SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 712
UNDERGROUND CABLE FAULT DETECTION AND TRANSMISSION
OF INTIMATION THROUGH SOIL WIRELESS TRANSCEIVER
GUNASEKHAR.B1, HARISH.T2, JAYASURYA.S3, ANBARASAN.A4
1,2,3Student, Dept. of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India
4Professor, Dept of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract – The project is intended inordertofindasolution
to detect the fault in underground supply lines in an efficient
manner and in less cost. For this purpose, we use the Wireless
Underground Sensor Networks to transmit the data from
transmitter side to receiver side. Whenever the fault occurs in
the underground cable it is transmitted to the PC using this
WUSN. It is used in this fault detection because of its less
complexity and less cost. WUSN mainly makes use of the
moisture present in the soil. This does not involve any kind of
waves to transmit the data and it makes the detection
harmless. Arduino microcontroller plays a major role anditis
coded with the embedded C to detect the fault in the
underground supply lines with the help of AC current sensor
connected to the supply lines. Wireless soil transmitter and
receiver is used to transmit the data from the Arduino
microcontroller connected to the supply lines via current
sensor to the pc via serial converter
Key Words: WUSN, Arduino microcontroller, soil
wireless transmitter.
1. INTRODUCTION
An embedded system is so important in today’s automation
as it has been widely used in all kind of industries and
automation. This project is to determine the distance of
underground cable fault from base station in kilometers
using an PIC Microcontroller. Generally, we use overhead
lines were we can easily identify the faults but in rushed
places or familiar cities we couldn’t use overhead lines. So,
we are going to use underground cables. Underground
cables are used largely in urban area instead of overhead
lines. We cannot easily identify thefaultsintheunderground
cables. This project deals with PIC microcontroller, current
sensor, soil wireless transceiver, serial convertor. This
project greatly reduces the time and operates effectively.
Many types of faults occur due to construction works and
other reasons. At this time, it is difficult to dig out cable due
to not knowing the exact location of the cable fault. Many
urban areas follow the underground cabling system.
Sometimes faults occur due to construction worksandother
reasons. Nowadays the world is becoming digitalized so the
project was intended to detect the location of fault in digital
way.
2. OBJECTIVES
The main objective is to establish an efficient wireless
communication between the transceivers in challenging
underground medium.
To detect any fault in underground power supply lines and
to indicate the precise location of the fault.
To detect the location that where the cable has gotdamaged.
To reduce the cost and making it more effective in long
distance applications and to reduce the complexity.
3. RELATED WORKS:
In this work, the recent advances in MI-WUSNs and related
areas (WUSNs, NFC, magnetic communication in liquids)
have been reviewed [1]. The advances in the related areas
provide an important insight into the typical problems of
system modeling and design. For MI-WUSNs, the advances
are related to various aspects of wireless communication
and networking.
In particular, the important aspects of channel modeling,
digital signal transmission and processing, synchronization,
network design, WPT, and localization, havebeendiscussed.
Through this, a better understanding of the underlying
research challenges and design problems has been
elaborated.
These interfaces might give rise to some novel applications
of IoT.
The development of an outdoor WUSN test bed and the
realization of WUSN experiments are challenging [2]. This
work provides a set of guidelines that result in a balanced
approach between high accuracy and a practical
implementation of a WUSN test bed. The identification and
elimination/mitigation of each variable which significantly
affects the experiment results is the basic approach behind
the proposed guideline.
The main aim of this paper is to detect the fault in a cable
using Arduino microcontroller kit [3]. The cable is placed
underground of the farming land. Usually it is difficult to
detect the fault but this paper uses a simple solution such as
Wireless underground sensor networks to detect the fault. It
simply uses the soil wireless transmitter and receivertopass
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 713
the information that where the fault occurs by placing the
sensors to a particular range. The main advantage is that it
does not use any kind of waves inside the soil, it uses the
electrons to transmit the information obtained from the
microcontroller kit.
This work introduces theconceptofa WirelessUnderground
Sensor Network (WUSN) that can be used to monitor a
variety of conditions, such as soil properties for agricultural
applications and toxic substances for environmental
monitoring [4]. WUSN devices does not require any wired
networks and it is completely laid below ground. All
necessary sensors, memory, a processor,a radio,anantenna,
and a power source are needed for each device that makes
the deployment much simpler than existing underground
sensing solutions. Wireless communication is significantly
more challenging within a dense substance such as soil or
