SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
SECTION 1.6

SUBSTITUTION METHODS AND EXACT EQUATIONS

It is traditional for every elementary differential equations text to include the particular types of
equations that are found in this section. However, no one of them is vitally important solely in
its own right. Their real purpose (at this point in the course) is to familiarize students with the
technique of transforming a differential equation by substitution. The subsection on airplane
flight trajectories (together with Problems 56–59) is optional material and may be omitted if the
instructor desires.

The differential equations in Problems 1–15 are homogeneous, so we make the substitutions

                                    y                                  dy      dv
                            v =       ,            y = v x,               = v+x .
                                    x                                  dx      dx

For each problem we give the differential equation in x, v( x), and v′ = dv / dx that results,
together with the principal steps in its solution.

        x ( v + 1) v′ = − ( v 2 + 2v − 1) ;        ⌠ 2(v + 1) dv = − 2 x dx;            ln ( v 2 + 2v − 1) = − 2 ln x + ln C
1.                                                  2
                                                   ⌡ v + 2v − 1     ∫
        x 2 ( v 2 + 2v − 1) = C ;          y 2 + 2 xy − x 2 = C

                                          ⌠ dx ;                            y 2 = x 2 (ln x + C )
2.      2 x v v′ = 1;     ∫ 2v dv = 
                                    ⌡        x
                                                    v 2 = ln x + C ;


                           ⌠ dv = ⌠ dx ;
        x v′ = 2 v ;                                   v = ln x + C;           y = x (ln x + C )
                                                                                                    2
3.                               
                           ⌡2 v ⌡ x


        x ( v − 1) v′ = − ( v 2 + 1) ;      ⌠ 2(1 − v) dv = ⌠ 2 dx ;           2 tan −1 v − ln(v 2 + 1) = 2 ln x + C
4.                                                         
                                            ⌡ v2 + 1        ⌡ x
        2 tan −1 ( y / x ) − ln( y 2 / x 2 + 1) = 2ln x + C

                                     ⌠1 1           ⌠ 2 dx ;                         1
5.      x ( v + 1) v′ = − 2v 2 ;       + 2  dv = −                        ln v −     = − 2 ln x + C
                                     ⌡v v           ⌡ x                              v
                        x                                               x
        ln y − ln x −     = − 2 ln x + C ;           ln( xy ) = C +
                        y                                               y

                                          ⌠2 1           ⌠ 2 dx ;                        1
6.      x ( 2v + 1) v′ = − 2v 2 ;           + 2  dv = −                     ln v 2 −     = − 2 ln x + C
                                          ⌡v v           ⌡ x                             v



Section 1.6                                                                                                         1
x
      2 ln y − 2 ln x −        = − 2 ln x + C ;           2 y ln y = x + C y
                             y


                                      dv = ⌠
                                             3 dx
7.     x v 2 v′ = 1;       ∫ 3v
                                  2
                                                 ;     v3 = 3ln x + C ;        y 3 = x3 (3ln x + C )
                                           ⌡ x


                         − ∫ e− v dv = − ⌠
                                           dx
8.     x v′ = e v ;                          ;          e− v = − ln x + C ;        − v = ln(C − ln x)
                                         ⌡ x
       y = − x ln (C − ln x )


                         −⌠ 2 = −⌠
                            dv     dx                  1
9.     x v′ = v 2 ;                 ;                  = − ln x + C;         x = y (C − ln x )
                          ⌡v     ⌡ x                   v

                                      ⌠ 4 v dv ⌠ 4 dx
10.    x v v′ = 2 v 2 + 1;             2     =      ;          ln ( 2 v 2 + 1) = 4 ln x + ln C
                                      ⌡ 2 v +1 ⌡ x

      2 y 2 / x2 + 1 = C x4 ;               x2 + 2 y 2 = C x6


       x (1 − v 2 ) v′ = v + v3 ;          ⌠ 1 − v dv = ⌠ dx ;         ⌠ 1   2v 
                                                  2
                                                                                        ⌠ dx
11.                                         3                         − 2     dv = 
                                           ⌡ v +v       ⌡ x            ⌡  v v +1      ⌡ x

      ln v − ln ( v 2 + 1) = ln x + ln C ;             v = C x ( v 2 + 1) ;     y = C ( x2 + y 2 )

                                      ⌠ v dv
                                             =⌠
                                                dx
12.    x v v′ = v 2 + 4;               2         ;                 v 2 + 4 = ln x + C
                                      ⌡ v +4 ⌡ x

      v 2 + 4 = ( ln x + C ) ;               4 x 2 + y 2 = x 2 ( ln x + C )
                                       2                                   2




