SlideShare ist ein Scribd-Unternehmen logo
1 von 19
Graphs
Breadth First Search
&
Depth First Search
Submitted By:
Jailalita Gautam
Contents







10/27/13

Overview of Graph terminology.
Graph representation.
Breadth first search.
Depth first search.
Applications of BFS and DFS.
References.

NITTTR CHD

2
Graph terminology - overview


A graph consists of











set of vertices V = {v1, v2, ….. vn}
set of edges that connect the vertices E ={e1, e2, …. em}

Two vertices in a graph are adjacent if there is an
edge connecting the vertices.
Two vertices are on a path if there is a sequences
of vertices beginning with the first one and ending
with the second one
Graphs with ordered edges are directed. For
directed graphs, vertices have in and out degrees.
Weighted Graphs have values associated with
edges.

10/27/13

NITTTR CHD

3
Graph representation






There are two standard ways to represent a graph
G=(V,E) : as collection of adjacency list or as an
adjacency matrix.
Adjacency list preferred for sparse graphs- those for
which |E| much less than |V|^2.
Adjacency matrix preferred for dense graphs- |E| is
close to |V|^2.

10/27/13

NITTTR CHD

4
Graph representation – undirected

graph

10/27/13

Adjacency list

NITTTR CHD

Adjacency matrix

5
Graph representation – directed

graph

10/27/13

Adjacency list

NITTTR CHD

Adjacency matrix

6
Breadth first search


Given










a graph G=(V,E) – set of vertices and edges
a distinguished source vertex s

Breadth first search systematically explores the
edges of G to discover every vertex that is
reachable from s.
It also produces a ‘breadth first tree’ with root s that
contains all the vertices reachable from s.
For any vertex v reachable from s, the path in the
breadth first tree corresponds to the shortest path in
graph G from s to v.
It works on both directed and undirected graphs.
However, we will explore only directed graphs.

10/27/13

NITTTR CHD

7
Breadth first search - concepts







To keep track of progress, it colors each
vertex - white, gray or black.
All vertices start white.
A vertex discovered first time during the
search becomes nonwhite.
All vertices adjacent to black ones are
discovered. Whereas, gray ones may have
some white adjacent vertices.

10/27/13

NITTTR CHD

8
BFS – How it produces a Breadth first tree



The tree initially contains only root. – s
Whenever a vertex v is discovered in
scanning adjacency list of vertex u


10/27/13

Vertex v and edge (u,v) are added to the tree.

NITTTR CHD

9
BFS - algorithm
BFS(G, s)
// G is the graph and s is the starting node
1 for each vertex u ∈ V [G] - {s}
2
do color[u] ← WHITE
// color of vertex u
3
d[u] ← ∞
// distance from source s to vertex u
4
π[u] ← NIL
// predecessor of u
5 color[s] ← GRAY
6 d[s] ← 0
7 π[s] ← NIL
8 Q←Ø
// Q is a FIFO - queue
9 ENQUEUE(Q, s)
10 while Q ≠ Ø
// iterates as long as there are gray vertices. Lines 10-18
11
do u ← DEQUEUE(Q)
12
for each v ∈ Adj [u]
13
do if color[v] = WHITE
// discover the undiscovered adjacent vertices
14
then color[v] ← GRAY
// enqueued whenever painted gray
15
d[v] ← d[u] + 1
16
π[v] ← u
17
ENQUEUE(Q, v)
18
color[u] ← BLACK
// painted black whenever dequeued

10/27/13

NITTTR CHD

10
Breadth First Search - example

10/27/13

NITTTR CHD

11
Breadth first search - analysis






Enqueue and Dequeue happen only once for
each node. - O(V).
Total time spent in scanning adjacency lists
is O(E) .
Initialization overhead O(V)
Total runtime O(V+E)

10/27/13

NITTTR CHD

12
Depth first search





It searches ‘deeper’ the graph when possible.
Starts at the selected node and explores as far as
possible along each branch before backtracking.
Vertices go through white, gray and black stages of
color.






