SlideShare ist ein Scribd-Unternehmen logo
1 von 43
PHYSICAL CHEMISTRY II
CHAPTER 9: Chemical Kinetics I
Rate of Consumption,Formation,and Reaction
Consider the reaction 𝐴 + 3𝐡 β†’ 2π‘Œ. The numbers of moles of the species at the
beginning of the reaction (at time 𝑑 = 0) are 𝑛 𝐴0
, 𝑛 𝐡0
, π‘Žπ‘›π‘‘ 𝑛 π‘Œ0
, respectively.
Assuming the reaction thereafter proceeds from left to right, the moles at some time
𝑑 (𝑠) become 𝑛 𝐴0
βˆ’ πœ‰, 𝑛 𝐡0
βˆ’ 3πœ‰, π‘Žπ‘›π‘‘ 𝑛 π‘Œ0
+ 2πœ‰, respectively, where πœ‰ is the extent of
the reaction in terms of moles.
Now, we can define the moles of reactants and product after time 𝑑 (𝑠) as:
𝑛 𝐴 = 𝑛 𝐴0
βˆ’ πœ‰, 𝑛 𝐡 = 𝑛 𝐡0
βˆ’ 3πœ‰, π‘Žπ‘›π‘‘ 𝑛 π‘Œ = 𝑛 π‘Œ0
+ 2πœ‰, such that 𝑛 𝐴0
, 𝑛 𝐡0
, π‘Žπ‘›π‘‘ 𝑛 π‘Œ0
are
constants and 𝑛 𝐴 , 𝑛 𝐡, π‘Žπ‘›π‘‘ 𝑛 π‘Œ are functions of the reaction extent, i.e. 𝑓( πœ‰).
Furthermore, we may derive these expressions with respect to time and obtain:
𝑑𝑛 𝐴
𝑑𝑑
= 0 βˆ’
π‘‘πœ‰
𝑑𝑑
,
𝑑𝑛 𝐡
𝑑𝑑
= 0 βˆ’
3π‘‘πœ‰
𝑑𝑑
, π‘Žπ‘›π‘‘
𝑑𝑛 π‘Œ
𝑑𝑑
= 0 +
2π‘‘πœ‰
𝑑𝑑
Solving for
π‘‘πœ‰
𝑑𝑑
gives the rate of reaction in terms of moles:a
π‘‘πœ‰
𝑑𝑑
= βˆ’
𝑑𝑛 𝐴
𝑑𝑑
= βˆ’
𝑑𝑛 𝐡
3𝑑𝑑
= +
𝑑𝑛 π‘Œ
2𝑑𝑑
However, it is more typical to track concentrations than moles. So we may modify
the above expression as follows.
Let 𝑉 be the volume of the reaction chamber (assuming it remains constant
throughout the reaction). Then:
π‘‘πœ‰
𝑉𝑑𝑑
= βˆ’
𝑑𝑛 𝐴
𝑉𝑑𝑑
= βˆ’
𝑑 𝑛 𝐡
3𝑉𝑑𝑑
= +
𝑑𝑛 π‘Œ
2𝑉𝑑𝑑
If we define the extent of the reaction in terms of concentration as π‘₯ =
πœ‰
𝑉
and the
concentrations of the reactants and product as [ 𝐴] =
𝑛 𝐴
𝑉
, [ 𝐡] =
𝑛 𝐡
𝑉
, π‘Žπ‘›π‘‘ [ π‘Œ] =
𝑛 π‘Œ
𝑉
respectively, then the rate of reaction in terms of concentration is:
𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
= βˆ’
𝑑[ 𝐡]
3𝑑𝑑
=
𝑑[ π‘Œ]
2𝑑𝑑
Specifically, we can define the rate of reaction in terms of concentration with
respect to each species:
𝜐𝐴 = βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘‘π‘–π‘ π‘Žπ‘π‘π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝐴
𝜐 𝐡 = βˆ’
𝑑[ 𝐡]
𝑑𝑑
= π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘‘π‘–π‘ π‘Žπ‘π‘π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝐡
πœπ‘Œ =
𝑑[ π‘Œ]
𝑑𝑑
= π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘šπ‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘Œ
Thus: 𝜐 =
𝑑π‘₯
𝑑𝑑
= 𝜐𝐴 =
1
3
𝜐 𝐡 =
1
2
πœπ‘Œ .
Hence, we can reconsider the reaction 𝐴 + 3𝐡 β†’ 2π‘Œ in terms of concentration such
that:
πΌπ‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘π‘œπ‘›π‘π‘’π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘Ÿπ‘’: [ 𝐴]0, [ 𝐡]0, π‘Žπ‘›π‘‘ [ π‘Œ]0
πΆπ‘œπ‘›π‘π‘’π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘‘ π‘‘π‘–π‘šπ‘’ 𝑑 π‘Žπ‘Ÿπ‘’: [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯,[ 𝐡] = [ 𝐡]0 βˆ’ 3π‘₯, π‘Žπ‘›π‘‘ [ π‘Œ] = [ π‘Œ]0 + 2π‘₯
πΌπ‘›π‘‘π‘–π‘£π‘–π‘‘π‘’π‘Žπ‘™ π‘Ÿπ‘Žπ‘‘π‘’π‘  π‘Žπ‘Ÿπ‘’:
𝑑[ 𝐴]
𝑑𝑑
= 0 βˆ’
𝑑π‘₯
𝑑𝑑
,
𝑑[ 𝐡]
𝑑𝑑
= 0 βˆ’
3𝑑π‘₯
𝑑𝑑
, π‘Žπ‘›π‘‘
𝑑[ π‘Œ]
𝑑𝑑
= 0 +
2𝑑π‘₯
𝑑𝑑
π‘‚π‘£π‘’π‘Ÿπ‘Žπ‘™π‘™ π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑖𝑠: 𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
= βˆ’
𝑑[ 𝐡]
3𝑑𝑑
=
𝑑[ π‘Œ]
2𝑑𝑑
The reaction can also be represented graphically:
Table 1: Rates w.r.t species at t = 0 and t = any.
Initial rates (at time 𝒕 = 𝟎 𝒔) Rates at any time (𝒕 = 𝒕 𝒔)
𝜐𝐴 = βˆ’
𝑑[ 𝐴]0
𝑑𝑑
|
𝑑=0
𝜐𝐴 = βˆ’
𝑑[ 𝐴]
𝑑𝑑
|
𝑑
𝜐 𝐡 = βˆ’
𝑑[ 𝐡]0
𝑑𝑑
|
𝑑=0
𝜐 𝐡 = βˆ’
𝑑[ 𝐡]
𝑑𝑑
|
𝑑
πœπ‘Œ = +
𝑑[ π‘Œ]0
𝑑𝑑
|
𝑑=0
πœπ‘Œ = +
𝑑[ π‘Œ]
𝑑𝑑
|
𝑑
Table 2: Summary of rate expressions.
Moles at 𝒕 = 𝟎 𝒔 𝑛 𝐴0
𝑛 𝐡0
𝑛 π‘Œ0
Moles at 𝒕 = π’‚π’π’š 𝑛 𝐴 = 𝑛 𝐴0
βˆ’ πœ‰ 𝑛 𝐡 = 𝑛 𝐡0
βˆ’ 3πœ‰ 𝑛 π‘Œ = 𝑛 π‘Œ0
+ 2πœ‰
Moles derived w.r.t time
𝑑𝑛 𝐴
𝑑𝑑
= 0 βˆ’
π‘‘πœ‰
𝑑𝑑
𝑑𝑛 𝐡
𝑑𝑑
= 0 βˆ’
3π‘‘πœ‰
𝑑𝑑
𝑑𝑛 π‘Œ
𝑑𝑑
= 0 +
2π‘‘πœ‰
𝑑𝑑
Reaction rate in moles
π‘‘πœ‰
𝑑𝑑
= βˆ’
𝑑𝑛 𝐴
𝑑𝑑
= βˆ’
𝑑𝑛 𝐡
3𝑑𝑑
= +
𝑑𝑛 π‘Œ
2𝑑𝑑
Concentration at 𝒕 = 𝟎 𝒔 [ 𝐴]0 =
𝑛 𝐴0
𝑉
[ 𝐡]0 =
𝑛 𝐡0
𝑉
[ π‘Œ]0 =
𝑛 π‘Œ0
𝑉
Concentration at 𝒕 = π’‚π’π’š [ 𝐴] =
𝑛 𝐴
𝑉
[ 𝐡] =
𝑛 𝐡
𝑉
[ π‘Œ] =
𝑛 π‘Œ
𝑉
Concentration derived w.r.t time 𝜐𝐴 = βˆ’
𝑑[ 𝐴]
𝑑𝑑
𝜐 𝐡 = βˆ’
𝑑[ 𝐡]
𝑑𝑑
πœπ‘Œ =
𝑑[ π‘Œ]
𝑑𝑑
Reaction rate in concentration
𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
= βˆ’
𝑑[ 𝐡]
3𝑑𝑑
=
𝑑[ π‘Œ]
2𝑑𝑑
𝜐 =
𝑑π‘₯
𝑑𝑑
= 𝜐𝐴 =
1
3
𝜐 𝐡 =
1
2
πœπ‘Œ
Empirical Rate Equations
For the reaction π‘Žπ΄ + 𝑏𝐡 β†’ π‘¦π‘Œ + 𝑧𝑍, the rate of consumption of A can be expressed
empirically by an expression of the form 𝜐𝐴 ∝ [ 𝐴] 𝛼[ 𝐡] 𝛽
, called an empirical
expression. We may change this expression to an equation by adding a
proportionality constant k: 𝜐𝐴 = π‘˜ 𝐴[ 𝐴] 𝛼 [ 𝐡] 𝛽
, where kA, , and  are independent of
concentration and of time.
Similarly, for product Z, where kZ is not necessarily the same as kA, the rate of
formation of product is πœπ‘ = π‘˜ 𝑍[ 𝐴] 𝛼[ 𝐡] 𝛽
.
When these equations apply, the rate of reaction must also be given by an equation
of the same form: 𝜐 = π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽
=
1
π‘Ž
𝜐𝐴 =
1
𝑏
𝜐 𝐡 =
1
𝑦
πœπ‘Œ =
1
𝑧
πœπ‘ .
Thus,
1
π‘Ž
𝜐𝐴 = π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽
β†’ 𝝊 𝑨 = π’‚π’Œ[ 𝑨] 𝜢[ 𝑩] 𝜷
(the rate law in differential form).
If we let π‘˜ 𝐴 = π‘Žπ‘˜, then 𝜐𝐴 = π‘˜ 𝐴 [ 𝐴] 𝛼[ 𝐡] 𝛽
. Likewise,
1
𝑏
𝜐 𝐡 = π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽
β†’ 𝜐 𝐡 =
π‘π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽
. If we let π‘˜ 𝐡 = π‘π‘˜, then 𝜐 𝐡 = π‘˜ 𝐡[ 𝐴] 𝛼[ 𝐡] 𝛽
.
In these equations, kA, kZ, and k are not necessarily the same, being related by
stoichiometric coefficients; thus if the stoichiometric equation is 𝐴 + 3𝐡 β†’ 2π‘Œ, then
π‘˜ = π‘˜ 𝐴 =
1
2
π‘˜ 𝐡 =
1
3
π‘˜ 𝑍.
Order of Reaction
The exponent  in the previous equations is known as the order of reaction with
respect to A and can be referred to as a partial order. Similarly, the partial order  is
the order with respect to B. These orders are purely experimental quantities and are
not necessarily integral; that is, they are independent of stoichiometry. The sum of
all the partial orders, 𝛼 + 𝛽 + β‹―, is referred to as the overall order and is usually
given the symbol n.
A first order reaction is one in which the rate is proportional to the first power of
the concentration of a single reactant, such that 𝜐 = π‘˜[ 𝐴]. For example, the
conversion of cyclopropane to propylene is 1st order.
In a second order reaction, the rate must be proportional to the product of two
concentrations [A] and [B] if the reaction simply involves collisions between A and B
molecules. For instance, in the reaction 𝐻2 + 𝐼2 β‡Œ 2𝐻𝐼, the rate from left to right is
proportional to the product of the concentrations of the two reactants. That is, 𝜐1 =
π‘˜1[ 𝐻2][ 𝐼2], where k1 is a constant at a given temperature. The reaction from left to
right is said to be 1st order in H2, 1st order in I2, and 2nd order overall. The reverse
reaction is also 2nd order; the rate from right to left is proportional to the square of
the concentration of HI: πœβˆ’1 = π‘˜βˆ’1[ 𝐻𝐼]2
.
Similarly, the kinetics must be third order if a reaction proceeds in one stage and
involves collisions between three molecules, A, B, and C.
Examples
For the reaction 𝐴 + 𝐡 π‘˜1
βƒ—βƒ—βƒ—βƒ—βƒ— 2𝐢, 𝜐1 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
= βˆ’
𝑑[ 𝐡]
𝑑𝑑
=
𝑑[ 𝐢]
2𝑑𝑑
= π‘˜1[ 𝐴] 𝛼[ 𝐡] 𝛽
.
Assuming that  = 1 and  = 1, the forward reaction is 2nd order and 𝜐1 =
π‘˜1[ 𝐴]1[ 𝐡]1
.
For the reaction 2𝐢 π‘˜βˆ’1
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴 + 𝐡, πœβˆ’1 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐢]
2𝑑𝑑
=
𝑑[ 𝐴]
𝑑𝑑
=
𝑑[ 𝐡]
𝑑𝑑
= π‘˜βˆ’1[ 𝐢] 𝛾
.
Assuming that  = 2, the forward reaction is 2nd order and πœβˆ’1 = π‘˜βˆ’1[ 𝐢]2
.
For the reaction 𝐢𝐻3 𝐢𝐻𝑂 β†’ 𝐢𝐻4 + 𝐢𝑂, 𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐢𝐻3 𝐢𝐻𝑂]
𝑑𝑑
=
𝑑[ 𝐢 𝐻4 ]
𝑑𝑑
=
𝑑[ 𝐢𝑂]
𝑑𝑑
=
π‘˜[ 𝐢𝐻3 𝐢𝐻𝑂] 𝛼
.
Assuming 𝛼 =
3
2
, the forward reaction is of order
3
2
and 𝜐 = π‘˜[ 𝐢𝐻3 𝐢𝐻𝑂]
3
2.
For the reaction 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝐡, 𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
=
𝑑[ 𝐡]
𝑑𝑑
= π‘˜[ 𝐴] 𝛼
.
Assuming that  = 1, the forward reaction is 1st order and 𝜐 = π‘˜[ 𝐴]1
.
Also, βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴]and so
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜ 𝑑𝑑.
Integrating gives π₯𝐧[ 𝑨] = βˆ’π’Œπ’• + π‘ͺ, where C is a constant. This is the rate law in
integral form.
At 𝑑 = 0 and [ 𝐴] = [ 𝐴]0, ln[ 𝐴]0 = 𝐢.
Therefore, ln[ 𝐴] = βˆ’π‘˜π‘‘ + ln[ 𝐴]0, and ln[ 𝐴] βˆ’ ln[ 𝐴]0 = βˆ’π‘˜π‘‘, and ln
[ 𝐴]
[ 𝐴]0
= βˆ’π‘˜π‘‘.
Get rid of natural log:
[ 𝐴]
[ 𝐴]0
= π‘’βˆ’π‘˜π‘‘
. Hence, [ 𝑨] = [ 𝑨] 𝟎 π’†βˆ’π’Œπ’•
is the rate law for the
disappearance of A.
At 𝑑 = 0, [ 𝐴] = [ 𝐴]0 𝑒0
= [ 𝐴]0.
At 𝑑 = ∞, [ 𝐴] = [ 𝐴]0 π‘’βˆ’βˆž
= 0.
In other words, for the reaction 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝐡:
The initial concentrations of A and B are [A]0 and 0, respectively.
The concentrations after time 𝑑 = π‘Žπ‘›π‘¦ are [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = π‘₯.
Hence [ 𝐴] + [ 𝐡] = [ 𝐴]0 and [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] = [ 𝐴]0 βˆ’ [ 𝐴]0 π‘’βˆ’π‘˜π‘‘
= [ 𝐴]0(1 βˆ’ π‘’βˆ’π‘˜π‘‘).
[ 𝑩] = [ 𝑨] 𝟎(𝟏 βˆ’ π’†βˆ’π’Œπ’•
) is the rate law of appearance of B.
IntegrationofRate Laws
First Order Reaction:
Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ .
At 𝑑 = 0, [ 𝐴] = [ 𝐴]0 and [ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ ] = 0.
At 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘Žπ‘₯, where a, ax, and [A]0 are constants.
The derivative of [A] with respect to time gives us
𝑑[ 𝐴]
𝑑𝑑
= 0 βˆ’ π‘Ž
𝑑π‘₯
𝑑𝑑
.
Therefore, 𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴] 𝛼
, where  is the partial order of reaction with
respect to A, determined experimentally. Assuming the reaction is 1st order, 𝛼 = 1.
Thus, 𝜐 = π‘˜[ 𝐴]1
.
To simplify, we can let βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴]and let π‘˜ 𝐴 = π‘Žπ‘˜.
Rearranging therefore gives βˆ’
𝒅[ 𝑨]
[ 𝑨]
= π’Œ 𝑨 𝒅𝒕, the rate law in differential form.
If we integrate the above equation, we get the following:
βˆ’
𝑑[ 𝐴]
[ 𝑨]
= π‘˜ 𝐴 𝑑𝑑 β†’ βˆ’ π₯𝐧[ 𝑨] = π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form.
When 𝑑 = 0, βˆ’ ln[ 𝐴]0 = 0 + 𝐢. Therefore, π‘ͺ = βˆ’ π₯𝐧[ 𝑨] 𝟎.
Substituting gives: βˆ’ln[ 𝐴] = π‘˜ 𝐴 𝑑 βˆ’ ln[ 𝐴]0. Rearranging, ln[ 𝐴] βˆ’ ln[ 𝐴]0 = βˆ’π‘˜ 𝐴 𝑑 and
ln
[ 𝐴]
[ 𝐴]0
= βˆ’π‘˜ 𝐴 𝑑.
We now define the half-life of the reaction to be the time required for [A] to drop to
half its value; that is, 𝒕 = 𝒕 𝟏
𝟐
π’˜π’‰π’†π’ [ 𝑨] =
[ 𝑨] 𝟎
𝟐
.
Thus, for a 1st order reaction, at tΒ½:
ln
1
2
[ 𝐴]0
[ 𝐴]0
= βˆ’π‘˜ 𝐴 𝑑1
2
β†’ ln
1
2
= βˆ’π‘˜ 𝐴 𝑑1
2
β†’ βˆ’ ln 2 β†’= βˆ’π‘˜ 𝐴 𝑑1
2
β†’ 𝒕 𝟏
𝟐
=
π₯𝐧 𝟐
π’Œ 𝑨
𝑑1
2
is independent of concentration in 1st order reactions.
Important Integrals
∫
1
π‘₯
𝑑π‘₯ = ln| π‘₯| (1)
∫ 𝑑π‘₯ = π‘₯ (2)
∫ π‘₯ 𝑛
𝑑π‘₯ =
π‘₯ 𝑛+1
𝑛+1
(3)
∫( π‘Ž + 𝑏π‘₯) 𝑛
𝑑π‘₯ =
( π‘Ž+𝑏π‘₯) 𝑛+1
𝑏( 𝑛+1)
(4)
∫
1
π‘Ž+𝑏π‘₯
𝑑π‘₯ =
1
𝑏
ln(| π‘Ž + 𝑏π‘₯|) (5)
∫
1
( π‘Ž+𝑏π‘₯) 𝑛 𝑑π‘₯ = βˆ’
1
( π‘›βˆ’1) 𝑏( π‘Ž+𝑏π‘₯) π‘›βˆ’1 (6)
Second Order Reaction:
Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ .
𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴] 𝛼
, where  is the partial order of reaction with respect to A,
determined experimentally. Assuming the reaction is 2nd order, 𝛼 = 2. Thus, 𝜐 =
π‘˜[ 𝐴]2
.
To simplify, we can let βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴]and let π‘˜ 𝐴 = π‘Žπ‘˜.
Rearranging therefore gives
𝒅[ 𝑨]
[ 𝑨] 𝟐 = βˆ’π’Œ 𝑨 𝒅𝒕, the rate law in differential form.
If we integrate the above equation, we get the following:
βˆ’
𝑑[ 𝐴]
[ 𝑨] 𝟐 = π‘˜ 𝐴 𝑑𝑑 β†’ βˆ’
𝟏
[ 𝑨]
= βˆ’π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form.
When 𝑑 = 0, βˆ’
1
[ 𝐴]
= 0 + 𝐢. Therefore, π‘ͺ = βˆ’
𝟏
[ 𝑨] 𝟎
.
Substituting gives: βˆ’
1
[ 𝐴]
= βˆ’π‘˜ 𝐴 𝑑 βˆ’
𝟏
[ 𝑨] 𝟎
. Rearranging,
1
[ 𝐴]
βˆ’
𝟏
[ 𝑨] 𝟎
= π‘˜ 𝐴 𝑑.
Thus, for a 2nd order reaction, at tΒ½:
1
1
2
[ 𝐴]0
βˆ’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑1
2
β†’
2
[ 𝐴]0
βˆ’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑1
2
β†’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑1
2
β†’ 𝒕 𝟏
𝟐
=
𝟏
π’Œ 𝑨[ 𝑨] 𝟎
𝑑1
2
depends on [ 𝐴]0 in 2nd order reactions.
Third Order Reaction:
Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ .
𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴] 𝛼
, where  is the partial order of reaction with respect to A,
determined experimentally. Assuming the reaction is 3rd order, 𝛼 = 3. Thus, 𝜐 =
π‘˜[ 𝐴]3
.
To simplify, we can let βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴]and let π‘˜ 𝐴 = π‘Žπ‘˜.
Rearranging therefore gives
𝒅[ 𝑨]
[ 𝑨] πŸ‘ = βˆ’π’Œ 𝑨 𝒅𝒕, the rate law in differential form.
If we integrate the above equation, we get the following:
βˆ’
𝑑[ 𝐴]
[ 𝑨] πŸ‘ = π‘˜ 𝐴 𝑑𝑑 β†’ βˆ’
𝟏
𝟐[ 𝑨] 𝟐 = βˆ’π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form.
When 𝑑 = 0, βˆ’
1
2⌈ π΄βŒ‰0
2 = 0 + 𝐢. Therefore, π‘ͺ = βˆ’
𝟏
𝟐⌈ π΄βŒ‰0
2.
Substituting gives: βˆ’
𝟏
𝟐[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑 βˆ’
𝟏
𝟐⌈ π΄βŒ‰0
2. Rearranging,
𝟏
𝟐[ 𝐴]2 βˆ’
𝟏
𝟐⌈ π΄βŒ‰0
2 = π‘˜ 𝐴 𝑑.
Thus, for a 3rd order reaction, at tΒ½:
1
2 (
1
2
[ 𝐴]0)
2
βˆ’
1
2[ 𝐴]0
2
= π‘˜ 𝐴 𝑑1
2
β†’
1
2 (
1
4
[ 𝐴]2)
βˆ’
1
2[ 𝐴]0
2
= π‘˜ 𝐴 𝑑1
2
β†’
1
1
2
[ 𝐴]0
2
βˆ’
1
2[ 𝐴]0
2
= π‘˜ 𝐴 𝑑1
2
β†’
2
[ 𝐴]0
2
βˆ’
1
2[ 𝐴]0
2
= π‘˜ 𝐴 𝑑1
2
β†’
3
2[ 𝐴]0
2
= π‘˜ 𝐴 𝑑1
2
β†’ 𝒕 𝟏
𝟐
=
πŸ‘
𝟐[ 𝑨] 𝟎
𝟐
π‘˜ 𝐴
𝑑1
2
depends on [ 𝐴]0 in 3rd order reactions.
nth Order Reaction:
Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ .
𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
π‘Ž 𝑑𝑑
= π‘˜[ 𝐴] 𝛼
, where  is the partial order of reaction with respect to A,
determined experimentally. Assuming the reaction is nth order, 𝛼 = 𝑛. Thus, 𝜐 =
π‘˜[ 𝐴] 𝑛
.
To simplify, we can let βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴] 𝑛
and let π‘˜ 𝐴 = π‘Žπ‘˜.
Rearranging therefore gives
𝒅[ 𝑨]
[ 𝑨] 𝒏 = βˆ’π’Œ 𝑨 𝒅𝒕, the rate law in differential form.
If we integrate the above equation, we get the following:
𝑑[ 𝐴]
[ 𝑨] 𝒏 = βˆ’π‘˜ 𝐴 𝑑𝑑 β†’
[ 𝑨]βˆ’π’+𝟏
βˆ’π’+𝟏
= βˆ’π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form.
When 𝑑 = 0,
[ 𝑨] 𝟎
βˆ’π’+𝟏
βˆ’π’+𝟏
= 0 + 𝐢. Therefore, π‘ͺ =
[ 𝑨] 𝟎
βˆ’π’+𝟏
βˆ’π’+𝟏
.
Substituting gives:
[ 𝑨]βˆ’π’+𝟏
βˆ’π’+𝟏
= βˆ’π‘˜ 𝐴 𝑑 +
[ 𝑨] 𝟎
βˆ’π’+𝟏
βˆ’π’+𝟏
. Rearranging,
[ 𝑨]βˆ’π’+𝟏
βˆ’π’+𝟏
βˆ’
[ 𝑨] 𝟎
βˆ’π’+𝟏
βˆ’π’+𝟏
= βˆ’π‘˜ 𝐴 𝑑.
Thus, for a nth order reaction, at tΒ½:
(
1
2
[ 𝐴]0
βˆ’π‘›+1
)
βˆ’π‘› + 1
βˆ’
[ 𝐴]0
βˆ’π‘›+1
βˆ’π‘› + 1
= βˆ’π‘˜ 𝐴 𝑑1
2
β†’
((
1
2
)
βˆ’π‘›+1
[ 𝐴]0
βˆ’π‘›+1
)
βˆ’π‘› + 1
βˆ’
[ 𝐴]0
βˆ’π‘›+1
βˆ’π‘› + 1
= βˆ’π‘˜ 𝐴 𝑑1
2
β†’ 𝒕 𝟏
𝟐
=
([ 𝐴]0
βˆ’π‘›+1){(
1
2
)
βˆ’π‘›+1
βˆ’ 1}
βˆ’π‘› + 1
= βˆ’π‘˜ 𝐴 𝑑1
2
We can invert the initial concentration term to send it to the number with the index
𝑛 βˆ’ 1, flip the fraction Β½ to also give it the index 𝑛 βˆ’ 1, and divide both sides of the
equation by βˆ’π‘˜ 𝐴 (to isolate tΒ½ and distribute the negative sign to the denominator,
βˆ’π‘› + 1). Thus:
𝒕 𝟏
𝟐
=
𝟐 π’βˆ’πŸ
βˆ’ 𝟏
[ 𝑨] 𝟎
π’βˆ’πŸ( 𝒏 βˆ’ 𝟏) π’Œ 𝑨
𝑑1
2
depends on [ 𝐴]0 in nth order reactions.
Example:
Consider the 1st order reaction 𝐴 β†’ 𝐡.
At time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = π‘₯.
Hence, [ 𝐴] + [ 𝐡] = [ 𝐴]0 and 𝜐 =
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑
=
𝑑[ 𝐡]
𝑑
= π‘˜[ 𝐴] = π‘˜([ 𝐴]0 βˆ’ π‘₯).
If βˆ’
𝑑[ 𝐴]
𝑑
π‘˜[ 𝐴], then [ 𝐴] = [ 𝐴]0 π‘’βˆ’π‘˜π‘‘
or ln
[ 𝐴]0βˆ’π‘₯
[ 𝐴]0
= βˆ’π‘˜π‘‘.
Therefore, ln
π‘Ž0βˆ’π‘₯
π‘Ž0
= βˆ’π‘˜π‘‘.
Also,
𝑑π‘₯
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯)is a separable equation such that
𝑑π‘₯
π‘Ž0 βˆ’π‘₯
= π‘˜ 𝑑𝑑.
Integrating gives βˆ’ln| π‘Ž0 βˆ’ π‘₯| = π‘˜π‘‘ + 𝐢, where C is an integration constant.
At time 𝑑 = 0: π‘₯ = 0 and βˆ’ ln| π‘Ž0| = 𝐢.
Then βˆ’ln| π‘Ž0 βˆ’ π‘₯| = π‘˜π‘‘ βˆ’ ln| π‘Ž0| β†’ ln| π‘Ž0 βˆ’ π‘₯| βˆ’ ln| π‘Ž0| = βˆ’π‘˜π‘‘ β†’ ln
π‘Ž0βˆ’π‘₯
π‘Ž0
= βˆ’π‘˜π‘‘.
And if [ 𝐴] + [ 𝐡] = π‘Ž0, then [ 𝐡] = π‘Ž0 βˆ’ [ 𝐴] = π‘Ž0 βˆ’ π‘Ž0 π‘’βˆ’π‘˜π‘‘
= π‘Ž0(1 βˆ’ π‘’βˆ’π‘˜π‘‘).
In terms of [B]:
𝑑[ 𝐡]
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯) = π‘˜( π‘Ž0 βˆ’ [ 𝐡]).
This is a separable equation such that:
𝑑[ 𝐡]
π‘Ž0βˆ’[ 𝐡]
= π‘˜ 𝑑𝑑.
Integrating gives βˆ’ln π‘Ž0 βˆ’ [ 𝐡] = π‘˜π‘‘ + 𝐢.
At time 𝑑 = 0: [ 𝐡] = 0 and βˆ’ ln| π‘Ž0| = 𝐢.
Then βˆ’ln| π‘Ž0 βˆ’ [ 𝐡]| = π‘˜π‘‘ βˆ’ ln| π‘Ž0| β†’ ln| π‘Ž0 βˆ’ [ 𝐡]| βˆ’ ln| π‘Ž0 | = βˆ’π‘˜π‘‘ β†’ ln
π‘Ž0βˆ’[ 𝐡]
π‘Ž0
=
βˆ’π‘˜π‘‘, as above.
Example
Consider the 2nd order reaction 2𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃 or 𝐴 + 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
Let βˆ’
𝑑[ 𝐴]
2𝑑𝑑
= π‘˜[ 𝐴] 𝛼
= π‘˜[ 𝐴]2
. And let π‘˜ 𝐴 = 2π‘˜.
Then rearranging gives
𝑑[ 𝐴]
𝑑[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑𝑑.
Integrating gives βˆ’
1
[ 𝐴]
= βˆ’π‘˜ 𝐴 𝑑 + 𝐢.
At time 𝑑 = 0: βˆ’
1
[ 𝐴]0
= 𝐢.
Then βˆ’
1
[ 𝐴]
= π‘˜ 𝐴 𝑑 βˆ’
1
[ 𝐴]0
β†’
1
[ 𝐴]
βˆ’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑, where k has units
1
π‘šπ‘œπ‘™ πΏβˆ’1 π‘ βˆ’1.
At time 𝑑 = 𝑑1
2
:
1
1
2
[ 𝐴]0
βˆ’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑1
2
β†’
2
[ 𝐴]0
βˆ’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑1
2
β†’
1
[ 𝐴]0
= π‘˜ 𝐴 𝑑1
2
β†’ 𝒕 𝟏
𝟐
=
𝟏
[ 𝑨] 𝟎 π’Œ 𝑨
.
Consider a 2nd order reaction that has two reactants, such as 𝐴 + 𝐡 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
We can express the rate as βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴][ 𝐡], but it cannot be integrated as it
contains two different variables.
We still know that at time 𝑑 = 0: [ 𝐴] = [ 𝐴]0, [ 𝐡] = [ 𝐡]0, and [ 𝑃] = 0.
Similarly, at time 𝑑 = π‘Žπ‘›π‘¦: [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯, and [ 𝑃] = π‘₯.
If we assume that [ 𝐴]0 = [ 𝐡]0, then [ 𝐴] = [ 𝐡] as well.
The rate then becomes βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴]2
, a separable equation.
Thus,
𝑑[ 𝐴]
[ 𝐴]2 = βˆ’π‘˜ 𝑑𝑑, which can be integrated as in the example previous example.
Consider a 3rd order reaction 3𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
The rate is βˆ’
𝑑[ 𝐴]
3𝑑𝑑
= π‘˜[ 𝐴]3
. Let π‘˜ 𝐴 = 3π‘˜.
Then rearranging gives
𝑑[ 𝐴]
𝑑[ 𝐴]3 = βˆ’π‘˜ 𝐴 𝑑𝑑.
Integrating gives βˆ’
1
2[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑 + 𝐢.
At time 𝑑 = 0: βˆ’
1
2[ 𝐴]0
2 = 𝐢.
Then βˆ’
1
2[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑 βˆ’
1
2[ 𝐴]0
2 β†’
1
2[ 𝐴]2 βˆ’
1
2[ 𝐴]0
2 = π‘˜ 𝐴 𝑑 β†’
1
[ 𝐴]2 βˆ’
1
[ 𝐴]0
2 = 2π‘˜ 𝐴 𝑑.
At 𝑑 = 𝑑1
2
: GO OVER TO CLARIFY!
Example
Consider the reaction 2𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃 or 𝐴 + 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
Then βˆ’
𝑑[ 𝐴]
2𝑑𝑑
= π‘˜[ 𝐴]2[ 𝐡], where [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯ at any time t.
If we let 2[ 𝐴]0 ≫ [ 𝐴], then 2[ 𝐴]0 βˆ’ 2π‘₯.
Then [ 𝐴] = 2[ 𝐴]0 βˆ’ π‘₯ β†’ [ 𝐴] = 2([ 𝐴]0 βˆ’ π‘₯).
And since [ 𝐡] = [ 𝐴]0 βˆ’ π‘₯, then [ 𝐴] = 2[ 𝐡] (and thus [ 𝐴]0 = 2[ 𝐡]0 and [ 𝐡] =
[ 𝐴]
2
).
Therefore, βˆ’
𝑑[ 𝐴]
𝑑𝑑
= 2π‘˜[ 𝐴]2
= 2π‘˜ 𝐴
[ 𝐴]2
2
β†’ βˆ’
𝑑[ 𝐴]
𝑑𝑑
= 2π‘˜ 𝐴[ 𝐴]2
(
1
2
[ 𝐴]) = π‘˜[ 𝐴]3
β†’
βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴]3
.
Example
Consider a reaction 𝐴 + 𝐡 + 𝐢 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
At time 𝑑 = 0, we assume that [ 𝐴] = [ 𝐴]0, [ 𝐡] = [ 𝐴]0, and [ 𝐢] = [ 𝐴]0.
Likewise, at time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, [ 𝐡] = [ 𝐴]0 βˆ’ π‘₯, and [ 𝐢] = [ 𝐴]0 βˆ’ π‘₯.
The rate is given by: βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴][ 𝐡][ 𝐢] β†’ βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴]3
β†’
𝑑[ 𝐴]
[ 𝐴]3 = βˆ’π‘˜ 𝑑𝑑.
Integrating gives βˆ’
1
[ 𝐴]2 = βˆ’π‘˜π‘‘ + 𝐢 β†’
1
[ 𝐴]2 = π‘˜π‘‘ + 𝐢.
At 𝑑 = 0,
1
[ 𝐴]0
2 = 𝐢. Therefore,
1
[ 𝐴]2 = π‘˜π‘‘ +
1
[ 𝐴]0
2 β†’
1
[ 𝐴]2 βˆ’
1
[ 𝐴]0
2 = π‘˜π‘‘.
And at 𝑑 = 𝑑1
2
,
1
[ 𝐴]2 βˆ’
1
(
1
2
[ 𝐴]0)
2 = π‘˜π‘‘1
2
β†’
1
[ 𝐴]2 βˆ’
1
1
4
[ 𝐴]0
2 = π‘˜π‘‘1
2
β†’ 𝒕 𝟏
𝟐
=
𝟏
π’Œ[ 𝑨] 𝟐 βˆ’
πŸ’
π’Œ[ 𝑨] 𝟎
𝟐.
HAVE HOKMABADI CHECK THIS!
Example
Consider the 2nd order reaction 𝐴 + 𝐡 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
At time 𝑑 = 0, we assume that [ 𝐴] = [ 𝐴]0 and [ 𝐡] = [ 𝐡]0.
Similarly, at time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯.
The rate is then given by:
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴][ 𝐡] = π‘˜([ 𝐴]0 βˆ’ π‘₯ )([ 𝐡]0 βˆ’ π‘₯).
We will denote [ 𝐴] = π‘Ž and [ 𝐴]0 = π‘Ž0.
Then
𝑑π‘₯
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯ )( 𝑏0 βˆ’ π‘₯) β†’
1
( π‘Ž0βˆ’π‘₯ )( 𝑏0βˆ’π‘₯)
𝑑π‘₯ = π‘˜ 𝑑𝑑.
We use partial fractions to solve for a and b.
1 = 𝐴( 𝑏0 βˆ’ π‘₯) + 𝐡( π‘Ž0 βˆ’ π‘₯)
𝐴𝑏0 + π΅π‘Ž0 βˆ’ ( 𝐴 + 𝐡) π‘₯ βˆ’ 1 = 0
Let {
𝐴 + 𝐡 = 0
𝐴𝑏0 + π΅π‘Ž0 βˆ’ 1 = 0
We can show that 𝐡 =
1
π‘Ž0βˆ’π‘0
and that 𝐴 =
1
π‘Ž0βˆ’π‘0
.
1
( π‘Ž0 βˆ’ π‘₯ )( 𝑏0 βˆ’ π‘₯)
=
βˆ’
1
( π‘Ž0 βˆ’ 𝑏0)
( π‘Ž0 βˆ’ π‘₯ )
+
βˆ’
1
( π‘Ž0 βˆ’ 𝑏0 )
( 𝑏0 βˆ’ π‘₯ )
=
1
( π‘Ž0 βˆ’ 𝑏0 )( π‘Ž0 βˆ’ π‘₯)
+
1
( π‘Ž0 βˆ’ 𝑏0 )( 𝑏0 βˆ’ π‘₯)
= βˆ’
1
π‘Ž0 βˆ’ 𝑏0
[
1
π‘Ž0 βˆ’ π‘₯
βˆ’
1
𝑏0 βˆ’ π‘₯
]
𝑑π‘₯
π‘Ž0 βˆ’ π‘₯
βˆ’
𝑑π‘₯
𝑏0 βˆ’ π‘₯
= βˆ’π‘˜( π‘Ž0 βˆ’ 𝑏0) 𝑑𝑑
Integrating (integral #6) gives: π₯𝐧(| 𝒂 𝟎 βˆ’ 𝒙|) βˆ’ π₯𝐧(| 𝒃 𝟎 βˆ’ 𝒙|) = βˆ’π’Œ( 𝒂 𝟎 βˆ’ 𝒃 𝟎) 𝒕.
Review
𝐴 + 𝐡 β†’ 𝑃
At time 𝑑 = π‘Žπ‘›π‘¦: π‘Ž = π‘Ž0 βˆ’ π‘₯ and 𝑏 = 𝑏0 βˆ’ π‘₯, so that
𝑑π‘₯
𝑑𝑑
= βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴][ 𝐡] =
π‘˜( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯).
Thus,
𝑑π‘₯
( π‘Ž0βˆ’π‘₯ )( 𝑏0βˆ’π‘₯)
= βˆ’π‘˜ 𝑑𝑑.
Using the integral ∫
𝑑π‘₯
( π‘Ž+𝑏π‘₯ )( 𝑐+𝑔π‘₯)
=
1
π‘Žπ‘”βˆ’π‘π‘
ln |
𝑐+𝑔π‘₯
π‘Ž+𝑏π‘₯
|, we get:
𝑑π‘₯
( π‘Ž0 βˆ’ π‘₯ )( 𝑏0 βˆ’ π‘₯)
= βˆ’
1
βˆ’π‘Ž0 + 𝑏0
ln |
𝑏0 βˆ’ π‘₯
π‘Ž0 βˆ’ π‘₯
| = βˆ’π‘˜π‘‘ + 𝐢
Or
1
βˆ’( π‘Ž0βˆ’π‘0)
ln |
𝑏0βˆ’π‘₯
π‘Ž0βˆ’π‘₯
| = βˆ’π‘˜π‘‘ + 𝐢.
At 𝑑 = 0, βˆ’
1
( π‘Ž0βˆ’π‘0)
ln
𝑏0
π‘Ž0
= 𝐢 β†’ 𝐢 =
1
βˆ’( π‘Ž0βˆ’π‘0)
ln
𝑏0
π‘Ž0
.
Therefore,
1
βˆ’( π‘Ž0βˆ’π‘0)
ln |
𝑏0βˆ’π‘₯
π‘Ž0βˆ’π‘₯
| = βˆ’π‘˜π‘‘ βˆ’
1
( π‘Ž0βˆ’π‘0)
ln
𝑏0
π‘Ž0
.
Multiplying both sides by ( π‘Ž0 βˆ’ 𝑏0) gives
Rearranging gives βˆ’ln |
𝑏0βˆ’π‘₯
π‘Ž0βˆ’π‘₯
| = βˆ’( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ βˆ’ ln
𝑏0
π‘Ž0
Thus ln|
𝑏0βˆ’π‘₯
π‘Ž0βˆ’π‘₯
| = ( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ + ln
𝑏0
π‘Ž0
And βˆ’ ln |
π‘Ž0βˆ’π‘₯
𝑏0βˆ’π‘₯
| = ( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ + ln
𝑏0
π‘Ž0
Hence ln |
π‘Ž0βˆ’π‘₯
𝑏0βˆ’π‘₯
| + ln
𝑏0
π‘Ž0
= βˆ’( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘
And βˆ’
1
( π‘Ž0βˆ’π‘0)
ln
𝑏0( π‘Ž0βˆ’π‘₯)
π‘Ž0( 𝑏0βˆ’π‘₯)
+ ln
𝑏0
π‘Ž0
= π‘˜π‘‘
WAIT FOR CORRECTION
Reversible 1st Order Reactions
Consider the reaction: 𝐴 π‘˜βƒ‘βƒ—βƒ— 𝐡.
This overall reaction is composed of two elementary reactions:
 𝐴 π‘˜1
βƒ—βƒ—βƒ—βƒ— 𝐡 for which the rate is: βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜1[ 𝐴]1
β†’
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴]; and
 𝐡 π‘˜βˆ’1
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴 for which the rate is:
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐡]
The overall rate is
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴]1
+ π‘˜1[ 𝐡]1
.
Before we can integrate, we must express B in terms of A.
[ 𝐴] = [ 𝐴]0 βˆ’ π‘₯
[ 𝐡] = π‘₯
} [ 𝐴] + [ 𝐡] = [ 𝐴]0 β†’ [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴]
Hence
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴]1
+ π‘˜1([ 𝐴]0 βˆ’ [ 𝐴])
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴]1
+ π‘˜1[ 𝐴]0 βˆ’ π‘˜1[ 𝐴]
𝑑[ 𝐴]
𝑑𝑑
= βˆ’( π‘˜1 + π‘˜βˆ’1)[ 𝐴]+ π‘˜βˆ’1[ 𝐴]0
Rearranging gives:
𝑑[ 𝐴]
( π‘˜1+π‘˜βˆ’1)[ 𝐴]βˆ’π‘˜βˆ’1[ 𝐴]0
= βˆ’π‘‘π‘‘
Integrating (integral #6) gives:
1
π‘˜1+π‘˜βˆ’1
ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} = βˆ’π‘‘ + 𝐢.
At 𝑑 = 0:
1
π‘˜1+π‘˜βˆ’1
ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴]0 βˆ’ π‘˜βˆ’1[ 𝐴]0} = 𝐢
1
π‘˜1 + π‘˜βˆ’1
ln{ π‘˜1[ 𝐴]0 + π‘˜βˆ’1[ 𝐴]0 βˆ’ π‘˜βˆ’1[ 𝐴]0} = 𝐢
1
π‘˜1 + π‘˜βˆ’1
ln{ π‘˜1[ 𝐴]0} = 𝐢
Hence
1
π‘˜1+π‘˜βˆ’1
ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} = βˆ’π‘‘ +
1
π‘˜1+π‘˜βˆ’1
ln{ π‘˜1[ 𝐴]0}
1
π‘˜1 + π‘˜βˆ’1
ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} βˆ’
1
π‘˜1 + π‘˜βˆ’1
ln{ π‘˜1[ 𝐴]0} = βˆ’π‘‘
1
π‘˜1 + π‘˜βˆ’1
〈ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} βˆ’ ln{ π‘˜1[ 𝐴]0}βŒͺ = βˆ’π‘‘
ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} βˆ’ ln{ π‘˜1[ 𝐴]0} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑
π₯𝐧 {
( π’Œ 𝟏 + π’Œβˆ’πŸ)[ 𝑨]βˆ’ π’Œβˆ’πŸ[ 𝑨] 𝟎
π’Œ 𝟏[ 𝑨] 𝟎
} = βˆ’( π’Œ 𝟏 + π’Œβˆ’πŸ) 𝒕
At equilibrium:
[ 𝐴] π‘’π‘ž + [ 𝐡] π‘’π‘ž = [ 𝐴]0 and
𝑑[ 𝐴]
𝑑𝑑
= 0 since [A] is a constant.
Hence
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] π‘’π‘ž + π‘˜βˆ’1 [ 𝐡] π‘’π‘ž = 0.
Therefore, π‘˜1[ 𝐴] π‘’π‘ž = π‘˜βˆ’1[ 𝐡] π‘’π‘ž, which is in accordance with the equilibrium
condition that the forward rate should equal the reverse rate.
Rearranging this gives
[ 𝑩] 𝒆𝒒
[ 𝑨] 𝒆𝒒
=
π’Œ 𝟏
π’Œβˆ’πŸ
= π’Œ π‘ͺ, which we will name the equilibrium rate
constant, a chemical thermodynamics term.
{
[ 𝐴] π‘’π‘ž + [ 𝐡] π‘’π‘ž = [ 𝐴]0 … … …… … …(1)
[ 𝐡] π‘’π‘ž
[ 𝐴] π‘’π‘ž
=
π‘˜1
π‘˜βˆ’1
… … … …… … …… … …(2)
We solve for [ 𝐴] π‘’π‘ž and [ 𝐡] π‘’π‘ž by substitution.
Rearrange (2): [ 𝐡] π‘’π‘ž =
π‘˜1
π‘˜βˆ’1
[ 𝐴] π‘’π‘žβ€¦β€¦(3)
Substitute the above into (1): [ 𝐴] π‘’π‘ž +
π‘˜1
π‘˜βˆ’1
[ 𝐴] π‘’π‘ž = [ 𝐴]0
Factor out [ 𝐴] π‘’π‘ž: [ 𝐴] π‘’π‘ž (1 +
π‘˜1
π‘˜βˆ’1
) = [ 𝐴]0
Make k-1 the common denominator: [ 𝐴] π‘’π‘ž (
π‘˜βˆ’1+π‘˜1
π‘˜βˆ’1
) = [ 𝐴]0
Make [ 𝐴] π‘’π‘ž the subject: [ 𝑨] 𝒆𝒒 =
π’Œβˆ’πŸ[ 𝑨] 𝟎
π’Œβˆ’πŸ+π’Œ 𝟏
Note that [ 𝐴]0 =
[ 𝐴] π‘’π‘ž( π‘˜βˆ’1+π‘˜1)
π‘˜βˆ’1
Substitute into (3): [ 𝐡] π‘’π‘ž =
π‘˜1
π‘˜βˆ’1
{
π‘˜βˆ’1[ 𝐴]0
π‘˜βˆ’1+π‘˜1
}
The k-1 term cancels to give: [ 𝑩] 𝒆𝒒 =
π’Œ 𝟏[ 𝑨] 𝟎
π’Œβˆ’πŸ+π’Œ 𝟏
.
To prove these solutions for [ 𝐴] π‘’π‘ž and [ 𝐡] π‘’π‘ž hold, we substitute them into (2) and
cancel common terms:
[ 𝐡] π‘’π‘ž
[ 𝐴] π‘’π‘ž
=
π‘˜1[ 𝐴]0
π‘˜βˆ’1 + π‘˜1
βˆ™
π‘˜βˆ’1 + π‘˜1
π‘˜βˆ’1[ 𝐴]0
=
π‘˜1
π‘˜βˆ’1
= π‘˜ 𝐢
Furthermore, we can substitute our new expression for [ 𝐴]0 into the original
integral equation, ln {
( π‘˜1+π‘˜βˆ’1)[ 𝐴]βˆ’π‘˜βˆ’1[ 𝐴]0
π‘˜1[ 𝐴]0
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑:
ln {
( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1 (
[ 𝐴] π‘’π‘ž( π‘˜βˆ’1 + π‘˜1)
π‘˜βˆ’1
)
π‘˜1 (
[ 𝐴] π‘’π‘ž ( π‘˜βˆ’1 + π‘˜1)
π‘˜βˆ’1
)
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑
The term ( π‘˜βˆ’1 + π‘˜1) is common to both numerator terms as well as the
denominator and can be canceled out; k-1 in the numerator can also be canceled
out. This gives:
ln {
[ 𝐴] βˆ’ [ 𝐴] π‘’π‘ž
π‘˜1
π‘˜βˆ’1
[ 𝐴] π‘’π‘ž
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑
Review
Consider the reaction: 𝐴 π‘˜βƒ‘βƒ—βƒ— 𝐡.
This overall reaction is composed of two elementary reactions: 𝐴 π‘˜1
βƒ—βƒ—βƒ—βƒ— 𝐡 and 𝐡 π‘˜βˆ’1
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴.
The overall rate in differential form is:
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] + π‘˜1[ 𝐡].
The integral form is: ln {
( π‘˜1+π‘˜βˆ’1)[ 𝐴]βˆ’π‘˜βˆ’1[ 𝐴]0
π‘˜1[ 𝐴]0
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑. (Eq. 1)
This simplifies to give: ln {
[ 𝐴]βˆ’[ 𝐴] π‘’π‘ž
[ 𝐴]0βˆ’[ 𝐴] π‘’π‘ž
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑. (Eq. 2)
We can show that:
1. [ 𝐴] =
π‘˜βˆ’1[ 𝐴]0
π‘˜1+π‘˜βˆ’1
{1 +
π‘˜1
π‘˜βˆ’1
π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑
}:
Show that:
π‘˜1
π‘˜βˆ’1
[ 𝐴] π‘’π‘ž = [ 𝐴] βˆ’ [ 𝐴] π‘’π‘ž.
[ 𝐡] π‘’π‘ž
[ 𝐴] π‘’π‘ž
=
π‘˜1
π‘˜βˆ’1
β†’ [ 𝑩] 𝒆𝒒 =
π’Œ 𝟏
π’Œβˆ’πŸ
[ 𝑨] 𝒆𝒒
[ 𝐡] π‘’π‘ž + [ 𝐴] π‘’π‘ž = [ 𝐴]0 β†’ [ 𝑩] 𝒆𝒒 = [ 𝑨] 𝟎 βˆ’ [ 𝑨] 𝒆𝒒
These two expressions for [ 𝐡] π‘’π‘ž must be equivalent:
π‘˜1
π‘˜βˆ’1
[ 𝐴] π‘’π‘ž = [ 𝐴]0 βˆ’ [ 𝐴] π‘’π‘ž
At time 𝑑 = 0: [ 𝐴] =
π‘˜βˆ’1[ 𝐴]0
π‘˜1+π‘˜βˆ’1
{1 +
π‘˜1
π‘˜βˆ’1
}
Make k-1 the common denominator: [ 𝐴] =
π‘˜βˆ’1[ 𝐴]0
π‘˜1+π‘˜βˆ’1
{
π‘˜βˆ’1+π‘˜1
π‘˜βˆ’1
}
The terms π‘˜βˆ’1 and π‘˜1 + π‘˜βˆ’1 both cancel out in the numerator and denominator
to give: [ 𝐴] = [ 𝐴]0 at time 𝑑 = 0, which is true.
2. [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] =
π‘˜1[ 𝐴]0
π‘˜1+π‘˜βˆ’1
{1 βˆ’ π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑
}:
At time 𝑑 = 0: [ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜1+π‘˜βˆ’1
{1 βˆ’ 1}
Therefore: [ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜1+π‘˜βˆ’1
{0}
This boils down to [ 𝐡] = 0 at time 𝑑 = 0, which is true.
Hence both equations are valid.
Relative rate constants in a reversible 1st order reaction
Consider the reaction 𝐴 π‘˜βƒ‘βƒ—βƒ— 𝐡, composed of two elementary reactions: 𝐴 π‘˜1
βƒ—βƒ—βƒ—βƒ— 𝐡 and
𝐡 π‘˜βˆ’1
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴.
If we suppose that π’Œβˆ’πŸ ≃ 𝟎, then the forward reaction predominates and the
integrated rate law for the overall reaction (Eq. 1) changes as follows:
ln {
( π‘˜1 + π‘˜βˆ’1 )[ 𝐴]βˆ’ π‘˜βˆ’1[ 𝐴]0
π‘˜1[ 𝐴]0
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑
ln {
π‘˜1[ 𝐴]
π‘˜1[ 𝐴]0
} = βˆ’π‘˜1 𝑑
π₯𝐧
[ 𝑨]
[ 𝑨] 𝟎
= βˆ’π’Œ 𝟏 𝒕 = [ 𝑨]
The equation for the concentration of product B changes as follows:
[ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] =
π‘˜1[ 𝐴]0
π‘˜1 + π‘˜βˆ’1
{1 βˆ’ π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑
}
[ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜1 + π‘˜βˆ’1
{1 βˆ’ π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑
}
[ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜1
{1 βˆ’ π‘’βˆ’( π‘˜1) 𝑑
}
[ 𝑩] = [ 𝑨] 𝟎{𝟏 βˆ’ π’†βˆ’π’Œ 𝟏 𝒕
}
Hence we can write a new expression for [ 𝐴]0:
[ 𝑨] 𝟎 = [ 𝑨]+ [ 𝑩] = π₯𝐧
[ 𝑨]
[ 𝑨] 𝟎
+ [ 𝑨] 𝟎{𝟏 βˆ’ π’†βˆ’π’Œ 𝟏 𝒕
}
If, similarly, we suppose that π’Œ 𝟏 ≫ π’Œβˆ’πŸ; that is, that π’Œ ≃ 𝟎, then [ 𝐴] π‘’π‘ž = 0 and Eq.
2 becomes:
ln {
[ 𝐴] βˆ’ [ 𝐴] π‘’π‘ž
[ 𝐴]0 βˆ’ [ 𝐴] π‘’π‘ž
} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑
π₯𝐧
[ 𝑨]
[ 𝑨] 𝟎
= βˆ’π’Œ 𝟏 𝒕
Dynamic Equilibrium in a Reversible 1st Order Reaction
When a reversible 1st order reaction reaches dynamic equilibrium, the following
conditions are true:
 [ 𝐴] π‘’π‘ž + [ 𝐡] π‘’π‘ž = [ 𝐴]0