rock than through air. This factor requires that
communication protocols, that combined with the necessity
to conserve energy due to the difficulty of unearthing and
recharging WUSN devices.
4. PROPOSED SYSTEM
Our system is intended to locate the fault in underground
cable line from the base station to exact location in
kilometers using an Arduino Microcontroller kit. Whenever
the fault occurs in underground cable it is difficult to detect
the location of fault for process of repairing the particular
cable.
The proposed technology used is controller (PIC
Microcontroller) to identify thefaultanditisindicatedusing.
WUSN have many application wireless soil transmitter and
receiver. WUSN is defined as a group of nodes whose means
of data transmission and reception is completely
subterranean like infrastructures, security, environmental,
monitoring.
5. BLOCK DIAGRAM
Fig -1: Transmitter Unit
Fig -2: Receiver Unit
5.1 BLOCK DIAGRAM DESCRIPTION
Initially the current sensors are connected to the
underground cables and it is kept to a certain range o cables
depending on the current sensor used. Then the current
sensors are connected to the PIC16F877A Arduino
microcontroller.
This microcontroller continuously monitors the readings
given by the current sensors connected to the underground
cables. this gained information is transmitted to the receiver
PC via the soil wireless transmitter and receiver.
Microcontroller iscoded usingtheembeddedcprogramming
language to detect any kind of changes from current sensors.
Embedded C is a set of language extensions for the C
programming language by the c standards committee to
address commonality issues that exist betweenCextensions
for different embedded systems. Embedded C programming
support exotic features such as fixed-point arithmetic,
multiple distinct memory banks and basic I/O operations.It
has a number of features that are not available in normal C
programming, suchasfixed-pointarithmetic,namedaddress
spaces and basic I/O hardware addressing.
Then the information is transmitted to the receiver unit
which comprises of soil wireless receiver, to the serial
converter and connected to the personal computer.
The serial converter uses the UART protocol. The pc has an
output displayed in the spreadsheet which just shows
whether the current is flowing between the various nodes.
This done using coding language C. C programming is a
very simple language used in order to simplify the work of
the user.
6. INTERNAL CIRCUIT DIAGRAM
The PIC16F877A is a microcontroller board based on thePIC
Series controller. It has33digitalinput/outputpins(ofwhich
can be used as PWM outputs), and 8 analog inputs. It alsohas
16 MHz crystal oscillator, a USB connection, a power jack, an
ICSP header, and a reset button.
PIC16F877A is 8bit microcontroller packs Microchip’s
powerful PIC architecture into a 40 package and is upwards
compatible with the PIC16C5X, PIC12CXXX and PIC16C7X
devices.
The underground cable lines are continuously monitored by
the current sensors if there is any leakage or fault in cable
lines. The current sensor generatesasignalproportionaltoit.
PERSONAL
COMPUTER
WIRELESS
SOIL
(RECIEVER)
SERIAL
CONVERTOR
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 714
The generated signalcould be analog output and even digital
output. The signal is passed to the PIC16F877A which
identify the exact location of the fault in the cable lines. This
information is transmitted and received via using WUSN and
the displayed in PC.
Fig -3: Internal Circuit Diagram
7. DESIGN FLOW
The flow chart is diagrammatical representation aboutthe
working of underground cable fault detection using the
Wireless underground sensor networks.
The current sensor 1 which is attached between node 1 to 2
sends information whether the current flows in the node
which it is attached to, then current sensor 2 sends the
information as same as current sensor 1 to the
microcontroller and the as many as nodes we require also
does the something. TheArduinomicrocontrollerfetched the
information from the various currentsensorswhichiscoded
with embedded c and transmits the information’s using the
WUSN.
No
Yes
NO
Yes
Chart-1: Flow Chart representation
The computer is attachedtotheWUSN usingserial converter
displays the live information about the underground cables
in a spreadsheet which is coded with c programming
language. In the flow chart ‘n’ represents that any numberof
nodes can be connected depending upon the value of the
current sensor used. The exact node where the current
doesn’t flow is displayed in the spreadsheet else it just
displays that there is no fault in the underground cable.
8. METHODOLOGIES
8.1. Embedded C Programming
Embedded C programming want to have a nonstandard
extension to the C programming language in order to
support exotic features such as fixed-point arithmetic,
multiple distinct memory banks and basic I/O operations.It
has a number of features that are not available in normal C,
such as fixed-point arithmetic, named address spaces and
basic I/O hardware addressing. Lot of syntax and standards
are used by embedded C was main () function, variable
definition, data type declaration, conditional statements (if,
switch case), loops (while, for), functions (), arrays, strings,
structures, union, bit operations, macros, etc.
8.2 WUSN
Wireless underground sensor networks are a way of
transmitting the information’s or data from soil wireless
