to other cereals. •Some of them are even better with regard to protein and mineral content. •They are particularly low in phytic acid and rich in dietary fiber, iron, calcium and B vitamins. Introduction 5
  • 6. (1) Finger millet (2) Foxtail millet (3) Barnyard millet(5) Kodo millet (6) Little millet (4) Proso millet 6 http://www.aicrpsm.res.in/photos&video.html Figure 1
  • 7. •Grown well in adverse soil and climatic condition. •Shorter crop duration. •Some of them are suitable for contingency plan. •They are also more nutritious than major cereals. •Finger millet is highly tolerant to alkalinity, even >pH 11.0. •Foxtail millet, Proso millet & Little millet is suitable for both drought and water logging condition. •Kodo millet & Proso millet is highly drought resistant. 7 Special features of Minor millets
  • 8. http://vikaspedia.in/health/nutrition/nutritive-value-of-foods/nutritive-value-of- cereals-and-millets/small-millets-not-2018small2019-in-nutrition Table 1: Vernacular names of minor millets English Finger millet Little millet Kodo millet Foxtail/ Italian millet Barnyard millet Proso millet Gujarati Nagli, Bavto Gajro, Kuri Kodra Kang Sama Cheno Hindi Mandua Kutki Kodon Kangni, Kakum Sanwa, Jhangon Barre Sanskrit Nandimukhi, Madhuli - Kodara Kanguni Shyama Chiná Kannada Ragi Same Harka Navane Oodalu Baragu Tamil Kelvaragu Samai Varagu Tenai Kuthiravaali Panivaragu Telugu Ragulu Samalu Arikelu, Arika Korra, Korralu Udalu, Kodisama Varigulu, Varagalu Malayalam Moothari Chama Varagu Thina - Panivaragu Marathi Nachni Sava Kodra Kang, Rala Shamul Vari Bengali Mandua Kangani Kodo Kaon Shamula Cheena Oriya Mandia Suan Kodua Kanghu, Kora Khira Chinna Punjabi Mandhuka, Mandhal Swank Kodra Kangni Swank Cheena Kashmiri - Ganuhaar - Shol - Pingu 8
  • 10. 10 Finger millet, 17.1, 66% Little millet, 2.91, 11% Barnyard millet, 1.95, 8% Foxtail millet, 1, 4% Kodo millet, 2.35, 9% Proso millet, 0.42, 2% Area (Lakh ha) Finger millet Little millet Barnyard millet Foxtail millet Kodo millet Proso millet https://www.youtube.com/watch?v=_M4UznoQXvE (2018) Figure 3: Minor millet growing area in India Area: 25.73 lakh ha Production: 24.04 lakh ton Productivity: 2269 kg/ha
  • 11. 0 1000 2000 3000 4000 5000 6000 1951-55 1956-60 1961-65 1966-70 1971-75 1976-80 1981-85 1986-90 1991-95 1996-00 2001-05 2006-10 2011-2015 Figure 4: Quinquennial area, production and productivity of small millets in India Area ('000 ha) Production ('000 t) Productivity (kg/ha) 1)Almora (Uttarakhand) – Barnyard millet 2)Dholi (Bihar) – Proso millet 3)Dindori (MP) – Kodo millet 4)Semiliguda (Orissa) - Little millet 5)Nandyal (AP) – Foxtail millet Annual Progress Report: 2017-18, ICAR-AICRP on Small Millets, Bengaluru11
  • 12. 0 20 40 60 80 100 120 140 160 180 200 Figure 5: Sate-wise area, production and productivity Small millets in India: 2015-16 Area ('000 ha) Production ('000 t) Productivity ('00 kg/ha) Nutritive value of Indian foods, NIN, 2007Annual Progress Report: 2017-18, ICAR-AICRP on Small Millets, Bengaluru12
  • 13. 0 500 1000 1500 2000 2500 3000 1951-55 1956-60 1961-65 1966-70 1971-75 1976-80 1981-85 1986-90 1991-95 1996-00 2001-05 2006-10 2011-2015 Figure 6: Quinquennial area, production and productivity of Finger millet in India Area ('000 ha) Production ('000 t) Productivity (kg/ha) Nutritive value of Indian foods, NIN, 2007Annual Progress Report: 2017-18, ICAR-AICRP on Small Millets, Bengaluru13
  • 14. • 15m ha and India’s share is 20% • Finger millet: 25 countries with 4 - 5 m ha for beverage & food; India’s share is 40% • Foxtail millet: 4 - 5 m ha, China tops and CMS based hybrids with high yield potential • Proso millet: 3 - 4 m ha, mostly in Eurasian countries • Barnyard millet: 0.3 - 0.4 m ha mostly in India and Japan • Little millet & Kodo millet: Heritage crops of India • Export potential – as bird feed and organic millets worth of 100 crore, India’s share is negligible GLOBAL SCENARIO AICSMIP, Bangalore14
  • 15. Table 2: Optimum agrarian conditions for minor millets Crop Optimum soil type Height range (m) Temperature pH Soil salinity (dS/m) Rainfall required (cm) Maturity time (days) Finger millet Rich loam to upland shallow soils Sea level to 2300 26-29℃ (decline growth below 20℃) 4.5 to 7.5 11-12 50-60 90-120 Foxtail millet Sandy to loamy soils Sea level to 2000 5-35℃ ( Best16-25℃) 5.5 to 7.0 6 30-70 75-90 Proso millet Sandy loam, slightly acidic, saline, low- fertility soil 1200 to 3500 above sea level 20-30℃ 5.5 to 6.5 - 20-50 60-90 Barnyard millet Medium to heavy soils Sea level to 2000 15-33℃ (Best 27-33℃) 4.6 to 7.4 3-5 - 45-70 Little millet - Up to 2100 - - - - 80-85 Kodo millet Fertile to marginal soils Up to 1500 25-27℃ - - 80-120 100-140 Kumar et al. (2018) Agric & Food Secur (2018) 7:31 https://doi.org/10.1186/s40066-018-0183-3 15
  • 16. • Finger millet / African millet / Keppai / Mutthair / Thamida / Nacheni / Crow footed millet • Finger millet is an important staple food in parts of East and Central Africa, and India, particularly in Karnataka. • Place of Origin : East Africa • The genus Eleusine consists of eleven species. • E. indica is considered as one of the parent for the tetraploid E.africana. E.coracana were mutants selected from of E. africana. E. indica (2n=18) x Closely related taxon Chromosome doubling E. africana (2n=36) mutant E. coracana (2n=36) tetraploid introgression http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field% 20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec07.pdf 16 Figure 7
