SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072
© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 689
Replacement of Fine Aggregate in Concrete using Construction
Demolished Waste
Utkarsh Sharma1, Gautam Bhadoriya2
1Research scholar Civil Engg. Deptt.MITS Gwalior
2Assistant Professor Civil Engg. Deptt. MITS Gwalior
--------------------------------------------------------------------------***-----------------------------------------------------------------------
Abstract:- Demolition of structures to make way for new and modern ones is common features in metropolitan areas due
to rapid urbanization. Very little demolished concrete is recycled or reused. Due to strict environmental laws and lack of
dumping sites in urban areas, demolished waste disposal is of great problem. The study is a part of comprehensive
program wherein experimental investigations have been carried out to assess the effect of partial replacement of fine
aggregate by demolished waste on workability and compressive strength of recycled concrete for the study, at a period of
7 and 28 days. The compressive strength thus observed has been compared with strength of conventional concrete. Test
results showed the compressive strength of recycled concrete with 12% fine aggregate replacement by demolished waste
at the end of 28 days has been found to be marginally lower than that of conventional concrete.
Keywords: Workability, Fine aggregate, Recycle aggregate, compressive strength, conventional concrete.
1. Introduction
Researchers of every era have put their extra efforts on environment and conservation of natural resources. This study is
an attempt to explore recycled concrete as a material of hope for next generation. Demolished waste obtained from a
structure mainly made up of concrete has several foreign matter such as various type of finishes, cladding materials,
lumber, dirt, steel, hardware’s, woods, plastics etc, attached to them directly or indirectly. The process of removal of
impurities and crushing of rubble into suitable and desirable aggregate particle size can be carried out in a continuous and
sequential manner using appropriate mechanical devices such as jaw crushers, impact crushers, swing hammer crushers
etc. There are three processes, for processing of demolished waste: Dry, Wet and Thermal, which are used individually
or in combination with one another. Due to high water absorption of recycled aggregates, it is sometimes suggested to
use pre-soaked aggregates for production of recycled aggregate.
2. Literature Review
Hansen and Marga (1992) found that based on equal slump, the water requirement of recycled aggregate concrete
made with both coarse and fine recycled aggregate was 14% higher than that of control concretes made with natural
sand and gravel. When concrete was produced with coarse recycled aggregate and natural sand, the increase in water
demand was only 6%. Masood et al. (2001) compared the strength and economy of standard and recycled concrete with
partial replacement of cement and fine aggregates. The recycled concrete achieved up to 77% compressive strength,
and above 90% for splitting tensile and flexural strength and a cost saving of 15%. These indicate the potential of C and
D wastes as valuable building materials on technical, environmental and economic grounds. Khalaf and DeVenny
(2004) concluded that concrete can be successfully produced using recycled aggregates that have been produced
from demolition and construction waste. Concrete produced with these aggregates does not perform as well as concretes
produced with natural aggregates in terms of strength. However, concrete still has a strength that would make it suitable
for some applications, with the added benefit that density values are much lower; making it suitable in situations where
self-weight is a problem and very good fire resistance is required. Against these backdrops, this study was aimed to assess
the effect of partial replacement of fine aggregate by demolished waste on workability and compressive strength of
recycled concrete for a period of 7 and 28 d.
3. Materials and methods
Demolished waste: Demolished waste was collected from Morar Cantonment, Gwalior, India. Demolished waste on being
tested in laboratory showed pozzolanic properties. Demolished waste as a pozzolanic material was used to partially
replace cement and similarly fine aggregate.
Cement: In this work, ordinary Portland cement of Birla (43 grade) brand obtained from a single batches trough out the
investigation was used. The ordinary cement content mainly has two basic ingredients namely, argillaceous and
calcareous. The cement satisfies the requirement of IS: 8112-1989.
Fine aggregate: The fine aggregate is locally available river sand, which is passed through 4.75mm sieve.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072
© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 690
Coarse aggregate: The coarse aggregate locally available crushed stone aggregate, 12 mm maximum of single lot size has
been used trough out the experiment the specific gravity of coarse aggregate was 2.7.
Water: Potable water is used for mixing and curing. On addition of higher percentage of demolished waste the
requirement of water increases for the same workability. Thus a constant slump has been the criteria fir water
requirement but the specimens having 0% demolished waste, w/c of 0.50 has been used.
Properties of Demolished waste
Properties Values
Specific Gravity 2.67
Aggregate Crushing Value ACV 27
Aggregate Impact Value AIV 14
Table-1
Fig.1 Curing of Specimen
Fig.2 Compression Testing Machine