13.    x v′ = v 2 + 1;
                                  ⌠ dv
                                   2   =⌠
                                         
                                           dx
                                  ⌡ v +1 ⌡ x
                                              ;                  (              )
                                                              ln v + v 2 + 1 = ln x + ln C


      v + v 2 + 1 = C x;                   y + x2 + y 2 = C x2

14.    x v v′ =        1 + v 2 − (1 + v 2 )




Section 1.6                                                                                              2
⌠         v dv
       ln x =     
                  
                  
                  ⌡   1 + v − (1 + v 2 )
                            2


                  1⌠   du
              =                                    (u = 1 + v 2 )
                    
                           (
                  2  u 1− u
                    ⌡                 )
                      ⌠ dw
              = −
                 
                           = − ln w + ln C
                      ⌡ w


       with w = 1 − u . Back-substitution and simplification finally yields the implicit
       solution x − x 2 + y 2 = C.


        x (v + 1) v′ = − 2 ( v 2 + 2v ) ;      ⌠ 2(v + 1) dv = − ⌠ 4 dx ;                  ln ( v 2 + 2v ) = − 4 ln x + ln C
15.                                             2               
                                               ⌡ v + 2v          ⌡ x
       v 2 + 2v = C / x 4 ;          x2 y 2 + 2 x3 y = C

16.    The substitution v = x + y + 1 leads to

                                            ⌠ dv         2u du⌠
                                    x =     
                                            
                                                      =       
                                                              
                                                                              (v = u 2 )
                                            ⌡ 1+ v        1+ u⌡

                                       = 2 u − 2ln(1 + u ) + C
                                    x = 2 x + y + 1 − 2 ln(1 + x + y + 1) + C


                                                x= ⌠ 2
                                                      dv   1      v C
17.    v = 4x + y;             v′ = v 2 + 4;             = tan −1 +
                                                   ⌡ v +4  2      2 2
       v = 2 tan(2 x − C );            y = 2 tan(2 x − C ) − 4 x

                                                             ⌠     1 
                                                x = ⌠
                                                      v dv
18.    v = x + y;         v v′ = v + 1;                   =  1 −    dv = v − ln(v + 1) − C
                                                    ⌡ v +1   ⌡  v +1
       y = ln(x + y + 1) + C.

Problems 19–25 are Bernoulli equations. For each, we indicate the appropriate substitution as
specified in Equation (10) of this section, the resulting linear differential equation in v, its
integrating factor ρ, and finally the resulting solution of the original Bernoulli equation.

19.    v = y −2 ;     v′ − 4v / x = − 10 / x 2 ;       ρ = 1/ x 4 ;       y 2 = x / (Cx5 + 2 )


       v = y3 ;       v′ + 6 x v = 18 x;        ρ = e3 x ;        y 3 = 3 + C e −3 x
                                                          2                            2
20.




Section 1.6                                                                                                           3
21.    v = y −2 ;       v′ + 2 v = − 2;          ρ = e2 x ;       y 2 = 1/ (Ce −2 x − 1)

22.    v = y −3 ;       v′ − 6 v / x = − 15 / x 2 ;       ρ = x −6 ;       y 3 = 7 x / ( 7Cx 7 + 15)

23.    v = y −1/ 3 ;        v′ − 2 v / x = − 1;      ρ = x −2 ;       y 3 = 1/ ( x + C x 2 )

24.    v = y −2 ;       v′ + 2 v = e−2 x / x;        ρ = e2 x ;       y 2 = e2 x /(C + ln x)

25.    v = y3 ;        v′ + 3 v / x = 3 / 1 + x 4 ;           ρ = x3 ;            (              )
                                                                            y3 = C + 3 1 + x4 / ( 2 x3 )

26.    The substitution v = y3 yields the linear equation v' + v = e–x with integrating
       factor ρ = ex. Solution: y3 = e–x(x + C)

27.    The substitution v = y3 yields the linear equation x v' – v = 3x4 with integrating
       factor ρ = 1/x. Solution: y = (x4 + C x)1/3

28.    The substitution v = ey yields the linear equation x v' – 2v = 2x3e2x with integrating
       factor ρ = 1/x2. Solution: y = ln(C x2 + x2e2x)

29.    The substitution v = sin y yields the homogeneous equation 2xv v' = 4x2 + v2.
       Solution: sin2y = 4x2 – C x

30.    First we multiply each side of the given equation by ey. Then the substitution v = ey
       gives the homogeneous equation (x + v) v' = x – v of Problem 1 above.
       Solution: x2 – 2x ey – e2 y = C

Each of the differential equations in Problems 31–42 is of the form M dx + N dy = 0, and the
exactness condition ∂M / ∂y = ∂N / ∂x is routine to verify. For each problem we give the
principal steps in the calculation corresponding to the method of Example 9 in this section.