White – initially
Gray – when discovered first
Black – when finished i.e. the adjacency list of the vertex is
completely examined.

Also records timestamps for each vertex



10/27/13

d[v]
f[v]

when the vertex is first discovered
when the vertex is finished
NITTTR CHD

13
Depth first search - algorithm
DFS(G)
1 for each vertex u ∈ V [G]
2
do color[u] ← WHITE
3
π[u] ← NIL
4 time ← 0
5 for each vertex u ∈ V [G]
6
do if color[u] = WHITE
7
then DFS-VISIT(u)

// color all vertices white, set their parents NIL
// zero out time
// call only for unexplored vertices
// this may result in multiple sources

DFS-VISIT(u)
1 color[u] ← GRAY ▹White vertex u has just been discovered.
2 time ← time +1
3 d[u] time
// record the discovery time
4 for each v ∈ Adj[u]
▹Explore edge(u, v).
5
do if color[v] = WHITE
6
then π[v] ← u
// set the parent value
7
DFS-VISIT(v)
// recursive call
8 color[u] BLACK
▹ Blacken u; it is finished.
9 f [u] ▹ time ← time +1
10/27/13

NITTTR CHD

14
Depth first search – example

10/27/13

NITTTR CHD

15
Depth first search - analysis
Lines 1-3, initialization take time Θ(V).
 Lines 5-7 take time Θ(V), excluding the time to call
the DFS-VISIT.
 DFS-VISIT is called only once for each node (since
it’s called only for white nodes and the first step in it
is to paint the node gray).
 Loop on line 4-7 is executed |Adj(v)| times. Since
∑vєV |Adj(v)| = Ө (E),
the total cost of executing lines 4-7 of DFS-VISIT is
θ(E).


The total cost of DFS is θ(V+E)
10/27/13

NITTTR CHD

16
BFS and DFS - comparison






Space complexity of DFS is lower than that of BFS.
Time complexity of both is same – O(|V|+|E|).
The behavior differs for graphs where not all the
vertices can be reached from the given vertex s.
Predecessor subgraphs produced by DFS may be
different than those produced by BFS. The BFS
product is just one tree whereas the DFS product
may be multiple trees.

10/27/13

NITTTR CHD

17
BFS and DFS – possible applications




Possible to use in routing / exploration. E.g.,
 I want to explore all the nearest pizza places and want to go to
the nearest one with only two intersections.
 Find distance from my factory to every delivery center.
 Most of the mapping software (GOOGLE maps, YAHOO(?)
maps) should be using these algorithms.
Applications of DFS
 Topologically sorting a directed acyclic graph.




Finding the strongly connected components of a directed graph.


10/27/13

List the graph elements in such an order that all the nodes are listed
before nodes to which they have outgoing edges.
List all the sub graphs of a strongly connected graph which
themselves are strongly connected.

NITTTR CHD

18
References







Data structures with C++ using STL by Ford,
William; Topp, William; Prentice Hall.
Introduction to Algorithms by Cormen,
Thomas et. al., The MIT press.
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Depth_first_search

10/27/13

NITTTR CHD

19

Weitere ähnliche Inhalte

Was ist angesagt?

Dfs presentation
Dfs presentationDfs presentation
Dfs presentation
Alizay Khan
 
Graph representation
Graph representationGraph representation
Graph representation
Tech_MX
 
Applications of graphs
Applications of graphsApplications of graphs
Applications of graphs
Tech_MX
 
Data structure computer graphs
Data structure computer graphsData structure computer graphs
Data structure computer graphs
Kumar
 
Graphs In Data Structure
Graphs In Data StructureGraphs In Data Structure
Graphs In Data Structure
Anuj Modi
 

Was ist angesagt? (20)

BFS
BFSBFS
BFS
 
Graph Traversal Algorithm
Graph Traversal AlgorithmGraph Traversal Algorithm
Graph Traversal Algorithm
 