Properties of OPC cement
Properties Values
Specific Gravity 3.12
Normal Consistency 29%
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072
© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 691
Initial Setting time 65min
Final Setting time 275 min
Fineness 330 kg/m2
Soundness 2.5mm
Bulk Density 830-1650 kg/m3
Table-2
4. Experimental Analysis
Compressive strength is the ability of material or structure to carry the loads on its surface without any crack or deflection.
A material under compression tends to reduce the size, while in tension, size elongates. Compressive strength of concrete
cube test provides an idea about all the characteristics of concrete. By this single test one judge that whether Concreting
has been done properly or not. Concrete compressive strength for general construction varies from 15 MPa (2200 psi) to
30 MPa (4400 psi) and higher in commercial and industrial structures.
Test Procedure
For cube test two types of specimens either cubes of 15cm X 15cm X 15cm or 10cm X 10cm x 10cm depending upon the
size of aggregate are used. For most of the works cubical moulds of size 15cm x 15cm x 15cm are commonly used. This
concrete is poured in the mould and tempered properly so as not to have any voids. After 24 hours these moulds are
removed and test specimens are put in water for curing. The top surface of these specimens should be made even and
smooth. This is done by putting cement paste and spreading smoothly on whole area of specimen. These specimens are
tested by compression testing machine after 7 days curing or 28 days curing. Load should be applied gradually at the rate
of 140 kg/cm2 per minute till the Specimens fails. Load at the failure divided by area of specimen gives the compressive
strength of concrete.
Table-3 Compressive Strength of Specimen
Workability Test of concrete:
Various tests for workability of concrete at construction sites i.e slump test, Vee-bee test, Compaction factor test.
Workability of concrete describes the ease or difficulty with which the concrete is handled, transported and placed
between the forms with minimum loss of homogeneity. This test is carried out with a mould called slump cone whose top
diameter is 10cm, bottom diameter is 20 cm and height is 30 cm. the test may be performed in the following steps:
1. Place the slump mould on a smooth flat and non-absorbent surface.
SNO. SAMPLE 1 SAMPLE2 SAMPLE2 Avg.
Compressive
Strength of
Concrete in Mpa.
Conventional
cubes
20.59 21.70 21.9 21.39
Cubes after
replacement
with
construction
demolition waste
33.20 37.10 36.80 36.11
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072
© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 692
7 Days Compressive strength 28 Days Compressive strength
40
35
30
25
20
15
0% F.A.R. 10% F.A.R. 20% F.A.R. 30%
F.A.R.
2. Mix the dry ingredients of the concrete thoroughly till a uniform colour is obtained and then add the required quantity
of water.
3. Place the mixed concrete in the mould to about one-fourth of its height.
4. Compact the concrete 25 times with the help of a tamping rod uniformly all over the area.
5. Place the concrete in the mould about half of its height and compact it again.
6. Place the concrete up to its three fourth height and then up to its top. Compact each layer 25 times with the help of
tamping rod uniformly. For the second subsequent layers, the tamping rod should penetrate into underlying layers.
7. Strike off the top surface of mould with a trowel or tamping rod so that the mould is filled to its top.
8. Remove the mould immediately, ensuring its movement in vertical direction.
9. When the settlement of concrete stops, measure the subsidence of the concrete in millimetres which is the required
slump of the concrete.
Workability Slump (mm) Compressive Strength (Kn/m2)
Fig.3 Graph Showing Variation between Workability & Compressive strength VS Fine aggregate Replaced (FAR)
5. Results and discussion
The observations made during the test of cubes are summarized as workability and compressive strength are presented in
tabular form (Table 7). Three specimens each having 0%, 6%, 12%, and 18% demolished waste as fine aggregate replacement
for mix of 1:1.67:3.33 were cast and tested after 7 days and 28 d in order to have a comparativestudy.
Workability: Workability is the relative ease with which concrete can be mixed, placed, compacted and finished. While casting
specimens, slump test were carried out to determine the workability of different samples as per IS: 6461-1973 (Fig.1).
6. Conclusions
The following conclusions are drawn from the experimental study.
1. Recycled aggregate concrete may be an alternative to the conventional concrete.
2. Water required producing the same workability increases with the increase in the percentage of demolished waste.
3. Optimum replacement level of fine aggregate with recycled aggregate is12%.
35
30
25
20
15
10
0% F.A.R. 10% F.A.R. 20% F.A.R.
30%
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072
© 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 693
7. References
1. IS: 456-1978. Code of practice for plain and reinforced concrete. Indian Standard Institute, New Delhi.
2. IS: 6461-1973. Properties of concrete (part VIII). Indian Standard Institute, New Delhi.
3. IS: 8112-1989. 43 Grade ordinary Portland cement. Indian Standard Institute, New Delhi.
4. Khalaf, F.M. and DeVenny, A.S. 2004. Performance of brick aggregate concrete at high temperatures. J. Mater. Civil Engg.
16(6): 556-565.
5. Masood A., Ahmad, T., Arif, M. and Mahdi, F. 2001. Waste management strategies for concrete. Environ. Engg. Policy. 3:
15-18.