[ 𝐡] π‘’π‘ž
[ 𝐴] π‘’π‘ž
=
π‘˜1
π‘˜βˆ’1
= π‘˜ 𝐢
Consecutive 1st Order Reactions
Consider the reaction 𝐴 π‘˜1
⃑⃗⃗⃗⃗ 𝐡 π‘˜2
⃑⃗⃗⃗⃗⃗ 𝐢.
At time 𝑑 = 0, [ 𝐴] = [ 𝐴]0, [ 𝐡] = 0, and [ 𝐢] = 0.
At time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, [ 𝐡] = 𝑦, and [ 𝐢] = 𝑧.
As we define π‘₯ = 𝑦 + 𝑧, we can say that [ 𝐴] + [ 𝐡] + [ 𝐢] = [ 𝐴]0 βˆ’ π‘₯ + 𝑦 + 𝑧 = [ 𝐴]0
The rates with respect to each species are as follows:
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴],
𝑑[ 𝐡]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡], and
𝑑[ 𝐢]
𝑑𝑑
= π‘˜2[ 𝐡].
With some manipulation, we can formulate equations for the concentrations of A, B,
and C.
[ 𝑨] = [ 𝑨] 𝟎 π’†βˆ’π’Œ 𝟏 𝒕
(1)
𝑑[ 𝐡]
𝑑𝑑
= π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡] (2)
𝑑[ 𝐢]
𝑑𝑑
= π‘˜2[ 𝐡] (3)
We can substitute [ 𝐴] = [ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
into the expression for
𝑑[ 𝐡]
𝑑𝑑
as follows:
𝑑[ 𝐡]
𝑑𝑑
= π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
βˆ’ π‘˜2[ 𝐡]
𝑑[ 𝐡]
𝑑𝑑
+ π‘˜2[ 𝐡] = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
(4)
We can also differentiate the expression [ 𝐡] 𝑒 π‘˜2 𝑑
with respect to t by using the
product rule [
𝑑
𝑑π‘₯
(𝑔( π‘₯) 𝑓( π‘₯)) = 𝑔( π‘₯) 𝑓′( π‘₯)+ 𝑓( π‘₯) 𝑔′( π‘₯)] and then factor out the
common term, 𝑒 π‘˜2 𝑑
:
𝑑
𝑑𝑑
{[ 𝐡] 𝑒 π‘˜2 𝑑} = 𝑒 π‘˜2 𝑑
𝑑[ 𝐡]
𝑑𝑑
+ π‘˜2 𝑒 π‘˜2 𝑑[ 𝐡]
𝑑
𝑑𝑑
{[ 𝐡] 𝑒 π‘˜2 𝑑} = 𝑒 π‘˜2 𝑑
(
𝑑[ 𝐡]
𝑑𝑑
+ π‘˜2[ 𝐡])
The term in parentheses above is equivalent to (4) and so we can substitute and use
the laws of exponents to simplify:
𝑑
𝑑𝑑
{[ 𝐡] 𝑒 π‘˜2 𝑑} = 𝑒 π‘˜2 𝑑( π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑)
𝑑
𝑑𝑑
{[ 𝐡] 𝑒 π‘˜2 𝑑} = π‘˜1[ 𝐴]0 𝑒( π‘˜2βˆ’π‘˜1) 𝑑
Now we can rearrange this equation and integrate using [∫( 𝑒 π‘Žπ‘₯) 𝑑π‘₯ =
1
π‘Ž
𝑒 π‘Žπ‘₯
+ 𝐢]:
∫ 𝑑{[ 𝐡] 𝑒 π‘˜2 𝑑} = ∫ π‘˜1[ 𝐴]0 𝑒( π‘˜2βˆ’π‘˜1) 𝑑
𝑑𝑑
[ 𝐡] 𝑒 π‘˜2 𝑑
=
π‘˜1[ 𝐴]0
π‘˜2 βˆ’ π‘˜1
𝑒( π‘˜2βˆ’π‘˜1) 𝑑
+ 𝐢
At time 𝑑 = 0, the equation becomes: 0 =
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
+ 𝐢 β†’ 𝐢 = βˆ’
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
.
Hence, at time 𝑑 = π‘Žπ‘›π‘¦: [ 𝐡] 𝑒 π‘˜2 𝑑
=
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
𝑒( π‘˜2βˆ’π‘˜1) 𝑑
βˆ’
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
.
Factoring the common term
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
, rearranging, and simplifying gives an expression
for [B]:
[ 𝐡] 𝑒 π‘˜2 𝑑
=
π‘˜1[ 𝐴]0
π‘˜2 βˆ’ π‘˜1
{𝑒( π‘˜2βˆ’π‘˜1) 𝑑
βˆ’ 1}
[ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜2 βˆ’ π‘˜1
{
𝑒( π‘˜2βˆ’π‘˜1) 𝑑
βˆ’ 1
𝑒 π‘˜2 𝑑
}
[ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜2 βˆ’ π‘˜1
{
𝑒 π‘˜2 𝑑
βˆ’ 𝑒 π‘˜1 𝑑
βˆ’ 𝑒 π‘˜2 𝑑
𝑒 π‘˜2 𝑑
}
[ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜2 βˆ’ π‘˜1
{
βˆ’π‘’ π‘˜1 𝑑
𝑒 π‘˜2 𝑑
}
[ 𝑩] =
π’Œ 𝟏[ 𝑨] 𝟎
π’Œ 𝟐 βˆ’ π’Œ 𝟏
{π’†βˆ’π’Œ 𝟏 𝒕
βˆ’ 𝒆 π’Œ 𝟐 𝒕
}
Finally, as we have stated that [ 𝐴] + [ 𝐡]+ [ 𝐢] = [ 𝐴]0, we can solve for [C] as
follows:
Rearrange to make [C] the subject: [ 𝐢] = [ 𝐴]0 βˆ’ [ 𝐴] βˆ’ [ 𝐡]
Substitute equations for [A] and [B]:[ 𝐢] = [ 𝐴]0 βˆ’ [ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
βˆ’ (
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
{ π‘’βˆ’π‘˜1 𝑑
βˆ’ 𝑒 π‘˜2 𝑑})
Factor [ 𝐴]0: [ 𝐢] = [ 𝐴]0 {1 βˆ’ π‘’βˆ’π‘˜1 𝑑
βˆ’
π‘˜1
π‘˜2βˆ’π‘˜1
{ π‘’βˆ’π‘˜1 𝑑
+ 𝑒 π‘˜2 𝑑}}
FINAL ANSWER SHOULD BE [ 𝐢] = [ 𝐴]0 {1 βˆ’
π‘˜2
π‘˜2βˆ’π‘˜1
π‘’βˆ’π‘˜1 𝑑
+
π‘˜1
π‘˜2βˆ’π‘˜1
π‘’βˆ’π‘˜2 𝑑
}
The Rate-Determining Step(RDS)
Suppose now that π‘˜2 ≫ π‘˜1. This would mean that B forms C much more quickly than
A forms B. Therefore, [ 𝐡] remains small and almost constant throughout the
reaction. That is, whenever a molecule of B is formed, it decays rapidly into C.
Hence the equation for [ 𝐡] ([ 𝐡] =
π‘˜1[ 𝐴]0
π‘˜2βˆ’π‘˜1
{ π‘’βˆ’π‘˜1 𝑑
βˆ’ π‘’βˆ’π‘˜2 𝑑}) becomes [ 𝑩] =
π’Œ 𝟏[ 𝑨] 𝟎
π’Œ 𝟐
π’†βˆ’π’Œ 𝟏 𝒕
.
We say that [ 𝐡] is very small and remains constant over the course of the reaction.
Similarly, [ 𝐢] = [ 𝐴]0 {1 βˆ’
π‘˜2
π‘˜2βˆ’π‘˜1
π‘’βˆ’π‘˜1 𝑑
+
π‘˜1
π‘˜2βˆ’π‘˜1
π‘’βˆ’π‘˜2 𝑑
} becomes [ π‘ͺ] = [ 𝑨] 𝟎{𝟏 βˆ’ π’†βˆ’π’Œ 𝟏 𝒕
},
and [ 𝑨] = [ 𝑨] 𝟎 π’†βˆ’π’Œ 𝟏 𝒕
.
All three of these equations depend only on k1, thus proving that the 1st step
determines the rate (or is the rate-determining step) of the reaction.
We say that a steady state approximation holds for species B, since [B] is constant
and small over the course of the reaction.
Therefore, the rate with respect to B is given by:
𝑑[ 𝐡]
𝑑𝑑
= 0 = π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡].
Hence π‘˜1[ 𝐴] = π‘˜2[ 𝐡] and [ 𝐡] =
π‘˜1
π‘˜2
[ 𝐴].
Similarly, the rate with respect to C is:
𝑑[ 𝐢]
𝑑𝑑
= π‘˜2[ 𝐡].
Substituting the final expression above for B gives:
𝑑[ 𝐢]
𝑑𝑑
= π‘˜2
π‘˜1
π‘˜2
[ 𝐴] = π‘˜1[ 𝐴]
Finally, we substitute for [A] to obtain:
𝑑[ 𝐢]
𝑑𝑑
= π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
.
This is an equation in [A] only and can be integrated to provide a new equation for
[C] as follows.
Rearrange: 𝑑[ 𝐢] = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
𝑑𝑑
Integrate using [∫( 𝑒 π‘Žπ‘₯) 𝑑π‘₯ =
1
π‘Ž
𝑒 π‘Žπ‘₯
+ 𝐢]: [ 𝐢] =
π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
βˆ’π‘˜1
+ 𝐢
Simplify: [ 𝐢] =
π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
βˆ’π‘˜1
+ 𝐢 β†’ [ 𝐢] = βˆ’[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
+ 𝐢
At time 𝑑 = 0, therefore: 0 = βˆ’[ 𝐴]0 + 𝐢 β†’ 𝐢 = [ 𝐴]0.
Thus: [ 𝐢] = βˆ’[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑
+ [ 𝐴]0 = [ 𝐴]0(βˆ’π‘’βˆ’π‘˜1 𝑑
+ 1)
Or: [ 𝐢] = [ 𝐴]0{1 βˆ’ π‘’βˆ’π‘˜1 𝑑}, the same expression attained via the steady state
approximation.
ReactionMechanisms
Consider the reaction 2𝑆𝑂2 + 𝑂2 β†’ 2𝑆𝑂3.
The nitrogen monoxide-catalyzed oxidation of 𝑆𝑂2 gas gives the overall
stoichiometry of the reaction but does not tell us the process, or mechanism, by
which the reaction actually occurs. This reaction has been postulated to occur by the
following two-step process:
𝑆𝑑𝑒𝑝 1: [ 𝑂2 + 2𝑁𝑂 β†’ 2𝑁𝑂2] 𝑆1 = 1
𝑆𝑑𝑒𝑝 2: [ 𝑁𝑂2 + 𝑆𝑂2 β†’ 𝑁𝑂 + 𝑆𝑂3] 𝑆2 = 1
π‘‚π‘£π‘’π‘Ÿπ‘Žπ‘™π‘™ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘›: 𝑂2 + 2𝑆𝑂2 β†’ 2𝑆𝑂3
The number of times a given step in the mechanism occurs for each occurrence of
the overall reaction is called the stoichiometric number S of the step.
Do not confuse the stoichiometric number S of a mechanistic step with the
stoichiometric coefficient of a chemical species.
Example
The gas-phase decomposition of 𝑁2 𝑂5 has overall reaction:
𝑆𝑑𝑒𝑝 1: [ 𝑁2 𝑂5 β‡Œ 𝑁𝑂2 + 𝑁𝑂3] 𝑆1 = 2
𝑆𝑑𝑒𝑝 2: [ 𝑁𝑂2 + 𝑁𝑂3 β†’ 𝑁𝑂 + 𝑂2 + 𝑁𝑂2] 𝑆2 = 1
𝑆𝑑𝑒𝑝 3: [ 𝑁𝑂+ 𝑁𝑂3 β†’ 2𝑁𝑂2] 𝑆3 = 1
π‘‚π‘£π‘’π‘Ÿπ‘Žπ‘™π‘™ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘›: 2𝑁2 𝑂5 β†’ 4𝑁𝑂2 + 𝑂2
Species like 𝑁𝑂3 and 𝑁𝑂, which do not appear in the overall reaction, are called
reaction intermediates. Each step in the mechanism is called an elementary reaction.
A simple reaction consists of a single elementary step. A complex/composite
reaction consists of two or more elementary steps.
The Diels-Alder addition of ethylene to butan-1,3-diene to give cyclohexene is
believed to be simple, occurring as a simple step:
𝐢𝐻2 = 𝐢𝐻2 + 𝐢𝐻2 = 𝐢𝐻𝐢𝐻 = 𝐢𝐻2 β†’ 𝐢6 𝐻10
… π‘€β„Žπ‘’π‘Ÿπ‘’ 𝜐 = π‘˜[ 𝐢𝐻2 = 𝐢𝐻2][ 𝐢𝐻2 = 𝐢𝐻𝐢𝐻 = 𝐢𝐻2]
Rate-Determining Step Determination
Consider the composite reaction 𝐴 π‘˜1
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐡 π‘˜2
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢.
If we assume that π‘˜2 ≫ 1, then the overall reaction becomes 𝐴 π‘˜1
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢.
The concentration of B, [ 𝐡], remains very small and constant during the course of
the reaction, such that
𝑑[ 𝐡]
𝑑𝑑
= 0 = π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡]. Hence, π‘˜1[ 𝐴] = π‘˜2[ 𝐡] and [ 𝐡] =
π‘˜1
π‘˜2
[ 𝐴].
We also know that
𝑑[ 𝐢]
𝑑𝑑
= π‘˜2[ 𝐡]. Thus,
𝑑[ 𝐢]
𝑑𝑑
= π‘˜2 (
π‘˜1
π‘˜2
[ 𝐴]) = π‘˜1[ 𝐴].
Finally,
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴].
This shows that the rate of appearance of A depends on the 1st elementary step,
which – by virtue of the large size of π‘˜2 – is assumed to be the slower, rate-
determining step.
Example
Consider the reaction 𝐴 π‘˜1, π‘˜βˆ’1
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡 π‘˜2
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢.
We define: π‘˜ =
π‘˜1 π‘˜2
π‘˜βˆ’1+π‘˜2
.
We know that:
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 [ 𝐡]
𝑑[ 𝐡]
𝑑𝑑
= π‘˜1[ 𝐴]βˆ’ π‘˜βˆ’1[ 𝐡] βˆ’ π‘˜2[ 𝐡] = 0 ( π‘ π‘‘π‘’π‘Žπ‘‘π‘¦ π‘ π‘‘π‘Žπ‘‘π‘’ π‘Žπ‘π‘π‘Ÿπ‘œπ‘₯π‘–π‘šπ‘Žπ‘‘π‘–π‘œπ‘›)
𝑑[ 𝐢]
𝑑𝑑
= βˆ’π‘˜2[ 𝐡]
Therefore:
π‘˜1[ 𝐴] = π‘˜βˆ’1[ 𝐡] + π‘˜2[ 𝐡] = [ 𝐡]( π‘˜βˆ’1 + π‘˜2) β†’ [ 𝑩] =
π’Œ 𝟏[ 𝑨]
π’Œβˆ’πŸ + π’Œ 𝟐
𝑑[ 𝐢]
𝑑𝑑
= βˆ’π‘˜2[ 𝐡] = βˆ’π‘˜2 (
π‘˜1
π‘˜βˆ’1 + π‘˜2
) [ 𝐴] =
π‘˜1 π‘˜2
π‘˜βˆ’1 + π‘˜2
[ 𝐴] β†’
𝒅[ π‘ͺ]
𝒅𝒕
= π’Œ[ 𝑨]
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 [ 𝐡]
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 (
π‘˜1[ 𝐴]
π‘˜βˆ’1 + π‘˜2
)
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] +
π‘˜1 π‘˜βˆ’1
π‘˜βˆ’1 + π‘˜2
[ 𝐴]
𝑑[ 𝐴]
𝑑𝑑
=
βˆ’π‘˜1( π‘˜βˆ’1 + π‘˜2)[ 𝐴]+ π‘˜1 π‘˜βˆ’1[ 𝐴]
π‘˜βˆ’1 + π‘˜2
𝑑[ 𝐴]
𝑑𝑑
=
βˆ’π‘˜1 π‘˜βˆ’1[ 𝐴] βˆ’ π‘˜1 π‘˜2[ 𝐴] + π‘˜1 π‘˜βˆ’1[ 𝐴]
π‘˜βˆ’1 + π‘˜2
𝑑[ 𝐴]
𝑑𝑑
=
βˆ’π‘˜1 π‘˜2[ 𝐴]
π‘˜βˆ’1 + π‘˜2
𝒅[ 𝑨]
𝒅𝒕
= βˆ’π’Œ[ 𝑨]
The equation
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜[ 𝐴] becomes 𝑑[ 𝐴] = βˆ’π‘˜[ 𝐴] 𝑑𝑑 and can be integrated to give:
[ 𝑨] = [ 𝑨] 𝟎 πžβˆ’π’Œπ’•
.
Thus,
𝑑[ 𝐢]
𝑑𝑑
= π‘˜[ 𝐴] = π‘˜[ 𝐴]0 π‘’βˆ’π‘˜π‘‘
.
Although the reaction is 𝐴 π‘˜1, π‘˜βˆ’1
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡 π‘˜2
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢, the overall reaction is 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝐢, due to the
steady state approximation. Hence:
[ 𝐴] + [ 𝐢] = [ 𝐴]0 β†’ [ 𝐢] = [ 𝐴]0 βˆ’ [ 𝐴] = [ 𝐴]0 βˆ’ [ 𝐴]0 π‘’βˆ’π‘˜π‘‘
β†’ [ π‘ͺ] = [ 𝑨] 𝟎(𝟏 βˆ’ π’†βˆ’π’Œπ’•
)
Example
Consider the reaction 𝐴 π‘˜1, π‘˜βˆ’1
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐼 π‘˜2, π‘˜βˆ’2
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡.
We know that:
𝑑[ 𝐴]
𝑑𝑑
= βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 [ 𝐼]
𝑑[ 𝐡]
𝑑𝑑
= π‘˜2[ 𝐼] βˆ’ π‘˜βˆ’2[ 𝐡]
𝑑[ 𝐼]
𝑑𝑑
= π‘˜1[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐼]βˆ’ π‘˜2[ 𝐼]+ π‘˜βˆ’2[ 𝐡] = 0 ( π‘ π‘‘π‘’π‘Žπ‘‘π‘¦ π‘ π‘‘π‘Žπ‘‘π‘’ π‘Žπ‘π‘π‘Ÿπ‘œπ‘₯π‘–π‘šπ‘Žπ‘‘π‘–π‘œπ‘›)
Therefore:
π‘˜1[ 𝐴] + π‘˜βˆ’2[ 𝐡] = π‘˜βˆ’1[ 𝐼] + π‘˜2[ 𝐼]
π‘˜1[ 𝐴] + π‘˜βˆ’2[ 𝐡] = [ 𝐼]( π‘˜βˆ’1 + π‘˜2)
[ 𝑰] =
π’Œ 𝟏[ 𝑨] + π’Œβˆ’πŸ[ 𝑩]
π’Œβˆ’πŸ + π’Œ 𝟐
Thus:
𝑑[ 𝐡]
𝑑𝑑
= π‘˜2 (
π‘˜1[ 𝐴]+ π‘˜βˆ’2[ 𝐡]
π‘˜βˆ’1 + π‘˜2
) βˆ’ π‘˜βˆ’2[ 𝐡]
𝑑[ 𝐡]
𝑑𝑑
=
π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡]
π‘˜βˆ’1 + π‘˜2
βˆ’ π‘˜βˆ’2[ 𝐡]
𝑑[ 𝐡]
𝑑𝑑
=
π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] βˆ’ π‘˜βˆ’2( π‘˜βˆ’1 + π‘˜2)[ 𝐡]
π‘˜βˆ’1 + π‘˜2
𝑑[ 𝐡]
𝑑𝑑
=
π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2[ 𝐡] βˆ’ π‘˜βˆ’2 π‘˜2[ 𝐡]
π‘˜βˆ’1 + π‘˜2
𝑑[ 𝐡]
𝑑𝑑
=
π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2[ 𝐡] βˆ’ π‘˜βˆ’2 π‘˜2[ 𝐡]
π‘˜βˆ’1 + π‘˜2
𝑑[ 𝐡]
𝑑𝑑
=
π‘˜1 π‘˜2[ 𝐴] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2 [ 𝐡]
π‘˜βˆ’1 + π‘˜2
If we let π‘˜ π‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ = π‘˜ 𝑓 =
π‘˜1 π‘˜2
π‘˜βˆ’1+π‘˜2
and π‘˜ π‘π‘Žπ‘˜π‘€π‘Žπ‘Ÿπ‘‘ = π‘˜ 𝑏 =
π‘˜βˆ’1 π‘˜βˆ’2
π‘˜βˆ’1+π‘˜2
, then:
𝑑[ 𝐡]
𝑑𝑑
=
π‘˜1 π‘˜2
π‘˜βˆ’1 + π‘˜2
[ 𝐴] βˆ’
π‘˜βˆ’1 π‘˜βˆ’2
π‘˜βˆ’1 + π‘˜2
[ 𝐡]
𝒅[ 𝑩]
𝒅𝒕
= π’Œ 𝒇[ 𝑨]βˆ’ π’Œ 𝒃[ 𝑩]
The reaction can therefore be simplified to 𝐴 π‘˜ 𝑓, π‘˜ 𝑏
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡.
And if
𝑑[ 𝐡]
𝑑𝑑
= π‘˜ 𝑓[ 𝐴] βˆ’ π‘˜ 𝑏[ 𝐡], then
𝒅[ 𝑨]
𝒅𝒕
= βˆ’π’Œ 𝒇[ 𝑨]+ π’Œ 𝒃[ 𝑩].
Furthermore, if π‘˜ 𝑓 ≫ π‘˜ 𝑏, then 𝐴 π‘˜π‘“
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐡. Likewise, π‘˜ 𝑓 β‰ͺ π‘˜ 𝑏, then 𝐴 π‘˜ 𝑏
⃑⃗⃗⃗⃗⃗⃗ 𝐡.
Example
Kinetics of Relaxation
Consider the reaction 𝐴 π‘˜1, π‘˜βˆ’1
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝑍.
We know that:
οƒ˜ [ 𝐴]0 = [ 𝐴] + [ 𝑍]
οƒ˜ π‘₯ = [ 𝑍]
οƒ˜ [ 𝐴] = [ 𝐴]0 βˆ’ [ 𝑍] = π‘Ž0 βˆ’ π‘₯
Hence, the rate is given by
𝑑π‘₯
𝑑𝑑
= π‘˜1[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝑍].
At equilibrium:
𝑑π‘₯
𝑑𝑑
= π‘˜1( π‘Ž0 βˆ’ π‘₯) βˆ’ π‘˜βˆ’1 π‘₯ = 0.
If π‘₯ 𝑒 is the concentration of Z at equilibrium (i.e. if π‘₯ 𝑒 = [ 𝑍] π‘’π‘ž), then:
𝑑π‘₯
𝑑𝑑
= π‘˜1( π‘Ž0 βˆ’ π‘₯ 𝑒) βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 = 0
We define the change in concentration of x as: βˆ†π‘₯ = π‘₯ = π‘₯ 𝑒 β†’ π‘₯ = βˆ†π‘₯ + π‘₯ 𝑒. Thus:
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1[ π‘Ž0 βˆ’ (βˆ†π‘₯ + π‘₯ 𝑒)] βˆ’ π‘˜βˆ’1(βˆ†π‘₯ + π‘₯ 𝑒)
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 βˆ’ π‘˜1(βˆ†π‘₯ + π‘₯ 𝑒) βˆ’ π‘˜βˆ’1(βˆ†π‘₯ + π‘₯ 𝑒)
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 βˆ’ π‘˜1βˆ†π‘₯ βˆ’ π‘˜1 π‘₯ 𝑒 βˆ’ π‘˜βˆ’1βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1( π‘Ž0 βˆ’ π‘₯ 𝑒)βˆ’ ( π‘˜1 + π‘˜βˆ’1)βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒
π‘‘βˆ†π‘₯
𝑑𝑑
= βˆ’( π‘˜1 + π‘˜βˆ’1)βˆ†π‘₯ + π‘˜1( π‘Ž0 βˆ’ π‘₯ 𝑒)βˆ’ π‘˜βˆ’1 π‘₯ 𝑒
π’…βˆ†π’™
𝒅𝒕
= βˆ’( π’Œ 𝟏 + π’Œβˆ’πŸ)βˆ†π’™
This is the rate law in differential form.
Rearranging gives
π‘‘βˆ†π‘₯
βˆ†π‘₯
= βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑𝑑.
Integrating gives: ln βˆ†π‘₯ = βˆ’( π‘˜1 + π‘˜βˆ’1 ) 𝑑 + 𝐢.
At time 𝑑 = 0: lnβˆ†π‘₯0 = 0 + 𝐢 β†’ 𝐢 = ln βˆ†π‘₯0. Therefore:
ln βˆ†π‘₯ = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 + ln βˆ†π‘₯0
ln βˆ†π‘₯ βˆ’ lnβˆ†π‘₯0 = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑
π₯𝐧
βˆ†π’™
βˆ†π’™ 𝟎
= βˆ’( π’Œ 𝟏 + π’Œβˆ’πŸ) 𝒕
This is the rate in the form 𝑦 = π‘Žπ‘₯ + 𝑏, where 𝑦 = ln
βˆ†π‘₯
βˆ†π‘₯0
, π‘Ž = π‘ π‘™π‘œπ‘π‘’ = βˆ’( π‘˜1 + π‘˜βˆ’1),
and π‘₯ = 𝑑.
A graph of ln
βˆ†π‘₯
βˆ†π‘₯0
𝑣𝑠. 𝑑 would therefore look like:
A plot of π‘₯ 𝑣𝑠. 𝑑, however, would give a completely different graph:
The Principle of the Temperature Jump Technique
The relaxation time  is defined as the time corresponding to
(βˆ†π‘₯)0
βˆ†π‘₯
= 𝑒 and 𝑑 = 𝜏.
Therefore, ln
(βˆ†π‘₯)0
βˆ†π‘₯
= ( π‘˜1 + π‘˜βˆ’1) 𝑑 becomes ln 𝑒 = ( π‘˜1 + π‘˜βˆ’1) 𝜏.
And so: 1 = ( π‘˜1 + π‘˜βˆ’1) 𝜏 and 𝝉 =
𝟏
( π’Œ 𝟏+π’Œβˆ’πŸ)
.
Thus, the negative reciprocal of the slope (βˆ’
1
π‘ π‘™π‘œπ‘π‘’
) of a graph of ln
βˆ†π‘₯
βˆ†π‘₯0
𝑣𝑠. 𝑑 is equal
to the relaxation time .
N.B The equilibrium constant is given by πΎπ‘’π‘ž =
π‘˜1
π‘˜βˆ’1
.
Example
Consider the reaction 𝐴 + 𝐡 π‘˜1, π‘˜βˆ’1
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝑍.
Let [ 𝑍] = π‘₯, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, and [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯.
The rate is
𝑑[ 𝑍]
𝑑𝑑
=
𝑑π‘₯
𝑑𝑑
= π‘˜1[ 𝐴][ 𝐡]βˆ’ π‘˜βˆ’1[ 𝑍] = π‘˜1( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯) βˆ’ π‘˜βˆ’1 π‘₯.
If we let βˆ†π‘₯ = π‘₯ βˆ’ π‘₯ 𝑒, then:
π‘‘βˆ†π‘₯
𝑑𝑑
=
𝑑π‘₯
𝑑𝑑
βˆ’ 0
π‘‘βˆ†π‘₯
𝑑𝑑
=
𝑑π‘₯
𝑑𝑑
= π‘˜1( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯) βˆ’ π‘˜βˆ’1 π‘₯
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 𝑏0 βˆ’ π‘˜1 π‘Ž0 π‘₯ βˆ’ π‘˜1 𝑏0 π‘₯ + π‘˜1 π‘₯2
βˆ’ π‘˜βˆ’1 π‘₯
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 𝑏0 βˆ’ ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1) π‘₯ + π‘˜1 π‘₯2
At equilibrium,
π‘‘βˆ†π‘₯
𝑑𝑑
=
𝑑π‘₯
𝑑𝑑
= 0.
Therefore, π‘˜1 π‘Ž0 𝑏0 = ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1) π‘₯ + π‘˜1 π‘₯2
.
If π‘₯ = βˆ†π‘₯ + π‘₯ 𝑒, then:
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 𝑏0 βˆ’ ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1)(βˆ†π‘₯ + π‘₯ 𝑒) + π‘˜1(βˆ†π‘₯ + π‘₯ 𝑒)2
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 𝑏0 βˆ’ π‘˜1 π‘Ž0βˆ†π‘₯ βˆ’ π‘˜1 π‘Ž0 π‘₯ 𝑒 βˆ’ π‘˜1 𝑏0βˆ†π‘₯ βˆ’ π‘˜1 𝑏0 π‘₯ 𝑒 βˆ’ π‘˜βˆ’1βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒
+ π‘˜1(βˆ†π‘₯2
+ 2βˆ†π‘₯ β‹… π‘₯ 𝑒 + π‘₯ 𝑒
2)
Terms only in π‘₯ 𝑒 cancel out.
π‘‘βˆ†π‘₯
𝑑𝑑
= π‘˜1 π‘Ž0 𝑏0 βˆ’ π‘˜1 π‘Ž0βˆ†π‘₯ βˆ’ π‘˜1 π‘Ž0 π‘₯ 𝑒 βˆ’ π‘˜1 𝑏0βˆ†π‘₯ βˆ’ π‘˜1 𝑏0 π‘₯ 𝑒 βˆ’ π‘˜βˆ’1βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒
+ π‘˜1(βˆ†π‘₯2
+ 2βˆ†π‘₯ β‹… π‘₯ 𝑒 + π‘₯ 𝑒
2)
π‘‘βˆ†π‘₯
𝑑𝑑
= βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1)βˆ†π‘₯ + π‘˜1(βˆ†π‘₯ + 2π‘₯ 𝑒)βˆ†π‘₯
If the displacement from equilibrium is only slight, then π‘₯ β‰ˆ π‘₯ 𝑒, so that π‘₯ + π‘₯ 𝑒 may
be written as 2π‘₯ 𝑒 π‘₯ + π‘₯ 𝑒 = 2π‘₯ 𝑒.
π‘‘βˆ†π‘₯
𝑑𝑑
= βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1)βˆ†π‘₯ + 2π‘˜1 π‘₯ π‘’βˆ†π‘₯
π‘‘βˆ†π‘₯
𝑑𝑑
= βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒)βˆ†π‘₯
Rearranging gives
π‘‘βˆ†π‘₯
βˆ†π‘₯
= βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑𝑑.
Integrating gives lnβˆ†π‘₯ = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 + 𝐢.
At time 𝑑 = 0, βˆ†π‘₯ = βˆ†π‘₯0 and therefore lnβˆ†π‘₯0 = 0 + 𝐢 β†’ 𝐢 = ln βˆ†π‘₯0.
Thus:
ln βˆ†π‘₯ = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 + ln βˆ†π‘₯0
ln βˆ†π‘₯ βˆ’ lnβˆ†π‘₯0 = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑
ln
βˆ†π‘₯
βˆ†π‘₯0
= βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑
ln
βˆ†π‘₯0
βˆ†π‘₯
= ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑
The relaxation time  is defined as that corresponding to
βˆ†π‘₯0
βˆ†π‘₯
= 𝑒.
ln 𝑒 = ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝜏 β†’ 𝝉 =
𝟏
π’Œ 𝟏 𝒂 𝟎 + π’Œ 𝟏 𝒃 𝟎 + π’Œβˆ’πŸ βˆ’ πŸπ’Œ 𝟏 𝒙 𝒆
The dissociation of a weak acid, 𝐻𝐴 + 𝐻2 𝑂 β†’ 𝐻3 𝑂+
+ π΄βˆ’
, can be represented as
𝐴 π‘˜1, π‘˜βˆ’1
⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ π‘Œ+ 𝑍.