Depth-First Search
Depth-First SearchDepth-First Search
Depth-First Search
 
A presentation on prim's and kruskal's algorithm
A presentation on prim's and kruskal's algorithmA presentation on prim's and kruskal's algorithm
A presentation on prim's and kruskal's algorithm
 
Breadth First Search (BFS)
Breadth First Search (BFS)Breadth First Search (BFS)
Breadth First Search (BFS)
 
Dfs
DfsDfs
Dfs
 
Graph traversals in Data Structures
Graph traversals in Data StructuresGraph traversals in Data Structures
Graph traversals in Data Structures
 
Breadth first search and depth first search
Breadth first search and  depth first searchBreadth first search and  depth first search
Breadth first search and depth first search
 
Dfs presentation
Dfs presentationDfs presentation
Dfs presentation
 
Balanced Tree (AVL Tree & Red-Black Tree)
Balanced Tree (AVL Tree & Red-Black Tree)Balanced Tree (AVL Tree & Red-Black Tree)
Balanced Tree (AVL Tree & Red-Black Tree)
 
Graph representation
Graph representationGraph representation
Graph representation
 
Breadth First Search & Depth First Search
Breadth First Search & Depth First SearchBreadth First Search & Depth First Search
Breadth First Search & Depth First Search
 
Trees and graphs
Trees and graphsTrees and graphs
Trees and graphs
 
Presentation on Breadth First Search (BFS)
Presentation on Breadth First Search (BFS)Presentation on Breadth First Search (BFS)
Presentation on Breadth First Search (BFS)
 
Spanning trees
Spanning treesSpanning trees
Spanning trees
 
Applications of graphs
Applications of graphsApplications of graphs
Applications of graphs
 
Data structure computer graphs
Data structure computer graphsData structure computer graphs
Data structure computer graphs
 
Graphs In Data Structure
Graphs In Data StructureGraphs In Data Structure
Graphs In Data Structure
 
Graphs in Data Structure
 Graphs in Data Structure Graphs in Data Structure
Graphs in Data Structure
 
1.1 binary tree
1.1 binary tree1.1 binary tree
1.1 binary tree
 

Andere mochten auch

Heuristic Search
Heuristic SearchHeuristic Search
Heuristic Search
butest
 
Ch2 3-informed (heuristic) search
Ch2 3-informed (heuristic) searchCh2 3-informed (heuristic) search
Ch2 3-informed (heuristic) search
chandsek666
 
artificial intelligence
artificial intelligenceartificial intelligence
artificial intelligence
vallibhargavi
 
Data structures and algorithms lab7
Data structures and algorithms lab7Data structures and algorithms lab7
Data structures and algorithms lab7
Bianca Teşilă
 

Andere mochten auch (20)

Bfs and dfs in data structure
Bfs and dfs in  data structure Bfs and dfs in  data structure
Bfs and dfs in data structure
 
Depth first search and breadth first searching
Depth first search and breadth first searchingDepth first search and breadth first searching
Depth first search and breadth first searching
 
Breadth first search
Breadth first searchBreadth first search
Breadth first search
 
2.5 bfs & dfs 02
2.5 bfs & dfs 022.5 bfs & dfs 02
2.5 bfs & dfs 02
 
DFS BFS and UCS in R
DFS BFS and UCS in RDFS BFS and UCS in R
DFS BFS and UCS in R
 
Graph Traversal Algorithms - Depth First Search Traversal
Graph Traversal Algorithms - Depth First Search TraversalGraph Traversal Algorithms - Depth First Search Traversal
Graph Traversal Algorithms - Depth First Search Traversal
 
Heuristic Search
Heuristic SearchHeuristic Search
Heuristic Search
 
chapter22.ppt
chapter22.pptchapter22.ppt
chapter22.ppt
 
Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}Heuristic Search Techniques {Artificial Intelligence}
Heuristic Search Techniques {Artificial Intelligence}
 