Weitere ähnliche Inhalte

Was ist angesagt?

IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...
IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...
IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...IRJET Journal
 
IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...
IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...
IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...IRJET Journal
 
IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...
IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...
IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...IRJET Journal
 
IRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash Bricks
IRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash BricksIRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash Bricks
IRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash BricksIRJET Journal
 
IRJET- Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...
IRJET-  	  Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...IRJET-  	  Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...
IRJET- Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...IRJET Journal
 
IRJET- Experimental Study on Use of Ground Granulated Blast Furnace Slag ...
IRJET-  	  Experimental Study on Use of Ground Granulated Blast Furnace Slag ...IRJET-  	  Experimental Study on Use of Ground Granulated Blast Furnace Slag ...
IRJET- Experimental Study on Use of Ground Granulated Blast Furnace Slag ...IRJET Journal
 
Performance of Recycled Aggregates using GGBS An Experimental Study
Performance of Recycled Aggregates using GGBS An Experimental StudyPerformance of Recycled Aggregates using GGBS An Experimental Study
Performance of Recycled Aggregates using GGBS An Experimental StudyIRJET Journal
 
Experimental Investigation on the Concrete as a Partial Replacement of Fine a...
Experimental Investigation on the Concrete as a Partial Replacement of Fine a...Experimental Investigation on the Concrete as a Partial Replacement of Fine a...
Experimental Investigation on the Concrete as a Partial Replacement of Fine a...IJSRD
 
Partial replacement of cement and fine aggregate by
Partial replacement of cement and fine aggregate byPartial replacement of cement and fine aggregate by
Partial replacement of cement and fine aggregate byeSAT Publishing House
 
Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...
Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...
Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...IRJET Journal
 
Use of used foundry sand in concrete
Use of used foundry sand in concreteUse of used foundry sand in concrete
Use of used foundry sand in concreteeSAT Journals
 
Strength behaviour of foundry sand on modified high strength concrete
Strength behaviour of foundry sand on modified high strength concreteStrength behaviour of foundry sand on modified high strength concrete
Strength behaviour of foundry sand on modified high strength concreteeSAT Journals
 
IRJET- Waste Foundry Sand in Concrete
IRJET- Waste Foundry Sand in ConcreteIRJET- Waste Foundry Sand in Concrete
IRJET- Waste Foundry Sand in ConcreteIRJET Journal
 
IRJET-Replacement of Cement by Granite Powder in Paver Blocks
IRJET-Replacement of Cement by Granite Powder in Paver BlocksIRJET-Replacement of Cement by Granite Powder in Paver Blocks
IRJET-Replacement of Cement by Granite Powder in Paver BlocksIRJET Journal
 
IRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver Blocks
IRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver BlocksIRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver Blocks
IRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver BlocksIRJET Journal
 
IRJET-Permeable Concrete as a Road Pavement
IRJET-Permeable Concrete as a Road PavementIRJET-Permeable Concrete as a Road Pavement
IRJET-Permeable Concrete as a Road PavementIRJET Journal
 
IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...
IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...
IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...IRJET Journal
 
IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...
IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...
IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...IRJET Journal
 
IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...
IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...
IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...IRJET Journal
 
IRJET- Experimental Study on Partial Replacement of Cement by GGBS and Fi...
IRJET-  	  Experimental Study on Partial Replacement of Cement by GGBS and Fi...IRJET-  	  Experimental Study on Partial Replacement of Cement by GGBS and Fi...
IRJET- Experimental Study on Partial Replacement of Cement by GGBS and Fi...IRJET Journal
 

Was ist angesagt? (20)

IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...
IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...
IRJET- Behaviour of RC Slabs with Recycled Aggregates Subjected to Static and...
 
IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...
IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...
IRJET- Experimental Investigation on Durability Properties of Recycled Aggreg...
 
IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...
IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...
IRJET - Effects of Partial Replacement of Portland Cement and Fine Aggregate ...
 
IRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash Bricks
IRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash BricksIRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash Bricks
IRJET-Replacing the Fly Ash by STP Dry Sludge in Manufacturing of Fly Ash Bricks
 
IRJET- Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...
IRJET-  	  Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...IRJET-  	  Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...
IRJET- Effect of Recycled Coarse Aggregate on Compressive Strength and Fl...
 
IRJET- Experimental Study on Use of Ground Granulated Blast Furnace Slag ...
IRJET-  	  Experimental Study on Use of Ground Granulated Blast Furnace Slag ...IRJET-  	  Experimental Study on Use of Ground Granulated Blast Furnace Slag ...
IRJET- Experimental Study on Use of Ground Granulated Blast Furnace Slag ...
 
Performance of Recycled Aggregates using GGBS An Experimental Study
Performance of Recycled Aggregates using GGBS An Experimental StudyPerformance of Recycled Aggregates using GGBS An Experimental Study
Performance of Recycled Aggregates using GGBS An Experimental Study
 
Experimental Investigation on the Concrete as a Partial Replacement of Fine a...
Experimental Investigation on the Concrete as a Partial Replacement of Fine a...Experimental Investigation on the Concrete as a Partial Replacement of Fine a...
Experimental Investigation on the Concrete as a Partial Replacement of Fine a...
 
Partial replacement of cement and fine aggregate by
Partial replacement of cement and fine aggregate byPartial replacement of cement and fine aggregate by
Partial replacement of cement and fine aggregate by
 
Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...
Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...
Experimental Investigation on Concrete with Replacement of Coarse Aggregate b...
 
Use of used foundry sand in concrete
Use of used foundry sand in concreteUse of used foundry sand in concrete
Use of used foundry sand in concrete
 
Strength behaviour of foundry sand on modified high strength concrete
Strength behaviour of foundry sand on modified high strength concreteStrength behaviour of foundry sand on modified high strength concrete
Strength behaviour of foundry sand on modified high strength concrete
 
IRJET- Waste Foundry Sand in Concrete
IRJET- Waste Foundry Sand in ConcreteIRJET- Waste Foundry Sand in Concrete
IRJET- Waste Foundry Sand in Concrete
 
IRJET-Replacement of Cement by Granite Powder in Paver Blocks
IRJET-Replacement of Cement by Granite Powder in Paver BlocksIRJET-Replacement of Cement by Granite Powder in Paver Blocks
IRJET-Replacement of Cement by Granite Powder in Paver Blocks
 
IRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver Blocks
IRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver BlocksIRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver Blocks
IRJET- Utilization of Glass Powder and Fly Ash in Concrete Paver Blocks
 
IRJET-Permeable Concrete as a Road Pavement
IRJET-Permeable Concrete as a Road PavementIRJET-Permeable Concrete as a Road Pavement
IRJET-Permeable Concrete as a Road Pavement
 
IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...
IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...
IRJET- Use of Plastic Waste as a Partial Replacement of Aggregate in Paver Bl...
 
IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...
IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...
IRJET- Evaluation of Properties of Reactive Powder Concrete and Determination...
 
IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...
IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...
IRJET- Experimental Investigation on Tannery Waste with Partial Replacement o...
 
IRJET- Experimental Study on Partial Replacement of Cement by GGBS and Fi...
IRJET-  	  Experimental Study on Partial Replacement of Cement by GGBS and Fi...IRJET-  	  Experimental Study on Partial Replacement of Cement by GGBS and Fi...
IRJET- Experimental Study on Partial Replacement of Cement by GGBS and Fi...
 