  • 17. • Dwarf Setaria/ Foxtail bristle grass/ Giant Setaria/ Green foxtail/ Italian millet/ German millet/ Hungarian millet. • Second-most widely planted species of millet, and the most important in East Asia ( approx. six million tons). • Place of origin: China • Annual grass with slim, vertical, leafy stems (3.9 to 6.6 ft). • Its grain is used for human consumption and as feed for poultry and cage birds. • It can tolerate water logging. http://exploreit.icrisat.org/profile/Small%20millets/187 https://en.wikipedia.org/wiki/Foxtail_millet17 Figure 8
  • 18. http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field% 20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf http://exploreit.icrisat.org/profile/Small%20millets/187 https://en.wikipedia.org/wiki/Proso_millet • Boom corn millet/ Common millet/ Broomtail millet/ Hog millet/ Kashfi millet/ Red millet/ White millet. • Manchuria and Transcocasia (7000 years ago), Europe (3000 years ago) then followed to Near East and India. • It has a C4 photosynthesis (Thermophilic). The seeds are small and can be cream, yellow, orange-red, or brown in colour. • Inflorescence is a drooping panicle. • The spikelet contain two flower partially enclosed by the glumes. • The flowers open between 10 AM to 12 noon. The spikelet open and close within 7 minutes. • The anthesis begins from tip of the panicle and proceeds down wards. 18 Figure 9
  • 19. • Billion dollar grasses/ Moraiaya/ Jhangora/ Bhagar/ Samo. • Wild ancestor is E. colona but exact date or region of domestication is uncertain. • Domesticated about 4,000 years ago in India and Japan (E. esculenta). • The anthers are purple in colour. • Order of flowering is from tip to the bottom of panicle. • Anthesis - 5 AM to 10 AM. • The grains are cooked in water, like rice, or boiled with milk and sugar. • Fermented for Beer and eaten in fast. http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field% 20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf http://exploreit.icrisat.org/profile/Small%20millets/187 https://en.wikipedia.org/wiki/Echinochloa_frumentacea 19 Figure 10
  • 20. • Cow grass/ rice grass/ ditch millet/ Native Paspalum / Indian Crown Grass. • It’s domesticated in India almost 3,000 years ago. • Place of origin: Tropical Africa. • Monocot and an annual grass that grows to heights of approx. four feet. • Humid habitats of the tropics and sub tropics. • The fiber content of the whole grain is very high. • The spikelet are highly cleistogamous. • Only 10-15% of spikelet open under Coimbatore condition. • Spikelet at the middle of spikes open first, gradually spread to either ends (2:30-3:00AM to continue till sunrise). http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field%20 &%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf http://exploreit.icrisat.org/profile/Small%20millets/187 https://en.wikipedia.org/wiki/Paspalum_scrobiculatum20 Figure 11
  • 21. • It is an annual herbaceous plant, which grows straight or with folded blades to a height of 30 cm to 1 m. • Place of origin: India • Little millet is a reliable fast-growing crop that is early maturing and resistant to adverse Agri-climatic conditions. • It’s green part is suitable for cattle and straw in construction. • At the Indus Valley Civilization sites of Harappa and Farmana, the millet assemblage was dominated by little millet (over 10,000 grains). http://exploreit.icrisat.org/profile/Small%20millets/187 https://en.wikipedia.org/wiki/Panicum_sumatrense21 Figure 12
  • 22. Food grain names Carbohydrates (g) Protein (g) Fat (g) Energy (KCal) Crude fiber (g) Mineral water (g) Ca (mg) P (mg) Fe (mg) Finger millet 72.0 7.3 1.3 328 3.6 2.7 344 283 3.9 Kodo millet 65.9 8.3 1.4 309 9.0 2.6 27 188 0.5 Proso millet 70.4 12.5 1.1 341 2.2 1.9 14 206 0.8 Foxtail millet 60.9 12.3 4.3 331 8.0 3.3 31 290 2.8 Little millet 67.0 7.7 4.7 341 7.6 1.5 17 220 9.3 Barnyard millet 65.5 6.2 2.2 307 9.8 4.4 20 280 5.0 Wheat (whole) 71.2 11.8 1.5 346 1.2 1.5 41 306 5.3 Rice (raw, milled) 78.2 6.8 0.5 345 0.2 0.6 10 160 0.7 Nutritive value of Indian foods, NIN, 2007 Table 3: Nutritional composition of millets compared to fine cereals (per 100g) 22
  • 23. Nutritional importance • Alkaline, one of the least allergic and easily digestible. • Phosphorus help in fat metabolism, body tissue repair and creating energy. • Magnesium help to reduce the chance heart attacks. • Fiber from whole grains has been shown to protect against cancer. • Niacin in millets can help to lower cholesterol. • Protect against childhood asthma. • It can help to lower risk of diabetes. • It act as a prebiotic to feed important micro flora in our inner ecosystem. Summer school on postharvest and value addition of millets for the development of functional foods to combat disorders (2015) TNAU, Coimbatore.23
  • 27. • High protein content. • High Calcium, Iron and Zinc content (Macro and Micro nutrients). • High beta-carotene content. • High fiber content. • Low fat content. • High hydrolytic enzymatic activity during malting (finger millet). • Development of amber seed colour and good flour colour finger millet. • High storability, uniformity in size and shape of the grains. • High popping percent and volume expansion during puffing. • High fodder quality. • Low anti-nutritional factors. Objectives for Quality Improvement https://www.slideshare.net/varshagaitonde9/elucine-coracana-ragi27
  • 28. • Polygenic traits. • Continuous variation. • Complex ploidy level. • Require higher technical skill in crossing. • Higher cost for lab testing. • Improvement of one trait may affect the other important trait like yield. • Hybridization is very difficult in case of small millets. • Very Small flower structure. • Cleistogamous nature. Constrain in relation to quality breeding https://www.slideshare.net/varshagaitonde9/elucine-coracana-ragi28