transmitter to receiver using the moisture of soil present in
it. The transmitter transmits the information from source
node to receiver attached to the destination node using
electrons inside the moisture of soil.
8.3 BASIC METHOD
The AC current sensor is connected to the cable which islaid
underground and the informationwhetherthecurrentflows
through the cable or not is transmitted to the wireless soil
transmitter using the Arduino microcontroller kit which is
connected to the AC current sensor. The microcontroller kit
is coded using the Embedded C.
The soil wireless receiver receives the data from the
transmitter through the soil which contains moisture and it
is connected to the serial converter which uses the UART
protocol. It is coded using the Embedded C programming.
The personal Computer is device used here in order to
display the output from the microcontroller.Itisdisplayedin
the spread sheet in the form of table. The Output has three
columns in which one displays number of nodes and the
current sensor and status of the node whether the current
flows between the nodes or not.
Start
If current flows in
node 1 to 2
If current flows in
node 2 to n
No fault in any nodes of
the UG cable Notes down the nodes
PC connected via serial
converter
Stop
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 715
8.4 Power Supply
Electrical power is a reference to a source of electrical
power. The component that supplies electrical power to the
devices is called a power supply unit or PSU. This is
commonly applied to most of the electrical energy supplies,
less often to mechanical ones, and rarely to others. Power
supply unit is the combination of Step down transformer,
Bridge rectifier, filter circuit and the voltage regulator
Fig -4: Power Supply Unit
8.5 PIC MICROCONTROLLER
PIC stands for Peripheral Interface Microcontroller which
was developed by the general instrumentsmicrocontrollers.
It is controlled by software and programmed in such a way
that it performs different tasks and control a generationline.
PIC microcontrollers are used in different new applications
like audio accessories, advanced medical devices, and smart
devices. This device is accessible in 40 pin and 44 pin
packages. All devices within this family share common
design with subsequent differences.
Fig-5: PIC Microcontroller
8.6 CURRENT SENSOR
Current detector could be a device that detects electric
current in a wire and generates a signal proportional to that
current. The generated signal could be analog output and
even digital output. The generated signal may be then used
to display the measured current in an ammeter or may be
stored for any further analysis within the data or
information acquisition system, or may be used for
controlling purpose. The detected current and also the
output signal may be alternating current input and direct
current input.
Fig -6: Current sensor
9. ADVANTAGES
The main advantage of this paper is, WUSNisharmlesstothe
living beings. It does not use any kind of waystotransmit the
information from the cable laid underground to the output
device above ground. The cost is less and can be placed in
any places like power station and it is risk free. Depending
on the range of current sensor it can be used for long
distance application. It is less complex circuit to build and it
does not involve any radiation. The circuit built to detectthe
underground cable fault detection is radiation less and it is
harmless.
10. CONCLUSIONS
In this work the short circuit fault at a particular distance in
the Underground Cables can be detected using Ohm’s Law
which enables to rectify fault efficiently.
This system can be beneficial to underground cables fault
finding as it is cost effective and can be accessed remotely.
This system will help to implement the system to regulate
the industrial use of underground cables and avoid power
losses.
It gives the new dimensions in the field of underground
cables fault finding with minimum cost and less time.
The circuit uses WUSN in an efficient mannertotransmit the
information from current sensor to the microcontroller
without any harmful radiation.
REFERENCES
[1] SURVEY ON ADVANCES IN MAGNETIC INDUCTION
BASED WIRELESS UNDERGROUND SENSOR
NETWORKS, Steven Kisseleff, Member, IEEE, Ian F.
Akyildiz, Fellow, IEEE, and Wolfgang H. Gerstacker,
Senior Member, IEEE, 2014
[2] DEVELOPMENT FOR A TESTBOD FOR WIRELESS
UNDERGROUND SENSOR NET WORKS, Agnelo R. Silva
and Mehmet C. Vuran, Department of Computer Science
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 716
and Engineering, University of Nebraska-Lincoln,
Lincoln, NE 68588, USA, 2009
[3] INDUSTRIAL UNDERGROUND POWER CABLE FAULT
IDENTIFICATION USING ARDUINO CONTROLLER,
Prabakaran K, Assistant Professor, Department of
Electronics and Instrumentation Engineering, Erode
Sengunthar Engineering College, Tamilnadu,India,2018
[4] WIRELESS UNDERGROUND SENSOR NETWORKS:
RESEARCH CHALLENGES, Ian F. Akyildiz, Erich P.,
Broadband Wireless Networking Laboratory,
Stuntebeck, School of Electrical and Computer
Engineering, Georgia Institute of Technology, 75 5th St.
NW, Atlanta, GA 30308, United States,2006.
[5] K.K. Kuan, Prof. K. Warwick, “Real-time expert system
for fault location on high voltage underground
distribution cables”,IEEEPROCEEDINGS-C,Vol.139,No.
3, MAY 1992.
[6] Tarlochan S. Sidhu, Zhihan Xu, “Detection of Incipient
Faults in Distribution Underground Cables”, IEEE
Transactions on Power Delivery, Vol. 25, NO. 3, JULY
2010.