The rate constants k1 and k-1 cannot be determined by conventional methods but
can be determined by the T-jump technique.
We can prove that the relaxation time is given by 𝜏 =
1
π‘˜1+2π‘˜βˆ’1 π‘₯ 𝑒
, where xe is the
concentration of the ions (Y and Z) at equilibrium.
ASK HOKMABADI FOR THE HW BACK IN ORDER TO SEE THE ANSWER TO THIS.
The Bohr Hydrogen or Hydrogen-like (isoelectronic to hydrogen) Atom
Consider a hydrogen bulb shining light upon a concave lens in front of a triangular
pris. If a screen is placed behind the prism, discrete bands of colored and invisible
light (see below).
As the capacitor plates in a hydrogen bulb accumulate charge, the negatively
charged plate emits a beam of electrons that bombards hydrogen atoms, which in
turn release photons of light as they are excited.
Compare hydrogen to some hydrogen-like atoms:
H 1 proton 1 electron
He+ 2 protons 1 electron
Li2+ 3 protons 1 electron
… … 1 electron
Let 𝑍 = π‘Žπ‘‘π‘œπ‘šπ‘–π‘ π‘›π‘’π‘šπ‘π‘’π‘Ÿ, π‘š 𝑝 = π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘Ž π‘π‘Ÿπ‘œπ‘‘π‘œπ‘›, π‘š 𝑒 = π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘Žπ‘› π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘›, and
+𝑧𝑒 = π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’ π‘œπ‘› π‘‘β„Žπ‘’ 𝑛𝑒𝑐𝑙𝑒𝑒𝑠.
π‘š 𝑝 = 1836π‘š 𝑒
1. The attractive force between negative and positive charges (protons and
electrons) is the normal type of Coulombic attraction, such that: 𝐹 ∝
(+𝑧𝑒)(βˆ’1𝑒)
π‘Ÿ2 ,
where ∝=
1
4πœ‹πœ€0
, πœ€0 is the permittivity of the vacuum. Therefore:
𝐹 =
βˆ’π‘§π‘’2
(4πœ‹πœ€0) π‘Ÿ2
2. The electron can remain in any particular state (fixed radius) indefinitely
without radiating its energy, provided that the electron’s angular momentum is
𝐿 = π‘šπ‘£π‘Ÿ (Equation 20.10), where 𝐿 = π‘šπ‘£π‘Ÿ =
π‘›β„Ž
2πœ‹
(quantum number, 𝑛 =
1, 2, 3,…, Planck’s constant, β„Ž = 6.626 Γ— 10βˆ’34
π‘š2
π‘˜π‘”/𝑠 ( 𝐽/𝑠), π‘š = π‘š 𝑒, 𝑣 =
π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ π‘œπ‘“ π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘›, π‘Ÿ = π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ ).
Hence 𝐿 ∝ 𝑛, and possible values of L are:
β„Ž
2πœ‹
,
2β„Ž
2πœ‹
=
β„Ž
πœ‹
,
3β„Ž
2πœ‹
,
4β„Ž
2πœ‹
=
2β„Ž
πœ‹
, …
Also, L has the same units as h: joule per second.
Note: The total energy of the atom is equal to the sum of the kinetic energy of
orbiting electrons and the potential energy of electrons attracted to protons.
Mechanical Stability
Mechanical stability requires that the attractive and centripetal forces cancel each
other; that is:
βˆ’
𝑧𝑒2
(4πœ‹πœ€0) π‘Ÿ2 +
π‘šπ‘£2
π‘Ÿ
= 0 β†’
𝑧 𝑒2
(4πœ‹πœ€0) π‘Ÿ2 =
π‘šπ‘£2
π‘Ÿ
β†’ (4πœ‹πœ€0) π‘šπ‘£2
π‘Ÿ = 𝑧𝑒2
(Eq. 20.13)
From the quantization of Eq. 20.10 ( 𝐿 = π‘šπ‘£π‘Ÿ), we can write that:
π‘š2
𝑣2
π‘Ÿ2
=
𝑛2
β„Ž2
4πœ‹2 β†’ 𝑣2
=
𝑛2
β„Ž2
π‘š2 π‘Ÿ2 (Eq. 20.15)
…where β„Ž =
β„Ž
2πœ‹
and π‘šπ‘£π‘Ÿ = β„Ž.
Substitute for v2 in Eq. 20.13:
(4πœ‹πœ€0) π‘š (
𝑛2
β„Ž2
π‘š2 π‘Ÿ2
) π‘Ÿ = 𝑧𝑒2
β†’ π‘Ÿ =
𝑛2
β„Ž2 (4πœ‹πœ€0)
π‘šπ‘§π‘’2
=
𝑛2
𝑧
(
β„Ž2 (4πœ‹πœ€0)
π‘šπ‘’2
) =
𝑛2
𝑧
π‘Ž0
Therefore: {𝒓 =
𝒏 𝟐
𝒛
𝒂 𝟎}, where 𝑛 = 1,2, 3, …, π‘Ž0 =
β„Ž2(4πœ‹πœ€0)
π‘šπ‘’2 = 5.29 Γ— 10βˆ’11
π‘š.
Figure 1: Proof of a0.
This proves that the distance of the electron from the nucleus is quantized.
Note that for the hydrogen atom, 𝑧 = 1 and thus π‘Ÿπ‘› = 𝑛2
π‘Ž0.
Proof that kinetic energy (T), potential energy (U), and total energy are also
quantized:
πΈπ‘‘π‘œπ‘‘ = 𝑇 + π‘ˆ
The force is given by: βˆ’πΉ ≑
π‘‘π‘ˆ
π‘‘π‘Ÿ
β†’ π‘‘π‘ˆ = βˆ’πΉ π‘‘π‘Ÿ = βˆ’(
βˆ’π‘§π‘’2
(4πœ‹πœ€0) π‘Ÿ2) π‘‘π‘Ÿ = (
𝑧𝑒2
4πœ‹πœ€0
)
π‘‘π‘Ÿ
π‘Ÿ2
Integrating gives: π‘ˆ = βˆ’ (
𝑧𝑒2
4πœ‹πœ€0
)
1
π‘Ÿ
+ 𝐢
When π‘Ÿ β†’ ∞, π‘ˆ = 0and 𝐢 = 0.
Then 𝑼 = βˆ’
𝒛𝒆 𝟐
( πŸ’π…πœΊ 𝟎) 𝒓
.
The kinetic energy is is given by: 𝑇 =
1
2
π‘šπ‘£2
.
Substitute Eq. 20.13: 𝑇 =
1
2
π‘šπ‘£2
=
1
2
(
𝑧𝑒2
(4πœ‹πœ€0) π‘Ÿ
). That is: 𝑻 =
𝟏
𝟐
(
𝒛𝒆 𝟐
( πŸ’π…πœΊ 𝟎) 𝒓
).
Therefore: πΈπ‘‘π‘œπ‘‘ = 𝑇 + π‘ˆ =
1
2
(
𝑧𝑒2
(4πœ‹πœ€0) π‘Ÿ
) βˆ’ (
𝑧𝑒2
(4πœ‹πœ€0) π‘Ÿ
) = βˆ’
1
2
(
𝑧𝑒2
(4πœ‹πœ€0) π‘Ÿ
).
We see that Etot is negative and inversely proportional to r.
The final expression for the (total) energy is obtained by substituting the value of r
as expressed in Eq. 20.17 below:
π‘Ÿ =
𝑛2
β„Ž2(4πœ‹πœ€0)
π‘šπ‘§π‘’2
and
π‘Ÿπ‘› =
𝑛2
π‘Ž0
𝑧
…where π‘Ž0 =
β„Ž(4πœ‹πœ€0)
π‘šπ‘’2 5.29 Γ— 10βˆ’11
π‘š and β„Ž =
β„Ž
2πœ‹
= 0.529β„«
Therefore: πΈπ‘‘π‘œπ‘‘ = 𝐸 𝑛 = βˆ’
1
2
𝑧𝑒2
(4πœ‹πœ€0)
βˆ™
1
π‘Ÿ
= βˆ’
1
2
𝑧 𝑒2
(4πœ‹πœ€0)
βˆ™
π‘šπ‘§ 𝑒2
𝑛2β„Ž2 (4πœ‹πœ€0)
= βˆ’
π‘šπ‘§2
𝑒4
2𝑛2 β„Ž2(4πœ‹πœ€0)2 =
βˆ’
𝑧2
𝑛2 (
π‘šπ‘’4
2β„Ž2 (4πœ‹πœ€0)2) = βˆ’
𝑧2
𝑛2 𝑅 = βˆ’
𝑧2
𝑛2 𝑅 𝐻
That is: 𝑬 𝒏 = βˆ’
𝒛 𝟐
𝒏 𝟐 𝑹 𝑯. (Eq. 20.17)
…where 𝑅( 𝐻) =
π‘šπ‘’4
2β„Ž2 (4πœ‹πœ€0)2 = π‘…π‘¦π‘‘π‘π‘’π‘Ÿπ‘” π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ = 2.179 Γ— 10βˆ’18
𝐽.
The Bohr Theory/Model of the Hydrogen Atom
Let 𝑧 = 1.
Let π‘šπ‘£ = ( π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ) π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š, π‘šπ‘£π‘Ÿ = π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š, and 𝐿 = π‘šπ‘£π‘Ÿ =
π‘›β„Ž
2πœ‹
,
where 𝑛 = 1, 2, 3, …, π‘Ÿπ‘› = 𝑛2
π‘Ž0, and 𝐸 𝑛 = βˆ’
𝑅 𝐻
𝑛2 .
The potential energy is π‘ˆ = βˆ’
𝑒2
(4πœ‹πœ€0) π‘Ÿ
= βˆ’
2𝑅 𝐻
𝑛2 .
The kinetic energy is 𝑇 =
1
2
𝑒2
(4πœ‹πœ€0) π‘Ÿ
=
𝑅 𝐻
𝑛2 .
The total energy is πΈπ‘‘π‘œπ‘‘ = 𝐸 𝑛 = βˆ’
𝑅 𝐻
𝑛2
The energy required to move an electron from 𝑛 = 1 to 𝑛 = ∞ is called its ionization
energy (IE).
𝐼𝐸 = 𝐸𝑓 βˆ’ 𝐸𝑖 = βˆ’
𝑅 𝐻
(∞)2
β€”
𝑅 𝐻
(1)2
= 0 + 𝑅 𝐻 = 𝑅 𝐻 = 2.179 Γ— 10βˆ’18
𝐽
𝐼𝐸/π‘šπ‘œπ‘™ = 𝑅 𝐻 𝑁𝐴 = 2.179 Γ— 10βˆ’18
𝐽(6.022 Γ— 10βˆ’23
π‘šπ‘œπ‘™βˆ’1)
= 13.11758 Γ— 102
π‘˜π½/π‘šπ‘œπ‘™
βˆ†πΈ = β„Žπ‘£0 β†’ 𝑣0 =
βˆ†πΈ
β„Ž
=
2.179 Γ— 10βˆ’18
𝐽
6.626 Γ— 10βˆ’34 𝐽𝑠
= 3.289 Γ— 1015
𝐻𝑧
The term 𝑣0 is called the threshold frequency.
Hydrogen-like Atoms
Angular momentum is an integral multiple of
β„Ž
2πœ‹
, such that:
𝐿 = π‘šπ‘£π‘Ÿ =
π‘›β„Ž
2πœ‹
, where 𝑛 = 1, 2, 3, …
From this, we can get that:
i. π‘Ÿπ‘› =
𝑛2
π‘Ž0
𝑧
π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž0 = 0.529 β„« = π΅π‘œβ„Žπ‘Ÿ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ 
ii. 𝐸 𝑛 = βˆ’ (
𝑧2
𝑛2 ) 𝑅 𝐻, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑅 𝐻 = 2.179 Γ— 10βˆ’18
𝐽 = π‘…π‘¦π‘‘π‘π‘’π‘Ÿπ‘” π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
iii. 𝐿𝑒𝑑 𝐸 𝑛1
= βˆ’π‘… 𝐻 (
𝑧2
𝑛1
2 ) π‘Žπ‘›π‘‘ 𝐸 𝑛2
= βˆ’π‘… 𝐻 (
𝑧2
𝑛2
2 )
π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’:βˆ†πΈ = 𝐸 𝑛2
βˆ’ 𝐸 𝑛1
= [βˆ’π‘… 𝐻 (
𝑧2
𝑛2
2 )]β€” 𝑅 𝐻 (
𝑧2
𝑛1
2 )
βˆ†π‘¬ = 𝑹 𝑯 𝒛 𝟐
(
𝟏
𝒏 𝟏
𝟐 βˆ’
𝟏
𝒏 𝟐
𝟐 )
iv. βˆ†πΈ = β„Žπ‘£, since this change in energy is due to absorption or emission of
photons.
For a hydrogen atom, 𝑧 = 1. Therefore: β„Žπ‘£ = 𝑅 𝐻 (
1
𝑛1
2 βˆ’
1
𝑛2
2 ).
𝑐 = πœ†π‘£ β†’ 𝑣 =
𝑐
πœ†
= 𝑐
1
πœ†
, π‘€β„Žπ‘’π‘Ÿπ‘’
1
πœ†
= 𝑣̅ = π‘€π‘Žπ‘£π‘’π‘›π‘’π‘šπ‘π‘’π‘Ÿ ( π‘π‘šβˆ’1)
Therefore: 𝑣 = 𝑐𝑣̅.
And β„Žπ‘π‘£Μ… = 𝑅 𝐻 (
1
𝑛1
2 βˆ’
1
𝑛2
2 ) β†’ 𝒗̅ =
𝑹 𝑯
𝒉𝒄
𝑹 𝑯 (
𝟏
𝒏 𝟏
𝟐 βˆ’
𝟏
𝒏 𝟐
𝟐)
If we let 𝑛1 = 1 and 𝑛2 ≫ 2, then: 𝑣̅ =
𝑅 𝐻
β„Žπ‘
(1 βˆ’
1
𝑛2
2 ). This is the Lyman series (UV).
If we let 𝑛1 = 2 and 𝑛2 ≫ 3, then: 𝑣̅ =
𝑅 𝐻
β„Žπ‘
(
1
4
βˆ’
1
𝑛2
2 ). This is the Balmer series (visible).
If we let 𝑛1 = 3 and 𝑛2 ≫ 4, then: 𝑣̅ =
𝑅 𝐻
β„Žπ‘
(
1
9
βˆ’
1
𝑛2
2 ). This is the Paschen series (IR).
De Broglie Wavelength
The De Broglie wavelength is given by: 𝝀 =
𝒉
𝒑
=
𝒉
π’Žπ’—
, where 𝑣 = π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦.
Since π‘šπ‘£π‘Ÿ =
π‘›β„Ž
2πœ‹
β†’ π‘šπ‘£ =
π‘›β„Ž
2πœ‹π‘Ÿ
, then πœ† =
β„Ž
π‘›β„Ž
2πœ‹π‘Ÿβ„
=
2πœ‹π‘Ÿ
𝑛
; that is, 𝝀 =
πŸπ…π’“
𝒏
.
Example
If 𝑛 = 3, then πœ† =
2πœ‹π‘Ÿ
3
.
In the diagram above, π‘Ÿπ‘› =
𝑛2
π‘Ž0
𝑧
=
(32) π‘Ž0
1
= 9π‘Ž0.
This comes from the standing wave shown below:
Joining the ends of the string, a and b, creates the pattern and circle above.
{
πœ† =
2πœ‹π‘Ÿ
𝑛
π‘Ÿπ‘› =
𝑛2
π‘Ž0
𝑧
β†’ π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’: πœ† 𝑛 =
2πœ‹
𝑛
(
𝑛2
π‘Ž0
𝑧
) β†’ 𝝀 𝒏 =
𝒏
𝒛
( πŸπ…π’‚ 𝟎)
When 𝑛 = 1, 𝝀 𝟎 = πŸπ…π’‚ 𝟎 = 𝑩𝒐𝒉𝒓 π’˜π’‚π’—π’†π’π’†π’π’ˆπ’•π’‰ = πŸ‘. πŸ‘πŸπŸ’ Γ— πŸπŸŽβˆ’πŸπŸŽ
π’Ž.
Therefore, πœ† 𝑛 =
𝑛
𝑧
( πœ†0).
When 𝑛 = 1 and 𝑧 = 1, πœ†1 = πœ†0.
When 𝑛 = 2 and 𝑧 = 1, πœ†2 = 2πœ†0.
Now, πœ†π‘£ = v β†’ πœ† 𝑛 𝑣 𝑛 = v 𝑛, where 𝑣 = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ and v = π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦.
If π‘šπ‘£π‘Ÿ =
π‘›β„Ž
2πœ‹
, then v =
π‘›β„Ž
2πœ‹π‘šπ‘Ÿ
.
Since π‘Ÿ =
𝑛2
π‘Ž0
𝑧
, then:
v =
π‘›β„Ž
2πœ‹π‘š (
𝑛2 π‘Ž0
𝑧
)
=
π‘§π‘›β„Ž
(2πœ‹π‘š) 𝑛2 π‘Ž0
=
π‘§β„Ž
𝑛(2πœ‹π‘šπ‘Ž0)
=
𝑧
𝑛
(
β„Ž
2πœ‹π‘šπ‘Ž0
)
And so:
𝐯 𝟎 =
𝒉
πŸπ…π’Žπ’‚ 𝟎
= 𝑩𝒐𝒉𝒓 𝒔𝒑𝒆𝒆𝒅 = 𝟎. πŸŽπŸŽπŸŽπŸπŸπŸ–πŸ– Γ— 𝟏𝟎 πŸ–
π’Žπ’”βˆ’πŸ
…when 𝑛 = 1 and 𝑧 = 1.
Generally: 𝐯 𝒏 =
𝒛
𝒏
𝐯 𝟎
When 𝑛 = 1 and 𝑧 = 1, then v1 = v0.
When 𝑛 = 2 and 𝑧 = 1, then v2 =
v0
2
.
When 𝑛 = ∞ and 𝑧 = 1, then v∞ =
v0
∞
= 0.
Therefore, we can say that:
𝝀 𝟎 𝒗 𝟎 = 𝐯 𝟎 β†’ 𝒗 𝟎 =
𝐯 𝟎
𝝀 𝟎
= 𝑩𝒐𝒉𝒓 π’‡π’“π’†π’’π’–π’†π’π’„π’š = πŸ”. πŸ“πŸ–πŸ‘ Γ— 𝟏𝟎 πŸ“
𝑯𝒛
Then we can find the speed for other atoms:
v 𝑛 =
𝑧
𝑛
v0
v1 = v0 for H ( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 1 π‘Žπ‘›π‘‘ 𝑧 = 1)
v1 = 2v0 for He2+ ( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 1 π‘Žπ‘›π‘‘ 𝑧 = 2)
v1 = 102v0 for Lr102+ ( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 1 π‘Žπ‘›π‘‘ 𝑧 = 103)
For what value of z does v1 match the speed of light?
𝑧 =
v1
v0
=
𝑐
v0
=
2.998 Γ— 108
π‘šπ‘ βˆ’1
0.0002188 Γ— 108 π‘šπ‘ βˆ’1
= 13697
No element with atomic number (z) 13697.
The Photoelectric Effect
Consider the horizontal, parallel, clean metal plates (see below) connected by a
circuit containing an ammeter. Light of fixed intensity and varying frequency is
shone upon the lower plate at an angle. Above a given threshold frequency,
electrons jump from the lower to the upper plate, traveling through the circuit to
generate a measurable current.
In other words, a metal with a clean surface is placed in vacuum and illuminated
with light of a known frequency. If the frequency is greater than a particular
minimum, or threshold frequency, electrons are instantly liberated fron the metal
surface at a rate proportional to the light intensity (increasing the intensity does not
liberate more electrons).
The energy is given by 𝐸 =
1
2
π‘šπ‘£2
= 𝕍𝑒.
The total energy is conserved; therefore, β„Žπ‘£ = π‘Š + 𝕍𝑒
…where π‘š = π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘› π‘šπ‘Žπ‘ π‘ , 𝑣 = π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘› π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦, 𝑒 = π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘› π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’, 𝕍 =
π‘ π‘œπ‘π‘π‘–π‘›π‘” π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ (1 π‘£π‘œπ‘™π‘‘ = 1 π‘—π‘œπ‘’π‘™π‘’ π‘π‘’π‘Ÿ π‘π‘œπ‘’π‘™π‘œπ‘šπ‘; 1𝑉 = 1𝐽/𝐢), and π‘Š =
π‘Žπ‘‘π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘–π‘£π‘’ π‘π‘œπ‘‘π‘’π‘›π‘–π‘‘π‘™π‘Ž π‘œπ‘“ π‘šπ‘’π‘‘π‘Žπ‘™ π‘œπ‘Ÿ π‘€π‘œπ‘Ÿπ‘˜ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›.
Note that 𝕍𝑒 = 1.60206 Γ— 10βˆ’19
𝐽 per electron.
Conservation of energy requires that:
β„Žπ‘£ = π‘Š +
1
2
π‘šπ‘£2
= π‘Š + 𝕍𝑒
β„Žπ‘£0 = π‘Š
β„Žπ‘£ = β„Žπ‘£0 + +𝕍𝑒 β†’ 𝑣 = 𝑣0 +
1
β„Ž
𝕍𝑒
…where 𝑣0 = π‘‘β„Žπ‘’ π‘‘β„Žπ‘Ÿπ‘’π‘ β„Žπ‘œπ‘™π‘‘ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦.
𝟏 𝒆𝕍 = 𝟏. πŸ”πŸŽπŸ Γ— πŸπŸŽβˆ’πŸπŸ—
𝑱 = π’†π’π’†π’“π’ˆπ’š 𝒑𝒆𝒓 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏 and 𝑬 𝑲 = 𝕍𝒆
A plot of the frequency against the stopping voltage is shown below:
The equation of the graph 𝑣 = 𝑣0 +
1
β„Ž
𝕍𝑒 is of the form 𝑦 = π‘Ž + 𝑏π‘₯.
Refinement of the Bohr Model
Consider the system below consisting of two masses – the nucleus (with charge ze
and mass mn) and the electron (with charge –ze and mass me):
The moment of inertia gives rise to the relationship below:
{
π‘š 𝑒 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿπ‘›
π‘Ÿ = π‘Ÿπ‘’ + π‘Ÿπ‘› = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
The top equation rearranges to π‘Ÿπ‘’ =
π‘š 𝑛 π‘Ÿ 𝑛
π‘š 𝑒
and π‘Ÿπ‘› =
π‘š 𝑒 π‘Ÿ 𝑒
π‘š 𝑛
.
The bottom equation rearranges to π‘Ÿπ‘’ = π‘Ÿ βˆ’ π‘Ÿπ‘› and π‘Ÿπ‘› = π‘Ÿ βˆ’ π‘Ÿπ‘’.
Then:
π‘š 𝑒( π‘Ÿ βˆ’ π‘Ÿπ‘›) = π‘š 𝑛( π‘Ÿ βˆ’ π‘Ÿπ‘’)
π‘š 𝑒 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑛 π‘Ÿπ‘’
π‘š 𝑛 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿ + π‘š 𝑒 π‘Ÿπ‘›
π‘š 𝑛 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿ + π‘š 𝑒( π‘Ÿ βˆ’ π‘Ÿπ‘’)
π‘š 𝑛 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿ + π‘š 𝑒 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿπ‘’
π‘š 𝑛 π‘Ÿπ‘’ + π‘š 𝑒 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ
π‘Ÿπ‘’ ( π‘š 𝑛 + π‘š 𝑒) = π‘š 𝑛 π‘Ÿ
π‘Ÿπ‘’ =
π‘š 𝑛 π‘Ÿ
π‘š 𝑛 + π‘š 𝑒
𝒓 𝒆 = (
π’Ž 𝒏
π’Ž 𝒏 + π’Ž 𝒆
) 𝒓
π‘š 𝑒( π‘Ÿ βˆ’ π‘Ÿπ‘›) = π‘š 𝑛( π‘Ÿ βˆ’ π‘Ÿπ‘’)
π‘š 𝑒 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑛 π‘Ÿπ‘’
π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿβˆ’π‘š 𝑛 π‘Ÿ + π‘š 𝑛 π‘Ÿπ‘’
π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿβˆ’π‘š 𝑛 π‘Ÿ + π‘š 𝑛( π‘Ÿ βˆ’ π‘Ÿπ‘› )
π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿβˆ’π‘š 𝑛 π‘Ÿ + π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑛 π‘Ÿπ‘›
π‘š 𝑒 π‘Ÿπ‘› + π‘š 𝑛 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿ
π‘Ÿπ‘› ( π‘š 𝑒 + π‘š 𝑛) = π‘š 𝑒 π‘Ÿ
π‘Ÿπ‘› =
π‘š 𝑒 π‘Ÿ
π‘š 𝑒 + π‘š 𝑛
𝒓 𝒏 = (
π’Ž 𝒆
π’Ž 𝒆 + π’Ž 𝒏
) 𝒓
The moment of inertia about the center of mass is given by:
𝑰 = βˆ‘ π’Žπ’Š 𝒓 π’Š
𝟐
π’Š
Then:
𝐼 = π‘š 𝑒 π‘Ÿπ‘’
2
+ π‘š 𝑛 π‘Ÿπ‘›
2
= π‘š 𝑒 {(
π‘š 𝑛
π‘š 𝑒 + π‘š 𝑛
) π‘Ÿ}
2
+ {(
π‘š 𝑒
π‘š 𝑒 + π‘š 𝑛
) π‘Ÿ}
2
Expanding gives:
𝐼 =
π‘š 𝑒 π‘š 𝑛
2
π‘Ÿ2
( π‘š 𝑒 + π‘š 𝑛)2
+
π‘š 𝑛 π‘š 𝑒
2
π‘Ÿ2
( π‘š 𝑒 + π‘š 𝑛)2
=
π‘š 𝑒 π‘š 𝑛 π‘Ÿ2( π‘š 𝑛 + π‘š 𝑒)
( π‘š 𝑒 + π‘š 𝑛)2
=
π‘š 𝑒 π‘š 𝑛 π‘Ÿ2
π‘š 𝑛 + π‘š 𝑒
=
π‘š 𝑒 π‘š 𝑛
π‘š 𝑛 + π‘š 𝑒
π‘Ÿ2
If we we define the reduced mass as πœ‡ =
π‘š 𝑒 π‘š 𝑛
π‘š 𝑛+π‘š 𝑒
, then:
𝑰 = 𝝁𝒓 𝟐
And since π‘š 𝑛 =
1.0079 𝑔/π‘šπ‘œπ‘™
6.022 Γ— 1023 π‘šπ‘œπ‘™ βˆ’1 = 1.674 Γ— 10βˆ’24
𝑔, then π‘š 𝑛 ≫ π‘š 𝑒, and we can
approximate that:
πœ‡ =
π‘š 𝑒 π‘š 𝑛
π‘š 𝑛 + π‘š 𝑒
β†’
π‘š 𝑒 π‘š 𝑛
π‘š 𝑛
= π‘š 𝑒 β†’ 𝝁 = π’Ž 𝒆
Foundations of Quantum Mechanics
Two vectors 𝐴 and 𝐡⃗ can be added or subtracted as follows:
A vector whose magnitudeis unity is called a unit vector.
SKIPPED SOME STUFF
Operators
An operator is a symbol that indicates that a particular operation is being performed
on what follows the operator. For example, the square root operatoris √ and can
operate as follows: √4 = 2. The differential operator
𝑑
𝑑π‘₯
operates as in
𝑑
𝑑π‘₯
( π‘₯2) = 2π‘₯.
We denote operators in quantum mechanics by using the symbol hat, Μ‚ , as in the
operator 𝑃̂.
Examples
If 𝑃̂ =
𝑑
𝑑π‘₯
and 𝑓( π‘₯) = π‘₯4
, then 𝑃̂ 𝑓( π‘₯) =
𝑑
𝑑π‘₯
𝑓( π‘₯) =
𝑑
𝑑π‘₯
( π‘₯4) = 4π‘₯3
.
Then 𝑃̂ 𝑃̂ 𝑓( π‘₯) = 𝑃̂[𝑃̂ 𝑓( π‘₯)] = 𝑃̂[4π‘₯3] = 12π‘₯2
And 𝑃̂ 𝑃̂ 𝑃̂ 𝑓( π‘₯) = 𝑃̂[12π‘₯2] = 24π‘₯
Example
If 𝑅̂ = π‘₯2
, then 𝑃̂ 𝑄̂[ 𝑓( π‘₯)] = 𝑃̂ 𝑄̂[ 𝑓( π‘₯)]
Reactions Having No Order
Not all reactions behave in the manner aforementioned, and the term order should
not be used for those that do not. Instead, such reactions are usually enzyme-
catalyzed and frequently follow a law of the form:
𝜐 =
𝑉[ 𝑆]
𝐾 π‘š + [ 𝑆]
In the above equation, V and Km are constants, while [S] is a variable known as the
substrate concentration. This equation does not correspond to a simple order, but
under two limiting conditions, an order may be assigned:
i. If the substrate concentration is sufficiently low, so that [ 𝑆] β‰ͺ 𝐾 π‘š, then the law
becomes 𝜐 =
𝑉[ 𝑆]
𝐾 π‘š
, and the reaction is then 1st order with respect to S; or
ii. If [S] is sufficiently large, so that [ 𝑆] ≫ 𝐾 π‘š, then the law becomes 𝜐 = 𝑉, and
the reaction is said to be 0th order (meaning the rate is independent of [S]).
Consider a reaction 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃.
Then βˆ’
𝑑[ 𝐴]
𝑑𝑑
= π‘˜[ 𝐴] 𝛼
= π‘˜[ 𝐴]0
= π‘˜.
This is separable such that 𝒅[ 𝑨] = βˆ’π’Œ 𝒅𝒕, the rate law in differential form.
Integrating gives [ 𝐴] = βˆ’π‘˜π‘‘ + 𝐢.
At time 𝑑 = 0: [ 𝐴]0 = 𝐢.
Then [ 𝐴] = βˆ’π‘˜π‘‘ + [ 𝐴]0 β†’ [ 𝑨]βˆ’ [ 𝑨] 𝟎 = βˆ’π’Œπ’•, the rate law in integral form.
At 𝑑 = 𝑑1
2
:
1
2
[ 𝐴]0 βˆ’ [ 𝐴]0 = βˆ’π‘˜π‘‘1
2
β†’ βˆ’
1
2
[ 𝐴]0 = βˆ’π‘˜π‘‘1
2
β†’ 𝒕 𝟏
𝟐
=
[ 𝑨] 𝟎
πŸπ’Œ
, where k has units
π‘šπ‘œπ‘™ πΏβˆ’1
π‘ βˆ’1
.
Rate Constants and Rate Coefficients
The constant k used in such rate equations is known as the rate constant or rate
coefficient, depending on whether the reaction is believed to be elementary or to
occur in more than one stage (respectively).
The units of k vary with the order of the reaction, as shown in the table below.
Order
Rate Equation
Units of k Half-life, tΒ½
Differential Form Integrated Form
0
𝑑π‘₯
𝑑𝑑
= π‘˜ π‘˜ =
π‘₯
𝑑
π‘šπ‘œπ‘™ π‘‘π‘šβˆ’3 π‘ βˆ’1
π‘Ž0
2π‘˜
1
𝑑π‘₯
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯) π‘˜ =
1
𝑑
ln (
π‘Ž0
π‘Ž0 βˆ’ π‘₯
) π‘ βˆ’1 ln 2
π‘˜
2
𝑑π‘₯
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯)2 π‘˜ =
1
𝑑
ln(
π‘₯
π‘Ž0( π‘Ž0 βˆ’ π‘₯)
) π‘‘π‘š3 π‘šπ‘œπ‘™βˆ’1 π‘ βˆ’1
1
π‘˜π‘Ž0
2
𝑑π‘₯
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯)
for reactants with
different concentrations
π‘˜ =
1
𝑑( π‘Ž0 βˆ’ 𝑏0)
ln (
𝑏0( π‘Ž0 βˆ’ π‘₯)
π‘Ž0( 𝑏0 βˆ’ π‘₯)
) π‘‘π‘š3 π‘šπ‘œπ‘™βˆ’1 π‘ βˆ’1
–
n
𝑑π‘₯
𝑑𝑑
= π‘˜( π‘Ž0 βˆ’ π‘₯) 𝑛 π‘˜ =
1
𝑑( 𝑛 βˆ’ 1)
[
1
( π‘Ž0 βˆ’ π‘₯) π‘›βˆ’1 βˆ’
1
π‘Ž0
π‘›βˆ’1
] π‘šπ‘œπ‘™1βˆ’π‘› π‘‘π‘š3π‘›βˆ’3 π‘ βˆ’1 2 π‘›βˆ’1 βˆ’ 1
π‘˜( 𝑛 βˆ’ 1) π‘Ž0
π‘›βˆ’1