  • 29. • Interavarietal improvement • Mass selection • Pureline selection • Intervarietal improvement • Natural hybridization • Contact method • Use of marker plant types • Protogyny • Polycrosses • Induction & utilization of sterility • Controlled hybridization Breeding Methods http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf •Recombination breeding •Pedigree selection •Mutation breeding • Rectification of characters • Inducing polygenic variations • Inducing sterility 29
  • 30. Sr. No. Method of breeding Variety developed 1 Mass selection Gidda and Hullubelle (Ragi, Karnataka), Saluchodi (Ragi, AP), Udamalpet and Guddapah rajampet (Ragi, TN), Murky and Nagkantna (Ragi, Sikkim), V-27 and V-306 (Proso millet, AP), Koraput local (Little millet, Orissa) 2 Pureline selection Maximum Finger millet varieties, 13 Foxtail millet varieties (Central Seed Committee, 1985), Kodo millet (13), Little millet (10), Proso millet (12), Barnyard millet (7) http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf30 Table : Varieties developed by different breeding method
  • 31. Name of culture/Check and cereals Crude fiber % Ca (mg) Fe (mg) P (mg) GNV-3 (little millet) 3.56 242.70 3.86 410.9 GV-2 (little millet, check) 3.34 155.70 3.77 404.3 Rice 0.20 45 - 160 Wheat 1.20 41 4.90 306 Patil et al. (2016)Waghai, India Table 4: Nutritional value of variety GNV-3 (little millet) as compared to check and other cereals 31
  • 32. •Natural hybridization • Very low degree of natural cross pollination was observed in Foxtail millet (Patil, 1952) and Little millet (Dwivedi, 1947). •Protogyny • IPS 147, IPS 197, IPS 427 etc. • Controlled pollination could also be effected •Induction and utilization of sterility •Recurrent radiations and interplanting •GOT will reveal the natural hybrids •Controlled hybridization •Aims at sterilizationor removal of anthers and controlled pollination http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf32
  • 33. Hybrid Duration 1950-60 1960-70 1970-80 1980-85 I x I Early Udaya - K7 5-6 Mid -late Puma Annapurna - - Late - Cauvery Shakti, HPB 7-6 - E x I Early - - - Indaf-9 Mid -late - - CO-9, Indaf-5 - Late - - Indaf-1 Indaf-3 K-5 Indaf-6 Indaf-7 Indaf-8 Indaf-11 HR-911 E x E Early - - HR-374 - Late CO-6 - - - Table 5: Hybrid derivatives of Finger millet in India http://krishikosh.egranth.ac.in/bitstream/1/2029441/1/113739.pdf I × I : Indian × Indian E × I : Exotic × Indian E × E : Exotic × Exotic Early : < 100 days Mid-late : 100-110 days Late : > 110 days 33
  • 34. AICRP – minor millets • Formerly - All India Coordinated Small Millets Improvement Project (AICSMIP). • The major small millet growing areas - the tribal and hill regions in the country. • Dealing its research in 14 centers & 19 cooperating centers. 1. Berhampur (Odisha) 2. Dindori (MP) 3. Dholi (Bihar) 4. Jagdalpur (Chhattisgarh) 5. Kolhapur (Maharashtra) 6. Mandya (Karnataka) 7. Nandyal (AP) 8. Ranchi (Jharkhand) 9. Ranichauri (Uttarakhand) 10.Rewa (MP) 11.Vizianagaram (AP) 12.Athiyandal (TN) 13.Mysore (Karnataka) 14.Waghai (Gujarat) http://millets.res.in/aicrp_small.php http://www.aicrpsm.res.in/About%20Us/Mandate/Mandate.pdf 34
  • 35.
  • 36. Sr. No. Genotypes Tannins (per cent) Phytates (mg/100g) 1 Indaf-5 0.40 260 2 GPU-28 0.32 275 3 ML-197 0.54 320 4 ML-365 0.20 240 5 ML-553 0.44 250 6 ML-426 0.30 246 7 ML-31 0.44 301.50 8 ML-322 0.34 242 SEm ± 1.375 3.209 CD at 5 % 4.484 10.46 Bangalore, India Shashi et al. (2006) Table 6: Antinutritional composition of finger millet genotypes 36
  • 37. Sr. No. Characters GCV PCV Heritability (%) Genetic advance as a % of mean 1 Plant height (cm) 10.16 10.48 94 20.2 2 No. of effective tillers/plant 5.85 31.64 3.4 2.4 3 Days to 50% flowering (days) 12.43 12.46 99.5 25.5 4 Days to maturity (days) 9.50 12.64 56.5 14.7 5 No. of fingers/ear 19.04 21.12 81.3 35.4 6 Length of finger (cm) 15.98 17.65 82 29.7 7 Grain yield/plant (g) 19.05 22.65 70.8 33.1 8 1000 grain weight (g) 6.57 6.87 91.3 13 9 Grain yield/plot (g) 20.08 20.25 98.4 40 10 Grain yield/ha (q) 19.84 19.97 98.7 40.6 11 Straw yield/plot (kg) 24.07 24.11 99.6 48.7 12 Straw yield/ha (q) 23.97 24.00 99.8 181 13 Harvest Index (%) 12.75 12.91 97.5 25.9 14 Protein content (%) 14.18 14.46 96.1 29.2 15 Albumin content (%) 28.58 36.34 61.9 46.6 16 Globulin content (%) 32.28 39.56 66 54.4 17 Prolamin content (%) 17.11 18.37 86.7 32.5 18 Glutelin content (%) 16.17 17.60 84.4 30.4 19 Calcium content (mg/100g) 37.99 38.76 96.1 76.7 20 Iron content (mg/100g) 34.30 34.48 99 70.3 Table 7: GCV, PCV, Heritability and Genetic advance as a % of mean of forty finger millet genotype for twenty characters Dapoli, India Jawale (2014) Ph.D. thesis37
  • 38. Sr. No. Characters Mean Range Genotype 1 Protein content (%) 8.67 (%) 6.41-11.55 OEB 101 (11.55), ACPR 2 (11.08) & RAU 8 (10.85) 2 Albumin content (%) 1.20 (%) 0.61-1.85 OEB 101 (1.81), VR 847 (1.81), DPI 20114 (1.64), VL 326 (1.64), OEB 22 (1.64), VL 322 (1.64), RAU 8 (1.64), VR 708 (1.64), DM1 (1.64), GPU 58 (1.64), PES 110 (1.64) and MR 33 (1.64) 3 Globulin content (%) 1.23 (%) 0.61-1.85 L 112 (1.85), RAU 8 (1.85) and VR 822 (1.85) 4 Prolamin content (%) 4.00 (%) 2.67-5.36 VR 846 (5.35), QEB 101 (5.35), ACPR I (4.94) and VR 768 (4.94) 5 Glutelin content (%) 3.64 (%) 2.67-4.73 L 221 (4.73), VR 708 (4.73), DM 7 (4.73) and GPU 56 (4.73) 6 Calcium content (mg/100g) 362.33 (mg/100g) 186.67-600.00 L 84 (600.00), ACPR 1 (600.00) and OEB 101 (586.67) 7 Iron content (mg/100g) 14.99 (mg/100g) 7.50-28.00 DPI 20132 (28.00), VL 149 (26.23) and L 48 (25.50) Table 8: Superior genotypes out forty genotypes of Finger millet for particular quality trait Dapoli, India Jawale (2014) Ph.D. thesis38