Weitere ähnliche Inhalte

Was ist angesagt?

A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARMA New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
ijsrd.com
 
Border security
Border securityBorder security
Border security
Farah Naaz
 
Implementation of embedded real time monitoring temperature and humidity system
Implementation of embedded real time monitoring temperature and humidity systemImplementation of embedded real time monitoring temperature and humidity system
Implementation of embedded real time monitoring temperature and humidity system
Journal Papers
 
Scientific_Project_Report_on Wireless Monitoring and Control in Industries
Scientific_Project_Report_on Wireless Monitoring and Control in IndustriesScientific_Project_Report_on Wireless Monitoring and Control in Industries
Scientific_Project_Report_on Wireless Monitoring and Control in Industries
Enock Odhiambo
 
Border security using wireless integrated network sensors(wins)
Border security using wireless integrated network sensors(wins)Border security using wireless integrated network sensors(wins)
Border security using wireless integrated network sensors(wins)
PRADEEP Cheekatla
 

Was ist angesagt? (19)

Wireless Technology in Industrial Automation
Wireless Technology in Industrial AutomationWireless Technology in Industrial Automation
Wireless Technology in Industrial Automation
 
Intelligently connecting our world in the 5G era
Intelligently connecting our world in the 5G eraIntelligently connecting our world in the 5G era
Intelligently connecting our world in the 5G era
 
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARMA New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
A New Intelligent Low Cost Mobile Phone Based Irrigation System using ARM
 
Border security
Border securityBorder security
Border security
 
Bluetooth Network security
Bluetooth Network securityBluetooth Network security
Bluetooth Network security
 
Projects wavedigitech-2013
Projects wavedigitech-2013Projects wavedigitech-2013
Projects wavedigitech-2013
 
D017532629
D017532629D017532629
D017532629
 
5G for Reliable Industrial Wireless Networks
5G for Reliable Industrial Wireless Networks5G for Reliable Industrial Wireless Networks
5G for Reliable Industrial Wireless Networks
 
Implementation of embedded real time monitoring temperature and humidity system
Implementation of embedded real time monitoring temperature and humidity systemImplementation of embedded real time monitoring temperature and humidity system
Implementation of embedded real time monitoring temperature and humidity system
 
Track 2 session 7 - st dev con 2016 - witricity - wireless power revolution...
Track 2   session 7 - st dev con 2016 - witricity - wireless power revolution...Track 2   session 7 - st dev con 2016 - witricity - wireless power revolution...
Track 2 session 7 - st dev con 2016 - witricity - wireless power revolution...
 
Scientific_Project_Report_on Wireless Monitoring and Control in Industries
Scientific_Project_Report_on Wireless Monitoring and Control in IndustriesScientific_Project_Report_on Wireless Monitoring and Control in Industries
Scientific_Project_Report_on Wireless Monitoring and Control in Industries
 
Kv2518941899
Kv2518941899Kv2518941899
Kv2518941899
 
USN Services
USN Services USN Services
USN Services
 
5 g communication with ai & iot
5 g  communication with ai & iot5 g  communication with ai & iot
5 g communication with ai & iot
 
6G Technology
6G Technology6G Technology
6G Technology
 
border-security-using-wins
 border-security-using-wins border-security-using-wins
border-security-using-wins
 
5G + AI: The Ingredients For Next Generation Wireless Innovation
5G + AI: The Ingredients For Next Generation Wireless Innovation5G + AI: The Ingredients For Next Generation Wireless Innovation
5G + AI: The Ingredients For Next Generation Wireless Innovation
 
Border security using wireless integrated network sensors(wins)
Border security using wireless integrated network sensors(wins)Border security using wireless integrated network sensors(wins)
Border security using wireless integrated network sensors(wins)
 
The essential role of AI in the 5G future
The essential role of AI in the 5G futureThe essential role of AI in the 5G future
The essential role of AI in the 5G future
 

Ähnlich wie IRJET- Underground Cable Fault Detection and Transmission of Intimation through Soil Wireless Transceiver

Presentacion invento redes de sensores inalambricas
Presentacion invento redes de sensores inalambricasPresentacion invento redes de sensores inalambricas
Presentacion invento redes de sensores inalambricas
mpgarciam
 

Ähnlich wie IRJET- Underground Cable Fault Detection and Transmission of Intimation through Soil Wireless Transceiver (20)

LORA BASED DATA ACQUISITION SYSTEM
LORA BASED DATA ACQUISITION SYSTEMLORA BASED DATA ACQUISITION SYSTEM
LORA BASED DATA ACQUISITION SYSTEM
 