Weitere Γ€hnliche Inhalte

Was ist angesagt?

Radioactive and Half life
Radioactive and Half lifeRadioactive and Half life
Radioactive and Half lifeAbdullah Akram
Β 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdfoxtrot jp R
Β 
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...inventionjournals
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
Β 
2nd order reaction
2nd order reaction 2nd order reaction
2nd order reaction ZohaAltaf
Β 
Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Ravaliya Nirmal
Β 
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeFluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeAddisu Dagne Zegeye
Β 
Acoustics ans
Acoustics ansAcoustics ans
Acoustics ansfoxtrot jp R
Β 
C H5
C H5C H5
C H5spathman
Β 
Hamilton application
Hamilton applicationHamilton application
Hamilton applicationSamad Akbar
Β 
Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Civil Zone
Β 

Was ist angesagt? (17)

Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
Β 
Buckingham Ο€ theorem wikipedia
Buckingham Ο€ theorem   wikipediaBuckingham Ο€ theorem   wikipedia
Buckingham Ο€ theorem wikipedia
Β 
Radioactive and Half life
Radioactive and Half lifeRadioactive and Half life
Radioactive and Half life
Β 
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrdHawkinrad a source_notes iii _withtypocorrected_sqrd
Hawkinrad a source_notes iii _withtypocorrected_sqrd
Β 
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Β 
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
On the Analysis of the Finite Element Solutions of Boundary Value Problems Us...
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
Β 
Chemistry ppt.
Chemistry ppt.Chemistry ppt.
Chemistry ppt.
Β 
2nd order reaction
2nd order reaction 2nd order reaction
2nd order reaction
Β 
Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics
Β 
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeFluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Β 
Acoustics ans
Acoustics ansAcoustics ans
Acoustics ans
Β 
C H5
C H5C H5
C H5
Β 
Lagrange
LagrangeLagrange
Lagrange
Β 
Hamilton application
Hamilton applicationHamilton application
Hamilton application
Β 
Lds kinetics 3
Lds kinetics 3Lds kinetics 3
Lds kinetics 3
Β 
Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering Similitude and Dimensional Analysis -Hydraulics engineering
Similitude and Dimensional Analysis -Hydraulics engineering
Β 

Andere mochten auch

WBSSC Slst chemistry (H+PG)
WBSSC Slst chemistry (H+PG)WBSSC Slst chemistry (H+PG)
WBSSC Slst chemistry (H+PG)M H
Β 
Plant systematics scientists
Plant systematics   scientistsPlant systematics   scientists
Plant systematics scientistsAkanksha Rai
Β 
Plant systematics
Plant systematicsPlant systematics
Plant systematicsJasper Obico
Β 
Cladistics - Systematics
 Cladistics - Systematics Cladistics - Systematics
Cladistics - SystematicsSamchuchoo
Β 
Speciation and Systematics APBioCh16and18
Speciation and Systematics APBioCh16and18Speciation and Systematics APBioCh16and18
Speciation and Systematics APBioCh16and18Anthony DePhillips
Β 

Andere mochten auch (8)

WBSSC Slst chemistry (H+PG)
WBSSC Slst chemistry (H+PG)WBSSC Slst chemistry (H+PG)
WBSSC Slst chemistry (H+PG)
Β 
Plant systematics scientists
Plant systematics   scientistsPlant systematics   scientists
Plant systematics scientists
Β 
Plant systematics
Plant systematicsPlant systematics
Plant systematics
Β 
Cladistics - Systematics
 Cladistics - Systematics Cladistics - Systematics
Cladistics - Systematics
Β 
Perturbation
PerturbationPerturbation
Perturbation
Β 
Taxonomic systems in plants
Taxonomic systems in plantsTaxonomic systems in plants
Taxonomic systems in plants
Β 
Speciation and Systematics APBioCh16and18
Speciation and Systematics APBioCh16and18Speciation and Systematics APBioCh16and18
Speciation and Systematics APBioCh16and18
Β 
8. plant systematics and evolution
8. plant systematics and evolution8. plant systematics and evolution
8. plant systematics and evolution
Β 

Γ„hnlich wie Physical Chemistry II (CHEM 308)

THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfWasswaderrick3
Β 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfWasswaderrick3
Β 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfWasswaderrick3
Β 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfWasswaderrick3
Β 
Dynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical EngineeringDynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical Engineeringbinodhar2000
Β 
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...IJSRED
Β 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...Wasswaderrick3
Β 
AP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 OutlineAP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 OutlineJane Hamze
Β 
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...Shri Shivaji Science College Amravati
Β 
Chemical Kinetics
Chemical Kinetics Chemical Kinetics
Chemical Kinetics swapnil jadhav
Β 
A2 Chemistry Unit 4
A2 Chemistry Unit 4A2 Chemistry Unit 4
A2 Chemistry Unit 4Kelvin Lam
Β 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdfAbhayRupareliya1
Β 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System ModelsAIMST University
Β 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivationHassaan Saleem
Β 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfWasswaderrick3
Β 

Γ„hnlich wie Physical Chemistry II (CHEM 308) (20)

methodsimp.pdf
methodsimp.pdfmethodsimp.pdf
methodsimp.pdf
Β 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
Β 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
Β 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
Β 
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdfRADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
RADIAL HEAT CONDUCTION SOLVED USING THE INTEGRAL EQUATION .pdf
Β 
Dynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical EngineeringDynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical Engineering
Β 
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...	Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Application of Shehu Transform to Mechanics, Newton’s Law Of Cooling and Ele...
Β 
Lds kinetics 3
Lds kinetics 3Lds kinetics 3
Lds kinetics 3
Β 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
Β 
Kinetics pp
Kinetics ppKinetics pp
Kinetics pp
Β 
AP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 OutlineAP Chemistry Chapter 14 Outline
AP Chemistry Chapter 14 Outline
Β 
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Β 
Chemical Kinetics
Chemical Kinetics Chemical Kinetics
Chemical Kinetics
Β 
A2 Chemistry Unit 4
A2 Chemistry Unit 4A2 Chemistry Unit 4
A2 Chemistry Unit 4
Β 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
Β 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
Β 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Β 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivation
Β 
1. Probability.pdf
1. Probability.pdf1. Probability.pdf
1. Probability.pdf
Β 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
Β 

KΓΌrzlich hochgeladen

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
Β 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
Β 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
Β 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
Β 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
Β 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
Β 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
Β 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
Β 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
Β 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxdhanalakshmis0310
Β 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
Β 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
Β 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
Β 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
Β 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
Β 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
Β 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
Β 

KΓΌrzlich hochgeladen (20)

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Β 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Β 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
Β 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
Β 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
Β 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
Β 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
Β 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
Β 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
Β 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Β 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
Β 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
Β 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
Β 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Β 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
Β 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
Β 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
Β 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
Β 

Physical Chemistry II (CHEM 308)