Ch2 3-informed (heuristic) search
Ch2 3-informed (heuristic) searchCh2 3-informed (heuristic) search
Ch2 3-informed (heuristic) search
 
artificial intelligence
artificial intelligenceartificial intelligence
artificial intelligence
 
5.5 back tracking
5.5 back tracking5.5 back tracking
5.5 back tracking
 
Normalization
NormalizationNormalization
Normalization
 
2.5 graph dfs
2.5 graph dfs2.5 graph dfs
2.5 graph dfs
 
Data structures and algorithms lab7
Data structures and algorithms lab7Data structures and algorithms lab7
Data structures and algorithms lab7
 
2.5 dfs & bfs
2.5 dfs & bfs2.5 dfs & bfs
2.5 dfs & bfs
 
Algorithum Analysis
Algorithum AnalysisAlgorithum Analysis
Algorithum Analysis
 
Depth First Search, Breadth First Search and Best First Search
Depth First Search, Breadth First Search and Best First SearchDepth First Search, Breadth First Search and Best First Search
Depth First Search, Breadth First Search and Best First Search
 
Mca iii dfs u-4 tree and graph
Mca iii dfs u-4 tree and graphMca iii dfs u-4 tree and graph
Mca iii dfs u-4 tree and graph
 
Distributed Graph Algorithms
Distributed Graph AlgorithmsDistributed Graph Algorithms
Distributed Graph Algorithms
 

Ähnlich wie Graphs bfs dfs

graphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docx
graphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docxgraphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docx
graphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docx
whittemorelucilla
 
Algorithm Design and Complexity - Course 7
Algorithm Design and Complexity - Course 7Algorithm Design and Complexity - Course 7
Algorithm Design and Complexity - Course 7
Traian Rebedea
 

Ähnlich wie Graphs bfs dfs (20)

Breadth first search
Breadth first searchBreadth first search
Breadth first search
 
Analysis and design of algorithms part 3
Analysis and design of algorithms part 3Analysis and design of algorithms part 3
Analysis and design of algorithms part 3
 
Chapter 23 aoa
Chapter 23 aoaChapter 23 aoa
Chapter 23 aoa
 
Bfs dfs
Bfs dfsBfs dfs
Bfs dfs
 
Breadth first search (Bfs)
Breadth first search (Bfs)Breadth first search (Bfs)
Breadth first search (Bfs)
 
B.tech admission in india
B.tech admission in indiaB.tech admission in india
B.tech admission in india
 
19-graph1 (1).ppt
19-graph1 (1).ppt19-graph1 (1).ppt
19-graph1 (1).ppt
 
Graph Representation, DFS and BFS Presentation.pptx
Graph Representation, DFS and BFS Presentation.pptxGraph Representation, DFS and BFS Presentation.pptx
Graph Representation, DFS and BFS Presentation.pptx
 
Graps 2
Graps 2Graps 2
Graps 2
 
Graphs
GraphsGraphs
Graphs
 
BFS, Breadth first search | Search Traversal Algorithm
BFS, Breadth first search | Search Traversal AlgorithmBFS, Breadth first search | Search Traversal Algorithm
BFS, Breadth first search | Search Traversal Algorithm
 
Depth First Search and Breadth First Search
Depth First Search and Breadth First SearchDepth First Search and Breadth First Search
Depth First Search and Breadth First Search
 
Graphs
GraphsGraphs
Graphs
 
LEC 12-DSALGO-GRAPHS(final12).pdf
LEC 12-DSALGO-GRAPHS(final12).pdfLEC 12-DSALGO-GRAPHS(final12).pdf
LEC 12-DSALGO-GRAPHS(final12).pdf
 
Elementary Graph Algo.ppt
Elementary Graph Algo.pptElementary Graph Algo.ppt
Elementary Graph Algo.ppt
 
graphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docx
graphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docxgraphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docx
graphin-c1.pnggraphin-c1.txt1 22 3 83 44 5.docx
 