IRJET- A Review on Cluster-based Routing for Wireless Sensor Network
IRJET- A Review on Cluster-based Routing for Wireless Sensor NetworkIRJET- A Review on Cluster-based Routing for Wireless Sensor Network
IRJET- A Review on Cluster-based Routing for Wireless Sensor Network
 
IRJET- Iot Based Underground Cable Line Fault Detection
IRJET- Iot Based Underground Cable Line Fault DetectionIRJET- Iot Based Underground Cable Line Fault Detection
IRJET- Iot Based Underground Cable Line Fault Detection
 
IRJET- A Study on: Wireless Sensing Network (WSN) Gas Leakage Detection S...
IRJET-  	  A Study on: Wireless Sensing Network (WSN) Gas Leakage Detection S...IRJET-  	  A Study on: Wireless Sensing Network (WSN) Gas Leakage Detection S...
IRJET- A Study on: Wireless Sensing Network (WSN) Gas Leakage Detection S...
 
Presentacion invento redes de sensores inalambricas
Presentacion invento redes de sensores inalambricasPresentacion invento redes de sensores inalambricas
Presentacion invento redes de sensores inalambricas
 
IRJET- Design of Arduino based Underground Cable Fault Detector
IRJET- Design of Arduino based Underground Cable Fault DetectorIRJET- Design of Arduino based Underground Cable Fault Detector
IRJET- Design of Arduino based Underground Cable Fault Detector
 
IRJET- Earthquake Early Warning System for Android
IRJET-  	  Earthquake Early Warning System for AndroidIRJET-  	  Earthquake Early Warning System for Android
IRJET- Earthquake Early Warning System for Android
 
IRJET- Design and Development of Low Power Sensor Node For Plant Monitori...
IRJET-  	  Design and Development of Low Power Sensor Node For Plant Monitori...IRJET-  	  Design and Development of Low Power Sensor Node For Plant Monitori...
IRJET- Design and Development of Low Power Sensor Node For Plant Monitori...
 
CDMA Based Secure Cellular Communication via Satellite Link
CDMA Based Secure Cellular Communication via Satellite LinkCDMA Based Secure Cellular Communication via Satellite Link
CDMA Based Secure Cellular Communication via Satellite Link
 
IRJET- IoT based Fisherman Border Alert System using GPS and WSN
IRJET- IoT based Fisherman Border Alert System using GPS and WSNIRJET- IoT based Fisherman Border Alert System using GPS and WSN
IRJET- IoT based Fisherman Border Alert System using GPS and WSN
 
IRJET- IoT based Fisherman Border Alert System using GPS and WSN
IRJET- IoT based Fisherman Border Alert System using GPS and WSNIRJET- IoT based Fisherman Border Alert System using GPS and WSN
IRJET- IoT based Fisherman Border Alert System using GPS and WSN
 
IRJET- IoT based Fault Finding of an Underground Cable
IRJET-  	  IoT based Fault Finding of an Underground CableIRJET-  	  IoT based Fault Finding of an Underground Cable
IRJET- IoT based Fault Finding of an Underground Cable
 
SEDRP
SEDRPSEDRP
SEDRP
 
Signal Classification and Identification for Cognitive Radio
Signal Classification and Identification for Cognitive RadioSignal Classification and Identification for Cognitive Radio
Signal Classification and Identification for Cognitive Radio
 
IRJET- IoT based Street Light Monitoring & Control with Lora/Lorawan Network
IRJET-  	  IoT based Street Light Monitoring & Control with Lora/Lorawan NetworkIRJET-  	  IoT based Street Light Monitoring & Control with Lora/Lorawan Network
IRJET- IoT based Street Light Monitoring & Control with Lora/Lorawan Network
 
IRJET- Wireless Controlled Robot for Bomb Detection and Defusion
IRJET- Wireless Controlled Robot for Bomb Detection and DefusionIRJET- Wireless Controlled Robot for Bomb Detection and Defusion
IRJET- Wireless Controlled Robot for Bomb Detection and Defusion
 
IRJET- Reduction of Packet Data Loss in Wireless Mesh Network using Path Mech...
IRJET- Reduction of Packet Data Loss in Wireless Mesh Network using Path Mech...IRJET- Reduction of Packet Data Loss in Wireless Mesh Network using Path Mech...
IRJET- Reduction of Packet Data Loss in Wireless Mesh Network using Path Mech...
 