31.     F =     ∫ (2 x + 3 y) dx      = x 2 + 3 xy + g ( y );        Fy = 3x + g ′( y ) = 3 x + 2 y = N

       g ′( y ) = 2 y;          g ( y) = y 2 ;          x 2 + 3 xy + y 2 = C

32.     F =     ∫ (4 x − y) dx      = 2 x 2 − xy + g ( y );         Fy = − x + g ′( y ) = 6 y − x = N

       g ′( y ) = 6 y;          g ( y) = 3 y 2 ;          x 2 − xy + 3 y 2 = C

        F =     ∫ (3x       + 2 y 2 ) dx = x3 + xy 2 + g ( y );          Fy = 4 xy + g ′( y ) = 4 xy + 6 y 2 = N
                        2
33.

       g ′( y ) = 6 y 2 ;        g ( y) = 2 y3 ;              x3 + 2 xy 2 + 2 y 3 = C



Section 1.6                                                                                                    4
F =     ∫ (2 xy            + 3x 2 ) dx = x3 + x 2 y 2 + g ( y );             Fy = 2 x 2 y + g ′( y ) = 2 x 2 y + 4 y 3 = N
                              2
34.

       g ′( y ) = 4 y 3 ;               g ( y) = y 4 ;                x3 + x 2 y 2 + y 4 = C

       F =     ∫ (x       + y / x) dx =               x 4 + y ln x + g ( y );           Fy = ln x + g ′( y ) = y 2 + ln x = N
                      3                           1
35.                                               4


       g ′( y ) = y 2 ;             g ( y) =     1
                                                 3    y3;             1
                                                                      4   x 3 + 1 y 2 + y ln x = C
                                                                                3



       F =     ∫ (1 + y e               ) dx = x + e x y + g ( y );            Fy = x e x y + g ′( y ) = 2 y + x e x y = N
                                   xy
36.

       g ′( y ) = 2 y;              g ( y) = y 2 ;                  x + ex y + y2 = C

37.    F =     ∫ (cos x + ln y) dx               = sin x + x ln y + g ( y );               Fy = x / y + g ′( y ) = x / y + e y = N

       g ′( y ) = e y ;             g ( y) = e y ;                 sin x + x ln y + e y = C

                                                                                                      x                 x+ y
               ∫ ( x + tan                                                                                 + g ′( y ) =
                                   −1
38.    F =                               y ) dx =     1
                                                          x 2 + x tan −1 y + g ( y );       Fy =                              = N
                                                      2
                                                                                                    1+ y 2
                                                                                                                        1+ y2
                      y
       g ′( y ) =         ;                g ( y) =       1
                                                              ln(1 + y 2 );         1
                                                                                        x 2 + x tan −1 y + 1 ln(1 + y 2 ) = C
                    1+ y2                                 2                         2                      2




       F =     ∫ (3x          y 3 + y 4 ) dx = x 3 y 3 + x y 4 + g ( y );
                          2
39.

      Fy = 3x 3 y 2 + 4 xy 3 + g ′( y ) = 3 x3 y 2 + y 4 + 4 xy 3 = N

       g ′( y ) = y 4 ;             g ( y) =     1
                                                 5    y5 ;            x3 y 3 + xy 4 + 1 y 5 = C
                                                                                      5



       F =     ∫ (e       sin y + tan y ) dx = e x sin y + x tan y + g ( y );
                      x
40.