  • 1. PHYSICAL CHEMISTRY II CHAPTER 9: Chemical Kinetics I Rate of Consumption,Formation,and Reaction Consider the reaction 𝐴 + 3𝐡 β†’ 2π‘Œ. The numbers of moles of the species at the beginning of the reaction (at time 𝑑 = 0) are 𝑛 𝐴0 , 𝑛 𝐡0 , π‘Žπ‘›π‘‘ 𝑛 π‘Œ0 , respectively. Assuming the reaction thereafter proceeds from left to right, the moles at some time 𝑑 (𝑠) become 𝑛 𝐴0 βˆ’ πœ‰, 𝑛 𝐡0 βˆ’ 3πœ‰, π‘Žπ‘›π‘‘ 𝑛 π‘Œ0 + 2πœ‰, respectively, where πœ‰ is the extent of the reaction in terms of moles. Now, we can define the moles of reactants and product after time 𝑑 (𝑠) as: 𝑛 𝐴 = 𝑛 𝐴0 βˆ’ πœ‰, 𝑛 𝐡 = 𝑛 𝐡0 βˆ’ 3πœ‰, π‘Žπ‘›π‘‘ 𝑛 π‘Œ = 𝑛 π‘Œ0 + 2πœ‰, such that 𝑛 𝐴0 , 𝑛 𝐡0 , π‘Žπ‘›π‘‘ 𝑛 π‘Œ0 are constants and 𝑛 𝐴 , 𝑛 𝐡, π‘Žπ‘›π‘‘ 𝑛 π‘Œ are functions of the reaction extent, i.e. 𝑓( πœ‰). Furthermore, we may derive these expressions with respect to time and obtain: 𝑑𝑛 𝐴 𝑑𝑑 = 0 βˆ’ π‘‘πœ‰ 𝑑𝑑 , 𝑑𝑛 𝐡 𝑑𝑑 = 0 βˆ’ 3π‘‘πœ‰ 𝑑𝑑 , π‘Žπ‘›π‘‘ 𝑑𝑛 π‘Œ 𝑑𝑑 = 0 + 2π‘‘πœ‰ 𝑑𝑑 Solving for π‘‘πœ‰ 𝑑𝑑 gives the rate of reaction in terms of moles:a π‘‘πœ‰ 𝑑𝑑 = βˆ’ 𝑑𝑛 𝐴 𝑑𝑑 = βˆ’ 𝑑𝑛 𝐡 3𝑑𝑑 = + 𝑑𝑛 π‘Œ 2𝑑𝑑 However, it is more typical to track concentrations than moles. So we may modify the above expression as follows. Let 𝑉 be the volume of the reaction chamber (assuming it remains constant throughout the reaction). Then: π‘‘πœ‰ 𝑉𝑑𝑑 = βˆ’ 𝑑𝑛 𝐴 𝑉𝑑𝑑 = βˆ’ 𝑑 𝑛 𝐡 3𝑉𝑑𝑑 = + 𝑑𝑛 π‘Œ 2𝑉𝑑𝑑 If we define the extent of the reaction in terms of concentration as π‘₯ = πœ‰ 𝑉 and the concentrations of the reactants and product as [ 𝐴] = 𝑛 𝐴 𝑉 , [ 𝐡] = 𝑛 𝐡 𝑉 , π‘Žπ‘›π‘‘ [ π‘Œ] = 𝑛 π‘Œ 𝑉 respectively, then the rate of reaction in terms of concentration is: 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = βˆ’ 𝑑[ 𝐡] 3𝑑𝑑 = 𝑑[ π‘Œ] 2𝑑𝑑 Specifically, we can define the rate of reaction in terms of concentration with respect to each species: 𝜐𝐴 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘‘π‘–π‘ π‘Žπ‘π‘π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝐴
  • 2. 𝜐 𝐡 = βˆ’ 𝑑[ 𝐡] 𝑑𝑑 = π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘‘π‘–π‘ π‘Žπ‘π‘π‘’π‘Žπ‘Ÿπ‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝐡 πœπ‘Œ = 𝑑[ π‘Œ] 𝑑𝑑 = π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘“π‘œπ‘Ÿπ‘šπ‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘Œ Thus: 𝜐 = 𝑑π‘₯ 𝑑𝑑 = 𝜐𝐴 = 1 3 𝜐 𝐡 = 1 2 πœπ‘Œ . Hence, we can reconsider the reaction 𝐴 + 3𝐡 β†’ 2π‘Œ in terms of concentration such that: πΌπ‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘π‘œπ‘›π‘π‘’π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘Ÿπ‘’: [ 𝐴]0, [ 𝐡]0, π‘Žπ‘›π‘‘ [ π‘Œ]0 πΆπ‘œπ‘›π‘π‘’π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘  π‘Žπ‘‘ π‘‘π‘–π‘šπ‘’ 𝑑 π‘Žπ‘Ÿπ‘’: [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯,[ 𝐡] = [ 𝐡]0 βˆ’ 3π‘₯, π‘Žπ‘›π‘‘ [ π‘Œ] = [ π‘Œ]0 + 2π‘₯ πΌπ‘›π‘‘π‘–π‘£π‘–π‘‘π‘’π‘Žπ‘™ π‘Ÿπ‘Žπ‘‘π‘’π‘  π‘Žπ‘Ÿπ‘’: 𝑑[ 𝐴] 𝑑𝑑 = 0 βˆ’ 𝑑π‘₯ 𝑑𝑑 , 𝑑[ 𝐡] 𝑑𝑑 = 0 βˆ’ 3𝑑π‘₯ 𝑑𝑑 , π‘Žπ‘›π‘‘ 𝑑[ π‘Œ] 𝑑𝑑 = 0 + 2𝑑π‘₯ 𝑑𝑑 π‘‚π‘£π‘’π‘Ÿπ‘Žπ‘™π‘™ π‘Ÿπ‘Žπ‘‘π‘’ π‘œπ‘“ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑖𝑠: 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = βˆ’ 𝑑[ 𝐡] 3𝑑𝑑 = 𝑑[ π‘Œ] 2𝑑𝑑 The reaction can also be represented graphically:
  • 3. Table 1: Rates w.r.t species at t = 0 and t = any. Initial rates (at time 𝒕 = 𝟎 𝒔) Rates at any time (𝒕 = 𝒕 𝒔) 𝜐𝐴 = βˆ’ 𝑑[ 𝐴]0 𝑑𝑑 | 𝑑=0 𝜐𝐴 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 | 𝑑 𝜐 𝐡 = βˆ’ 𝑑[ 𝐡]0 𝑑𝑑 | 𝑑=0 𝜐 𝐡 = βˆ’ 𝑑[ 𝐡] 𝑑𝑑 | 𝑑 πœπ‘Œ = + 𝑑[ π‘Œ]0 𝑑𝑑 | 𝑑=0 πœπ‘Œ = + 𝑑[ π‘Œ] 𝑑𝑑 | 𝑑 Table 2: Summary of rate expressions. Moles at 𝒕 = 𝟎 𝒔 𝑛 𝐴0 𝑛 𝐡0 𝑛 π‘Œ0 Moles at 𝒕 = π’‚π’π’š 𝑛 𝐴 = 𝑛 𝐴0 βˆ’ πœ‰ 𝑛 𝐡 = 𝑛 𝐡0 βˆ’ 3πœ‰ 𝑛 π‘Œ = 𝑛 π‘Œ0 + 2πœ‰ Moles derived w.r.t time 𝑑𝑛 𝐴 𝑑𝑑 = 0 βˆ’ π‘‘πœ‰ 𝑑𝑑 𝑑𝑛 𝐡 𝑑𝑑 = 0 βˆ’ 3π‘‘πœ‰ 𝑑𝑑 𝑑𝑛 π‘Œ 𝑑𝑑 = 0 + 2π‘‘πœ‰ 𝑑𝑑 Reaction rate in moles π‘‘πœ‰ 𝑑𝑑 = βˆ’ 𝑑𝑛 𝐴 𝑑𝑑 = βˆ’ 𝑑𝑛 𝐡 3𝑑𝑑 = + 𝑑𝑛 π‘Œ 2𝑑𝑑 Concentration at 𝒕 = 𝟎 𝒔 [ 𝐴]0 = 𝑛 𝐴0 𝑉 [ 𝐡]0 = 𝑛 𝐡0 𝑉 [ π‘Œ]0 = 𝑛 π‘Œ0 𝑉 Concentration at 𝒕 = π’‚π’π’š [ 𝐴] = 𝑛 𝐴 𝑉 [ 𝐡] = 𝑛 𝐡 𝑉 [ π‘Œ] = 𝑛 π‘Œ 𝑉 Concentration derived w.r.t time 𝜐𝐴 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 𝜐 𝐡 = βˆ’ 𝑑[ 𝐡] 𝑑𝑑 πœπ‘Œ = 𝑑[ π‘Œ] 𝑑𝑑 Reaction rate in concentration 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = βˆ’ 𝑑[ 𝐡] 3𝑑𝑑 = 𝑑[ π‘Œ] 2𝑑𝑑 𝜐 = 𝑑π‘₯ 𝑑𝑑 = 𝜐𝐴 = 1 3 𝜐 𝐡 = 1 2 πœπ‘Œ Empirical Rate Equations For the reaction π‘Žπ΄ + 𝑏𝐡 β†’ π‘¦π‘Œ + 𝑧𝑍, the rate of consumption of A can be expressed empirically by an expression of the form 𝜐𝐴 ∝ [ 𝐴] 𝛼[ 𝐡] 𝛽 , called an empirical expression. We may change this expression to an equation by adding a proportionality constant k: 𝜐𝐴 = π‘˜ 𝐴[ 𝐴] 𝛼 [ 𝐡] 𝛽 , where kA, , and  are independent of concentration and of time. Similarly, for product Z, where kZ is not necessarily the same as kA, the rate of formation of product is πœπ‘ = π‘˜ 𝑍[ 𝐴] 𝛼[ 𝐡] 𝛽 .
  • 4. When these equations apply, the rate of reaction must also be given by an equation of the same form: 𝜐 = π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽 = 1 π‘Ž 𝜐𝐴 = 1 𝑏 𝜐 𝐡 = 1 𝑦 πœπ‘Œ = 1 𝑧 πœπ‘ . Thus, 1 π‘Ž 𝜐𝐴 = π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽 β†’ 𝝊 𝑨 = π’‚π’Œ[ 𝑨] 𝜢[ 𝑩] 𝜷 (the rate law in differential form). If we let π‘˜ 𝐴 = π‘Žπ‘˜, then 𝜐𝐴 = π‘˜ 𝐴 [ 𝐴] 𝛼[ 𝐡] 𝛽 . Likewise, 1 𝑏 𝜐 𝐡 = π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽 β†’ 𝜐 𝐡 = π‘π‘˜[ 𝐴] 𝛼[ 𝐡] 𝛽 . If we let π‘˜ 𝐡 = π‘π‘˜, then 𝜐 𝐡 = π‘˜ 𝐡[ 𝐴] 𝛼[ 𝐡] 𝛽 . In these equations, kA, kZ, and k are not necessarily the same, being related by stoichiometric coefficients; thus if the stoichiometric equation is 𝐴 + 3𝐡 β†’ 2π‘Œ, then π‘˜ = π‘˜ 𝐴 = 1 2 π‘˜ 𝐡 = 1 3 π‘˜ 𝑍. Order of Reaction The exponent  in the previous equations is known as the order of reaction with respect to A and can be referred to as a partial order. Similarly, the partial order  is the order with respect to B. These orders are purely experimental quantities and are not necessarily integral; that is, they are independent of stoichiometry. The sum of all the partial orders, 𝛼 + 𝛽 + β‹―, is referred to as the overall order and is usually given the symbol n. A first order reaction is one in which the rate is proportional to the first power of the concentration of a single reactant, such that 𝜐 = π‘˜[ 𝐴]. For example, the conversion of cyclopropane to propylene is 1st order. In a second order reaction, the rate must be proportional to the product of two concentrations [A] and [B] if the reaction simply involves collisions between A and B molecules. For instance, in the reaction 𝐻2 + 𝐼2 β‡Œ 2𝐻𝐼, the rate from left to right is proportional to the product of the concentrations of the two reactants. That is, 𝜐1 = π‘˜1[ 𝐻2][ 𝐼2], where k1 is a constant at a given temperature. The reaction from left to right is said to be 1st order in H2, 1st order in I2, and 2nd order overall. The reverse reaction is also 2nd order; the rate from right to left is proportional to the square of the concentration of HI: πœβˆ’1 = π‘˜βˆ’1[ 𝐻𝐼]2 . Similarly, the kinetics must be third order if a reaction proceeds in one stage and involves collisions between three molecules, A, B, and C.
  • 5. Examples For the reaction 𝐴 + 𝐡 π‘˜1 βƒ—βƒ—βƒ—βƒ—βƒ— 2𝐢, 𝜐1 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = βˆ’ 𝑑[ 𝐡] 𝑑𝑑 = 𝑑[ 𝐢] 2𝑑𝑑 = π‘˜1[ 𝐴] 𝛼[ 𝐡] 𝛽 . Assuming that  = 1 and  = 1, the forward reaction is 2nd order and 𝜐1 = π‘˜1[ 𝐴]1[ 𝐡]1 . For the reaction 2𝐢 π‘˜βˆ’1 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴 + 𝐡, πœβˆ’1 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐢] 2𝑑𝑑 = 𝑑[ 𝐴] 𝑑𝑑 = 𝑑[ 𝐡] 𝑑𝑑 = π‘˜βˆ’1[ 𝐢] 𝛾 . Assuming that  = 2, the forward reaction is 2nd order and πœβˆ’1 = π‘˜βˆ’1[ 𝐢]2 . For the reaction 𝐢𝐻3 𝐢𝐻𝑂 β†’ 𝐢𝐻4 + 𝐢𝑂, 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐢𝐻3 𝐢𝐻𝑂] 𝑑𝑑 = 𝑑[ 𝐢 𝐻4 ] 𝑑𝑑 = 𝑑[ 𝐢𝑂] 𝑑𝑑 = π‘˜[ 𝐢𝐻3 𝐢𝐻𝑂] 𝛼 . Assuming 𝛼 = 3 2 , the forward reaction is of order 3 2 and 𝜐 = π‘˜[ 𝐢𝐻3 𝐢𝐻𝑂] 3 2. For the reaction 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝐡, 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = 𝑑[ 𝐡] 𝑑𝑑 = π‘˜[ 𝐴] 𝛼 . Assuming that  = 1, the forward reaction is 1st order and 𝜐 = π‘˜[ 𝐴]1 . Also, βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴]and so 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜ 𝑑𝑑. Integrating gives π₯𝐧[ 𝑨] = βˆ’π’Œπ’• + π‘ͺ, where C is a constant. This is the rate law in integral form. At 𝑑 = 0 and [ 𝐴] = [ 𝐴]0, ln[ 𝐴]0 = 𝐢. Therefore, ln[ 𝐴] = βˆ’π‘˜π‘‘ + ln[ 𝐴]0, and ln[ 𝐴] βˆ’ ln[ 𝐴]0 = βˆ’π‘˜π‘‘, and ln [ 𝐴] [ 𝐴]0 = βˆ’π‘˜π‘‘. Get rid of natural log: [ 𝐴] [ 𝐴]0 = π‘’βˆ’π‘˜π‘‘ . Hence, [ 𝑨] = [ 𝑨] 𝟎 π’†βˆ’π’Œπ’• is the rate law for the disappearance of A. At 𝑑 = 0, [ 𝐴] = [ 𝐴]0 𝑒0 = [ 𝐴]0. At 𝑑 = ∞, [ 𝐴] = [ 𝐴]0 π‘’βˆ’βˆž = 0. In other words, for the reaction 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝐡: The initial concentrations of A and B are [A]0 and 0, respectively. The concentrations after time 𝑑 = π‘Žπ‘›π‘¦ are [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = π‘₯. Hence [ 𝐴] + [ 𝐡] = [ 𝐴]0 and [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] = [ 𝐴]0 βˆ’ [ 𝐴]0 π‘’βˆ’π‘˜π‘‘ = [ 𝐴]0(1 βˆ’ π‘’βˆ’π‘˜π‘‘). [ 𝑩] = [ 𝑨] 𝟎(𝟏 βˆ’ π’†βˆ’π’Œπ’• ) is the rate law of appearance of B.
  • 6. IntegrationofRate Laws First Order Reaction: Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ . At 𝑑 = 0, [ 𝐴] = [ 𝐴]0 and [ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ ] = 0. At 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘Žπ‘₯, where a, ax, and [A]0 are constants. The derivative of [A] with respect to time gives us 𝑑[ 𝐴] 𝑑𝑑 = 0 βˆ’ π‘Ž 𝑑π‘₯ 𝑑𝑑 . Therefore, 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴] 𝛼 , where  is the partial order of reaction with respect to A, determined experimentally. Assuming the reaction is 1st order, 𝛼 = 1. Thus, 𝜐 = π‘˜[ 𝐴]1 . To simplify, we can let βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴]and let π‘˜ 𝐴 = π‘Žπ‘˜. Rearranging therefore gives βˆ’ 𝒅[ 𝑨] [ 𝑨] = π’Œ 𝑨 𝒅𝒕, the rate law in differential form.
  • 7. If we integrate the above equation, we get the following: βˆ’ 𝑑[ 𝐴] [ 𝑨] = π‘˜ 𝐴 𝑑𝑑 β†’ βˆ’ π₯𝐧[ 𝑨] = π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form. When 𝑑 = 0, βˆ’ ln[ 𝐴]0 = 0 + 𝐢. Therefore, π‘ͺ = βˆ’ π₯𝐧[ 𝑨] 𝟎. Substituting gives: βˆ’ln[ 𝐴] = π‘˜ 𝐴 𝑑 βˆ’ ln[ 𝐴]0. Rearranging, ln[ 𝐴] βˆ’ ln[ 𝐴]0 = βˆ’π‘˜ 𝐴 𝑑 and ln [ 𝐴] [ 𝐴]0 = βˆ’π‘˜ 𝐴 𝑑. We now define the half-life of the reaction to be the time required for [A] to drop to half its value; that is, 𝒕 = 𝒕 𝟏 𝟐 π’˜π’‰π’†π’ [ 𝑨] = [ 𝑨] 𝟎 𝟐 . Thus, for a 1st order reaction, at tΒ½: ln 1 2 [ 𝐴]0 [ 𝐴]0 = βˆ’π‘˜ 𝐴 𝑑1 2 β†’ ln 1 2 = βˆ’π‘˜ 𝐴 𝑑1 2 β†’ βˆ’ ln 2 β†’= βˆ’π‘˜ 𝐴 𝑑1 2 β†’ 𝒕 𝟏 𝟐 = π₯𝐧 𝟐 π’Œ 𝑨 𝑑1 2 is independent of concentration in 1st order reactions. Important Integrals ∫ 1 π‘₯ 𝑑π‘₯ = ln| π‘₯| (1) ∫ 𝑑π‘₯ = π‘₯ (2) ∫ π‘₯ 𝑛 𝑑π‘₯ = π‘₯ 𝑛+1 𝑛+1 (3) ∫( π‘Ž + 𝑏π‘₯) 𝑛 𝑑π‘₯ = ( π‘Ž+𝑏π‘₯) 𝑛+1 𝑏( 𝑛+1) (4) ∫ 1 π‘Ž+𝑏π‘₯ 𝑑π‘₯ = 1 𝑏 ln(| π‘Ž + 𝑏π‘₯|) (5) ∫ 1 ( π‘Ž+𝑏π‘₯) 𝑛 𝑑π‘₯ = βˆ’ 1 ( π‘›βˆ’1) 𝑏( π‘Ž+𝑏π‘₯) π‘›βˆ’1 (6)
  • 8. Second Order Reaction: Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ . 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴] 𝛼 , where  is the partial order of reaction with respect to A, determined experimentally. Assuming the reaction is 2nd order, 𝛼 = 2. Thus, 𝜐 = π‘˜[ 𝐴]2 . To simplify, we can let βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴]and let π‘˜ 𝐴 = π‘Žπ‘˜. Rearranging therefore gives 𝒅[ 𝑨] [ 𝑨] 𝟐 = βˆ’π’Œ 𝑨 𝒅𝒕, the rate law in differential form. If we integrate the above equation, we get the following: βˆ’ 𝑑[ 𝐴] [ 𝑨] 𝟐 = π‘˜ 𝐴 𝑑𝑑 β†’ βˆ’ 𝟏 [ 𝑨] = βˆ’π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form. When 𝑑 = 0, βˆ’ 1 [ 𝐴] = 0 + 𝐢. Therefore, π‘ͺ = βˆ’ 𝟏 [ 𝑨] 𝟎 . Substituting gives: βˆ’ 1 [ 𝐴] = βˆ’π‘˜ 𝐴 𝑑 βˆ’ 𝟏 [ 𝑨] 𝟎 . Rearranging, 1 [ 𝐴] βˆ’ 𝟏 [ 𝑨] 𝟎 = π‘˜ 𝐴 𝑑. Thus, for a 2nd order reaction, at tΒ½: 1 1 2 [ 𝐴]0 βˆ’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑1 2 β†’ 2 [ 𝐴]0 βˆ’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑1 2 β†’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑1 2 β†’ 𝒕 𝟏 𝟐 = 𝟏 π’Œ 𝑨[ 𝑨] 𝟎 𝑑1 2 depends on [ 𝐴]0 in 2nd order reactions. Third Order Reaction: Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ . 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴] 𝛼 , where  is the partial order of reaction with respect to A, determined experimentally. Assuming the reaction is 3rd order, 𝛼 = 3. Thus, 𝜐 = π‘˜[ 𝐴]3 . To simplify, we can let βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴]and let π‘˜ 𝐴 = π‘Žπ‘˜. Rearranging therefore gives 𝒅[ 𝑨] [ 𝑨] πŸ‘ = βˆ’π’Œ 𝑨 𝒅𝒕, the rate law in differential form. If we integrate the above equation, we get the following:
  • 9. βˆ’ 𝑑[ 𝐴] [ 𝑨] πŸ‘ = π‘˜ 𝐴 𝑑𝑑 β†’ βˆ’ 𝟏 𝟐[ 𝑨] 𝟐 = βˆ’π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form. When 𝑑 = 0, βˆ’ 1 2⌈ π΄βŒ‰0 2 = 0 + 𝐢. Therefore, π‘ͺ = βˆ’ 𝟏 𝟐⌈ π΄βŒ‰0 2. Substituting gives: βˆ’ 𝟏 𝟐[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑 βˆ’ 𝟏 𝟐⌈ π΄βŒ‰0 2. Rearranging, 𝟏 𝟐[ 𝐴]2 βˆ’ 𝟏 𝟐⌈ π΄βŒ‰0 2 = π‘˜ 𝐴 𝑑. Thus, for a 3rd order reaction, at tΒ½: 1 2 ( 1 2 [ 𝐴]0) 2 βˆ’ 1 2[ 𝐴]0 2 = π‘˜ 𝐴 𝑑1 2 β†’ 1 2 ( 1 4 [ 𝐴]2) βˆ’ 1 2[ 𝐴]0 2 = π‘˜ 𝐴 𝑑1 2 β†’ 1 1 2 [ 𝐴]0 2 βˆ’ 1 2[ 𝐴]0 2 = π‘˜ 𝐴 𝑑1 2 β†’ 2 [ 𝐴]0 2 βˆ’ 1 2[ 𝐴]0 2 = π‘˜ 𝐴 𝑑1 2 β†’ 3 2[ 𝐴]0 2 = π‘˜ 𝐴 𝑑1 2 β†’ 𝒕 𝟏 𝟐 = πŸ‘ 𝟐[ 𝑨] 𝟎 𝟐 π‘˜ 𝐴 𝑑1 2 depends on [ 𝐴]0 in 3rd order reactions. nth Order Reaction: Consider π‘Žπ΄ β†’ π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘ . 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] π‘Ž 𝑑𝑑 = π‘˜[ 𝐴] 𝛼 , where  is the partial order of reaction with respect to A, determined experimentally. Assuming the reaction is nth order, 𝛼 = 𝑛. Thus, 𝜐 = π‘˜[ 𝐴] 𝑛 . To simplify, we can let βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴] 𝑛 and let π‘˜ 𝐴 = π‘Žπ‘˜. Rearranging therefore gives 𝒅[ 𝑨] [ 𝑨] 𝒏 = βˆ’π’Œ 𝑨 𝒅𝒕, the rate law in differential form. If we integrate the above equation, we get the following: 𝑑[ 𝐴] [ 𝑨] 𝒏 = βˆ’π‘˜ 𝐴 𝑑𝑑 β†’ [ 𝑨]βˆ’π’+𝟏 βˆ’π’+𝟏 = βˆ’π’Œ 𝑨 𝒕 + π‘ͺ, the rate law in integral form. When 𝑑 = 0, [ 𝑨] 𝟎 βˆ’π’+𝟏 βˆ’π’+𝟏 = 0 + 𝐢. Therefore, π‘ͺ = [ 𝑨] 𝟎 βˆ’π’+𝟏 βˆ’π’+𝟏 . Substituting gives: [ 𝑨]βˆ’π’+𝟏 βˆ’π’+𝟏 = βˆ’π‘˜ 𝐴 𝑑 + [ 𝑨] 𝟎 βˆ’π’+𝟏 βˆ’π’+𝟏 . Rearranging, [ 𝑨]βˆ’π’+𝟏 βˆ’π’+𝟏 βˆ’ [ 𝑨] 𝟎 βˆ’π’+𝟏 βˆ’π’+𝟏 = βˆ’π‘˜ 𝐴 𝑑. Thus, for a nth order reaction, at tΒ½:
  • 10. ( 1 2 [ 𝐴]0 βˆ’π‘›+1 ) βˆ’π‘› + 1 βˆ’ [ 𝐴]0 βˆ’π‘›+1 βˆ’π‘› + 1 = βˆ’π‘˜ 𝐴 𝑑1 2 β†’ (( 1 2 ) βˆ’π‘›+1 [ 𝐴]0 βˆ’π‘›+1 ) βˆ’π‘› + 1 βˆ’ [ 𝐴]0 βˆ’π‘›+1 βˆ’π‘› + 1 = βˆ’π‘˜ 𝐴 𝑑1 2 β†’ 𝒕 𝟏 𝟐 = ([ 𝐴]0 βˆ’π‘›+1){( 1 2 ) βˆ’π‘›+1 βˆ’ 1} βˆ’π‘› + 1 = βˆ’π‘˜ 𝐴 𝑑1 2 We can invert the initial concentration term to send it to the number with the index 𝑛 βˆ’ 1, flip the fraction Β½ to also give it the index 𝑛 βˆ’ 1, and divide both sides of the equation by βˆ’π‘˜ 𝐴 (to isolate tΒ½ and distribute the negative sign to the denominator, βˆ’π‘› + 1). Thus: 𝒕 𝟏 𝟐 = 𝟐 π’βˆ’πŸ βˆ’ 𝟏 [ 𝑨] 𝟎 π’βˆ’πŸ( 𝒏 βˆ’ 𝟏) π’Œ 𝑨 𝑑1 2 depends on [ 𝐴]0 in nth order reactions. Example: Consider the 1st order reaction 𝐴 β†’ 𝐡. At time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = π‘₯. Hence, [ 𝐴] + [ 𝐡] = [ 𝐴]0 and 𝜐 = 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑 = 𝑑[ 𝐡] 𝑑 = π‘˜[ 𝐴] = π‘˜([ 𝐴]0 βˆ’ π‘₯). If βˆ’ 𝑑[ 𝐴] 𝑑 π‘˜[ 𝐴], then [ 𝐴] = [ 𝐴]0 π‘’βˆ’π‘˜π‘‘ or ln [ 𝐴]0βˆ’π‘₯ [ 𝐴]0 = βˆ’π‘˜π‘‘. Therefore, ln π‘Ž0βˆ’π‘₯ π‘Ž0 = βˆ’π‘˜π‘‘. Also, 𝑑π‘₯ 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯)is a separable equation such that 𝑑π‘₯ π‘Ž0 βˆ’π‘₯ = π‘˜ 𝑑𝑑. Integrating gives βˆ’ln| π‘Ž0 βˆ’ π‘₯| = π‘˜π‘‘ + 𝐢, where C is an integration constant. At time 𝑑 = 0: π‘₯ = 0 and βˆ’ ln| π‘Ž0| = 𝐢. Then βˆ’ln| π‘Ž0 βˆ’ π‘₯| = π‘˜π‘‘ βˆ’ ln| π‘Ž0| β†’ ln| π‘Ž0 βˆ’ π‘₯| βˆ’ ln| π‘Ž0| = βˆ’π‘˜π‘‘ β†’ ln π‘Ž0βˆ’π‘₯ π‘Ž0 = βˆ’π‘˜π‘‘. And if [ 𝐴] + [ 𝐡] = π‘Ž0, then [ 𝐡] = π‘Ž0 βˆ’ [ 𝐴] = π‘Ž0 βˆ’ π‘Ž0 π‘’βˆ’π‘˜π‘‘ = π‘Ž0(1 βˆ’ π‘’βˆ’π‘˜π‘‘). In terms of [B]: 𝑑[ 𝐡] 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯) = π‘˜( π‘Ž0 βˆ’ [ 𝐡]). This is a separable equation such that: 𝑑[ 𝐡] π‘Ž0βˆ’[ 𝐡] = π‘˜ 𝑑𝑑. Integrating gives βˆ’ln π‘Ž0 βˆ’ [ 𝐡] = π‘˜π‘‘ + 𝐢. At time 𝑑 = 0: [ 𝐡] = 0 and βˆ’ ln| π‘Ž0| = 𝐢. Then βˆ’ln| π‘Ž0 βˆ’ [ 𝐡]| = π‘˜π‘‘ βˆ’ ln| π‘Ž0| β†’ ln| π‘Ž0 βˆ’ [ 𝐡]| βˆ’ ln| π‘Ž0 | = βˆ’π‘˜π‘‘ β†’ ln π‘Ž0βˆ’[ 𝐡] π‘Ž0 = βˆ’π‘˜π‘‘, as above.