A Border security Using Wireless Integrated Network Sensors (WINS)
A Border security Using Wireless Integrated Network Sensors (WINS)A Border security Using Wireless Integrated Network Sensors (WINS)
A Border security Using Wireless Integrated Network Sensors (WINS)
 
IRJET- Wireless Sensor Network for Railway Security System
IRJET- Wireless Sensor Network for Railway Security SystemIRJET- Wireless Sensor Network for Railway Security System
IRJET- Wireless Sensor Network for Railway Security System
 
Iot Based Society Automation Using GTBS Protocol
Iot Based Society Automation Using GTBS ProtocolIot Based Society Automation Using GTBS Protocol
Iot Based Society Automation Using GTBS Protocol
 

Mehr von IRJET Journal

Mehr von IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Kürzlich hochgeladen

Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Kürzlich hochgeladen (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 

IRJET- Underground Cable Fault Detection and Transmission of Intimation through Soil Wireless Transceiver

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 712 UNDERGROUND CABLE FAULT DETECTION AND TRANSMISSION OF INTIMATION THROUGH SOIL WIRELESS TRANSCEIVER GUNASEKHAR.B1, HARISH.T2, JAYASURYA.S3, ANBARASAN.A4 1,2,3Student, Dept. of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India 4Professor, Dept of ECE Engineering, Valliammai Engineering College, Tamil Nadu, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract – The project is intended inordertofindasolution to detect the fault in underground supply lines in an efficient manner and in less cost. For this purpose, we use the Wireless Underground Sensor Networks to transmit the data from transmitter side to receiver side. Whenever the fault occurs in the underground cable it is transmitted to the PC using this WUSN. It is used in this fault detection because of its less complexity and less cost. WUSN mainly makes use of the moisture present in the soil. This does not involve any kind of waves to transmit the data and it makes the detection harmless. Arduino microcontroller plays a major role anditis coded with the embedded C to detect the fault in the underground supply lines with the help of AC current sensor connected to the supply lines. Wireless soil transmitter and receiver is used to transmit the data from the Arduino microcontroller connected to the supply lines via current sensor to the pc via serial converter Key Words: WUSN, Arduino microcontroller, soil wireless transmitter. 1. INTRODUCTION An embedded system is so important in today’s automation as it has been widely used in all kind of industries and automation. This project is to determine the distance of underground cable fault from base station in kilometers using an PIC Microcontroller. Generally, we use overhead lines were we can easily identify the faults but in rushed places or familiar cities we couldn’t use overhead lines. So, we are going to use underground cables. Underground cables are used largely in urban area instead of overhead lines. We cannot easily identify thefaultsintheunderground cables. This project deals with PIC microcontroller, current sensor, soil wireless transceiver, serial convertor. This project greatly reduces the time and operates effectively. Many types of faults occur due to construction works and other reasons. At this time, it is difficult to dig out cable due to not knowing the exact location of the cable fault. Many urban areas follow the underground cabling system. Sometimes faults occur due to construction worksandother reasons. Nowadays the world is becoming digitalized so the project was intended to detect the location of fault in digital way. 2. OBJECTIVES The main objective is to establish an efficient wireless communication between the transceivers in challenging underground medium. To detect any fault in underground power supply lines and to indicate the precise location of the fault. To detect the location that where the cable has gotdamaged. To reduce the cost and making it more effective in long distance applications and to reduce the complexity. 3. RELATED WORKS: In this work, the recent advances in MI-WUSNs and related areas (WUSNs, NFC, magnetic communication in liquids) have been reviewed [1]. The advances in the related areas provide an important insight into the typical problems of system modeling and design. For MI-WUSNs, the advances are related to various aspects of wireless communication and networking. In particular, the important aspects of channel modeling, digital signal transmission and processing, synchronization, network design, WPT, and localization, havebeendiscussed. Through this, a better understanding of the underlying research challenges and design problems has been elaborated. These interfaces might give rise to some novel applications of IoT. The development of an outdoor WUSN test bed and the realization of WUSN experiments are challenging [2]. This work provides a set of guidelines that result in a balanced approach between high accuracy and a practical implementation of a WUSN test bed. The identification and elimination/mitigation of each variable which significantly affects the experiment results is the basic approach behind the proposed guideline. The main aim of this paper is to detect the fault in a cable using Arduino microcontroller kit [3]. The cable is placed underground of the farming land. Usually it is difficult to detect the fault but this paper uses a simple solution such as Wireless underground sensor networks to detect the fault. It simply uses the soil wireless transmitter and receivertopass