Ähnlich wie IRJET- Replacement of Fine Aggregate in Concrete using Construction Demolished Waste

REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...
REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...
REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...IRJET Journal
 
AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...
AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...
AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...IRJET Journal
 
Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...
Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...
Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...IRJET Journal
 
INVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCK
INVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCKINVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCK
INVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCKIRJET Journal
 
A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...
A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...
A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...IRJET Journal
 
IRJET- Reusability of Construction and Demolition Waste in Bricks
IRJET-  	  Reusability of Construction and Demolition Waste in BricksIRJET-  	  Reusability of Construction and Demolition Waste in Bricks
IRJET- Reusability of Construction and Demolition Waste in BricksIRJET Journal
 
IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...
IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...
IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...IRJET Journal
 
EXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDS
EXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDSEXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDS
EXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDSIRJET Journal
 
IRJET- Manufacture of Concrete using Solid Waste from Construction Industry
IRJET- Manufacture of Concrete using Solid Waste from Construction IndustryIRJET- Manufacture of Concrete using Solid Waste from Construction Industry
IRJET- Manufacture of Concrete using Solid Waste from Construction IndustryIRJET Journal
 
WASTE MATERIALS USED IN CONCRETE TECHNOLOGY
WASTE MATERIALS USED IN CONCRETE TECHNOLOGYWASTE MATERIALS USED IN CONCRETE TECHNOLOGY
WASTE MATERIALS USED IN CONCRETE TECHNOLOGYIRJET Journal
 
IRJET- Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...
IRJET-  	  Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...IRJET-  	  Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...
IRJET- Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...IRJET Journal
 
IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...
IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...
IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...IRJET Journal
 
IRJET - An Experimental Investigation on Concrete with of Partial Replacement...
IRJET - An Experimental Investigation on Concrete with of Partial Replacement...IRJET - An Experimental Investigation on Concrete with of Partial Replacement...
IRJET - An Experimental Investigation on Concrete with of Partial Replacement...IRJET Journal
 
IRJET - Effect of Partial and Total Replacement of Fine Aggregate by Mill...
IRJET -  	  Effect of Partial and Total Replacement of Fine Aggregate by Mill...IRJET -  	  Effect of Partial and Total Replacement of Fine Aggregate by Mill...
IRJET - Effect of Partial and Total Replacement of Fine Aggregate by Mill...IRJET Journal
 
Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...
Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...
Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...IRJET Journal
 
The Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for Concrete
The Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for ConcreteThe Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for Concrete
The Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for ConcreteIRJET Journal
 
USE OF SAWDUST IN CONCRETE
USE OF SAWDUST IN CONCRETEUSE OF SAWDUST IN CONCRETE
USE OF SAWDUST IN CONCRETEIRJET Journal
 
IRJET- An Experimental Investigation on Strength of Conventional Concrete...
IRJET-  	  An Experimental Investigation on Strength of Conventional Concrete...IRJET-  	  An Experimental Investigation on Strength of Conventional Concrete...
IRJET- An Experimental Investigation on Strength of Conventional Concrete...IRJET Journal
 
Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...
Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...
Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...IRJET Journal
 
IRJET - Investigation Study on Fine Aggregate Fragmentary Replacement by ...
IRJET -  	  Investigation Study on Fine Aggregate Fragmentary Replacement by ...IRJET -  	  Investigation Study on Fine Aggregate Fragmentary Replacement by ...
IRJET - Investigation Study on Fine Aggregate Fragmentary Replacement by ...IRJET Journal
 

Ähnlich wie IRJET- Replacement of Fine Aggregate in Concrete using Construction Demolished Waste (20)

REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...
REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...
REPLACEMENT OF FINE AGGREGATES BY BUILDING DEMOLISHED WASTE FOR ESTABLISHING ...
 
AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...
AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...
AN EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH GGBS AND RICE HUS...
 
Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...
Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...
Study On Partial Replacement Of Fine Aggregates In Concrete By Recycled Concr...
 
INVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCK
INVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCKINVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCK
INVESTIGATION ON PERFORMANCE OF RECYCLED AGGREGATE BLOCK
 
A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...
A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...
A Study on Behavior of Concrete by Partial Replacement of Coarse Aggregate wi...
 
IRJET- Reusability of Construction and Demolition Waste in Bricks
IRJET-  	  Reusability of Construction and Demolition Waste in BricksIRJET-  	  Reusability of Construction and Demolition Waste in Bricks
IRJET- Reusability of Construction and Demolition Waste in Bricks
 
IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...
IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...
IRJET - Utilisation of Waste Plastic in Concrete Paver Block as a Partial Rep...
 
EXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDS
EXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDSEXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDS
EXPERIMENTAL STUDY OF HYBRID PAVER BLOCKS ENGULFED WITH BINARY BLENDS
 
IRJET- Manufacture of Concrete using Solid Waste from Construction Industry
IRJET- Manufacture of Concrete using Solid Waste from Construction IndustryIRJET- Manufacture of Concrete using Solid Waste from Construction Industry
IRJET- Manufacture of Concrete using Solid Waste from Construction Industry
 
WASTE MATERIALS USED IN CONCRETE TECHNOLOGY
WASTE MATERIALS USED IN CONCRETE TECHNOLOGYWASTE MATERIALS USED IN CONCRETE TECHNOLOGY
WASTE MATERIALS USED IN CONCRETE TECHNOLOGY
 
IRJET- Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...
IRJET-  	  Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...IRJET-  	  Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...
IRJET- Partial Replacement of Cement with Fly Ash Cenospheres in Cement C...
 
IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...
IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...
IRJET- Experimental Study on Partial Replacement of Cement with Fly Ash and F...
 
IRJET - An Experimental Investigation on Concrete with of Partial Replacement...
IRJET - An Experimental Investigation on Concrete with of Partial Replacement...IRJET - An Experimental Investigation on Concrete with of Partial Replacement...
IRJET - An Experimental Investigation on Concrete with of Partial Replacement...
 
IRJET - Effect of Partial and Total Replacement of Fine Aggregate by Mill...
IRJET -  	  Effect of Partial and Total Replacement of Fine Aggregate by Mill...IRJET -  	  Effect of Partial and Total Replacement of Fine Aggregate by Mill...
IRJET - Effect of Partial and Total Replacement of Fine Aggregate by Mill...
 
Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...
Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...
Analysis of M25 Grade of Self-Healing Concrete by Partial Replacement of Coar...
 
The Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for Concrete
The Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for ConcreteThe Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for Concrete
The Suitability of Crushed Over Burnt Bricks as Coarse Aggregate for Concrete
 
USE OF SAWDUST IN CONCRETE
USE OF SAWDUST IN CONCRETEUSE OF SAWDUST IN CONCRETE
USE OF SAWDUST IN CONCRETE
 
IRJET- An Experimental Investigation on Strength of Conventional Concrete...
IRJET-  	  An Experimental Investigation on Strength of Conventional Concrete...IRJET-  	  An Experimental Investigation on Strength of Conventional Concrete...
IRJET- An Experimental Investigation on Strength of Conventional Concrete...
 
Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...
Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...
Experimental Work on Graphene Concrete Using Jarofix as Partial Replacement f...
 
IRJET - Investigation Study on Fine Aggregate Fragmentary Replacement by ...
IRJET -  	  Investigation Study on Fine Aggregate Fragmentary Replacement by ...IRJET -  	  Investigation Study on Fine Aggregate Fragmentary Replacement by ...
IRJET - Investigation Study on Fine Aggregate Fragmentary Replacement by ...
 

Mehr von IRJET Journal

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...IRJET Journal
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTUREIRJET Journal
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...IRJET Journal
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsIRJET Journal
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...IRJET Journal
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...IRJET Journal
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...IRJET Journal
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...IRJET Journal
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASIRJET Journal
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...IRJET Journal
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProIRJET Journal
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...IRJET Journal
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemIRJET Journal
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesIRJET Journal
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web applicationIRJET Journal
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...IRJET Journal
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.IRJET Journal
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...IRJET Journal
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignIRJET Journal
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...IRJET Journal
 

Mehr von IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Kürzlich hochgeladen

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 

Kürzlich hochgeladen (20)

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 

IRJET- Replacement of Fine Aggregate in Concrete using Construction Demolished Waste