  • 11. Example Consider the 2nd order reaction 2𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃 or 𝐴 + 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. Let βˆ’ 𝑑[ 𝐴] 2𝑑𝑑 = π‘˜[ 𝐴] 𝛼 = π‘˜[ 𝐴]2 . And let π‘˜ 𝐴 = 2π‘˜. Then rearranging gives 𝑑[ 𝐴] 𝑑[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑𝑑. Integrating gives βˆ’ 1 [ 𝐴] = βˆ’π‘˜ 𝐴 𝑑 + 𝐢. At time 𝑑 = 0: βˆ’ 1 [ 𝐴]0 = 𝐢. Then βˆ’ 1 [ 𝐴] = π‘˜ 𝐴 𝑑 βˆ’ 1 [ 𝐴]0 β†’ 1 [ 𝐴] βˆ’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑, where k has units 1 π‘šπ‘œπ‘™ πΏβˆ’1 π‘ βˆ’1. At time 𝑑 = 𝑑1 2 : 1 1 2 [ 𝐴]0 βˆ’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑1 2 β†’ 2 [ 𝐴]0 βˆ’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑1 2 β†’ 1 [ 𝐴]0 = π‘˜ 𝐴 𝑑1 2 β†’ 𝒕 𝟏 𝟐 = 𝟏 [ 𝑨] 𝟎 π’Œ 𝑨 . Consider a 2nd order reaction that has two reactants, such as 𝐴 + 𝐡 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. We can express the rate as βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴][ 𝐡], but it cannot be integrated as it contains two different variables. We still know that at time 𝑑 = 0: [ 𝐴] = [ 𝐴]0, [ 𝐡] = [ 𝐡]0, and [ 𝑃] = 0. Similarly, at time 𝑑 = π‘Žπ‘›π‘¦: [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯, and [ 𝑃] = π‘₯. If we assume that [ 𝐴]0 = [ 𝐡]0, then [ 𝐴] = [ 𝐡] as well. The rate then becomes βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴]2 , a separable equation. Thus, 𝑑[ 𝐴] [ 𝐴]2 = βˆ’π‘˜ 𝑑𝑑, which can be integrated as in the example previous example. Consider a 3rd order reaction 3𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. The rate is βˆ’ 𝑑[ 𝐴] 3𝑑𝑑 = π‘˜[ 𝐴]3 . Let π‘˜ 𝐴 = 3π‘˜. Then rearranging gives 𝑑[ 𝐴] 𝑑[ 𝐴]3 = βˆ’π‘˜ 𝐴 𝑑𝑑. Integrating gives βˆ’ 1 2[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑 + 𝐢. At time 𝑑 = 0: βˆ’ 1 2[ 𝐴]0 2 = 𝐢. Then βˆ’ 1 2[ 𝐴]2 = βˆ’π‘˜ 𝐴 𝑑 βˆ’ 1 2[ 𝐴]0 2 β†’ 1 2[ 𝐴]2 βˆ’ 1 2[ 𝐴]0 2 = π‘˜ 𝐴 𝑑 β†’ 1 [ 𝐴]2 βˆ’ 1 [ 𝐴]0 2 = 2π‘˜ 𝐴 𝑑. At 𝑑 = 𝑑1 2 : GO OVER TO CLARIFY! Example Consider the reaction 2𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃 or 𝐴 + 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. Then βˆ’ 𝑑[ 𝐴] 2𝑑𝑑 = π‘˜[ 𝐴]2[ 𝐡], where [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯ at any time t. If we let 2[ 𝐴]0 ≫ [ 𝐴], then 2[ 𝐴]0 βˆ’ 2π‘₯. Then [ 𝐴] = 2[ 𝐴]0 βˆ’ π‘₯ β†’ [ 𝐴] = 2([ 𝐴]0 βˆ’ π‘₯). And since [ 𝐡] = [ 𝐴]0 βˆ’ π‘₯, then [ 𝐴] = 2[ 𝐡] (and thus [ 𝐴]0 = 2[ 𝐡]0 and [ 𝐡] = [ 𝐴] 2 ).
  • 12. Therefore, βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = 2π‘˜[ 𝐴]2 = 2π‘˜ 𝐴 [ 𝐴]2 2 β†’ βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = 2π‘˜ 𝐴[ 𝐴]2 ( 1 2 [ 𝐴]) = π‘˜[ 𝐴]3 β†’ βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴]3 . Example Consider a reaction 𝐴 + 𝐡 + 𝐢 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. At time 𝑑 = 0, we assume that [ 𝐴] = [ 𝐴]0, [ 𝐡] = [ 𝐴]0, and [ 𝐢] = [ 𝐴]0. Likewise, at time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, [ 𝐡] = [ 𝐴]0 βˆ’ π‘₯, and [ 𝐢] = [ 𝐴]0 βˆ’ π‘₯. The rate is given by: βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴][ 𝐡][ 𝐢] β†’ βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴]3 β†’ 𝑑[ 𝐴] [ 𝐴]3 = βˆ’π‘˜ 𝑑𝑑. Integrating gives βˆ’ 1 [ 𝐴]2 = βˆ’π‘˜π‘‘ + 𝐢 β†’ 1 [ 𝐴]2 = π‘˜π‘‘ + 𝐢. At 𝑑 = 0, 1 [ 𝐴]0 2 = 𝐢. Therefore, 1 [ 𝐴]2 = π‘˜π‘‘ + 1 [ 𝐴]0 2 β†’ 1 [ 𝐴]2 βˆ’ 1 [ 𝐴]0 2 = π‘˜π‘‘. And at 𝑑 = 𝑑1 2 , 1 [ 𝐴]2 βˆ’ 1 ( 1 2 [ 𝐴]0) 2 = π‘˜π‘‘1 2 β†’ 1 [ 𝐴]2 βˆ’ 1 1 4 [ 𝐴]0 2 = π‘˜π‘‘1 2 β†’ 𝒕 𝟏 𝟐 = 𝟏 π’Œ[ 𝑨] 𝟐 βˆ’ πŸ’ π’Œ[ 𝑨] 𝟎 𝟐. HAVE HOKMABADI CHECK THIS! Example Consider the 2nd order reaction 𝐴 + 𝐡 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. At time 𝑑 = 0, we assume that [ 𝐴] = [ 𝐴]0 and [ 𝐡] = [ 𝐡]0. Similarly, at time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ and [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯. The rate is then given by: 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴][ 𝐡] = π‘˜([ 𝐴]0 βˆ’ π‘₯ )([ 𝐡]0 βˆ’ π‘₯). We will denote [ 𝐴] = π‘Ž and [ 𝐴]0 = π‘Ž0. Then 𝑑π‘₯ 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯ )( 𝑏0 βˆ’ π‘₯) β†’ 1 ( π‘Ž0βˆ’π‘₯ )( 𝑏0βˆ’π‘₯) 𝑑π‘₯ = π‘˜ 𝑑𝑑. We use partial fractions to solve for a and b. 1 = 𝐴( 𝑏0 βˆ’ π‘₯) + 𝐡( π‘Ž0 βˆ’ π‘₯) 𝐴𝑏0 + π΅π‘Ž0 βˆ’ ( 𝐴 + 𝐡) π‘₯ βˆ’ 1 = 0 Let { 𝐴 + 𝐡 = 0 𝐴𝑏0 + π΅π‘Ž0 βˆ’ 1 = 0 We can show that 𝐡 = 1 π‘Ž0βˆ’π‘0 and that 𝐴 = 1 π‘Ž0βˆ’π‘0 .
  • 13. 1 ( π‘Ž0 βˆ’ π‘₯ )( 𝑏0 βˆ’ π‘₯) = βˆ’ 1 ( π‘Ž0 βˆ’ 𝑏0) ( π‘Ž0 βˆ’ π‘₯ ) + βˆ’ 1 ( π‘Ž0 βˆ’ 𝑏0 ) ( 𝑏0 βˆ’ π‘₯ ) = 1 ( π‘Ž0 βˆ’ 𝑏0 )( π‘Ž0 βˆ’ π‘₯) + 1 ( π‘Ž0 βˆ’ 𝑏0 )( 𝑏0 βˆ’ π‘₯) = βˆ’ 1 π‘Ž0 βˆ’ 𝑏0 [ 1 π‘Ž0 βˆ’ π‘₯ βˆ’ 1 𝑏0 βˆ’ π‘₯ ] 𝑑π‘₯ π‘Ž0 βˆ’ π‘₯ βˆ’ 𝑑π‘₯ 𝑏0 βˆ’ π‘₯ = βˆ’π‘˜( π‘Ž0 βˆ’ 𝑏0) 𝑑𝑑 Integrating (integral #6) gives: π₯𝐧(| 𝒂 𝟎 βˆ’ 𝒙|) βˆ’ π₯𝐧(| 𝒃 𝟎 βˆ’ 𝒙|) = βˆ’π’Œ( 𝒂 𝟎 βˆ’ 𝒃 𝟎) 𝒕. Review 𝐴 + 𝐡 β†’ 𝑃 At time 𝑑 = π‘Žπ‘›π‘¦: π‘Ž = π‘Ž0 βˆ’ π‘₯ and 𝑏 = 𝑏0 βˆ’ π‘₯, so that 𝑑π‘₯ 𝑑𝑑 = βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴][ 𝐡] = π‘˜( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯). Thus, 𝑑π‘₯ ( π‘Ž0βˆ’π‘₯ )( 𝑏0βˆ’π‘₯) = βˆ’π‘˜ 𝑑𝑑. Using the integral ∫ 𝑑π‘₯ ( π‘Ž+𝑏π‘₯ )( 𝑐+𝑔π‘₯) = 1 π‘Žπ‘”βˆ’π‘π‘ ln | 𝑐+𝑔π‘₯ π‘Ž+𝑏π‘₯ |, we get: 𝑑π‘₯ ( π‘Ž0 βˆ’ π‘₯ )( 𝑏0 βˆ’ π‘₯) = βˆ’ 1 βˆ’π‘Ž0 + 𝑏0 ln | 𝑏0 βˆ’ π‘₯ π‘Ž0 βˆ’ π‘₯ | = βˆ’π‘˜π‘‘ + 𝐢 Or 1 βˆ’( π‘Ž0βˆ’π‘0) ln | 𝑏0βˆ’π‘₯ π‘Ž0βˆ’π‘₯ | = βˆ’π‘˜π‘‘ + 𝐢. At 𝑑 = 0, βˆ’ 1 ( π‘Ž0βˆ’π‘0) ln 𝑏0 π‘Ž0 = 𝐢 β†’ 𝐢 = 1 βˆ’( π‘Ž0βˆ’π‘0) ln 𝑏0 π‘Ž0 . Therefore, 1 βˆ’( π‘Ž0βˆ’π‘0) ln | 𝑏0βˆ’π‘₯ π‘Ž0βˆ’π‘₯ | = βˆ’π‘˜π‘‘ βˆ’ 1 ( π‘Ž0βˆ’π‘0) ln 𝑏0 π‘Ž0 . Multiplying both sides by ( π‘Ž0 βˆ’ 𝑏0) gives Rearranging gives βˆ’ln | 𝑏0βˆ’π‘₯ π‘Ž0βˆ’π‘₯ | = βˆ’( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ βˆ’ ln 𝑏0 π‘Ž0 Thus ln| 𝑏0βˆ’π‘₯ π‘Ž0βˆ’π‘₯ | = ( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ + ln 𝑏0 π‘Ž0 And βˆ’ ln | π‘Ž0βˆ’π‘₯ 𝑏0βˆ’π‘₯ | = ( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ + ln 𝑏0 π‘Ž0 Hence ln | π‘Ž0βˆ’π‘₯ 𝑏0βˆ’π‘₯ | + ln 𝑏0 π‘Ž0 = βˆ’( π‘Ž0 βˆ’ 𝑏0) π‘˜π‘‘ And βˆ’ 1 ( π‘Ž0βˆ’π‘0) ln 𝑏0( π‘Ž0βˆ’π‘₯) π‘Ž0( 𝑏0βˆ’π‘₯) + ln 𝑏0 π‘Ž0 = π‘˜π‘‘ WAIT FOR CORRECTION
  • 14. Reversible 1st Order Reactions Consider the reaction: 𝐴 π‘˜βƒ‘βƒ—βƒ— 𝐡. This overall reaction is composed of two elementary reactions:  𝐴 π‘˜1 βƒ—βƒ—βƒ—βƒ— 𝐡 for which the rate is: βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜1[ 𝐴]1 β†’ 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴]; and  𝐡 π‘˜βˆ’1 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴 for which the rate is: 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐡] The overall rate is 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴]1 + π‘˜1[ 𝐡]1 . Before we can integrate, we must express B in terms of A. [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯ [ 𝐡] = π‘₯ } [ 𝐴] + [ 𝐡] = [ 𝐴]0 β†’ [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] Hence 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴]1 + π‘˜1([ 𝐴]0 βˆ’ [ 𝐴]) 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴]1 + π‘˜1[ 𝐴]0 βˆ’ π‘˜1[ 𝐴] 𝑑[ 𝐴] 𝑑𝑑 = βˆ’( π‘˜1 + π‘˜βˆ’1)[ 𝐴]+ π‘˜βˆ’1[ 𝐴]0 Rearranging gives: 𝑑[ 𝐴] ( π‘˜1+π‘˜βˆ’1)[ 𝐴]βˆ’π‘˜βˆ’1[ 𝐴]0 = βˆ’π‘‘π‘‘ Integrating (integral #6) gives: 1 π‘˜1+π‘˜βˆ’1 ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} = βˆ’π‘‘ + 𝐢. At 𝑑 = 0: 1 π‘˜1+π‘˜βˆ’1 ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴]0 βˆ’ π‘˜βˆ’1[ 𝐴]0} = 𝐢 1 π‘˜1 + π‘˜βˆ’1 ln{ π‘˜1[ 𝐴]0 + π‘˜βˆ’1[ 𝐴]0 βˆ’ π‘˜βˆ’1[ 𝐴]0} = 𝐢 1 π‘˜1 + π‘˜βˆ’1 ln{ π‘˜1[ 𝐴]0} = 𝐢 Hence 1 π‘˜1+π‘˜βˆ’1 ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} = βˆ’π‘‘ + 1 π‘˜1+π‘˜βˆ’1 ln{ π‘˜1[ 𝐴]0} 1 π‘˜1 + π‘˜βˆ’1 ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} βˆ’ 1 π‘˜1 + π‘˜βˆ’1 ln{ π‘˜1[ 𝐴]0} = βˆ’π‘‘ 1 π‘˜1 + π‘˜βˆ’1 〈ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} βˆ’ ln{ π‘˜1[ 𝐴]0}βŒͺ = βˆ’π‘‘ ln{( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐴]0} βˆ’ ln{ π‘˜1[ 𝐴]0} = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 π₯𝐧 { ( π’Œ 𝟏 + π’Œβˆ’πŸ)[ 𝑨]βˆ’ π’Œβˆ’πŸ[ 𝑨] 𝟎 π’Œ 𝟏[ 𝑨] 𝟎 } = βˆ’( π’Œ 𝟏 + π’Œβˆ’πŸ) 𝒕
  • 15. At equilibrium: [ 𝐴] π‘’π‘ž + [ 𝐡] π‘’π‘ž = [ 𝐴]0 and 𝑑[ 𝐴] 𝑑𝑑 = 0 since [A] is a constant. Hence 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] π‘’π‘ž + π‘˜βˆ’1 [ 𝐡] π‘’π‘ž = 0. Therefore, π‘˜1[ 𝐴] π‘’π‘ž = π‘˜βˆ’1[ 𝐡] π‘’π‘ž, which is in accordance with the equilibrium condition that the forward rate should equal the reverse rate. Rearranging this gives [ 𝑩] 𝒆𝒒 [ 𝑨] 𝒆𝒒 = π’Œ 𝟏 π’Œβˆ’πŸ = π’Œ π‘ͺ, which we will name the equilibrium rate constant, a chemical thermodynamics term. { [ 𝐴] π‘’π‘ž + [ 𝐡] π‘’π‘ž = [ 𝐴]0 … … …… … …(1) [ 𝐡] π‘’π‘ž [ 𝐴] π‘’π‘ž = π‘˜1 π‘˜βˆ’1 … … … …… … …… … …(2) We solve for [ 𝐴] π‘’π‘ž and [ 𝐡] π‘’π‘ž by substitution. Rearrange (2): [ 𝐡] π‘’π‘ž = π‘˜1 π‘˜βˆ’1 [ 𝐴] π‘’π‘žβ€¦β€¦(3) Substitute the above into (1): [ 𝐴] π‘’π‘ž + π‘˜1 π‘˜βˆ’1 [ 𝐴] π‘’π‘ž = [ 𝐴]0 Factor out [ 𝐴] π‘’π‘ž: [ 𝐴] π‘’π‘ž (1 + π‘˜1 π‘˜βˆ’1 ) = [ 𝐴]0 Make k-1 the common denominator: [ 𝐴] π‘’π‘ž ( π‘˜βˆ’1+π‘˜1 π‘˜βˆ’1 ) = [ 𝐴]0 Make [ 𝐴] π‘’π‘ž the subject: [ 𝑨] 𝒆𝒒 = π’Œβˆ’πŸ[ 𝑨] 𝟎 π’Œβˆ’πŸ+π’Œ 𝟏 Note that [ 𝐴]0 = [ 𝐴] π‘’π‘ž( π‘˜βˆ’1+π‘˜1) π‘˜βˆ’1 Substitute into (3): [ 𝐡] π‘’π‘ž = π‘˜1 π‘˜βˆ’1 { π‘˜βˆ’1[ 𝐴]0 π‘˜βˆ’1+π‘˜1 } The k-1 term cancels to give: [ 𝑩] 𝒆𝒒 = π’Œ 𝟏[ 𝑨] 𝟎 π’Œβˆ’πŸ+π’Œ 𝟏 . To prove these solutions for [ 𝐴] π‘’π‘ž and [ 𝐡] π‘’π‘ž hold, we substitute them into (2) and cancel common terms: [ 𝐡] π‘’π‘ž [ 𝐴] π‘’π‘ž = π‘˜1[ 𝐴]0 π‘˜βˆ’1 + π‘˜1 βˆ™ π‘˜βˆ’1 + π‘˜1 π‘˜βˆ’1[ 𝐴]0 = π‘˜1 π‘˜βˆ’1 = π‘˜ 𝐢 Furthermore, we can substitute our new expression for [ 𝐴]0 into the original integral equation, ln { ( π‘˜1+π‘˜βˆ’1)[ 𝐴]βˆ’π‘˜βˆ’1[ 𝐴]0 π‘˜1[ 𝐴]0 } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑:
  • 16. ln { ( π‘˜1 + π‘˜βˆ’1)[ 𝐴] βˆ’ π‘˜βˆ’1 ( [ 𝐴] π‘’π‘ž( π‘˜βˆ’1 + π‘˜1) π‘˜βˆ’1 ) π‘˜1 ( [ 𝐴] π‘’π‘ž ( π‘˜βˆ’1 + π‘˜1) π‘˜βˆ’1 ) } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 The term ( π‘˜βˆ’1 + π‘˜1) is common to both numerator terms as well as the denominator and can be canceled out; k-1 in the numerator can also be canceled out. This gives: ln { [ 𝐴] βˆ’ [ 𝐴] π‘’π‘ž π‘˜1 π‘˜βˆ’1 [ 𝐴] π‘’π‘ž } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 Review Consider the reaction: 𝐴 π‘˜βƒ‘βƒ—βƒ— 𝐡. This overall reaction is composed of two elementary reactions: 𝐴 π‘˜1 βƒ—βƒ—βƒ—βƒ— 𝐡 and 𝐡 π‘˜βˆ’1 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴. The overall rate in differential form is: 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] + π‘˜1[ 𝐡]. The integral form is: ln { ( π‘˜1+π‘˜βˆ’1)[ 𝐴]βˆ’π‘˜βˆ’1[ 𝐴]0 π‘˜1[ 𝐴]0 } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑. (Eq. 1) This simplifies to give: ln { [ 𝐴]βˆ’[ 𝐴] π‘’π‘ž [ 𝐴]0βˆ’[ 𝐴] π‘’π‘ž } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑. (Eq. 2) We can show that: 1. [ 𝐴] = π‘˜βˆ’1[ 𝐴]0 π‘˜1+π‘˜βˆ’1 {1 + π‘˜1 π‘˜βˆ’1 π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑 }: Show that: π‘˜1 π‘˜βˆ’1 [ 𝐴] π‘’π‘ž = [ 𝐴] βˆ’ [ 𝐴] π‘’π‘ž. [ 𝐡] π‘’π‘ž [ 𝐴] π‘’π‘ž = π‘˜1 π‘˜βˆ’1 β†’ [ 𝑩] 𝒆𝒒 = π’Œ 𝟏 π’Œβˆ’πŸ [ 𝑨] 𝒆𝒒 [ 𝐡] π‘’π‘ž + [ 𝐴] π‘’π‘ž = [ 𝐴]0 β†’ [ 𝑩] 𝒆𝒒 = [ 𝑨] 𝟎 βˆ’ [ 𝑨] 𝒆𝒒 These two expressions for [ 𝐡] π‘’π‘ž must be equivalent: π‘˜1 π‘˜βˆ’1 [ 𝐴] π‘’π‘ž = [ 𝐴]0 βˆ’ [ 𝐴] π‘’π‘ž
  • 17. At time 𝑑 = 0: [ 𝐴] = π‘˜βˆ’1[ 𝐴]0 π‘˜1+π‘˜βˆ’1 {1 + π‘˜1 π‘˜βˆ’1 } Make k-1 the common denominator: [ 𝐴] = π‘˜βˆ’1[ 𝐴]0 π‘˜1+π‘˜βˆ’1 { π‘˜βˆ’1+π‘˜1 π‘˜βˆ’1 } The terms π‘˜βˆ’1 and π‘˜1 + π‘˜βˆ’1 both cancel out in the numerator and denominator to give: [ 𝐴] = [ 𝐴]0 at time 𝑑 = 0, which is true. 2. [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] = π‘˜1[ 𝐴]0 π‘˜1+π‘˜βˆ’1 {1 βˆ’ π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑 }: At time 𝑑 = 0: [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜1+π‘˜βˆ’1 {1 βˆ’ 1} Therefore: [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜1+π‘˜βˆ’1 {0} This boils down to [ 𝐡] = 0 at time 𝑑 = 0, which is true. Hence both equations are valid. Relative rate constants in a reversible 1st order reaction Consider the reaction 𝐴 π‘˜βƒ‘βƒ—βƒ— 𝐡, composed of two elementary reactions: 𝐴 π‘˜1 βƒ—βƒ—βƒ—βƒ— 𝐡 and 𝐡 π‘˜βˆ’1 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴. If we suppose that π’Œβˆ’πŸ ≃ 𝟎, then the forward reaction predominates and the integrated rate law for the overall reaction (Eq. 1) changes as follows: ln { ( π‘˜1 + π‘˜βˆ’1 )[ 𝐴]βˆ’ π‘˜βˆ’1[ 𝐴]0 π‘˜1[ 𝐴]0 } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 ln { π‘˜1[ 𝐴] π‘˜1[ 𝐴]0 } = βˆ’π‘˜1 𝑑 π₯𝐧 [ 𝑨] [ 𝑨] 𝟎 = βˆ’π’Œ 𝟏 𝒕 = [ 𝑨] The equation for the concentration of product B changes as follows: [ 𝐡] = [ 𝐴]0 βˆ’ [ 𝐴] = π‘˜1[ 𝐴]0 π‘˜1 + π‘˜βˆ’1 {1 βˆ’ π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑 } [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜1 + π‘˜βˆ’1 {1 βˆ’ π‘’βˆ’( π‘˜1+π‘˜βˆ’1) 𝑑 } [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜1 {1 βˆ’ π‘’βˆ’( π‘˜1) 𝑑 } [ 𝑩] = [ 𝑨] 𝟎{𝟏 βˆ’ π’†βˆ’π’Œ 𝟏 𝒕 }
  • 18. Hence we can write a new expression for [ 𝐴]0: [ 𝑨] 𝟎 = [ 𝑨]+ [ 𝑩] = π₯𝐧 [ 𝑨] [ 𝑨] 𝟎 + [ 𝑨] 𝟎{𝟏 βˆ’ π’†βˆ’π’Œ 𝟏 𝒕 } If, similarly, we suppose that π’Œ 𝟏 ≫ π’Œβˆ’πŸ; that is, that π’Œ ≃ 𝟎, then [ 𝐴] π‘’π‘ž = 0 and Eq. 2 becomes: ln { [ 𝐴] βˆ’ [ 𝐴] π‘’π‘ž [ 𝐴]0 βˆ’ [ 𝐴] π‘’π‘ž } = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 π₯𝐧 [ 𝑨] [ 𝑨] 𝟎 = βˆ’π’Œ 𝟏 𝒕 Dynamic Equilibrium in a Reversible 1st Order Reaction When a reversible 1st order reaction reaches dynamic equilibrium, the following conditions are true:  [ 𝐴] π‘’π‘ž + [ 𝐡] π‘’π‘ž = [ 𝐴]0  [ 𝐡] π‘’π‘ž [ 𝐴] π‘’π‘ž = π‘˜1 π‘˜βˆ’1 = π‘˜ 𝐢
  • 19. Consecutive 1st Order Reactions Consider the reaction 𝐴 π‘˜1 ⃑⃗⃗⃗⃗ 𝐡 π‘˜2 ⃑⃗⃗⃗⃗⃗ 𝐢. At time 𝑑 = 0, [ 𝐴] = [ 𝐴]0, [ 𝐡] = 0, and [ 𝐢] = 0. At time 𝑑 = π‘Žπ‘›π‘¦, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, [ 𝐡] = 𝑦, and [ 𝐢] = 𝑧. As we define π‘₯ = 𝑦 + 𝑧, we can say that [ 𝐴] + [ 𝐡] + [ 𝐢] = [ 𝐴]0 βˆ’ π‘₯ + 𝑦 + 𝑧 = [ 𝐴]0 The rates with respect to each species are as follows: 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴], 𝑑[ 𝐡] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡], and 𝑑[ 𝐢] 𝑑𝑑 = π‘˜2[ 𝐡]. With some manipulation, we can formulate equations for the concentrations of A, B, and C. [ 𝑨] = [ 𝑨] 𝟎 π’†βˆ’π’Œ 𝟏 𝒕 (1) 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡] (2) 𝑑[ 𝐢] 𝑑𝑑 = π‘˜2[ 𝐡] (3) We can substitute [ 𝐴] = [ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 into the expression for 𝑑[ 𝐡] 𝑑𝑑 as follows: 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 βˆ’ π‘˜2[ 𝐡] 𝑑[ 𝐡] 𝑑𝑑 + π‘˜2[ 𝐡] = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 (4) We can also differentiate the expression [ 𝐡] 𝑒 π‘˜2 𝑑 with respect to t by using the product rule [ 𝑑 𝑑π‘₯ (𝑔( π‘₯) 𝑓( π‘₯)) = 𝑔( π‘₯) 𝑓′( π‘₯)+ 𝑓( π‘₯) 𝑔′( π‘₯)] and then factor out the common term, 𝑒 π‘˜2 𝑑 : 𝑑 𝑑𝑑 {[ 𝐡] 𝑒 π‘˜2 𝑑} = 𝑒 π‘˜2 𝑑 𝑑[ 𝐡] 𝑑𝑑 + π‘˜2 𝑒 π‘˜2 𝑑[ 𝐡] 𝑑 𝑑𝑑 {[ 𝐡] 𝑒 π‘˜2 𝑑} = 𝑒 π‘˜2 𝑑 ( 𝑑[ 𝐡] 𝑑𝑑 + π‘˜2[ 𝐡]) The term in parentheses above is equivalent to (4) and so we can substitute and use the laws of exponents to simplify: 𝑑 𝑑𝑑 {[ 𝐡] 𝑒 π‘˜2 𝑑} = 𝑒 π‘˜2 𝑑( π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑) 𝑑 𝑑𝑑 {[ 𝐡] 𝑒 π‘˜2 𝑑} = π‘˜1[ 𝐴]0 𝑒( π‘˜2βˆ’π‘˜1) 𝑑