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 713 the information that where the fault occurs by placing the sensors to a particular range. The main advantage is that it does not use any kind of waves inside the soil, it uses the electrons to transmit the information obtained from the microcontroller kit. This work introduces theconceptofa WirelessUnderground Sensor Network (WUSN) that can be used to monitor a variety of conditions, such as soil properties for agricultural applications and toxic substances for environmental monitoring [4]. WUSN devices does not require any wired networks and it is completely laid below ground. All necessary sensors, memory, a processor,a radio,anantenna, and a power source are needed for each device that makes the deployment much simpler than existing underground sensing solutions. Wireless communication is significantly more challenging within a dense substance such as soil or rock than through air. This factor requires that communication protocols, that combined with the necessity to conserve energy due to the difficulty of unearthing and recharging WUSN devices. 4. PROPOSED SYSTEM Our system is intended to locate the fault in underground cable line from the base station to exact location in kilometers using an Arduino Microcontroller kit. Whenever the fault occurs in underground cable it is difficult to detect the location of fault for process of repairing the particular cable. The proposed technology used is controller (PIC Microcontroller) to identify thefaultanditisindicatedusing. WUSN have many application wireless soil transmitter and receiver. WUSN is defined as a group of nodes whose means of data transmission and reception is completely subterranean like infrastructures, security, environmental, monitoring. 5. BLOCK DIAGRAM Fig -1: Transmitter Unit Fig -2: Receiver Unit 5.1 BLOCK DIAGRAM DESCRIPTION Initially the current sensors are connected to the underground cables and it is kept to a certain range o cables depending on the current sensor used. Then the current sensors are connected to the PIC16F877A Arduino microcontroller. This microcontroller continuously monitors the readings given by the current sensors connected to the underground cables. this gained information is transmitted to the receiver PC via the soil wireless transmitter and receiver. Microcontroller iscoded usingtheembeddedcprogramming language to detect any kind of changes from current sensors. Embedded C is a set of language extensions for the C programming language by the c standards committee to address commonality issues that exist betweenCextensions for different embedded systems. Embedded C programming support exotic features such as fixed-point arithmetic, multiple distinct memory banks and basic I/O operations.It has a number of features that are not available in normal C programming, suchasfixed-pointarithmetic,namedaddress spaces and basic I/O hardware addressing. Then the information is transmitted to the receiver unit which comprises of soil wireless receiver, to the serial converter and connected to the personal computer. The serial converter uses the UART protocol. The pc has an output displayed in the spreadsheet which just shows whether the current is flowing between the various nodes. This done using coding language C. C programming is a very simple language used in order to simplify the work of the user. 6. INTERNAL CIRCUIT DIAGRAM The PIC16F877A is a microcontroller board based on thePIC Series controller. It has33digitalinput/outputpins(ofwhich can be used as PWM outputs), and 8 analog inputs. It alsohas 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button. PIC16F877A is 8bit microcontroller packs Microchip’s powerful PIC architecture into a 40 package and is upwards compatible with the PIC16C5X, PIC12CXXX and PIC16C7X devices. The underground cable lines are continuously monitored by the current sensors if there is any leakage or fault in cable lines. The current sensor generatesasignalproportionaltoit. PERSONAL COMPUTER WIRELESS SOIL (RECIEVER) SERIAL CONVERTOR
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 714 The generated signalcould be analog output and even digital output. The signal is passed to the PIC16F877A which identify the exact location of the fault in the cable lines. This information is transmitted and received via using WUSN and the displayed in PC. Fig -3: Internal Circuit Diagram 7. DESIGN FLOW The flow chart is diagrammatical representation aboutthe working of underground cable fault detection using the Wireless underground sensor networks. The current sensor 1 which is attached between node 1 to 2 sends information whether the current flows in the node which it is attached to, then current sensor 2 sends the information as same as current sensor 1 to the microcontroller and the as many as nodes we require also does the something. TheArduinomicrocontrollerfetched the information from the various currentsensorswhichiscoded with embedded c and transmits the information’s using the WUSN. No Yes NO Yes Chart-1: Flow Chart representation The computer is attachedtotheWUSN usingserial converter displays the live information about the underground cables in a spreadsheet which is coded with c programming language. In the flow chart ‘n’ represents that any numberof nodes can be connected depending upon the value of the current sensor used. The exact node where the current doesn’t flow is displayed in the spreadsheet else it just displays that there is no fault in the underground cable. 