      Fy = e x cos y + x sec2 y + g ′( y ) = e x cos y + x sec2 y = N

       g ′( y ) = 0;              g ( y ) = 0;                  e x sin y + x tan y = C

           ⌠  2x 3 y2   x2 y 2
41.    F =   − 4  dx =   +    + g ( y );
           ⌡ y    x     y x3

            x2 2 y               x2 2 y   1
      Fy = − 2 + 3 + g ′( y ) = − 2 + 3 +    = N
            y   x                y   x     y

                      1                                                    x2 y2
       g ′( y ) =        ;              g ( y) = 2 y ;                       +   +2 y = C
                       y                                                   y x3



Section 1.6                                                                                                                     5
⌠            3           
42.    F =   y −2 / 3 − x −5 / 2 y  dx = x y −2 / 3 + x −3/ 2 y + g ( y );
           ⌡            2           
                 2 −5 / 3                                 2
      Fy = −       xy     + x −3/ 2 + g ′( y ) = x −3/ 2 − x y −5 / 3 = N
                 3                                        3
       g ′( y ) = 0;    g ( y ) = 0;             x y −2 / 3 + x −3/ 2 y = C

43.   The substitution v = ax + by + c, y = (v − ax − c) / b in y′ = F (ax + by + c ) yields the
      separable differential equation (dv / dx − a ) / b = F (v), that is, dv / dx = a + b F (v).

44.   If v = y1− n then y = v1/(1− n ) so y′ = v n /(1− n ) v′ /(1 − n) . Hence the given Bernoulli
      equation transforms to

                                    v n /(1− n ) dv
                                                    + P( x) v1/(1− n ) = Q( x) v n /(1− n ).
                                     1 − n dx

      Multiplication by (1 − n) / v n /(1− n ) then yields the linear differential equation
      v′ + (1 − n) P v = (1 − n)Q v.

45.   If v = ln y then y = ev so y′ = ev v′. Hence the given equation transforms to
      ev v′ + P( x) ev = Q( x) v ev . Cancellation of the factor ev then yields the linear
      differential equation v′ − Q( x) v = P( x).

46.   The substitution v = ln y, y = ev, y' = ev v' yields the linear equation x v' + 2 v = 4x2
      with integrating factor ρ = x2. Solution: y = exp(x2 + C/x2)

47.   Substitution: x = u – 1, y = v – 2
      Solution: x2 – 2xy – y2 – 2x – 6y = C

48.   The substitution x = u + 3, y = v – 2 yields the homogeneous equation

                                              dv   −u + 2 v
                                                 =          .
                                              du   4u − 3v

      The substitution v = pu leads to

                                    ⌠    (4 − 3 p) dp      1⌠ 1        15 
                          ln u =                         =        −         dp
                                    
                                    ⌡   (3 p + 1)( p − 1)  4 ⌡  p −1 3 p + 1 
                                     1
                                =      [ln( p − 1) − 5ln(3 p + 1) + ln C ].
                                     4

      We thus obtain the implicit solution


Section 1.6                                                                                    6
C ( p − 1)   C (v / u − 1)   C u 4 (v − u )
                       u4 =               =               =
                               (3 p + 1)5   (3v / u + 1)5    (3v + u )5
                       (3v + u )5 = C (v − u )
                       ( x + 3 y + 3)5 = C ( y − x − 5).

49.    The substitution v = x – y yields the separable equation v' = 1 – sin v. With the aid
       of the identity

                                  1       1 + sin v
                                        =           = sec 2 v + sec v tan v
                              1 − sin v        2
                                           cos v

       we obtain the solution

                                x = tan(x – y) + sec(x – y) + C.

50.    The substitution y = vx in the given homogeneous differential equation yields the
       separable equation x( 2v3 − 1) v′ = − ( v 4 + v ) that we solve as follows:


                       ⌠ 2v − 1
                            3
                                dv = − ⌠
                                         dx
                        4             
                       ⌡ v +v          ⌡ x
                       ⌠  2v − 1   1    1          ⌠ dx
                        2        − +       dv = −                   (partial fractions)
                       ⌡  v − v +1 v v +1          ⌡ x
                       ln(v 2 − v + 1) − ln v + ln(v + 1) = − ln x + ln C
                       x (v 2 − v + 1)(v + 1) = C v
                       ( y 2 − xy + x 2 )( x + y ) = C xy
                       x3 + y 3 = C xy

51.    If we substitute y = y1 + 1/ v, y ′ = y1′ − v′ / v 2 (primes denoting differentiation with
       respect to x) into the Riccati equation y′ = Ay 2 + By + C and use the fact that
         ′
        y1 = Ay12 + By1 + C , then we immediately get the linear differential equation
       v′ + ( B + 2 A y1 ) v = − A .

In Problems 52 and 53 we outline the application of the method of Problem 51 to the given
Riccati equation.