  • 20. Now we can rearrange this equation and integrate using [∫( 𝑒 π‘Žπ‘₯) 𝑑π‘₯ = 1 π‘Ž 𝑒 π‘Žπ‘₯ + 𝐢]: ∫ 𝑑{[ 𝐡] 𝑒 π‘˜2 𝑑} = ∫ π‘˜1[ 𝐴]0 𝑒( π‘˜2βˆ’π‘˜1) 𝑑 𝑑𝑑 [ 𝐡] 𝑒 π‘˜2 𝑑 = π‘˜1[ 𝐴]0 π‘˜2 βˆ’ π‘˜1 𝑒( π‘˜2βˆ’π‘˜1) 𝑑 + 𝐢 At time 𝑑 = 0, the equation becomes: 0 = π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 + 𝐢 β†’ 𝐢 = βˆ’ π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 . Hence, at time 𝑑 = π‘Žπ‘›π‘¦: [ 𝐡] 𝑒 π‘˜2 𝑑 = π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 𝑒( π‘˜2βˆ’π‘˜1) 𝑑 βˆ’ π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 . Factoring the common term π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 , rearranging, and simplifying gives an expression for [B]: [ 𝐡] 𝑒 π‘˜2 𝑑 = π‘˜1[ 𝐴]0 π‘˜2 βˆ’ π‘˜1 {𝑒( π‘˜2βˆ’π‘˜1) 𝑑 βˆ’ 1} [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜2 βˆ’ π‘˜1 { 𝑒( π‘˜2βˆ’π‘˜1) 𝑑 βˆ’ 1 𝑒 π‘˜2 𝑑 } [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜2 βˆ’ π‘˜1 { 𝑒 π‘˜2 𝑑 βˆ’ 𝑒 π‘˜1 𝑑 βˆ’ 𝑒 π‘˜2 𝑑 𝑒 π‘˜2 𝑑 } [ 𝐡] = π‘˜1[ 𝐴]0 π‘˜2 βˆ’ π‘˜1 { βˆ’π‘’ π‘˜1 𝑑 𝑒 π‘˜2 𝑑 } [ 𝑩] = π’Œ 𝟏[ 𝑨] 𝟎 π’Œ 𝟐 βˆ’ π’Œ 𝟏 {π’†βˆ’π’Œ 𝟏 𝒕 βˆ’ 𝒆 π’Œ 𝟐 𝒕 } Finally, as we have stated that [ 𝐴] + [ 𝐡]+ [ 𝐢] = [ 𝐴]0, we can solve for [C] as follows: Rearrange to make [C] the subject: [ 𝐢] = [ 𝐴]0 βˆ’ [ 𝐴] βˆ’ [ 𝐡] Substitute equations for [A] and [B]:[ 𝐢] = [ 𝐴]0 βˆ’ [ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 βˆ’ ( π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 { π‘’βˆ’π‘˜1 𝑑 βˆ’ 𝑒 π‘˜2 𝑑}) Factor [ 𝐴]0: [ 𝐢] = [ 𝐴]0 {1 βˆ’ π‘’βˆ’π‘˜1 𝑑 βˆ’ π‘˜1 π‘˜2βˆ’π‘˜1 { π‘’βˆ’π‘˜1 𝑑 + 𝑒 π‘˜2 𝑑}} FINAL ANSWER SHOULD BE [ 𝐢] = [ 𝐴]0 {1 βˆ’ π‘˜2 π‘˜2βˆ’π‘˜1 π‘’βˆ’π‘˜1 𝑑 + π‘˜1 π‘˜2βˆ’π‘˜1 π‘’βˆ’π‘˜2 𝑑 }
  • 21. The Rate-Determining Step(RDS) Suppose now that π‘˜2 ≫ π‘˜1. This would mean that B forms C much more quickly than A forms B. Therefore, [ 𝐡] remains small and almost constant throughout the reaction. That is, whenever a molecule of B is formed, it decays rapidly into C. Hence the equation for [ 𝐡] ([ 𝐡] = π‘˜1[ 𝐴]0 π‘˜2βˆ’π‘˜1 { π‘’βˆ’π‘˜1 𝑑 βˆ’ π‘’βˆ’π‘˜2 𝑑}) becomes [ 𝑩] = π’Œ 𝟏[ 𝑨] 𝟎 π’Œ 𝟐 π’†βˆ’π’Œ 𝟏 𝒕 . We say that [ 𝐡] is very small and remains constant over the course of the reaction. Similarly, [ 𝐢] = [ 𝐴]0 {1 βˆ’ π‘˜2 π‘˜2βˆ’π‘˜1 π‘’βˆ’π‘˜1 𝑑 + π‘˜1 π‘˜2βˆ’π‘˜1 π‘’βˆ’π‘˜2 𝑑 } becomes [ π‘ͺ] = [ 𝑨] 𝟎{𝟏 βˆ’ π’†βˆ’π’Œ 𝟏 𝒕 }, and [ 𝑨] = [ 𝑨] 𝟎 π’†βˆ’π’Œ 𝟏 𝒕 . All three of these equations depend only on k1, thus proving that the 1st step determines the rate (or is the rate-determining step) of the reaction. We say that a steady state approximation holds for species B, since [B] is constant and small over the course of the reaction. Therefore, the rate with respect to B is given by: 𝑑[ 𝐡] 𝑑𝑑 = 0 = π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡]. Hence π‘˜1[ 𝐴] = π‘˜2[ 𝐡] and [ 𝐡] = π‘˜1 π‘˜2 [ 𝐴]. Similarly, the rate with respect to C is: 𝑑[ 𝐢] 𝑑𝑑 = π‘˜2[ 𝐡]. Substituting the final expression above for B gives: 𝑑[ 𝐢] 𝑑𝑑 = π‘˜2 π‘˜1 π‘˜2 [ 𝐴] = π‘˜1[ 𝐴] Finally, we substitute for [A] to obtain: 𝑑[ 𝐢] 𝑑𝑑 = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 . This is an equation in [A] only and can be integrated to provide a new equation for [C] as follows. Rearrange: 𝑑[ 𝐢] = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 𝑑𝑑 Integrate using [∫( 𝑒 π‘Žπ‘₯) 𝑑π‘₯ = 1 π‘Ž 𝑒 π‘Žπ‘₯ + 𝐢]: [ 𝐢] = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 βˆ’π‘˜1 + 𝐢 Simplify: [ 𝐢] = π‘˜1[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 βˆ’π‘˜1 + 𝐢 β†’ [ 𝐢] = βˆ’[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 + 𝐢 At time 𝑑 = 0, therefore: 0 = βˆ’[ 𝐴]0 + 𝐢 β†’ 𝐢 = [ 𝐴]0. Thus: [ 𝐢] = βˆ’[ 𝐴]0 π‘’βˆ’π‘˜1 𝑑 + [ 𝐴]0 = [ 𝐴]0(βˆ’π‘’βˆ’π‘˜1 𝑑 + 1) Or: [ 𝐢] = [ 𝐴]0{1 βˆ’ π‘’βˆ’π‘˜1 𝑑}, the same expression attained via the steady state approximation.
  • 22. ReactionMechanisms Consider the reaction 2𝑆𝑂2 + 𝑂2 β†’ 2𝑆𝑂3. The nitrogen monoxide-catalyzed oxidation of 𝑆𝑂2 gas gives the overall stoichiometry of the reaction but does not tell us the process, or mechanism, by which the reaction actually occurs. This reaction has been postulated to occur by the following two-step process:
  • 23. 𝑆𝑑𝑒𝑝 1: [ 𝑂2 + 2𝑁𝑂 β†’ 2𝑁𝑂2] 𝑆1 = 1 𝑆𝑑𝑒𝑝 2: [ 𝑁𝑂2 + 𝑆𝑂2 β†’ 𝑁𝑂 + 𝑆𝑂3] 𝑆2 = 1 π‘‚π‘£π‘’π‘Ÿπ‘Žπ‘™π‘™ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘›: 𝑂2 + 2𝑆𝑂2 β†’ 2𝑆𝑂3 The number of times a given step in the mechanism occurs for each occurrence of the overall reaction is called the stoichiometric number S of the step. Do not confuse the stoichiometric number S of a mechanistic step with the stoichiometric coefficient of a chemical species. Example The gas-phase decomposition of 𝑁2 𝑂5 has overall reaction: 𝑆𝑑𝑒𝑝 1: [ 𝑁2 𝑂5 β‡Œ 𝑁𝑂2 + 𝑁𝑂3] 𝑆1 = 2 𝑆𝑑𝑒𝑝 2: [ 𝑁𝑂2 + 𝑁𝑂3 β†’ 𝑁𝑂 + 𝑂2 + 𝑁𝑂2] 𝑆2 = 1 𝑆𝑑𝑒𝑝 3: [ 𝑁𝑂+ 𝑁𝑂3 β†’ 2𝑁𝑂2] 𝑆3 = 1 π‘‚π‘£π‘’π‘Ÿπ‘Žπ‘™π‘™ π‘Ÿπ‘’π‘Žπ‘π‘‘π‘–π‘œπ‘›: 2𝑁2 𝑂5 β†’ 4𝑁𝑂2 + 𝑂2 Species like 𝑁𝑂3 and 𝑁𝑂, which do not appear in the overall reaction, are called reaction intermediates. Each step in the mechanism is called an elementary reaction. A simple reaction consists of a single elementary step. A complex/composite reaction consists of two or more elementary steps. The Diels-Alder addition of ethylene to butan-1,3-diene to give cyclohexene is believed to be simple, occurring as a simple step: 𝐢𝐻2 = 𝐢𝐻2 + 𝐢𝐻2 = 𝐢𝐻𝐢𝐻 = 𝐢𝐻2 β†’ 𝐢6 𝐻10 … π‘€β„Žπ‘’π‘Ÿπ‘’ 𝜐 = π‘˜[ 𝐢𝐻2 = 𝐢𝐻2][ 𝐢𝐻2 = 𝐢𝐻𝐢𝐻 = 𝐢𝐻2] Rate-Determining Step Determination Consider the composite reaction 𝐴 π‘˜1 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐡 π‘˜2 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢. If we assume that π‘˜2 ≫ 1, then the overall reaction becomes 𝐴 π‘˜1 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢. The concentration of B, [ 𝐡], remains very small and constant during the course of the reaction, such that 𝑑[ 𝐡] 𝑑𝑑 = 0 = π‘˜1[ 𝐴] βˆ’ π‘˜2[ 𝐡]. Hence, π‘˜1[ 𝐴] = π‘˜2[ 𝐡] and [ 𝐡] = π‘˜1 π‘˜2 [ 𝐴]. We also know that 𝑑[ 𝐢] 𝑑𝑑 = π‘˜2[ 𝐡]. Thus, 𝑑[ 𝐢] 𝑑𝑑 = π‘˜2 ( π‘˜1 π‘˜2 [ 𝐴]) = π‘˜1[ 𝐴]. Finally, 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴].
  • 24. This shows that the rate of appearance of A depends on the 1st elementary step, which – by virtue of the large size of π‘˜2 – is assumed to be the slower, rate- determining step. Example Consider the reaction 𝐴 π‘˜1, π‘˜βˆ’1 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡 π‘˜2 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢. We define: π‘˜ = π‘˜1 π‘˜2 π‘˜βˆ’1+π‘˜2 . We know that: 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 [ 𝐡] 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1[ 𝐴]βˆ’ π‘˜βˆ’1[ 𝐡] βˆ’ π‘˜2[ 𝐡] = 0 ( π‘ π‘‘π‘’π‘Žπ‘‘π‘¦ π‘ π‘‘π‘Žπ‘‘π‘’ π‘Žπ‘π‘π‘Ÿπ‘œπ‘₯π‘–π‘šπ‘Žπ‘‘π‘–π‘œπ‘›) 𝑑[ 𝐢] 𝑑𝑑 = βˆ’π‘˜2[ 𝐡] Therefore: π‘˜1[ 𝐴] = π‘˜βˆ’1[ 𝐡] + π‘˜2[ 𝐡] = [ 𝐡]( π‘˜βˆ’1 + π‘˜2) β†’ [ 𝑩] = π’Œ 𝟏[ 𝑨] π’Œβˆ’πŸ + π’Œ 𝟐 𝑑[ 𝐢] 𝑑𝑑 = βˆ’π‘˜2[ 𝐡] = βˆ’π‘˜2 ( π‘˜1 π‘˜βˆ’1 + π‘˜2 ) [ 𝐴] = π‘˜1 π‘˜2 π‘˜βˆ’1 + π‘˜2 [ 𝐴] β†’ 𝒅[ π‘ͺ] 𝒅𝒕 = π’Œ[ 𝑨] 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 [ 𝐡] 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 ( π‘˜1[ 𝐴] π‘˜βˆ’1 + π‘˜2 ) 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] + π‘˜1 π‘˜βˆ’1 π‘˜βˆ’1 + π‘˜2 [ 𝐴] 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1( π‘˜βˆ’1 + π‘˜2)[ 𝐴]+ π‘˜1 π‘˜βˆ’1[ 𝐴] π‘˜βˆ’1 + π‘˜2 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1 π‘˜βˆ’1[ 𝐴] βˆ’ π‘˜1 π‘˜2[ 𝐴] + π‘˜1 π‘˜βˆ’1[ 𝐴] π‘˜βˆ’1 + π‘˜2 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1 π‘˜2[ 𝐴] π‘˜βˆ’1 + π‘˜2 𝒅[ 𝑨] 𝒅𝒕 = βˆ’π’Œ[ 𝑨] The equation 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜[ 𝐴] becomes 𝑑[ 𝐴] = βˆ’π‘˜[ 𝐴] 𝑑𝑑 and can be integrated to give: [ 𝑨] = [ 𝑨] 𝟎 πžβˆ’π’Œπ’• . Thus, 𝑑[ 𝐢] 𝑑𝑑 = π‘˜[ 𝐴] = π‘˜[ 𝐴]0 π‘’βˆ’π‘˜π‘‘ .
  • 25. Although the reaction is 𝐴 π‘˜1, π‘˜βˆ’1 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡 π‘˜2 βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐢, the overall reaction is 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝐢, due to the steady state approximation. Hence: [ 𝐴] + [ 𝐢] = [ 𝐴]0 β†’ [ 𝐢] = [ 𝐴]0 βˆ’ [ 𝐴] = [ 𝐴]0 βˆ’ [ 𝐴]0 π‘’βˆ’π‘˜π‘‘ β†’ [ π‘ͺ] = [ 𝑨] 𝟎(𝟏 βˆ’ π’†βˆ’π’Œπ’• ) Example Consider the reaction 𝐴 π‘˜1, π‘˜βˆ’1 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐼 π‘˜2, π‘˜βˆ’2 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡. We know that: 𝑑[ 𝐴] 𝑑𝑑 = βˆ’π‘˜1[ 𝐴] + π‘˜βˆ’1 [ 𝐼] 𝑑[ 𝐡] 𝑑𝑑 = π‘˜2[ 𝐼] βˆ’ π‘˜βˆ’2[ 𝐡] 𝑑[ 𝐼] 𝑑𝑑 = π‘˜1[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝐼]βˆ’ π‘˜2[ 𝐼]+ π‘˜βˆ’2[ 𝐡] = 0 ( π‘ π‘‘π‘’π‘Žπ‘‘π‘¦ π‘ π‘‘π‘Žπ‘‘π‘’ π‘Žπ‘π‘π‘Ÿπ‘œπ‘₯π‘–π‘šπ‘Žπ‘‘π‘–π‘œπ‘›) Therefore: π‘˜1[ 𝐴] + π‘˜βˆ’2[ 𝐡] = π‘˜βˆ’1[ 𝐼] + π‘˜2[ 𝐼] π‘˜1[ 𝐴] + π‘˜βˆ’2[ 𝐡] = [ 𝐼]( π‘˜βˆ’1 + π‘˜2) [ 𝑰] = π’Œ 𝟏[ 𝑨] + π’Œβˆ’πŸ[ 𝑩] π’Œβˆ’πŸ + π’Œ 𝟐 Thus: 𝑑[ 𝐡] 𝑑𝑑 = π‘˜2 ( π‘˜1[ 𝐴]+ π‘˜βˆ’2[ 𝐡] π‘˜βˆ’1 + π‘˜2 ) βˆ’ π‘˜βˆ’2[ 𝐡] 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] π‘˜βˆ’1 + π‘˜2 βˆ’ π‘˜βˆ’2[ 𝐡] 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] βˆ’ π‘˜βˆ’2( π‘˜βˆ’1 + π‘˜2)[ 𝐡] π‘˜βˆ’1 + π‘˜2 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2[ 𝐡] βˆ’ π‘˜βˆ’2 π‘˜2[ 𝐡] π‘˜βˆ’1 + π‘˜2 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1 π‘˜2[ 𝐴] + π‘˜βˆ’2 π‘˜2[ 𝐡] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2[ 𝐡] βˆ’ π‘˜βˆ’2 π‘˜2[ 𝐡] π‘˜βˆ’1 + π‘˜2 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1 π‘˜2[ 𝐴] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2 [ 𝐡] π‘˜βˆ’1 + π‘˜2 If we let π‘˜ π‘“π‘œπ‘Ÿπ‘€π‘Žπ‘Ÿπ‘‘ = π‘˜ 𝑓 = π‘˜1 π‘˜2 π‘˜βˆ’1+π‘˜2 and π‘˜ π‘π‘Žπ‘˜π‘€π‘Žπ‘Ÿπ‘‘ = π‘˜ 𝑏 = π‘˜βˆ’1 π‘˜βˆ’2 π‘˜βˆ’1+π‘˜2 , then: 𝑑[ 𝐡] 𝑑𝑑 = π‘˜1 π‘˜2 π‘˜βˆ’1 + π‘˜2 [ 𝐴] βˆ’ π‘˜βˆ’1 π‘˜βˆ’2 π‘˜βˆ’1 + π‘˜2 [ 𝐡] 𝒅[ 𝑩] 𝒅𝒕 = π’Œ 𝒇[ 𝑨]βˆ’ π’Œ 𝒃[ 𝑩] The reaction can therefore be simplified to 𝐴 π‘˜ 𝑓, π‘˜ 𝑏 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐡.
  • 26. And if 𝑑[ 𝐡] 𝑑𝑑 = π‘˜ 𝑓[ 𝐴] βˆ’ π‘˜ 𝑏[ 𝐡], then 𝒅[ 𝑨] 𝒅𝒕 = βˆ’π’Œ 𝒇[ 𝑨]+ π’Œ 𝒃[ 𝑩]. Furthermore, if π‘˜ 𝑓 ≫ π‘˜ 𝑏, then 𝐴 π‘˜π‘“ βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— 𝐡. Likewise, π‘˜ 𝑓 β‰ͺ π‘˜ 𝑏, then 𝐴 π‘˜ 𝑏 ⃑⃗⃗⃗⃗⃗⃗ 𝐡. Example
  • 27. Kinetics of Relaxation Consider the reaction 𝐴 π‘˜1, π‘˜βˆ’1 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝑍. We know that: οƒ˜ [ 𝐴]0 = [ 𝐴] + [ 𝑍] οƒ˜ π‘₯ = [ 𝑍] οƒ˜ [ 𝐴] = [ 𝐴]0 βˆ’ [ 𝑍] = π‘Ž0 βˆ’ π‘₯ Hence, the rate is given by 𝑑π‘₯ 𝑑𝑑 = π‘˜1[ 𝐴] βˆ’ π‘˜βˆ’1[ 𝑍]. At equilibrium: 𝑑π‘₯ 𝑑𝑑 = π‘˜1( π‘Ž0 βˆ’ π‘₯) βˆ’ π‘˜βˆ’1 π‘₯ = 0. If π‘₯ 𝑒 is the concentration of Z at equilibrium (i.e. if π‘₯ 𝑒 = [ 𝑍] π‘’π‘ž), then: 𝑑π‘₯ 𝑑𝑑 = π‘˜1( π‘Ž0 βˆ’ π‘₯ 𝑒) βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 = 0 We define the change in concentration of x as: βˆ†π‘₯ = π‘₯ = π‘₯ 𝑒 β†’ π‘₯ = βˆ†π‘₯ + π‘₯ 𝑒. Thus: π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1[ π‘Ž0 βˆ’ (βˆ†π‘₯ + π‘₯ 𝑒)] βˆ’ π‘˜βˆ’1(βˆ†π‘₯ + π‘₯ 𝑒) π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 βˆ’ π‘˜1(βˆ†π‘₯ + π‘₯ 𝑒) βˆ’ π‘˜βˆ’1(βˆ†π‘₯ + π‘₯ 𝑒) π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 βˆ’ π‘˜1βˆ†π‘₯ βˆ’ π‘˜1 π‘₯ 𝑒 βˆ’ π‘˜βˆ’1βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1( π‘Ž0 βˆ’ π‘₯ 𝑒)βˆ’ ( π‘˜1 + π‘˜βˆ’1)βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 π‘‘βˆ†π‘₯ 𝑑𝑑 = βˆ’( π‘˜1 + π‘˜βˆ’1)βˆ†π‘₯ + π‘˜1( π‘Ž0 βˆ’ π‘₯ 𝑒)βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 π’…βˆ†π’™ 𝒅𝒕 = βˆ’( π’Œ 𝟏 + π’Œβˆ’πŸ)βˆ†π’™ This is the rate law in differential form. Rearranging gives π‘‘βˆ†π‘₯ βˆ†π‘₯ = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑𝑑. Integrating gives: ln βˆ†π‘₯ = βˆ’( π‘˜1 + π‘˜βˆ’1 ) 𝑑 + 𝐢. At time 𝑑 = 0: lnβˆ†π‘₯0 = 0 + 𝐢 β†’ 𝐢 = ln βˆ†π‘₯0. Therefore: ln βˆ†π‘₯ = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 + ln βˆ†π‘₯0 ln βˆ†π‘₯ βˆ’ lnβˆ†π‘₯0 = βˆ’( π‘˜1 + π‘˜βˆ’1) 𝑑 π₯𝐧 βˆ†π’™ βˆ†π’™ 𝟎 = βˆ’( π’Œ 𝟏 + π’Œβˆ’πŸ) 𝒕 This is the rate in the form 𝑦 = π‘Žπ‘₯ + 𝑏, where 𝑦 = ln βˆ†π‘₯ βˆ†π‘₯0 , π‘Ž = π‘ π‘™π‘œπ‘π‘’ = βˆ’( π‘˜1 + π‘˜βˆ’1), and π‘₯ = 𝑑.
  • 28. A graph of ln βˆ†π‘₯ βˆ†π‘₯0 𝑣𝑠. 𝑑 would therefore look like: A plot of π‘₯ 𝑣𝑠. 𝑑, however, would give a completely different graph: The Principle of the Temperature Jump Technique The relaxation time  is defined as the time corresponding to (βˆ†π‘₯)0 βˆ†π‘₯ = 𝑒 and 𝑑 = 𝜏. Therefore, ln (βˆ†π‘₯)0 βˆ†π‘₯ = ( π‘˜1 + π‘˜βˆ’1) 𝑑 becomes ln 𝑒 = ( π‘˜1 + π‘˜βˆ’1) 𝜏. And so: 1 = ( π‘˜1 + π‘˜βˆ’1) 𝜏 and 𝝉 = 𝟏 ( π’Œ 𝟏+π’Œβˆ’πŸ) . Thus, the negative reciprocal of the slope (βˆ’ 1 π‘ π‘™π‘œπ‘π‘’ ) of a graph of ln βˆ†π‘₯ βˆ†π‘₯0 𝑣𝑠. 𝑑 is equal to the relaxation time . N.B The equilibrium constant is given by πΎπ‘’π‘ž = π‘˜1 π‘˜βˆ’1 .
  • 29. Example Consider the reaction 𝐴 + 𝐡 π‘˜1, π‘˜βˆ’1 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝑍. Let [ 𝑍] = π‘₯, [ 𝐴] = [ 𝐴]0 βˆ’ π‘₯, and [ 𝐡] = [ 𝐡]0 βˆ’ π‘₯. The rate is 𝑑[ 𝑍] 𝑑𝑑 = 𝑑π‘₯ 𝑑𝑑 = π‘˜1[ 𝐴][ 𝐡]βˆ’ π‘˜βˆ’1[ 𝑍] = π‘˜1( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯) βˆ’ π‘˜βˆ’1 π‘₯. If we let βˆ†π‘₯ = π‘₯ βˆ’ π‘₯ 𝑒, then: π‘‘βˆ†π‘₯ 𝑑𝑑 = 𝑑π‘₯ 𝑑𝑑 βˆ’ 0 π‘‘βˆ†π‘₯ 𝑑𝑑 = 𝑑π‘₯ 𝑑𝑑 = π‘˜1( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯) βˆ’ π‘˜βˆ’1 π‘₯ π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 𝑏0 βˆ’ π‘˜1 π‘Ž0 π‘₯ βˆ’ π‘˜1 𝑏0 π‘₯ + π‘˜1 π‘₯2 βˆ’ π‘˜βˆ’1 π‘₯ π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 𝑏0 βˆ’ ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1) π‘₯ + π‘˜1 π‘₯2 At equilibrium, π‘‘βˆ†π‘₯ 𝑑𝑑 = 𝑑π‘₯ 𝑑𝑑 = 0. Therefore, π‘˜1 π‘Ž0 𝑏0 = ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1) π‘₯ + π‘˜1 π‘₯2 . If π‘₯ = βˆ†π‘₯ + π‘₯ 𝑒, then: π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 𝑏0 βˆ’ ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1)(βˆ†π‘₯ + π‘₯ 𝑒) + π‘˜1(βˆ†π‘₯ + π‘₯ 𝑒)2 π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 𝑏0 βˆ’ π‘˜1 π‘Ž0βˆ†π‘₯ βˆ’ π‘˜1 π‘Ž0 π‘₯ 𝑒 βˆ’ π‘˜1 𝑏0βˆ†π‘₯ βˆ’ π‘˜1 𝑏0 π‘₯ 𝑒 βˆ’ π‘˜βˆ’1βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 + π‘˜1(βˆ†π‘₯2 + 2βˆ†π‘₯ β‹… π‘₯ 𝑒 + π‘₯ 𝑒 2) Terms only in π‘₯ 𝑒 cancel out. π‘‘βˆ†π‘₯ 𝑑𝑑 = π‘˜1 π‘Ž0 𝑏0 βˆ’ π‘˜1 π‘Ž0βˆ†π‘₯ βˆ’ π‘˜1 π‘Ž0 π‘₯ 𝑒 βˆ’ π‘˜1 𝑏0βˆ†π‘₯ βˆ’ π‘˜1 𝑏0 π‘₯ 𝑒 βˆ’ π‘˜βˆ’1βˆ†π‘₯ βˆ’ π‘˜βˆ’1 π‘₯ 𝑒 + π‘˜1(βˆ†π‘₯2 + 2βˆ†π‘₯ β‹… π‘₯ 𝑒 + π‘₯ 𝑒 2) π‘‘βˆ†π‘₯ 𝑑𝑑 = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1)βˆ†π‘₯ + π‘˜1(βˆ†π‘₯ + 2π‘₯ 𝑒)βˆ†π‘₯ If the displacement from equilibrium is only slight, then π‘₯ β‰ˆ π‘₯ 𝑒, so that π‘₯ + π‘₯ 𝑒 may be written as 2π‘₯ 𝑒 π‘₯ + π‘₯ 𝑒 = 2π‘₯ 𝑒. π‘‘βˆ†π‘₯ 𝑑𝑑 = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1)βˆ†π‘₯ + 2π‘˜1 π‘₯ π‘’βˆ†π‘₯ π‘‘βˆ†π‘₯ 𝑑𝑑 = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒)βˆ†π‘₯ Rearranging gives π‘‘βˆ†π‘₯ βˆ†π‘₯ = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑𝑑.
  • 30. Integrating gives lnβˆ†π‘₯ = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 + 𝐢. At time 𝑑 = 0, βˆ†π‘₯ = βˆ†π‘₯0 and therefore lnβˆ†π‘₯0 = 0 + 𝐢 β†’ 𝐢 = ln βˆ†π‘₯0. Thus: ln βˆ†π‘₯ = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 + ln βˆ†π‘₯0 ln βˆ†π‘₯ βˆ’ lnβˆ†π‘₯0 = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 ln βˆ†π‘₯ βˆ†π‘₯0 = βˆ’( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 ln βˆ†π‘₯0 βˆ†π‘₯ = ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝑑 The relaxation time  is defined as that corresponding to βˆ†π‘₯0 βˆ†π‘₯ = 𝑒. ln 𝑒 = ( π‘˜1 π‘Ž0 + π‘˜1 𝑏0 + π‘˜βˆ’1 βˆ’ 2π‘˜1 π‘₯ 𝑒) 𝜏 β†’ 𝝉 = 𝟏 π’Œ 𝟏 𝒂 𝟎 + π’Œ 𝟏 𝒃 𝟎 + π’Œβˆ’πŸ βˆ’ πŸπ’Œ 𝟏 𝒙 𝒆 The dissociation of a weak acid, 𝐻𝐴 + 𝐻2 𝑂 β†’ 𝐻3 𝑂+ + π΄βˆ’ , can be represented as 𝐴 π‘˜1, π‘˜βˆ’1 ⃑⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ π‘Œ+ 𝑍. The rate constants k1 and k-1 cannot be determined by conventional methods but can be determined by the T-jump technique. We can prove that the relaxation time is given by 𝜏 = 1 π‘˜1+2π‘˜βˆ’1 π‘₯ 𝑒 , where xe is the concentration of the ions (Y and Z) at equilibrium. ASK HOKMABADI FOR THE HW BACK IN ORDER TO SEE THE ANSWER TO THIS. The Bohr Hydrogen or Hydrogen-like (isoelectronic to hydrogen) Atom Consider a hydrogen bulb shining light upon a concave lens in front of a triangular pris. If a screen is placed behind the prism, discrete bands of colored and invisible light (see below).