U1 L5 DAA.pdf
U1 L5 DAA.pdfU1 L5 DAA.pdf
U1 L5 DAA.pdf
 
Talk on Graph Theory - I
Talk on Graph Theory - ITalk on Graph Theory - I
Talk on Graph Theory - I
 
Algorithm Design and Complexity - Course 7
Algorithm Design and Complexity - Course 7Algorithm Design and Complexity - Course 7
Algorithm Design and Complexity - Course 7
 
09-graphs.ppt
09-graphs.ppt09-graphs.ppt
09-graphs.ppt
 

Kürzlich hochgeladen

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Kürzlich hochgeladen (20)

Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 

Graphs bfs dfs

  • 1. Graphs Breadth First Search & Depth First Search Submitted By: Jailalita Gautam
  • 2. Contents       10/27/13 Overview of Graph terminology. Graph representation. Breadth first search. Depth first search. Applications of BFS and DFS. References. NITTTR CHD 2
  • 3. Graph terminology - overview  A graph consists of       set of vertices V = {v1, v2, ….. vn} set of edges that connect the vertices E ={e1, e2, …. em} Two vertices in a graph are adjacent if there is an edge connecting the vertices. Two vertices are on a path if there is a sequences of vertices beginning with the first one and ending with the second one Graphs with ordered edges are directed. For directed graphs, vertices have in and out degrees. Weighted Graphs have values associated with edges. 10/27/13 NITTTR CHD 3
  • 4. Graph representation    There are two standard ways to represent a graph G=(V,E) : as collection of adjacency list or as an adjacency matrix. Adjacency list preferred for sparse graphs- those for which |E| much less than |V|^2. Adjacency matrix preferred for dense graphs- |E| is close to |V|^2. 10/27/13 NITTTR CHD 4
  • 5. Graph representation – undirected graph 10/27/13 Adjacency list NITTTR CHD Adjacency matrix 5
  • 6. Graph representation – directed graph 10/27/13 Adjacency list NITTTR CHD Adjacency matrix 6
  • 7. Breadth first search  Given       a graph G=(V,E) – set of vertices and edges a distinguished source vertex s Breadth first search systematically explores the edges of G to discover every vertex that is reachable from s. It also produces a ‘breadth first tree’ with root s that contains all the vertices reachable from s. For any vertex v reachable from s, the path in the breadth first tree corresponds to the shortest path in graph G from s to v. It works on both directed and undirected graphs. However, we will explore only directed graphs. 10/27/13 NITTTR CHD 7
  • 8. Breadth first search - concepts     To keep track of progress, it colors each vertex - white, gray or black. All vertices start white. A vertex discovered first time during the search becomes nonwhite. All vertices adjacent to black ones are discovered. Whereas, gray ones may have some white adjacent vertices. 10/27/13 NITTTR CHD 8
  • 9. BFS – How it produces a Breadth first tree   The tree initially contains only root. – s Whenever a vertex v is discovered in scanning adjacency list of vertex u  10/27/13 Vertex v and edge (u,v) are added to the tree. NITTTR CHD 9
  • 10. BFS - algorithm BFS(G, s) // G is the graph and s is the starting node 1 for each vertex u ∈ V [G] - {s} 2 do color[u] ← WHITE // color of vertex u 3 d[u] ← ∞ // distance from source s to vertex u 4 π[u] ← NIL // predecessor of u 5 color[s] ← GRAY 6 d[s] ← 0 7 π[s] ← NIL 8 Q←Ø // Q is a FIFO - queue 9 ENQUEUE(Q, s) 10 while Q ≠ Ø // iterates as long as there are gray vertices. Lines 10-18 11 do u ← DEQUEUE(Q) 12 for each v ∈ Adj [u] 13 do if color[v] = WHITE // discover the undiscovered adjacent vertices 14 then color[v] ← GRAY // enqueued whenever painted gray 15 d[v] ← d[u] + 1 16 π[v] ← u 17 ENQUEUE(Q, v) 18 color[u] ← BLACK // painted black whenever dequeued 10/27/13 NITTTR CHD 10