8. METHODOLOGIES 8.1. Embedded C Programming Embedded C programming want to have a nonstandard extension to the C programming language in order to support exotic features such as fixed-point arithmetic, multiple distinct memory banks and basic I/O operations.It has a number of features that are not available in normal C, such as fixed-point arithmetic, named address spaces and basic I/O hardware addressing. Lot of syntax and standards are used by embedded C was main () function, variable definition, data type declaration, conditional statements (if, switch case), loops (while, for), functions (), arrays, strings, structures, union, bit operations, macros, etc. 8.2 WUSN Wireless underground sensor networks are a way of transmitting the information’s or data from soil wireless transmitter to receiver using the moisture of soil present in it. The transmitter transmits the information from source node to receiver attached to the destination node using electrons inside the moisture of soil. 8.3 BASIC METHOD The AC current sensor is connected to the cable which islaid underground and the informationwhetherthecurrentflows through the cable or not is transmitted to the wireless soil transmitter using the Arduino microcontroller kit which is connected to the AC current sensor. The microcontroller kit is coded using the Embedded C. The soil wireless receiver receives the data from the transmitter through the soil which contains moisture and it is connected to the serial converter which uses the UART protocol. It is coded using the Embedded C programming. The personal Computer is device used here in order to display the output from the microcontroller.Itisdisplayedin the spread sheet in the form of table. The Output has three columns in which one displays number of nodes and the current sensor and status of the node whether the current flows between the nodes or not. Start If current flows in node 1 to 2 If current flows in node 2 to n No fault in any nodes of the UG cable Notes down the nodes PC connected via serial converter Stop
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 715 8.4 Power Supply Electrical power is a reference to a source of electrical power. The component that supplies electrical power to the devices is called a power supply unit or PSU. This is commonly applied to most of the electrical energy supplies, less often to mechanical ones, and rarely to others. Power supply unit is the combination of Step down transformer, Bridge rectifier, filter circuit and the voltage regulator Fig -4: Power Supply Unit 8.5 PIC MICROCONTROLLER PIC stands for Peripheral Interface Microcontroller which was developed by the general instrumentsmicrocontrollers. It is controlled by software and programmed in such a way that it performs different tasks and control a generationline. PIC microcontrollers are used in different new applications like audio accessories, advanced medical devices, and smart devices. This device is accessible in 40 pin and 44 pin packages. All devices within this family share common design with subsequent differences. Fig-5: PIC Microcontroller 8.6 CURRENT SENSOR Current detector could be a device that detects electric current in a wire and generates a signal proportional to that current. The generated signal could be analog output and even digital output. The generated signal may be then used to display the measured current in an ammeter or may be stored for any further analysis within the data or information acquisition system, or may be used for controlling purpose. The detected current and also the output signal may be alternating current input and direct current input. Fig -6: Current sensor 9. ADVANTAGES The main advantage of this paper is, WUSNisharmlesstothe living beings. It does not use any kind of waystotransmit the information from the cable laid underground to the output device above ground. The cost is less and can be placed in any places like power station and it is risk free. Depending on the range of current sensor it can be used for long distance application. It is less complex circuit to build and it does not involve any radiation. The circuit built to detectthe underground cable fault detection is radiation less and it is harmless. 10. CONCLUSIONS In this work the short circuit fault at a particular distance in the Underground Cables can be detected using Ohm’s Law which enables to rectify fault efficiently. This system can be beneficial to underground cables fault finding as it is cost effective and can be accessed remotely. This system will help to implement the system to regulate the industrial use of underground cables and avoid power losses. It gives the new dimensions in the field of underground cables fault finding with minimum cost and less time. The circuit uses WUSN in an efficient mannertotransmit the information from current sensor to the microcontroller without any harmful radiation. REFERENCES [1] SURVEY ON ADVANCES IN MAGNETIC INDUCTION BASED WIRELESS UNDERGROUND SENSOR NETWORKS, Steven Kisseleff, Member, IEEE, Ian F. Akyildiz, Fellow, IEEE, and Wolfgang H. Gerstacker, Senior Member, IEEE, 2014 [2] DEVELOPMENT FOR A TESTBOD FOR WIRELESS UNDERGROUND SENSOR NET WORKS, Agnelo R. Silva and Mehmet C. Vuran, Department of Computer Science
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 03 | Mar 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 716 and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA, 2009 [3] INDUSTRIAL UNDERGROUND POWER CABLE FAULT IDENTIFICATION USING ARDUINO CONTROLLER, Prabakaran K, Assistant Professor, Department of Electronics and Instrumentation Engineering, Erode Sengunthar Engineering College, Tamilnadu,India,2018 [4] WIRELESS UNDERGROUND SENSOR NETWORKS: RESEARCH CHALLENGES, Ian F. Akyildiz, Erich P., Broadband Wireless Networking Laboratory, Stuntebeck, School of Electrical and Computer Engineering, Georgia Institute of Technology, 75 5th St. NW, Atlanta, GA 30308, United States,2006. [5] K.K. Kuan, Prof. K. Warwick, “Real-time expert system for fault location on high voltage underground distribution cables”,IEEEPROCEEDINGS-C,Vol.139,No. 3, MAY 1992. [6] Tarlochan S. Sidhu, Zhihan Xu, “Detection of Incipient Faults in Distribution Underground Cables”, IEEE Transactions on Power Delivery, Vol. 25, NO. 3, JULY 2010.