  • 39. • Manimozi et al.(2015) studied 30 genotypes of the little millet for Zn, Ca and Fe content at Tamil nadu, India. • The zinc content was ranged from 2.04 to 8.00 mg/g with a mean of 5.23 mg/g. • Wide variation in iron content was observed and it ranged from 1.49 to 23.38 mg/g with a mean of 4.95 mg/g. • The grain calcium content ranged from 1.14 to 13.15 mg/g with a mean of 3.90 mg/g. • The genotypes TNPsu 25 (8.00 mg/g), TNPsu 23 (7.42 mg/g), TNPsu 21(6.95 mg/g) and TNPsu 9 (6.85 mg/g) had higher zinc content. • Similarly the accessions TNPsu 25 (23.38 mg/g) and TNPsu 22 (19.22 mg/g) were superior in grain iron content. • The genotypes CO3 (13.15 mg/g), CO2 (8.45 mg/g), TNPsu 141 (8.23 mg/g) and CO (Samai) 4 (6.52 mg/g) were superior in grain calcium content. Zn, Ca and Fe analysis in different genotype of little millet Tamil nadu, India Manimozi et al. (2015)39
  • 40. Coimbatore, India Savitha et al. (2013)Tamil nadu, India Manimozi et al. (2015) Rich in Zn Rich in Fe Rich in Fe and Zn Figure 16: Variation in Fe and Zn content 40
  • 41. Coimbatore, India Savitha et al. (2013)Tamil nadu, India Manimozi et al. (2015) Rich in Ca Rich in Ca and Zn Figure 17: Variation in Ca and Zn content 41
  • 42. Results… - Zinc, iron and calcium rich genotypes viz., TNPsu 25, TNPsu 23, TNPsu 22 and TNPsu 141 could be involved in hybridization with agronomically superior accessions to combine grain nutrients (zinc, iron and calcium) and grain yield. - Genotypes with poor content of nutrients viz., TNPsu 28, TNPsu 27, MS 4700 and MS 1003 identified in this study could be an ideal material for molecular understanding of the metal homeostasis in little millet. Tamil nadu, India Manimozi et al. (2015)42
  • 43. Sr. No. No. of genotypes Genotypes 1 60 WWN-40, WWN-41, WWN-57, WN-625, WWN-50, WN-619, WN-617, WN-630, WWN- 47, WN-612, WWN-49, WWN-38, WN-596, WN-618, WN-623, WN-594, WN-605, WWN-45, WN-624, WN-606, WWN-52, WN-592, WWN-56, WWN-48, WN-621, GN-4, WN-587, WWN-53, WN-593, WN-603, WN-601, WWN-43, WN-610, WWN-46, GNN-6, WWN-39, GN-5, WN-609 WWN-54, WWN-55, WN-614, WN-604, WN-589, WN-590, WN-629, WWN-51, WN-607, WN-628, WN-626, WN-627, WN-608, WN-599, WN-611, WN-620, WN-598, WN-597, WN-602, WN-600, WN-615 2 1 WN-586 3 1 WN-622 4 1 WN-588 5 1 WN-591 6 1 WN-616 7 2 WWN-42, WWN-44 8 1 WN-595 Table 9: The distribution of 68 genotypes of Finger millet into eight different clusters Waghai, India Devalya (2015) M.Sc. Thesis43
  • 44. Sr. No. Character GCV% PCV% Heritability (Broad sense %) Genetic advance % of mean 1 Days to 50% flowering 6.28 7.54 69.30 10.77 2 Days to maturity 4.87 5.97 66.60 8.19 3 Plant height (cm) 5.02 6.45 60.60 8.06 4 Number of productive tillers per plant 16.14 18.95 72.60 28.34 5 Number of fingers per ear 10.50 12.95 65.80 17.54 6 Main ear head length (cm) 14.30 15.83 81.70 26.64 7 1000-Grain weight (g) 6.90 8.02 74.00 12.23 8 Grain yield per plant (g) 16.70 19.61 72.50 29.30 9 Straw yield per plant (g) 16.56 19.58 71.50 28.86 10 Harvest index (%) 3.35 6.28 28.50 3.69 11 Protein content (%) 4.16 5.14 65.50 (High) 6.94 (Low) 12 Iron content (ppm) 9.96 10.36 92.40 (Very High) 19.72 (Medium) 13 Calcium content (%) 3.48 5.35 42.40 (Medium) 4.67 (Low) Table 10: Genotypic and phenotypic coefficient of variation (GCV & PCV), heritability and genetic advance as per cent of mean for thirteen traits in 68 genotypes of Finger millet Waghai, India Devalya (2015) M.Sc. Thesis44
  • 45. Cluster No. Days to 50% floweri ng Days to maturi ty Plant height (cm) No. of produc tive tillers/ plant No. of fingers /ear Main ear head length 1000- grain weight (g) Grain yield/pl ant (g) Straw yield/pl ant (g) Harves t Index (%) Protein content (%) Iron content (ppm) Ca content (%) 1 81.09 118.59 103.66 2.14 8.59 9.24 2.67 7.34 25.75 22.30 6.91 52.23 0.33 2 70.67 107.00 100.00 2.40 7.53 6.23 2.59 7.13 24.47 22.57 6.33 43.93 0.32 3 73.33 109.00 103.53 2.60 10.87 9.99 3.02 9.61 30.90 23.01 6.98 55.47 0.31 4 72.67 109.67 107.33 1.87 5.53 9.13 2.84 6.00 21.10 22.16 6.35 43.33 0.30 5 83.33 120.33 113.93 2.53 7.67 8.12 2.68 9.34 30.90 24.59 7.04 41.00 0.32 6 72.67 108.67 92.40 1.67 8.80 10.02 3.06 6.37 21.25 25.06 7.25 40.40 0.30 7 81.33 119.17 96.87 2.70 7.93 7.78 3.05 8.45 31.42 25.80 7.01 55.93 0.34 8 92.67 131.00 91.87 2.27 5.80 5.47 2.81 5.93 21.00 25.44 6.83 42.00 0.33 Table 11: Cluster means for thirteen characters in 68 genotypes of Finger millet Waghai, India Devalya (2015) M.Sc. Thesis45
  • 46. Association Analysis in Germplasm and F2 Segregating Population of Barnyard Millet (Echinochloa frumentacea) for Biometrical and Nutritional Traits TN, India Renganathan et al. (2017)46 • The experiments material included, forty germplasm from various sources, three parental materials ACM 331, ACM 333 and MA 10 that utilized for hybridization were based on variation in iron and zinc content (ACM 331 low in Fe and Zn, where ACM 333 and MA 10 are rich in both), and F2 segregating population of ACM 331 x ACM 333 (Cross 1) and ACM 331x MA 10 (Cross 2) material. • Plant height (PH), flag leaf length (FL), flag leaf breadth (FB), ear head length (EL), ear head breadth (EB), number of racemes (NR), single ear head weight (SEW), length of lower raceme (LR), number of leaves per tiller (NOL), stem girth (SG), thousand grain weight (TW) iron (Fe), zinc (Zn) and single plant yield (GYP).