  • 11. Breadth First Search - example 10/27/13 NITTTR CHD 11
  • 12. Breadth first search - analysis    Enqueue and Dequeue happen only once for each node. - O(V). Total time spent in scanning adjacency lists is O(E) . Initialization overhead O(V) Total runtime O(V+E) 10/27/13 NITTTR CHD 12
  • 13. Depth first search    It searches ‘deeper’ the graph when possible. Starts at the selected node and explores as far as possible along each branch before backtracking. Vertices go through white, gray and black stages of color.     White – initially Gray – when discovered first Black – when finished i.e. the adjacency list of the vertex is completely examined. Also records timestamps for each vertex   10/27/13 d[v] f[v] when the vertex is first discovered when the vertex is finished NITTTR CHD 13
  • 14. Depth first search - algorithm DFS(G) 1 for each vertex u ∈ V [G] 2 do color[u] ← WHITE 3 π[u] ← NIL 4 time ← 0 5 for each vertex u ∈ V [G] 6 do if color[u] = WHITE 7 then DFS-VISIT(u) // color all vertices white, set their parents NIL // zero out time // call only for unexplored vertices // this may result in multiple sources DFS-VISIT(u) 1 color[u] ← GRAY ▹White vertex u has just been discovered. 2 time ← time +1 3 d[u] time // record the discovery time 4 for each v ∈ Adj[u] ▹Explore edge(u, v). 5 do if color[v] = WHITE 6 then π[v] ← u // set the parent value 7 DFS-VISIT(v) // recursive call 8 color[u] BLACK ▹ Blacken u; it is finished. 9 f [u] ▹ time ← time +1 10/27/13 NITTTR CHD 14
  • 15. Depth first search – example 10/27/13 NITTTR CHD 15
  • 16. Depth first search - analysis Lines 1-3, initialization take time Θ(V).  Lines 5-7 take time Θ(V), excluding the time to call the DFS-VISIT.  DFS-VISIT is called only once for each node (since it’s called only for white nodes and the first step in it is to paint the node gray).  Loop on line 4-7 is executed |Adj(v)| times. Since ∑vєV |Adj(v)| = Ө (E), the total cost of executing lines 4-7 of DFS-VISIT is θ(E).  The total cost of DFS is θ(V+E) 10/27/13 NITTTR CHD 16
  • 17. BFS and DFS - comparison     Space complexity of DFS is lower than that of BFS. Time complexity of both is same – O(|V|+|E|). The behavior differs for graphs where not all the vertices can be reached from the given vertex s. Predecessor subgraphs produced by DFS may be different than those produced by BFS. The BFS product is just one tree whereas the DFS product may be multiple trees. 10/27/13 NITTTR CHD 17
  • 18. BFS and DFS – possible applications   Possible to use in routing / exploration. E.g.,  I want to explore all the nearest pizza places and want to go to the nearest one with only two intersections.  Find distance from my factory to every delivery center.  Most of the mapping software (GOOGLE maps, YAHOO(?) maps) should be using these algorithms. Applications of DFS  Topologically sorting a directed acyclic graph.   Finding the strongly connected components of a directed graph.  10/27/13 List the graph elements in such an order that all the nodes are listed before nodes to which they have outgoing edges. List all the sub graphs of a strongly connected graph which themselves are strongly connected. NITTTR CHD 18
  • 19. References     Data structures with C++ using STL by Ford, William; Topp, William; Prentice Hall. Introduction to Algorithms by Cormen, Thomas et. al., The MIT press. http://en.wikipedia.org/wiki/Graph_theory http://en.wikipedia.org/wiki/Depth_first_search 10/27/13 NITTTR CHD 19