52.    The substitution y = x + 1/ v yields the linear equation v′ − 2 x v = 1 with integrating
       factor ρ = e− x . In Problem 29 of Section 1.5 we saw that the general solution of this
                        2




       linear equation is v( x) = e x C +       π
                                                     erf ( x)  in terms of the error function erf(x)
                                       2

                                                2            


Section 1.6                                                                                        7
introduced there Hence the general solution of our Riccati equation is given by
                                                        −1
       y ( x ) = x + e − x C +                 erf ( x)  .
                               2
                                            π
                                           2            

53.   The substitution y = x + 1/ v yields the trivial linear equation v′ = − 1 with immediate
      solution v( x) = C − x. Hence the general solution of our Riccati equation is given by
       y ( x) = x + 1/(C − x).

54.   The substitution y' = C in the Clairaut equation immediately yields the general solution
      y = Cx + g(C).

55.   Clearly the line y = Cx – C2/4 and the tangent line at (C/2, C2/4) to the parabola
      y = x2 both have slope C.

56.      (
      ln v + 1 + v 2      ) = − k ln x + k ln a = ln ( x / a )     −k



      v + 1 + v2 = ( x / a )
                                       −k


                          2
      ( x / a )− k − v  = 1 + v 2
                       
      (x / a)        − 2v ( x / a ) + v 2 = 1 + v 2
              −2 k                     −k



         1  x                        x − k 1  x      x 
                        −2 k                              −k     k

      v =                       − 1 /   =   −   
         2  a 
                                      a
                                                2  a 
                                                            a  

57.   With a = 100 and k = 1/10, Equation (19) in the text is

                                            y = 50[(x/100)9/10 – (x/100)11/10].

      The equation y'(x) = 0 then yields

                                            (x/100)1/10 = (9/11)1/2,

      so it follows that

                              ymax = 50[(9/11)9/2 – (9/11)11/2] ≈ 3.68 mi.

59.   (a)      With a = 100 and k = w / v0 = 2 / 4 = 1/ 2, the solution given by equation (19) in
      the textbook is y(x) = 50[(x/100)1/2 – (x/100)3/2]. The fact that y(0) = 0 means that
      this trajectory goes through the origin where the tree is located.

      (b)  With k = 4/4 = 1 the solution is y(x) = 50[1 – (x/100)2] and we see that the
      swimmer hits the bank at a distance y(0) = 50 north of the tree.




Section 1.6                                                                              8
(c)     With k = 6/4 = 1 the solution is y(x) = 50[(x/100)–1/2 – (x/100)5/2]. This
      trajectory is asymptotic to the positive x-axis, so we see that the swimmer never reaches
      the west bank of the river.




Section 1.6                                                                            9

Weitere ähnliche Inhalte

Was ist angesagt?

System dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manualSystem dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manualSextonMales
 
51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8Carlos Fuentes
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005akabaka12
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010akabaka12
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009akabaka12
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSuddhasheel GHOSH, PhD
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010akabaka12
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
prashant tiwari ppt on maths
prashant tiwari ppt on mathsprashant tiwari ppt on maths
prashant tiwari ppt on mathsPrashant tiwari
 
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...vrajes
 
Video lecture for b.tech
Video lecture for b.techVideo lecture for b.tech
Video lecture for b.techEdhole.com
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19JAVIERTELLOCAMPOS
 
Linearequationintwovariable 120626053452-phpapp02
Linearequationintwovariable 120626053452-phpapp02Linearequationintwovariable 120626053452-phpapp02
Linearequationintwovariable 120626053452-phpapp02Vineet Mehta
 

Was ist angesagt? (20)

System dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manualSystem dynamics 3rd edition palm solutions manual
System dynamics 3rd edition palm solutions manual
 
Leidy rivadeneira deber_1
Leidy rivadeneira deber_1Leidy rivadeneira deber_1
Leidy rivadeneira deber_1
 
51549 0131469657 ism-8
51549 0131469657 ism-851549 0131469657 ism-8
51549 0131469657 ism-8
 
Emat 213 final fall 2005
Emat 213 final fall 2005Emat 213 final fall 2005
Emat 213 final fall 2005
 
Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010Engr 213 midterm 2b sol 2010
Engr 213 midterm 2b sol 2010
 
Liner Differential Equation
Liner Differential EquationLiner Differential Equation
Liner Differential Equation
 
Week 10 - Trigonometry
Week 10 - TrigonometryWeek 10 - Trigonometry
Week 10 - Trigonometry
 
Engr 213 final 2009
Engr 213 final 2009Engr 213 final 2009
Engr 213 final 2009
 
Appendex
AppendexAppendex
Appendex
 
Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares Method
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
prashant tiwari ppt on maths
prashant tiwari ppt on mathsprashant tiwari ppt on maths
prashant tiwari ppt on maths
 
Guia edo todas
Guia edo todasGuia edo todas
Guia edo todas
 
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
Higherorder non homogeneous partial differrential equations (Maths 3) Power P...
 