  • 47. Variables PH FL FB EL EB NR SEW NPT TW NOL LR SG Fe Zn GYP PH 1.000 0.595* 0.623* 0.761* 0.546* 0.458* 0.594* 0.291 0.293 0.721* 0.206 0.517* 0.082 0.117 0.631* Cross 1 1.000 0.282 0.239 0.599* 0.107 -0.058 -0.124 0.210 0.207 0.318 0.250 0.264 -0.135 0.026 0.164 Cross 2 1.000 -0.242 -0.112 0.055 -0.060 0.066 -0.043 0.057 -0.248 0.110 -0.047 -0.033 0.110 0.150 0.104 FL 1.000 0.799* 0.565* 0.345* 0.538* 0.593* 0.365* 0.285 0.589* 0.049 0.614* 0.272 0.341* 0.620* Cross 1 1.000 0.599* 0.406* 0.394* 0.293 0.165 0.045 -0.048 0.382* 0.421* -0.113 0.071 0.209 0.214 Cross 2 1.000 0.616* 0.604* 0.583* 0.412* 0.622* 0.199 -0.043 -0.158 0.453* 0.090 -0.258 -0.379* 0.244 FB 1.000 0.588* 0.302 0.651* 0.736* 0.465* 0.493* 0.683* -0.009 0.537* 0.294 0.322* 0.731* Cross 1 1.000 0.386* 0.179 0.387* 0.100 0.314 0.258 0.150 0.098 -0.080 0.061 -0.023 0.549* Cross 2 1.000 0.358* 0.579* 0.107 0.463* 0.325* -0.003 -0.002 0.151 0.209 -0.006 -0.077 0.439* EL 1.000 0.638* 0.668* 0.593* 0.238 0.427* 0.531* 0.287 0.603* 0.115 0.107 0.660 Cross 1 1.000 0.563* 0.571* 0.464* 0.157 -0.004 -0.047 0.325* 0.069 -0.276 -0.197 0.051 Cross 2 1.000 0.298 0.026 0.152 0.066 0.212 0.361* 0.424* 0.027 -0.006 0.038 0.131 EB 1.000 0.381* 0.386* 0.016 0.210 0.225 0.527* 0.233 0.262 0.299 0.492* Cross 1 1.000 -0.187 -0.094 0.204 0.303 0.232 0.713* 0.202 0.111 0.096 0.143 Cross 2 1.000 0.231 0.433* 0.274 0.030 -0.122 0.343* 0.130 -0.180 -0.349* 0.267 NR 1.000 0.785* 0.317* 0.480* 0.572* -0.020 0.492* 0.151 0.133 0.804* Cross 1 1.000 0.581* 0.329 -0.289 0.094 -0.239 0.062 0.091 0.022 0.319 Cross 2 1.000 0.358* 0.011 0.036 0.080 0.127 0.096 -0.154 -0.307* -0.187 SEW 1.000 0.311 0.502* 0.718* -0.055 0.367* 0.218 0.232 0.838* Cross 1 1.000 0.158 -0.422* 0.189 -0.132 -0.139 0.374* 0.280 0.036 Cross 2 1.000 0.199 -0.081 0.411* 0.384* 0.139 -0.194 -0.226 0.247 NPT 1.000 0.158 0.550* -0.038 0.355* 0.019 0.023 0.423* Cross 1 1.000 0.193 0.037 0.078 0.189 0.039 -0.118 0.450* Cross 2 1.000 -0.212 0.389* 0.218 0.065 0.144 0..080 0.764* TW 1.000 0.423* -0.132 0.336* 0.117 0.030 0.583* Cross 1 1.000 -0.154 0.125 0.151 -0.076 -0.197 0.300 Cross 2 1.000 -0.245 -0.021 -0.131 0.200 -0.024 -0.161 NOL 1.000 -0.097 0.511* 0.081 0.091 0.699* Cross 1 1.000 0.380* 0.191 0.175 0.074 0.133 Cross 2 1.000 -0.158 0.158 0.128 0.301* 0.110 LR 1.000 0.257 0.254 0.255 0.067 Cross 1 1.000 -0.001 -0.023 0.180 0.097 Cross 2 1.000 0.216 -0.066 -0.013 0.307* SG 1.000 0.157 0.109 0.571* Cross 1 1.000 -0.164 0.034 0.253 Cross 2 1.000 -0.128 -0.097 0.019 Fe 1.000 0.937* 0.203 Cross 1 1.000 0.713* 0.057 Cross 2 1.000 0.499* 0.217 Zn 1.000 0.206 Cross 1 1.000 0.061 Cross 2 1.000 0.133 TN, India Renganathan et al. (2017)47 Table 12: Correlation coefficients for fifteen biometrical and nutritional characters for 40 germplasm and F2 of cross I & cross II in barnyard millet
  • 48. Hybridization https://www.nature.com/subjects/plant-hybridization Plant hybridization is the process of crossbreeding between genetically dissimilar parents to produce a hybrid. OR It is the method in which we made cross between two genetically superior parents to get higher heterosis. 48 Figure 18
  • 49. Russian method is followed. The principle in this method is to induce artificial flower opening by increasing the temperature 1-20 C and immersing the panicle in normal cold water prevent anther dehiscence but flowers will open. • Select the panicle which first commenced flowering • Remove the already opened florets • Rub the selected panicle in between hands to increase the temperature by 1 to 20C for two minutes. • Immerse the panicle in cold water • The flowers will open but anthers will not dehisce • Take out panicle from water and remove unopened flower • From opened florets remove anthers Emasculation Techniques in Small Millets http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field% 20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf49
  • 50. •Planting date is adjusted so as to synchronize flowering of male and female parents. •Select male ear which is just flowered. •Surround two female fingers with all male fingers very loosely and tie it in such way that allow proper aeration. Contact Method of Pollination http://ecoursesonline.iasri.res.in/Courses/Breeding%20of%20Field% 20&%20Horticultural%20Crops/GPBR212/Data%20Files/lec09.pdf50 Figure 19
  • 51. Table 13: Nutritional Quality characters of TNAU 946 Sr. No. Particulars (%) CO (Ra) 14 CO 13 GPU 28 CO 9 1) Crude protein 12.43 10.54 12.81 11.29 2) Crude fat 3.50 3.0 2.80 3.00 3) Crude fiber 31.00 25.00 25.00 20.00 4) Ca 0.66 0.61 0.64 0.63 Joel et al. (2005)TNAU, Coimbatore TNAU 946 is a cross derivative between Malawi 1305 x CO 13. This is a medium duration culture falling into the maturity group of 105-110 days. 51
  • 52. TNAU, Coimbatore Nirmalakumari et al. (2010) Table 14: Grain quality characteristics of Proso millet variety TNAU-164 (TNAU 137 × CO-4) Quality characteristics TNAU-164 TNAU-155 GPUP-21 K-1 Parameters a) Nutritional qualities Protein ( g/100g) 12.9 12.7 12.5 12.4 Carbohydrate(g /100g) 72.0 71.9 71.7 70.6 Oil (g/100g) 3.5 3.3 3.4 3.0 Crude fibre (g/100g) 7.0 7.1 7.3 7.4 Mineral matter (g/100g) 2.4 2.1 2.1 1.9 Potassium (g/100g) 2.1 2.0 1.8 1.9 Phosphorus (mg/100g) 213 207 205.0 200. Calcium (mg/100g) 17.2 17.0 15.6 14.0 Iron (mg/100g) 11.4 11.2 11.2 11.2 carotene ( g/g) 126 118 110.0 106.3 52
  • 53. TNAU, Coimbatore Nirmalakumari et al. (2010) Table 15: Grain quality characteristics of Proso millet variety TNAU-164 (TNAU 137 × CO-4) Quality characteristics TNAU-164 TNAU-155 GPUP-21 K-1 Parameters b) Cooking qualities Water uptake (ml) 950 943 945 926 Cooking time (min) 26 30 26 25 Initial Volume (ml) 100 100 100 105 Cooked volume (ml) 755 730 710 640 Initial weight (g) 100 100 100 100 Cooked weight (g) 742 737 700 682 c) Fodder characteristics Dry matter (%) 22.13 21.3 20.56 19.50 Crude protein (%) 7.35 6.58 6.95 5.76 Crude fibre (%) 19.25 20.12 20.68 24.34 Potassium (%) 3.10 2.90 3.10 3.01 Phosphorus (%) 0.22 0.17 0.15 0.14 Mineral matter (%) 2.31 2.2 2.00 1.85 53
  • 54.