  • 31. As the capacitor plates in a hydrogen bulb accumulate charge, the negatively charged plate emits a beam of electrons that bombards hydrogen atoms, which in turn release photons of light as they are excited. Compare hydrogen to some hydrogen-like atoms: H 1 proton 1 electron He+ 2 protons 1 electron Li2+ 3 protons 1 electron … … 1 electron Let 𝑍 = π‘Žπ‘‘π‘œπ‘šπ‘–π‘ π‘›π‘’π‘šπ‘π‘’π‘Ÿ, π‘š 𝑝 = π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘Ž π‘π‘Ÿπ‘œπ‘‘π‘œπ‘›, π‘š 𝑒 = π‘šπ‘Žπ‘ π‘  π‘œπ‘“ π‘Žπ‘› π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘›, and +𝑧𝑒 = π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’ π‘œπ‘› π‘‘β„Žπ‘’ 𝑛𝑒𝑐𝑙𝑒𝑒𝑠. π‘š 𝑝 = 1836π‘š 𝑒 1. The attractive force between negative and positive charges (protons and electrons) is the normal type of Coulombic attraction, such that: 𝐹 ∝ (+𝑧𝑒)(βˆ’1𝑒) π‘Ÿ2 , where ∝= 1 4πœ‹πœ€0 , πœ€0 is the permittivity of the vacuum. Therefore: 𝐹 = βˆ’π‘§π‘’2 (4πœ‹πœ€0) π‘Ÿ2 2. The electron can remain in any particular state (fixed radius) indefinitely without radiating its energy, provided that the electron’s angular momentum is 𝐿 = π‘šπ‘£π‘Ÿ (Equation 20.10), where 𝐿 = π‘šπ‘£π‘Ÿ = π‘›β„Ž 2πœ‹ (quantum number, 𝑛 = 1, 2, 3,…, Planck’s constant, β„Ž = 6.626 Γ— 10βˆ’34 π‘š2 π‘˜π‘”/𝑠 ( 𝐽/𝑠), π‘š = π‘š 𝑒, 𝑣 = π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ π‘œπ‘“ π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘›, π‘Ÿ = π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ ). Hence 𝐿 ∝ 𝑛, and possible values of L are: β„Ž 2πœ‹ , 2β„Ž 2πœ‹ = β„Ž πœ‹ , 3β„Ž 2πœ‹ , 4β„Ž 2πœ‹ = 2β„Ž πœ‹ , … Also, L has the same units as h: joule per second. Note: The total energy of the atom is equal to the sum of the kinetic energy of orbiting electrons and the potential energy of electrons attracted to protons.
  • 32. Mechanical Stability Mechanical stability requires that the attractive and centripetal forces cancel each other; that is: βˆ’ 𝑧𝑒2 (4πœ‹πœ€0) π‘Ÿ2 + π‘šπ‘£2 π‘Ÿ = 0 β†’ 𝑧 𝑒2 (4πœ‹πœ€0) π‘Ÿ2 = π‘šπ‘£2 π‘Ÿ β†’ (4πœ‹πœ€0) π‘šπ‘£2 π‘Ÿ = 𝑧𝑒2 (Eq. 20.13) From the quantization of Eq. 20.10 ( 𝐿 = π‘šπ‘£π‘Ÿ), we can write that: π‘š2 𝑣2 π‘Ÿ2 = 𝑛2 β„Ž2 4πœ‹2 β†’ 𝑣2 = 𝑛2 β„Ž2 π‘š2 π‘Ÿ2 (Eq. 20.15) …where β„Ž = β„Ž 2πœ‹ and π‘šπ‘£π‘Ÿ = β„Ž. Substitute for v2 in Eq. 20.13: (4πœ‹πœ€0) π‘š ( 𝑛2 β„Ž2 π‘š2 π‘Ÿ2 ) π‘Ÿ = 𝑧𝑒2 β†’ π‘Ÿ = 𝑛2 β„Ž2 (4πœ‹πœ€0) π‘šπ‘§π‘’2 = 𝑛2 𝑧 ( β„Ž2 (4πœ‹πœ€0) π‘šπ‘’2 ) = 𝑛2 𝑧 π‘Ž0 Therefore: {𝒓 = 𝒏 𝟐 𝒛 𝒂 𝟎}, where 𝑛 = 1,2, 3, …, π‘Ž0 = β„Ž2(4πœ‹πœ€0) π‘šπ‘’2 = 5.29 Γ— 10βˆ’11 π‘š. Figure 1: Proof of a0. This proves that the distance of the electron from the nucleus is quantized. Note that for the hydrogen atom, 𝑧 = 1 and thus π‘Ÿπ‘› = 𝑛2 π‘Ž0.
  • 33. Proof that kinetic energy (T), potential energy (U), and total energy are also quantized: πΈπ‘‘π‘œπ‘‘ = 𝑇 + π‘ˆ The force is given by: βˆ’πΉ ≑ π‘‘π‘ˆ π‘‘π‘Ÿ β†’ π‘‘π‘ˆ = βˆ’πΉ π‘‘π‘Ÿ = βˆ’( βˆ’π‘§π‘’2 (4πœ‹πœ€0) π‘Ÿ2) π‘‘π‘Ÿ = ( 𝑧𝑒2 4πœ‹πœ€0 ) π‘‘π‘Ÿ π‘Ÿ2 Integrating gives: π‘ˆ = βˆ’ ( 𝑧𝑒2 4πœ‹πœ€0 ) 1 π‘Ÿ + 𝐢 When π‘Ÿ β†’ ∞, π‘ˆ = 0and 𝐢 = 0. Then 𝑼 = βˆ’ 𝒛𝒆 𝟐 ( πŸ’π…πœΊ 𝟎) 𝒓 . The kinetic energy is is given by: 𝑇 = 1 2 π‘šπ‘£2 . Substitute Eq. 20.13: 𝑇 = 1 2 π‘šπ‘£2 = 1 2 ( 𝑧𝑒2 (4πœ‹πœ€0) π‘Ÿ ). That is: 𝑻 = 𝟏 𝟐 ( 𝒛𝒆 𝟐 ( πŸ’π…πœΊ 𝟎) 𝒓 ). Therefore: πΈπ‘‘π‘œπ‘‘ = 𝑇 + π‘ˆ = 1 2 ( 𝑧𝑒2 (4πœ‹πœ€0) π‘Ÿ ) βˆ’ ( 𝑧𝑒2 (4πœ‹πœ€0) π‘Ÿ ) = βˆ’ 1 2 ( 𝑧𝑒2 (4πœ‹πœ€0) π‘Ÿ ). We see that Etot is negative and inversely proportional to r. The final expression for the (total) energy is obtained by substituting the value of r as expressed in Eq. 20.17 below: π‘Ÿ = 𝑛2 β„Ž2(4πœ‹πœ€0) π‘šπ‘§π‘’2 and π‘Ÿπ‘› = 𝑛2 π‘Ž0 𝑧 …where π‘Ž0 = β„Ž(4πœ‹πœ€0) π‘šπ‘’2 5.29 Γ— 10βˆ’11 π‘š and β„Ž = β„Ž 2πœ‹ = 0.529β„« Therefore: πΈπ‘‘π‘œπ‘‘ = 𝐸 𝑛 = βˆ’ 1 2 𝑧𝑒2 (4πœ‹πœ€0) βˆ™ 1 π‘Ÿ = βˆ’ 1 2 𝑧 𝑒2 (4πœ‹πœ€0) βˆ™ π‘šπ‘§ 𝑒2 𝑛2β„Ž2 (4πœ‹πœ€0) = βˆ’ π‘šπ‘§2 𝑒4 2𝑛2 β„Ž2(4πœ‹πœ€0)2 = βˆ’ 𝑧2 𝑛2 ( π‘šπ‘’4 2β„Ž2 (4πœ‹πœ€0)2) = βˆ’ 𝑧2 𝑛2 𝑅 = βˆ’ 𝑧2 𝑛2 𝑅 𝐻 That is: 𝑬 𝒏 = βˆ’ 𝒛 𝟐 𝒏 𝟐 𝑹 𝑯. (Eq. 20.17) …where 𝑅( 𝐻) = π‘šπ‘’4 2β„Ž2 (4πœ‹πœ€0)2 = π‘…π‘¦π‘‘π‘π‘’π‘Ÿπ‘” π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ = 2.179 Γ— 10βˆ’18 𝐽.
  • 34. The Bohr Theory/Model of the Hydrogen Atom Let 𝑧 = 1. Let π‘šπ‘£ = ( π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ) π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š, π‘šπ‘£π‘Ÿ = π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š, and 𝐿 = π‘šπ‘£π‘Ÿ = π‘›β„Ž 2πœ‹ , where 𝑛 = 1, 2, 3, …, π‘Ÿπ‘› = 𝑛2 π‘Ž0, and 𝐸 𝑛 = βˆ’ 𝑅 𝐻 𝑛2 . The potential energy is π‘ˆ = βˆ’ 𝑒2 (4πœ‹πœ€0) π‘Ÿ = βˆ’ 2𝑅 𝐻 𝑛2 . The kinetic energy is 𝑇 = 1 2 𝑒2 (4πœ‹πœ€0) π‘Ÿ = 𝑅 𝐻 𝑛2 . The total energy is πΈπ‘‘π‘œπ‘‘ = 𝐸 𝑛 = βˆ’ 𝑅 𝐻 𝑛2
  • 35. The energy required to move an electron from 𝑛 = 1 to 𝑛 = ∞ is called its ionization energy (IE). 𝐼𝐸 = 𝐸𝑓 βˆ’ 𝐸𝑖 = βˆ’ 𝑅 𝐻 (∞)2 β€” 𝑅 𝐻 (1)2 = 0 + 𝑅 𝐻 = 𝑅 𝐻 = 2.179 Γ— 10βˆ’18 𝐽 𝐼𝐸/π‘šπ‘œπ‘™ = 𝑅 𝐻 𝑁𝐴 = 2.179 Γ— 10βˆ’18 𝐽(6.022 Γ— 10βˆ’23 π‘šπ‘œπ‘™βˆ’1) = 13.11758 Γ— 102 π‘˜π½/π‘šπ‘œπ‘™ βˆ†πΈ = β„Žπ‘£0 β†’ 𝑣0 = βˆ†πΈ β„Ž = 2.179 Γ— 10βˆ’18 𝐽 6.626 Γ— 10βˆ’34 𝐽𝑠 = 3.289 Γ— 1015 𝐻𝑧 The term 𝑣0 is called the threshold frequency. Hydrogen-like Atoms Angular momentum is an integral multiple of β„Ž 2πœ‹ , such that: 𝐿 = π‘šπ‘£π‘Ÿ = π‘›β„Ž 2πœ‹ , where 𝑛 = 1, 2, 3, … From this, we can get that: i. π‘Ÿπ‘› = 𝑛2 π‘Ž0 𝑧 π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž0 = 0.529 β„« = π΅π‘œβ„Žπ‘Ÿ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  ii. 𝐸 𝑛 = βˆ’ ( 𝑧2 𝑛2 ) 𝑅 𝐻, π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑅 𝐻 = 2.179 Γ— 10βˆ’18 𝐽 = π‘…π‘¦π‘‘π‘π‘’π‘Ÿπ‘” π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ iii. 𝐿𝑒𝑑 𝐸 𝑛1 = βˆ’π‘… 𝐻 ( 𝑧2 𝑛1 2 ) π‘Žπ‘›π‘‘ 𝐸 𝑛2 = βˆ’π‘… 𝐻 ( 𝑧2 𝑛2 2 ) π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’:βˆ†πΈ = 𝐸 𝑛2 βˆ’ 𝐸 𝑛1 = [βˆ’π‘… 𝐻 ( 𝑧2 𝑛2 2 )]β€” 𝑅 𝐻 ( 𝑧2 𝑛1 2 ) βˆ†π‘¬ = 𝑹 𝑯 𝒛 𝟐 ( 𝟏 𝒏 𝟏 𝟐 βˆ’ 𝟏 𝒏 𝟐 𝟐 ) iv. βˆ†πΈ = β„Žπ‘£, since this change in energy is due to absorption or emission of photons. For a hydrogen atom, 𝑧 = 1. Therefore: β„Žπ‘£ = 𝑅 𝐻 ( 1 𝑛1 2 βˆ’ 1 𝑛2 2 ). 𝑐 = πœ†π‘£ β†’ 𝑣 = 𝑐 πœ† = 𝑐 1 πœ† , π‘€β„Žπ‘’π‘Ÿπ‘’ 1 πœ† = 𝑣̅ = π‘€π‘Žπ‘£π‘’π‘›π‘’π‘šπ‘π‘’π‘Ÿ ( π‘π‘šβˆ’1) Therefore: 𝑣 = 𝑐𝑣̅. And β„Žπ‘π‘£Μ… = 𝑅 𝐻 ( 1 𝑛1 2 βˆ’ 1 𝑛2 2 ) β†’ 𝒗̅ = 𝑹 𝑯 𝒉𝒄 𝑹 𝑯 ( 𝟏 𝒏 𝟏 𝟐 βˆ’ 𝟏 𝒏 𝟐 𝟐)
  • 36. If we let 𝑛1 = 1 and 𝑛2 ≫ 2, then: 𝑣̅ = 𝑅 𝐻 β„Žπ‘ (1 βˆ’ 1 𝑛2 2 ). This is the Lyman series (UV). If we let 𝑛1 = 2 and 𝑛2 ≫ 3, then: 𝑣̅ = 𝑅 𝐻 β„Žπ‘ ( 1 4 βˆ’ 1 𝑛2 2 ). This is the Balmer series (visible). If we let 𝑛1 = 3 and 𝑛2 ≫ 4, then: 𝑣̅ = 𝑅 𝐻 β„Žπ‘ ( 1 9 βˆ’ 1 𝑛2 2 ). This is the Paschen series (IR). De Broglie Wavelength The De Broglie wavelength is given by: 𝝀 = 𝒉 𝒑 = 𝒉 π’Žπ’— , where 𝑣 = π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦. Since π‘šπ‘£π‘Ÿ = π‘›β„Ž 2πœ‹ β†’ π‘šπ‘£ = π‘›β„Ž 2πœ‹π‘Ÿ , then πœ† = β„Ž π‘›β„Ž 2πœ‹π‘Ÿβ„ = 2πœ‹π‘Ÿ 𝑛 ; that is, 𝝀 = πŸπ…π’“ 𝒏 . Example If 𝑛 = 3, then πœ† = 2πœ‹π‘Ÿ 3 . In the diagram above, π‘Ÿπ‘› = 𝑛2 π‘Ž0 𝑧 = (32) π‘Ž0 1 = 9π‘Ž0. This comes from the standing wave shown below: Joining the ends of the string, a and b, creates the pattern and circle above.
  • 37. { πœ† = 2πœ‹π‘Ÿ 𝑛 π‘Ÿπ‘› = 𝑛2 π‘Ž0 𝑧 β†’ π‘‡β„Žπ‘’π‘Ÿπ‘’π‘“π‘œπ‘Ÿπ‘’: πœ† 𝑛 = 2πœ‹ 𝑛 ( 𝑛2 π‘Ž0 𝑧 ) β†’ 𝝀 𝒏 = 𝒏 𝒛 ( πŸπ…π’‚ 𝟎) When 𝑛 = 1, 𝝀 𝟎 = πŸπ…π’‚ 𝟎 = 𝑩𝒐𝒉𝒓 π’˜π’‚π’—π’†π’π’†π’π’ˆπ’•π’‰ = πŸ‘. πŸ‘πŸπŸ’ Γ— πŸπŸŽβˆ’πŸπŸŽ π’Ž. Therefore, πœ† 𝑛 = 𝑛 𝑧 ( πœ†0). When 𝑛 = 1 and 𝑧 = 1, πœ†1 = πœ†0. When 𝑛 = 2 and 𝑧 = 1, πœ†2 = 2πœ†0. Now, πœ†π‘£ = v β†’ πœ† 𝑛 𝑣 𝑛 = v 𝑛, where 𝑣 = π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ and v = π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦. If π‘šπ‘£π‘Ÿ = π‘›β„Ž 2πœ‹ , then v = π‘›β„Ž 2πœ‹π‘šπ‘Ÿ . Since π‘Ÿ = 𝑛2 π‘Ž0 𝑧 , then: v = π‘›β„Ž 2πœ‹π‘š ( 𝑛2 π‘Ž0 𝑧 ) = π‘§π‘›β„Ž (2πœ‹π‘š) 𝑛2 π‘Ž0 = π‘§β„Ž 𝑛(2πœ‹π‘šπ‘Ž0) = 𝑧 𝑛 ( β„Ž 2πœ‹π‘šπ‘Ž0 ) And so: 𝐯 𝟎 = 𝒉 πŸπ…π’Žπ’‚ 𝟎 = 𝑩𝒐𝒉𝒓 𝒔𝒑𝒆𝒆𝒅 = 𝟎. πŸŽπŸŽπŸŽπŸπŸπŸ–πŸ– Γ— 𝟏𝟎 πŸ– π’Žπ’”βˆ’πŸ …when 𝑛 = 1 and 𝑧 = 1. Generally: 𝐯 𝒏 = 𝒛 𝒏 𝐯 𝟎 When 𝑛 = 1 and 𝑧 = 1, then v1 = v0. When 𝑛 = 2 and 𝑧 = 1, then v2 = v0 2 . When 𝑛 = ∞ and 𝑧 = 1, then v∞ = v0 ∞ = 0. Therefore, we can say that: 𝝀 𝟎 𝒗 𝟎 = 𝐯 𝟎 β†’ 𝒗 𝟎 = 𝐯 𝟎 𝝀 𝟎 = 𝑩𝒐𝒉𝒓 π’‡π’“π’†π’’π’–π’†π’π’„π’š = πŸ”. πŸ“πŸ–πŸ‘ Γ— 𝟏𝟎 πŸ“ 𝑯𝒛 Then we can find the speed for other atoms: v 𝑛 = 𝑧 𝑛 v0 v1 = v0 for H ( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 1 π‘Žπ‘›π‘‘ 𝑧 = 1) v1 = 2v0 for He2+ ( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 1 π‘Žπ‘›π‘‘ 𝑧 = 2) v1 = 102v0 for Lr102+ ( 𝑠𝑖𝑛𝑐𝑒 𝑛 = 1 π‘Žπ‘›π‘‘ 𝑧 = 103) For what value of z does v1 match the speed of light? 𝑧 = v1 v0 = 𝑐 v0 = 2.998 Γ— 108 π‘šπ‘ βˆ’1 0.0002188 Γ— 108 π‘šπ‘ βˆ’1 = 13697 No element with atomic number (z) 13697.
  • 38. The Photoelectric Effect Consider the horizontal, parallel, clean metal plates (see below) connected by a circuit containing an ammeter. Light of fixed intensity and varying frequency is shone upon the lower plate at an angle. Above a given threshold frequency, electrons jump from the lower to the upper plate, traveling through the circuit to generate a measurable current. In other words, a metal with a clean surface is placed in vacuum and illuminated with light of a known frequency. If the frequency is greater than a particular minimum, or threshold frequency, electrons are instantly liberated fron the metal surface at a rate proportional to the light intensity (increasing the intensity does not liberate more electrons). The energy is given by 𝐸 = 1 2 π‘šπ‘£2 = 𝕍𝑒. The total energy is conserved; therefore, β„Žπ‘£ = π‘Š + 𝕍𝑒 …where π‘š = π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘› π‘šπ‘Žπ‘ π‘ , 𝑣 = π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘› π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦, 𝑒 = π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘› π‘β„Žπ‘Žπ‘Ÿπ‘”π‘’, 𝕍 = π‘ π‘œπ‘π‘π‘–π‘›π‘” π‘£π‘œπ‘™π‘‘π‘Žπ‘”π‘’ (1 π‘£π‘œπ‘™π‘‘ = 1 π‘—π‘œπ‘’π‘™π‘’ π‘π‘’π‘Ÿ π‘π‘œπ‘’π‘™π‘œπ‘šπ‘; 1𝑉 = 1𝐽/𝐢), and π‘Š = π‘Žπ‘‘π‘‘π‘Ÿπ‘Žπ‘π‘‘π‘–π‘£π‘’ π‘π‘œπ‘‘π‘’π‘›π‘–π‘‘π‘™π‘Ž π‘œπ‘“ π‘šπ‘’π‘‘π‘Žπ‘™ π‘œπ‘Ÿ π‘€π‘œπ‘Ÿπ‘˜ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›. Note that 𝕍𝑒 = 1.60206 Γ— 10βˆ’19 𝐽 per electron. Conservation of energy requires that: β„Žπ‘£ = π‘Š + 1 2 π‘šπ‘£2 = π‘Š + 𝕍𝑒 β„Žπ‘£0 = π‘Š β„Žπ‘£ = β„Žπ‘£0 + +𝕍𝑒 β†’ 𝑣 = 𝑣0 + 1 β„Ž 𝕍𝑒 …where 𝑣0 = π‘‘β„Žπ‘’ π‘‘β„Žπ‘Ÿπ‘’π‘ β„Žπ‘œπ‘™π‘‘ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦. 𝟏 𝒆𝕍 = 𝟏. πŸ”πŸŽπŸ Γ— πŸπŸŽβˆ’πŸπŸ— 𝑱 = π’†π’π’†π’“π’ˆπ’š 𝒑𝒆𝒓 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏 and 𝑬 𝑲 = 𝕍𝒆
  • 39. A plot of the frequency against the stopping voltage is shown below: The equation of the graph 𝑣 = 𝑣0 + 1 β„Ž 𝕍𝑒 is of the form 𝑦 = π‘Ž + 𝑏π‘₯.
  • 40. Refinement of the Bohr Model Consider the system below consisting of two masses – the nucleus (with charge ze and mass mn) and the electron (with charge –ze and mass me): The moment of inertia gives rise to the relationship below: { π‘š 𝑒 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿπ‘› π‘Ÿ = π‘Ÿπ‘’ + π‘Ÿπ‘› = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ The top equation rearranges to π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ 𝑛 π‘š 𝑒 and π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿ 𝑒 π‘š 𝑛 . The bottom equation rearranges to π‘Ÿπ‘’ = π‘Ÿ βˆ’ π‘Ÿπ‘› and π‘Ÿπ‘› = π‘Ÿ βˆ’ π‘Ÿπ‘’. Then: π‘š 𝑒( π‘Ÿ βˆ’ π‘Ÿπ‘›) = π‘š 𝑛( π‘Ÿ βˆ’ π‘Ÿπ‘’) π‘š 𝑒 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑛 π‘Ÿπ‘’ π‘š 𝑛 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿ + π‘š 𝑒 π‘Ÿπ‘› π‘š 𝑛 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿ + π‘š 𝑒( π‘Ÿ βˆ’ π‘Ÿπ‘’) π‘š 𝑛 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿ + π‘š 𝑒 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿπ‘’ π‘š 𝑛 π‘Ÿπ‘’ + π‘š 𝑒 π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ π‘Ÿπ‘’ ( π‘š 𝑛 + π‘š 𝑒) = π‘š 𝑛 π‘Ÿ π‘Ÿπ‘’ = π‘š 𝑛 π‘Ÿ π‘š 𝑛 + π‘š 𝑒 𝒓 𝒆 = ( π’Ž 𝒏 π’Ž 𝒏 + π’Ž 𝒆 ) 𝒓 π‘š 𝑒( π‘Ÿ βˆ’ π‘Ÿπ‘›) = π‘š 𝑛( π‘Ÿ βˆ’ π‘Ÿπ‘’) π‘š 𝑒 π‘Ÿ βˆ’ π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑛 π‘Ÿπ‘’ π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿβˆ’π‘š 𝑛 π‘Ÿ + π‘š 𝑛 π‘Ÿπ‘’ π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿβˆ’π‘š 𝑛 π‘Ÿ + π‘š 𝑛( π‘Ÿ βˆ’ π‘Ÿπ‘› ) π‘š 𝑒 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿβˆ’π‘š 𝑛 π‘Ÿ + π‘š 𝑛 π‘Ÿ βˆ’ π‘š 𝑛 π‘Ÿπ‘› π‘š 𝑒 π‘Ÿπ‘› + π‘š 𝑛 π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿ π‘Ÿπ‘› ( π‘š 𝑒 + π‘š 𝑛) = π‘š 𝑒 π‘Ÿ π‘Ÿπ‘› = π‘š 𝑒 π‘Ÿ π‘š 𝑒 + π‘š 𝑛 𝒓 𝒏 = ( π’Ž 𝒆 π’Ž 𝒆 + π’Ž 𝒏 ) 𝒓 The moment of inertia about the center of mass is given by: 𝑰 = βˆ‘ π’Žπ’Š 𝒓 π’Š 𝟐 π’Š Then: 𝐼 = π‘š 𝑒 π‘Ÿπ‘’ 2 + π‘š 𝑛 π‘Ÿπ‘› 2 = π‘š 𝑒 {( π‘š 𝑛 π‘š 𝑒 + π‘š 𝑛 ) π‘Ÿ} 2 + {( π‘š 𝑒 π‘š 𝑒 + π‘š 𝑛 ) π‘Ÿ} 2 Expanding gives: 𝐼 = π‘š 𝑒 π‘š 𝑛 2 π‘Ÿ2 ( π‘š 𝑒 + π‘š 𝑛)2 + π‘š 𝑛 π‘š 𝑒 2 π‘Ÿ2 ( π‘š 𝑒 + π‘š 𝑛)2 = π‘š 𝑒 π‘š 𝑛 π‘Ÿ2( π‘š 𝑛 + π‘š 𝑒) ( π‘š 𝑒 + π‘š 𝑛)2 = π‘š 𝑒 π‘š 𝑛 π‘Ÿ2 π‘š 𝑛 + π‘š 𝑒 = π‘š 𝑒 π‘š 𝑛 π‘š 𝑛 + π‘š 𝑒 π‘Ÿ2 If we we define the reduced mass as πœ‡ = π‘š 𝑒 π‘š 𝑛 π‘š 𝑛+π‘š 𝑒 , then: 𝑰 = 𝝁𝒓 𝟐 And since π‘š 𝑛 = 1.0079 𝑔/π‘šπ‘œπ‘™ 6.022 Γ— 1023 π‘šπ‘œπ‘™ βˆ’1 = 1.674 Γ— 10βˆ’24 𝑔, then π‘š 𝑛 ≫ π‘š 𝑒, and we can approximate that: πœ‡ = π‘š 𝑒 π‘š 𝑛 π‘š 𝑛 + π‘š 𝑒 β†’ π‘š 𝑒 π‘š 𝑛 π‘š 𝑛 = π‘š 𝑒 β†’ 𝝁 = π’Ž 𝒆
  • 41. Foundations of Quantum Mechanics Two vectors 𝐴 and 𝐡⃗ can be added or subtracted as follows: A vector whose magnitudeis unity is called a unit vector. SKIPPED SOME STUFF
  • 42. Operators An operator is a symbol that indicates that a particular operation is being performed on what follows the operator. For example, the square root operatoris √ and can operate as follows: √4 = 2. The differential operator 𝑑 𝑑π‘₯ operates as in 𝑑 𝑑π‘₯ ( π‘₯2) = 2π‘₯. We denote operators in quantum mechanics by using the symbol hat, Μ‚ , as in the operator 𝑃̂. Examples If 𝑃̂ = 𝑑 𝑑π‘₯ and 𝑓( π‘₯) = π‘₯4 , then 𝑃̂ 𝑓( π‘₯) = 𝑑 𝑑π‘₯ 𝑓( π‘₯) = 𝑑 𝑑π‘₯ ( π‘₯4) = 4π‘₯3 . Then 𝑃̂ 𝑃̂ 𝑓( π‘₯) = 𝑃̂[𝑃̂ 𝑓( π‘₯)] = 𝑃̂[4π‘₯3] = 12π‘₯2 And 𝑃̂ 𝑃̂ 𝑃̂ 𝑓( π‘₯) = 𝑃̂[12π‘₯2] = 24π‘₯ Example If 𝑅̂ = π‘₯2 , then 𝑃̂ 𝑄̂[ 𝑓( π‘₯)] = 𝑃̂ 𝑄̂[ 𝑓( π‘₯)] Reactions Having No Order Not all reactions behave in the manner aforementioned, and the term order should not be used for those that do not. Instead, such reactions are usually enzyme- catalyzed and frequently follow a law of the form: 𝜐 = 𝑉[ 𝑆] 𝐾 π‘š + [ 𝑆] In the above equation, V and Km are constants, while [S] is a variable known as the substrate concentration. This equation does not correspond to a simple order, but under two limiting conditions, an order may be assigned: i. If the substrate concentration is sufficiently low, so that [ 𝑆] β‰ͺ 𝐾 π‘š, then the law becomes 𝜐 = 𝑉[ 𝑆] 𝐾 π‘š , and the reaction is then 1st order with respect to S; or ii. If [S] is sufficiently large, so that [ 𝑆] ≫ 𝐾 π‘š, then the law becomes 𝜐 = 𝑉, and the reaction is said to be 0th order (meaning the rate is independent of [S]). Consider a reaction 𝐴 π‘˜βƒ—βƒ—βƒ—βƒ— 𝑃. Then βˆ’ 𝑑[ 𝐴] 𝑑𝑑 = π‘˜[ 𝐴] 𝛼 = π‘˜[ 𝐴]0 = π‘˜. This is separable such that 𝒅[ 𝑨] = βˆ’π’Œ 𝒅𝒕, the rate law in differential form. Integrating gives [ 𝐴] = βˆ’π‘˜π‘‘ + 𝐢. At time 𝑑 = 0: [ 𝐴]0 = 𝐢.
  • 43. Then [ 𝐴] = βˆ’π‘˜π‘‘ + [ 𝐴]0 β†’ [ 𝑨]βˆ’ [ 𝑨] 𝟎 = βˆ’π’Œπ’•, the rate law in integral form. At 𝑑 = 𝑑1 2 : 1 2 [ 𝐴]0 βˆ’ [ 𝐴]0 = βˆ’π‘˜π‘‘1 2 β†’ βˆ’ 1 2 [ 𝐴]0 = βˆ’π‘˜π‘‘1 2 β†’ 𝒕 𝟏 𝟐 = [ 𝑨] 𝟎 πŸπ’Œ , where k has units π‘šπ‘œπ‘™ πΏβˆ’1 π‘ βˆ’1 . Rate Constants and Rate Coefficients The constant k used in such rate equations is known as the rate constant or rate coefficient, depending on whether the reaction is believed to be elementary or to occur in more than one stage (respectively). The units of k vary with the order of the reaction, as shown in the table below. Order Rate Equation Units of k Half-life, tΒ½ Differential Form Integrated Form 0 𝑑π‘₯ 𝑑𝑑 = π‘˜ π‘˜ = π‘₯ 𝑑 π‘šπ‘œπ‘™ π‘‘π‘šβˆ’3 π‘ βˆ’1 π‘Ž0 2π‘˜ 1 𝑑π‘₯ 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯) π‘˜ = 1 𝑑 ln ( π‘Ž0 π‘Ž0 βˆ’ π‘₯ ) π‘ βˆ’1 ln 2 π‘˜ 2 𝑑π‘₯ 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯)2 π‘˜ = 1 𝑑 ln( π‘₯ π‘Ž0( π‘Ž0 βˆ’ π‘₯) ) π‘‘π‘š3 π‘šπ‘œπ‘™βˆ’1 π‘ βˆ’1 1 π‘˜π‘Ž0 2 𝑑π‘₯ 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯)( 𝑏0 βˆ’ π‘₯) for reactants with different concentrations π‘˜ = 1 𝑑( π‘Ž0 βˆ’ 𝑏0) ln ( 𝑏0( π‘Ž0 βˆ’ π‘₯) π‘Ž0( 𝑏0 βˆ’ π‘₯) ) π‘‘π‘š3 π‘šπ‘œπ‘™βˆ’1 π‘ βˆ’1 – n 𝑑π‘₯ 𝑑𝑑 = π‘˜( π‘Ž0 βˆ’ π‘₯) 𝑛 π‘˜ = 1 𝑑( 𝑛 βˆ’ 1) [ 1 ( π‘Ž0 βˆ’ π‘₯) π‘›βˆ’1 βˆ’ 1 π‘Ž0 π‘›βˆ’1 ] π‘šπ‘œπ‘™1βˆ’π‘› π‘‘π‘š3π‘›βˆ’3 π‘ βˆ’1 2 π‘›βˆ’1 βˆ’ 1 π‘˜( 𝑛 βˆ’ 1) π‘Ž0 π‘›βˆ’1