Video lecture for b.tech
Video lecture for b.techVideo lecture for b.tech
Video lecture for b.tech
 
Solo edo hasta 20
Solo edo hasta 20Solo edo hasta 20
Solo edo hasta 20
 
Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19Solucion de problemas de ecuaciones difrenciales hasta 19
Solucion de problemas de ecuaciones difrenciales hasta 19
 
Linearequationintwovariable 120626053452-phpapp02
Linearequationintwovariable 120626053452-phpapp02Linearequationintwovariable 120626053452-phpapp02
Linearequationintwovariable 120626053452-phpapp02
 
Differntials equatoin
Differntials equatoinDifferntials equatoin
Differntials equatoin
 

Ähnlich wie Sect1 6

Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006akabaka12
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
Switkes01200543268
Switkes01200543268Switkes01200543268
Switkes01200543268Hitesh Wagle
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009akabaka12
 
Magic graphs
Magic graphsMagic graphs
Magic graphsSpringer
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2Breno Costa
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)Nigel Simmons
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)Nigel Simmons
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010zabidah awang
 

Ähnlich wie Sect1 6 (20)

Sect1 4
Sect1 4Sect1 4
Sect1 4
 
Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1Tugas akhir matematika kelompok 1
Tugas akhir matematika kelompok 1
 
Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006Emat 213 midterm 1 winter 2006
Emat 213 midterm 1 winter 2006
 
Sect1 5
Sect1 5Sect1 5
Sect1 5
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Switkes01200543268
Switkes01200543268Switkes01200543268
Switkes01200543268
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Magic graphs
Magic graphsMagic graphs
Magic graphs
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
160280102021 c2 aem (2)
160280102021 c2 aem (2)160280102021 c2 aem (2)
160280102021 c2 aem (2)
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2Howard, anton   cálculo ii- um novo horizonte - exercicio resolvidos v2
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
整卷
整卷整卷
整卷
 
12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)12X1 T07 02 v and a in terms of x (2011)
12X1 T07 02 v and a in terms of x (2011)
 
12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)12X1 T07 01 v and a In terms of x (2010)
12X1 T07 01 v and a In terms of x (2010)
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 

Mehr von inKFUPM (20)

Tb10
Tb10Tb10
Tb10
 
Tb18
Tb18Tb18
Tb18
 
Tb14
Tb14Tb14
Tb14
 
Tb13
Tb13Tb13
Tb13
 
Tb17
Tb17Tb17
Tb17
 
Tb16
Tb16Tb16
Tb16
 
Tb15
Tb15Tb15
Tb15
 
Tb12
Tb12Tb12
Tb12
 
Tb11
Tb11Tb11
Tb11
 
Tb09
Tb09Tb09
Tb09
 
Tb05
Tb05Tb05
Tb05
 
Tb07
Tb07Tb07
Tb07
 
Tb04
Tb04Tb04
Tb04
 
Tb02
Tb02Tb02
Tb02
 
Tb03
Tb03Tb03
Tb03
 
Tb06
Tb06Tb06
Tb06
 
Tb01
Tb01Tb01
Tb01
 
Tb08
Tb08Tb08
Tb08
 
21221
2122121221
21221
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 

Kürzlich hochgeladen

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Principled Technologies
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024The Digital Insurer
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Kürzlich hochgeladen (20)