  • 55. Hybrid Protein content (%) Fe content (mg/100g) Zn content (mg/100g) di dii diii di dii diii di dii diii CO(Ra) 14 X PR 202 8.46 ** 3.72 ** 3.72 ** 85.77** 70.88** 103.49** -5.98** -11.80** 0.66 CO(Ra) 14 X KM 252 6.40 ** 1.95 * 1.95 * 87.54** 43.68** 43.68** 4.31** -2.84** 12.60** CO(Ra) 14 X K 7 13.11 ** 10.80 ** 10.80 ** 123.08** 101.34** 101.34** 0.83 -4.06** 6.24** RAU 8 X PR 202 3.62 ** - 2.91 ** - 11.39 ** 201.10** 116.14** 157.39** 4.35** 2.40** 16.87** RAU 8 X KM 252 3.22 ** - 3.46 ** - 11.53 ** 141.94** 138.89** 27.15** 4.03** 1.32** 17.42** RAU 8 X K 7 - 0.80 - 9.14 ** - 12.86 ** 94.31** 59.77** 28.63** -3.48** -3.86** 6.46** PES 110 X PR 202 0.53 - 0.28 - 8.99 ** 25.98** -7.22** 10.48** -8.26** -8.83** 4.05** PES 110 X KM 252 1.42 0.40 - 8.00 ** 134.85** 128.40** 28.63** -2.06** -3.40** 11.94** PES 110 X K 7 - 0.44 - 3.61 ** - 7.55 ** 148.53** 111.19** 70.03** -0.98* -1.85** 10.62** VR 708 X PR 202 0.04 -0.04 -8.62** 108.28** 101.35** 139.78** -8.46** -18.50** 19.17** VR 708 X KM 252 -1.17 -1.29 -9.54** 441.25** 435.10** 184.81** -23.28** -31.24** 0.55 VR 708 X K 7 -2.60** -4.88** -8.77** 266.73** 201.84** 143.01** -17.22** -27.27** 6.35** GPU 28 X PR 202 2.73** 0.04 -3.65** 157.26** 157.11** 206.18** -16.23** -17.75** -6.13** GPU 28 X KM 252 1.59 -0.88 -4.53** 181.50** 103.73** 142.34** -7.95** -10.30** 3.94** GPU 28 X K 7 -1.05 -1.26 -4.90** 70.62** 43.05** 70.16** 6.20** 5.84** 17.20** GPU 48 X PR 202 1.21 -0.66 -5.86** 108.41** 39.84** 66.53** -3.18** -3.45** 10.19** GPU 48 X KM 252 2.23** 0.54 -4.72** 216.74** 179.55** 48.79** -15.47** -16.35** -3.07** GPU 48 X K 7 0.21 -0.38 -4.46** 107.10** 55.93** 25.54** -6.89** -8.01** 4.38** OEB 259 X PR 202 -3.28** -8.84** -16.80** 106.01** 39.39** 65.99** 4.89** 1.82** 16.21** OEB 259 X KM 252 -7.46** -12.95** -20.23** 222.99** 189.14** 53.90** 9.37** 5.39** 22.12** OEB 259 X K 7 1.69 -6.34** -10.17** 130.48** 75.46** 41.26** 3.92** 2.37** 13.36** Table 16: Expression of Relative heterosis (di), Heterobeltiosis (dii) and standard heterosis (diii) for Protein content, iron content, zinc content in finger millet Coimbatore, India Savitha et al. (2013)55
  • 56.