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072 © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 689 Replacement of Fine Aggregate in Concrete using Construction Demolished Waste Utkarsh Sharma1, Gautam Bhadoriya2 1Research scholar Civil Engg. Deptt.MITS Gwalior 2Assistant Professor Civil Engg. Deptt. MITS Gwalior --------------------------------------------------------------------------***----------------------------------------------------------------------- Abstract:- Demolition of structures to make way for new and modern ones is common features in metropolitan areas due to rapid urbanization. Very little demolished concrete is recycled or reused. Due to strict environmental laws and lack of dumping sites in urban areas, demolished waste disposal is of great problem. The study is a part of comprehensive program wherein experimental investigations have been carried out to assess the effect of partial replacement of fine aggregate by demolished waste on workability and compressive strength of recycled concrete for the study, at a period of 7 and 28 days. The compressive strength thus observed has been compared with strength of conventional concrete. Test results showed the compressive strength of recycled concrete with 12% fine aggregate replacement by demolished waste at the end of 28 days has been found to be marginally lower than that of conventional concrete. Keywords: Workability, Fine aggregate, Recycle aggregate, compressive strength, conventional concrete. 1. Introduction Researchers of every era have put their extra efforts on environment and conservation of natural resources. This study is an attempt to explore recycled concrete as a material of hope for next generation. Demolished waste obtained from a structure mainly made up of concrete has several foreign matter such as various type of finishes, cladding materials, lumber, dirt, steel, hardware’s, woods, plastics etc, attached to them directly or indirectly. The process of removal of impurities and crushing of rubble into suitable and desirable aggregate particle size can be carried out in a continuous and sequential manner using appropriate mechanical devices such as jaw crushers, impact crushers, swing hammer crushers etc. There are three processes, for processing of demolished waste: Dry, Wet and Thermal, which are used individually or in combination with one another. Due to high water absorption of recycled aggregates, it is sometimes suggested to use pre-soaked aggregates for production of recycled aggregate. 2. Literature Review Hansen and Marga (1992) found that based on equal slump, the water requirement of recycled aggregate concrete made with both coarse and fine recycled aggregate was 14% higher than that of control concretes made with natural sand and gravel. When concrete was produced with coarse recycled aggregate and natural sand, the increase in water demand was only 6%. Masood et al. (2001) compared the strength and economy of standard and recycled concrete with partial replacement of cement and fine aggregates. The recycled concrete achieved up to 77% compressive strength, and above 90% for splitting tensile and flexural strength and a cost saving of 15%. These indicate the potential of C and D wastes as valuable building materials on technical, environmental and economic grounds. Khalaf and DeVenny (2004) concluded that concrete can be successfully produced using recycled aggregates that have been produced from demolition and construction waste. Concrete produced with these aggregates does not perform as well as concretes produced with natural aggregates in terms of strength. However, concrete still has a strength that would make it suitable for some applications, with the added benefit that density values are much lower; making it suitable in situations where self-weight is a problem and very good fire resistance is required. Against these backdrops, this study was aimed to assess the effect of partial replacement of fine aggregate by demolished waste on workability and compressive strength of recycled concrete for a period of 7 and 28 d. 3. Materials and methods Demolished waste: Demolished waste was collected from Morar Cantonment, Gwalior, India. Demolished waste on being tested in laboratory showed pozzolanic properties. Demolished waste as a pozzolanic material was used to partially replace cement and similarly fine aggregate. Cement: In this work, ordinary Portland cement of Birla (43 grade) brand obtained from a single batches trough out the investigation was used. The ordinary cement content mainly has two basic ingredients namely, argillaceous and calcareous. The cement satisfies the requirement of IS: 8112-1989. Fine aggregate: The fine aggregate is locally available river sand, which is passed through 4.75mm sieve.
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072 © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 690 Coarse aggregate: The coarse aggregate locally available crushed stone aggregate, 12 mm maximum of single lot size has been used trough out the experiment the specific gravity of coarse aggregate was 2.7. Water: Potable water is used for mixing and curing. On addition of higher percentage of demolished waste the requirement of water increases for the same workability. Thus a constant slump has been the criteria fir water requirement but the specimens having 0% demolished waste, w/c of 0.50 has been used. Properties of Demolished waste Properties Values Specific Gravity 2.67 Aggregate Crushing Value ACV 27 Aggregate Impact Value AIV 14 Table-1 Fig.1 Curing of Specimen Fig.2 Compression Testing Machine Properties of OPC cement Properties Values Specific Gravity 3.12 Normal Consistency 29%