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 

Sect1 6

  • 1. SECTION 1.6 SUBSTITUTION METHODS AND EXACT EQUATIONS It is traditional for every elementary differential equations text to include the particular types of equations that are found in this section. However, no one of them is vitally important solely in its own right. Their real purpose (at this point in the course) is to familiarize students with the technique of transforming a differential equation by substitution. The subsection on airplane flight trajectories (together with Problems 56–59) is optional material and may be omitted if the instructor desires. The differential equations in Problems 1–15 are homogeneous, so we make the substitutions y dy dv v = , y = v x, = v+x . x dx dx For each problem we give the differential equation in x, v( x), and v′ = dv / dx that results, together with the principal steps in its solution. x ( v + 1) v′ = − ( v 2 + 2v − 1) ; ⌠ 2(v + 1) dv = − 2 x dx; ln ( v 2 + 2v − 1) = − 2 ln x + ln C 1.  2 ⌡ v + 2v − 1 ∫ x 2 ( v 2 + 2v − 1) = C ; y 2 + 2 xy − x 2 = C ⌠ dx ; y 2 = x 2 (ln x + C ) 2. 2 x v v′ = 1; ∫ 2v dv =  ⌡ x v 2 = ln x + C ; ⌠ dv = ⌠ dx ; x v′ = 2 v ; v = ln x + C; y = x (ln x + C ) 2 3.   ⌡2 v ⌡ x x ( v − 1) v′ = − ( v 2 + 1) ; ⌠ 2(1 − v) dv = ⌠ 2 dx ; 2 tan −1 v − ln(v 2 + 1) = 2 ln x + C 4.   ⌡ v2 + 1 ⌡ x 2 tan −1 ( y / x ) − ln( y 2 / x 2 + 1) = 2ln x + C ⌠1 1  ⌠ 2 dx ; 1 5. x ( v + 1) v′ = − 2v 2 ;   + 2  dv = −  ln v − = − 2 ln x + C ⌡v v  ⌡ x v x x ln y − ln x − = − 2 ln x + C ; ln( xy ) = C + y y ⌠2 1  ⌠ 2 dx ; 1 6. x ( 2v + 1) v′ = − 2v 2 ;   + 2  dv = −  ln v 2 − = − 2 ln x + C ⌡v v  ⌡ x v Section 1.6 1
  • 2. x 2 ln y − 2 ln x − = − 2 ln x + C ; 2 y ln y = x + C y y dv = ⌠ 3 dx 7. x v 2 v′ = 1; ∫ 3v 2  ; v3 = 3ln x + C ; y 3 = x3 (3ln x + C ) ⌡ x − ∫ e− v dv = − ⌠ dx 8. x v′ = e v ;  ; e− v = − ln x + C ; − v = ln(C − ln x) ⌡ x y = − x ln (C − ln x ) −⌠ 2 = −⌠ dv dx 1 9. x v′ = v 2 ;   ; = − ln x + C; x = y (C − ln x ) ⌡v ⌡ x v ⌠ 4 v dv ⌠ 4 dx 10. x v v′ = 2 v 2 + 1;  2 = ; ln ( 2 v 2 + 1) = 4 ln x + ln C ⌡ 2 v +1 ⌡ x 2 y 2 / x2 + 1 = C x4 ; x2 + 2 y 2 = C x6 x (1 − v 2 ) v′ = v + v3 ; ⌠ 1 − v dv = ⌠ dx ; ⌠ 1 2v  2 ⌠ dx 11.  3   − 2  dv =  ⌡ v +v ⌡ x ⌡  v v +1 ⌡ x ln v − ln ( v 2 + 1) = ln x + ln C ; v = C x ( v 2 + 1) ; y = C ( x2 + y 2 ) ⌠ v dv =⌠ dx 12. x v v′ = v 2 + 4;  2  ; v 2 + 4 = ln x + C ⌡ v +4 ⌡ x v 2 + 4 = ( ln x + C ) ; 4 x 2 + y 2 = x 2 ( ln x + C ) 2 2 13. x v′ = v 2 + 1; ⌠ dv  2 =⌠  dx ⌡ v +1 ⌡ x ; ( ) ln v + v 2 + 1 = ln x + ln C v + v 2 + 1 = C x; y + x2 + y 2 = C x2 14. x v v′ = 1 + v 2 − (1 + v 2 ) Section 1.6 2