  • 57. Parents/ characters Days to 50% floweri ng Plant height (cm) Number of producti ve tillers per plant Number of fingers per ear head Longest finger length (cm) Thousan d grain weight (g) Seed protein content % Harvest index Singel plant dry fodder yield (g) Single plant grain yield (g) CO 9 -1.19 ** -6.56** -0.20* 0.03 -1.20** 0.02 0.19** 0.19* -0.04 -0.02 RIL 156 -5.22 ** -5.18** -0.22** -0.52** -0.44** -0.15** 0.43** -1.02** 0.68** -0.37** TNAU 1039 -1.00** -5.89** 0.29** 0.12 -0.17** -0.12** -0.44** 2.31** -1.09** 0.92** GPU 45 -0.67** -2.54** -0.62** -0.12 0.12* 0.23** -0.02* -1.25** 0.80** -0.67** PRM 801 5.19** 8.03** -0.95** -0.52** -0.14* 0.13** -0.48** -3.12** 1.43** -1.40** VL 149 1.85** 3.98** 0.73** 0.28** 1.14** 0.00 -0.21** 1.48** -0.71** 0.54** CO 14 1.04** 8.17** 0.98** 0.73** 0.68** -0.11** 0.54** 1.41** -1.23** 1.00** SE 0.09 0.5 0.08 0.07 0.05 0.01 0.01 0.08 0.07 0.07 Table 17: GCA effects of parents for different traits in finger millet Coimbatore, India Priyadarshini et al. (2010)57
  • 58. Hybrids Days to 50% flowering Plant height (cm) Number of productive tillers per plant Number of fingers per ear head Longest finger length (cm) Thousand grain weight (g) Seed protein content % Harvest index Single plant dry fodder yield (g) Single plant grain yield (g) CO-9 x RILL 156 -0.59** -5.26** -0.25 0.70** 0.74** -0.14** -1.72** -0.17 0.38** 0.21* CO-9 x TNAU 1039 4.52** 4.76** -0.38** -0.60** -0.12 -0.04* 0.01 -2.73** 1.85** -0.71** CO-9 x GPU-45 2.85** 5.61** 0.13 -0.89** 0.02 0.25** -2.10** -1.01** 0.83** -0.46** CO-9 x PRM 801 -1.33** 1.00 0.19 0.37** 0.65** 0.17** 0.86** 1.82** -0.16 1.27** CO-9 x VL 149 0.67** -2.01** 1.22** -0.13 -0.73** 0.20** -0.57** 5.06** -2.53** 2.07** CO-9 x CO-14 5.15** -0.14 1.44** 0.25** 0.16* -0.08** -1.13** 6.74** -2.51** 2.56** RIL-156 x TNAU-1039 1.56** 9.01** 1.27** 0.28** -0.25** -0.01 0.21** 0.72** 0.22* 0.70** RIL-156 xGPU-45 0.22 11.33** 1.11** -0.38** 0.39** -0.05** -0.81** -0.75** 0.41** 0.03 RIL-156 x PRM-801 -3.30** -8.89** 0.02 -0.45** 0.65** -0.16** 0.92** 0.36** 0.47** 0.50** RIL-156 x VL-149 -1.63** 0.97 0.44** 0.45** 0.31** 0.10** 0.19** 1.26** -0.38** 0.71** RIL-156 x CO-14 -2.48** -2.72** 0.28** 0.10 -0.34** 0.02 0.80** 0.59** 0.18* -0.19* TNAU-1039 x GPU-45 -0.33** -20.56** -1.14** 0.75** 0.12 0.35** -1.21** 3.78** -1.71** 1.05** TNAU-1039 x PRM-801 2.81** 17.27** 0.20* 0.25* -0.21** 0.04* 0.29** 2.04** -2.75** 1.02** TNAU-1039 x VL-149 -8.52** 9.45** 0.62** 0.59** 0.51** -0.22** -0.75** 2.79** -1.43** 1.06** TNAU-1039 x CO-14 -0.04 18.36** 2.36** 0.97** 0.80** 0.29** -1.90** 4.12** -1.26** 1.89** GPU-45 x PRM-801 -1.85** -21.21** 0.47** 0.29** -0.07 0.06** -0.03* 2.22** -0.47** 0.51** GPU-45 x VL-149 2.48** 6.04** -0.24* 0.96** 0.55** -0.27** 2.80** -2.04** 1.06** -0.42** GPU-45 x CO- 14 -8.04** 7.88** -0.19 1.28** 0.67** -0.06** 0.65** 4.43** -1.39** 1.87** PRM- 801 x VL-149 4.63** -6.84** -0.12 -0.35** -0.56** 0.39** -0.70** -0.82** 1.00** 0.04 PRM- 801 x CO-14 3.78** -1.80** -0.17 -1.66** 0.77** -0.07** 0.54** -2.81** 1.03** -2.04** VL-149 x CO-14 0.44** -1.91** 2.06** 0.74** -0.14* -0.24** 0.98** 4.15** -1.78** 1.25** SE 0.11 0.66 0.10 0.10 0.07 0.02 0.01 0.11 0.09 0.09 Table 18: Specific combining ability effects of parents for different traits in finger millet Coimbatore, India Priyadarshini et al. (2010)58
  • 59. Characters High GCA effect High SCA effect Seed protein % CO(Ra)14, GPU-48 & GPU-28 OEB 259 x K 7 & CO(Ra)14 x K 7 Fe content (mg/100g) GPU-28 & VR-708 RAU 8 x PR 202 , GPU 28 x PR 202 & VR 708 x KM 252 Zn content (mg/100g) VR-708 & RAU-8 GPU 28 x K 7, VR 708 x PR 202 & GPU 48 x PR 202 Table 19: Superior hybrids with high GCA, high SCA value Coimbatore, India Savitha et al. (2013)59
  • 61. GeneticMarkers Classical Markers Morphological Markers Cytological Markers Biochemical Markers Molecular Markers *Southern blotting *Nuclear acid hybridization (RFLP, drDNA) *PCR (Single and Paired) *DNA Sequencing (RFLP, AFLP, RAPD, SSR, SNP, etc.) https://www.slideshare.net/SureshAntre /molecular-marker-and-its-applications 61
  • 62. Pantnagar, India Panwar et al. (2010) Figure 20: RAPD profile of 52 finger millet genotypes generated by random primer (RAPD-15). The lanes represent, lane L, 100-bp ladder; lanes 1-52 (finger millet genotypes), lane M, marker (EcoRI/HindIII) Variation in Ca content in Finger millet 62 (0.4kb) (1.2kb)
  • 63. SR. No. Name of primer Range of markers (kb) Polymorphic bands/total no. of bands % Polymorphism PIC 1 RAPD-10 2-0.40 4/7 57.11 0.269 2 RAPD-12 3-0.30 7/11 63.63 0.484 3 RAPD-15 2.7-0.40 5/9 55.55 0.467 4 RAPD-4 1.3-0.35 1/3 33.33 0.449 5 RAPD-9 3-0.600 3/6 50.00 0.141 6 RAPD-36 1.5-0.550 5/8 62.5 0.281 7 RAPD-21 1.8-0.300 4/7 57.14 0.267 8 RAPD-11 1.6-0.400 6/11 54.54 0.427 9 RAPD-31 3-0.400 4/8 50.00 0.364 10 RAPD-30 2.7-0.350 9/15 60.00 0.500 11 RAPD-14 1.5-0.700 0/5 00 0.209 Total 48/90 543.8 Average 4.36/8.18 49.43 0.351 Pantnagar, India Panwar et al. (2010) Table 20: Eleusine coracana: summary of genetic diversity study using RAPD primers 63
  • 64. Pantnagar, India Panwar et al. (2010) Figure 21: SSR profile of 52 finger millet genotypes generated by primer (SSR-6). The lanes represent, lane L, 100-bp ladder; lanes 1-52 (finger millet genotypes), lane M, marker (EcoRI/HindIII) 64 (1.0kb)
  • 65. Sr. No. Name of primer Range of markers (kb) Polymorphic bands/total no. of bands % Polymorphis m PIC 1 SSR-01 4-0.7 7/12 58 0.721 2 SSR-02 3-0.6 9/15 60 0.758 3 SSR-06 4.2-0.7 6/10 60 0.523 4 SSR-08 1.2-0.4 6/15 40 0.511 5 SSR-10 1.9-0.53 6/18 33 0.274 Total 34/70 251 - Average 6.8/14 50.2 0.557 Pantnagar, India Panwar et al. (2010) Table 21: Eleusine coracana: summary of genetic diversity study using SSR primers 65