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072 © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 691 Initial Setting time 65min Final Setting time 275 min Fineness 330 kg/m2 Soundness 2.5mm Bulk Density 830-1650 kg/m3 Table-2 4. Experimental Analysis Compressive strength is the ability of material or structure to carry the loads on its surface without any crack or deflection. A material under compression tends to reduce the size, while in tension, size elongates. Compressive strength of concrete cube test provides an idea about all the characteristics of concrete. By this single test one judge that whether Concreting has been done properly or not. Concrete compressive strength for general construction varies from 15 MPa (2200 psi) to 30 MPa (4400 psi) and higher in commercial and industrial structures. Test Procedure For cube test two types of specimens either cubes of 15cm X 15cm X 15cm or 10cm X 10cm x 10cm depending upon the size of aggregate are used. For most of the works cubical moulds of size 15cm x 15cm x 15cm are commonly used. This concrete is poured in the mould and tempered properly so as not to have any voids. After 24 hours these moulds are removed and test specimens are put in water for curing. The top surface of these specimens should be made even and smooth. This is done by putting cement paste and spreading smoothly on whole area of specimen. These specimens are tested by compression testing machine after 7 days curing or 28 days curing. Load should be applied gradually at the rate of 140 kg/cm2 per minute till the Specimens fails. Load at the failure divided by area of specimen gives the compressive strength of concrete. Table-3 Compressive Strength of Specimen Workability Test of concrete: Various tests for workability of concrete at construction sites i.e slump test, Vee-bee test, Compaction factor test. Workability of concrete describes the ease or difficulty with which the concrete is handled, transported and placed between the forms with minimum loss of homogeneity. This test is carried out with a mould called slump cone whose top diameter is 10cm, bottom diameter is 20 cm and height is 30 cm. the test may be performed in the following steps: 1. Place the slump mould on a smooth flat and non-absorbent surface. SNO. SAMPLE 1 SAMPLE2 SAMPLE2 Avg. Compressive Strength of Concrete in Mpa. Conventional cubes 20.59 21.70 21.9 21.39 Cubes after replacement with construction demolition waste 33.20 37.10 36.80 36.11
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072 © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 692 7 Days Compressive strength 28 Days Compressive strength 40 35 30 25 20 15 0% F.A.R. 10% F.A.R. 20% F.A.R. 30% F.A.R. 2. Mix the dry ingredients of the concrete thoroughly till a uniform colour is obtained and then add the required quantity of water. 3. Place the mixed concrete in the mould to about one-fourth of its height. 4. Compact the concrete 25 times with the help of a tamping rod uniformly all over the area. 5. Place the concrete in the mould about half of its height and compact it again. 6. Place the concrete up to its three fourth height and then up to its top. Compact each layer 25 times with the help of tamping rod uniformly. For the second subsequent layers, the tamping rod should penetrate into underlying layers. 7. Strike off the top surface of mould with a trowel or tamping rod so that the mould is filled to its top. 8. Remove the mould immediately, ensuring its movement in vertical direction. 9. When the settlement of concrete stops, measure the subsidence of the concrete in millimetres which is the required slump of the concrete. Workability Slump (mm) Compressive Strength (Kn/m2) Fig.3 Graph Showing Variation between Workability & Compressive strength VS Fine aggregate Replaced (FAR) 5. Results and discussion The observations made during the test of cubes are summarized as workability and compressive strength are presented in tabular form (Table 7). Three specimens each having 0%, 6%, 12%, and 18% demolished waste as fine aggregate replacement for mix of 1:1.67:3.33 were cast and tested after 7 days and 28 d in order to have a comparativestudy. Workability: Workability is the relative ease with which concrete can be mixed, placed, compacted and finished. While casting specimens, slump test were carried out to determine the workability of different samples as per IS: 6461-1973 (Fig.1). 6. Conclusions The following conclusions are drawn from the experimental study. 1. Recycled aggregate concrete may be an alternative to the conventional concrete. 2. Water required producing the same workability increases with the increase in the percentage of demolished waste. 3. Optimum replacement level of fine aggregate with recycled aggregate is12%. 35 30 25 20 15 10 0% F.A.R. 10% F.A.R. 20% F.A.R. 30%
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 03 | Mar 2020 www.irjet.net p-ISSN: 2395-0072 © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 693 7. References 1. IS: 456-1978. Code of practice for plain and reinforced concrete. Indian Standard Institute, New Delhi. 2. IS: 6461-1973. Properties of concrete (part VIII). Indian Standard Institute, New Delhi. 3. IS: 8112-1989. 43 Grade ordinary Portland cement. Indian Standard Institute, New Delhi. 4. Khalaf, F.M. and DeVenny, A.S. 2004. Performance of brick aggregate concrete at high temperatures. J. Mater. Civil Engg. 16(6): 556-565. 5. Masood A., Ahmad, T., Arif, M. and Mahdi, F. 2001. Waste management strategies for concrete. Environ. Engg. Policy. 3: 15-18.