  • 66. Pantnagar, India Panwar et al. (2010) Figure 22: Cytochrome P450 gene based primer profile of 52 finger millet genotypes generated by primer combination cyt09(F) and cyt010(R). The lanes represent lane L, 100-bp ladder; lanes 1-52 (finger millet genotypes), lane M, marker (EcoRI/HindIII) 66 (0.4kb)
  • 67. Sr. No. Number of primer TM Reference Range of markers (kb) Polymorphic bands per total no. of bands % polymorphism PIC 1 CYP2B6(F) CYP2B6(R) 66 66 Inui et al. (2000) 2.0-0.40 9/13 69.23 0.480 2 CYP2C19(F) Hem2c19(R) 55 55 Inui et al. (2000) 3.0-0.35 3/5 60 0.499 3 CYT01(F) CYT02(R) 62.3 63.6 Kumar et al. (1997) 3.5-0.10 9/15 60 0.355 4 CYT03(F) CYT04R) 60 59 Kumar et al. (1997) 3.5-0.40 10/16 62.5 0.311 5 CYT05(F) CYT6(R) 59 59 Kumar et al. (1997) 3.0-0.40 3/7 42.85 0.499 6 CYT07(F) CYT08(R) 60 60 Kumar et al. (1997) 3.5-0.15 3/8 37.50 0.493 7 CYT09(F) CYT10(R) 63 63 Kumar et al. (1997) 2.0-0.15 10/15 66.66 0.470 8 CYT011(F) CYT12(R) 60 59 Kumar et al. (1997) 3.0-0.35 7/10 70 0.368 9 CYT013(F) CYT014(R) 64 64 Kumar et al. (1997) 3.5-0.10 7/12 58.33 0.491 10 CYT015(F) CYT016(R) 61 61 Kumar et al. (1997) 2.5-0.30 6/10 60 0.500 Total Average 10 primers 67/111 6.7/11.1 587 58.7 0.406 Pantnagar, India Panwar et al. (2010) Table 22: Eleusine coracana: summary of genetic diversity study using cytochrome P450 gene based primers 67
  • 68. Pantnagar, India Panwar et al. (2010) Figure 23: UPGMA cluster analysis showing relationships among Eleusine coracana genotypes as revealed by data from combination of RAPD, SSR and cytochrome P450 gene based marker 68
  • 69. • Physical method • Macroinjection • Microinjection • Particle bombardment • Silica fibers • Liposome mediated • Chemical method • Polyethylene Glycol • Calcium Phosphate Dendrimers • Biological method • Agrobacterium mediated • Virus mediated Transgenic Methods 69 Figure 24
  • 70. Inflorescence length (cm) Number of calli induced Numbers of segment inoculated Callus induction efficiency (%)a 0.5-1.0 169 187 90.72 ± 6.32148 175 139 143 1.1-1.5 86 137 59.90 ± 12.9848 105 89 125 1.6-2.0 19 46 40.78 ± 5.1234 96 26 57 >2.0 8 86 19.80 ± 14.3213 93 26 72 Table 23: Callus induction efficiency of immature inflorescence at different length in Foxtail millet. Callus induction efficiency (%) was calculated as the number of embryogenic calli per 100 total segments inoculated. a Each value represents mean ± standard error (SE) of three replicate. Wang et al. (2011)Beijing, China 70
  • 71. Inflorescence length (cm) Calli age (days) Differentiation efficiency (%)a 0.5 - 1.0 25 90.93 ± 7.33 50 75.33 ± 3.79 100 0 1.1 - 1.5 25 56.20 ± 13.19 50 36.04 ± 2.40 100 0 Table 24: Differentiation efficiency of calli of different ages induced from different-sized inflorescences. Wang et al. (2011)Beijing, China 71 Differentiation efficiency (%) was calculated as the number of calli giving rise to green spots per 100 calli tested. a Each value represents mean ± SE of three replicates.
  • 72. Wang et al. (2011)Beijing, China 72 Figure 25: PCR and western blot analyses of SBgLR transgenic foxtail millet plants. (A) PCR analysis of genomic DNA to detect the presence of the SBgLR gene. Lane 1, molecular weight marker; lane 2, positive control; lanes 3 to 8, plants showing amplification of the predicted 280 bp SBgLR-specific sequence; lane 9, non-transformed plants; (b) western blot analysis of SBgLR protein expression in transgenic foxtail millet, probed with SBgLR. Lanes 1 to 6, 50 μg protein from T0 transgenic foxtail millet mature seeds; lane 7, 50 μg protein from non- transformed foxtail millet mature seeds.c
  • 73.
  • 74. Sr. No. Variety Pedigree Institute where developed Year of release Maturity (Days) Av. Yield (Q/ha) Area of adaptation Special features 1 GPU 48 GPU 26 x L-5 PC Unit, Bengaluru 2005 95-100 28-30 Karnatak a Pigmentation on all plant parts and highly resistant to blast 2 KMR 340 OUAT-2 x WRT-4 VC Farm, Mandya, UAS,Bengaluru 2016 90-95 35-40 Karnatak a White ragi variety, specially for confectionary purpose, resistant to blast and blight diseases, tolerant to stem borer and aphids 3 GN-5 Selection from local germplasm WWN-20 Waghai, Navsari Agricultural University 2016 120-130 25-27 Gujarat Late maturing, White colour seed, Moderately resistant to leaf and finger blast 4 GNN-7 GE 4172 x VL Ragi 149 Waghai, Navsari Agricultural University 2016 110-120 25-27 All Ragi growing areas of country White seed, Bold grain, Non-lodging, Moderately resistant to blast and foot rot Table 25: Salient features of released varieties of finger millet crops http://millets.res.in/technologies/finger_millets_varieties.pdf74
  • 75. o Largest collections of germplasm (15,861 accessions) up to 2012.  8001 accessions of Finger millet (8)  2766 of Foxtail millet  1538 in Kodo millet (5) o Practices for cultivation - different regions of the country. o Management practices for aberrant weather conditions. o Chemical measures to control diseases. o Technology to mitigate the menace of shoot fly. o Technologies of value addition to small millets.  939 in Proso millet (5)  1629 in Little millet (3)  988 in Barnyard millet (1) Major Research achievement- AICRP http://millets.res.in/aicrp_small.php75
  • 76. Conclusion Quality improvement in small millets can be successfully done by the use of hybridization followed by selection. Due to small flower structure and cleistogamous nature hybridization is very difficult, costly and time consuming so there is need to develop male sterile lines. By the use of transgenic methods quality improvement can be achieve without losing agronomical traits and seasonal limitations can also be nullified. Mutation breeding is also very useful in minor millet for enhancing quality as well as quantitative characters. 76