  • 3. v dv ln x =    ⌡ 1 + v − (1 + v 2 ) 2 1⌠ du = (u = 1 + v 2 )  ( 2  u 1− u ⌡ ) ⌠ dw = −  = − ln w + ln C ⌡ w with w = 1 − u . Back-substitution and simplification finally yields the implicit solution x − x 2 + y 2 = C. x (v + 1) v′ = − 2 ( v 2 + 2v ) ; ⌠ 2(v + 1) dv = − ⌠ 4 dx ; ln ( v 2 + 2v ) = − 4 ln x + ln C 15.  2  ⌡ v + 2v ⌡ x v 2 + 2v = C / x 4 ; x2 y 2 + 2 x3 y = C 16. The substitution v = x + y + 1 leads to ⌠ dv 2u du⌠ x =   =   (v = u 2 ) ⌡ 1+ v 1+ u⌡ = 2 u − 2ln(1 + u ) + C x = 2 x + y + 1 − 2 ln(1 + x + y + 1) + C x= ⌠ 2 dv 1 v C 17. v = 4x + y; v′ = v 2 + 4;  = tan −1 + ⌡ v +4 2 2 2 v = 2 tan(2 x − C ); y = 2 tan(2 x − C ) − 4 x ⌠ 1  x = ⌠ v dv 18. v = x + y; v v′ = v + 1;  =  1 −  dv = v − ln(v + 1) − C ⌡ v +1 ⌡  v +1 y = ln(x + y + 1) + C. Problems 19–25 are Bernoulli equations. For each, we indicate the appropriate substitution as specified in Equation (10) of this section, the resulting linear differential equation in v, its integrating factor ρ, and finally the resulting solution of the original Bernoulli equation. 19. v = y −2 ; v′ − 4v / x = − 10 / x 2 ; ρ = 1/ x 4 ; y 2 = x / (Cx5 + 2 ) v = y3 ; v′ + 6 x v = 18 x; ρ = e3 x ; y 3 = 3 + C e −3 x 2 2 20. Section 1.6 3
  • 4. 21. v = y −2 ; v′ + 2 v = − 2; ρ = e2 x ; y 2 = 1/ (Ce −2 x − 1) 22. v = y −3 ; v′ − 6 v / x = − 15 / x 2 ; ρ = x −6 ; y 3 = 7 x / ( 7Cx 7 + 15) 23. v = y −1/ 3 ; v′ − 2 v / x = − 1; ρ = x −2 ; y 3 = 1/ ( x + C x 2 ) 24. v = y −2 ; v′ + 2 v = e−2 x / x; ρ = e2 x ; y 2 = e2 x /(C + ln x) 25. v = y3 ; v′ + 3 v / x = 3 / 1 + x 4 ; ρ = x3 ; ( ) y3 = C + 3 1 + x4 / ( 2 x3 ) 26. The substitution v = y3 yields the linear equation v' + v = e–x with integrating factor ρ = ex. Solution: y3 = e–x(x + C) 27. The substitution v = y3 yields the linear equation x v' – v = 3x4 with integrating factor ρ = 1/x. Solution: y = (x4 + C x)1/3 28. The substitution v = ey yields the linear equation x v' – 2v = 2x3e2x with integrating factor ρ = 1/x2. Solution: y = ln(C x2 + x2e2x) 29. The substitution v = sin y yields the homogeneous equation 2xv v' = 4x2 + v2. Solution: sin2y = 4x2 – C x 30. First we multiply each side of the given equation by ey. Then the substitution v = ey gives the homogeneous equation (x + v) v' = x – v of Problem 1 above. Solution: x2 – 2x ey – e2 y = C Each of the differential equations in Problems 31–42 is of the form M dx + N dy = 0, and the exactness condition ∂M / ∂y = ∂N / ∂x is routine to verify. For each problem we give the principal steps in the calculation corresponding to the method of Example 9 in this section. 31. F = ∫ (2 x + 3 y) dx = x 2 + 3 xy + g ( y ); Fy = 3x + g ′( y ) = 3 x + 2 y = N g ′( y ) = 2 y; g ( y) = y 2 ; x 2 + 3 xy + y 2 = C 32. F = ∫ (4 x − y) dx = 2 x 2 − xy + g ( y ); Fy = − x + g ′( y ) = 6 y − x = N g ′( y ) = 6 y; g ( y) = 3 y 2 ; x 2 − xy + 3 y 2 = C F = ∫ (3x + 2 y 2 ) dx = x3 + xy 2 + g ( y ); Fy = 4 xy + g ′( y ) = 4 xy + 6 y 2 = N 2 33. g ′( y ) = 6 y 2 ; g ( y) = 2 y3 ; x3 + 2 xy 2 + 2 y 3 = C Section 1.6 4
  • 5. F = ∫ (2 xy + 3x 2 ) dx = x3 + x 2 y 2 + g ( y ); Fy = 2 x 2 y + g ′( y ) = 2 x 2 y + 4 y 3 = N 2 34. g ′( y ) = 4 y 3 ; g ( y) = y 4 ; x3 + x 2 y 2 + y 4 = C F = ∫ (x + y / x) dx = x 4 + y ln x + g ( y ); Fy = ln x + g ′( y ) = y 2 + ln x = N 3 1 35. 4 g ′( y ) = y 2 ; g ( y) = 1 3 y3; 1 4 x 3 + 1 y 2 + y ln x = C 3 F = ∫ (1 + y e ) dx = x + e x y + g ( y ); Fy = x e x y + g ′( y ) = 2 y + x e x y = N xy 36. g ′( y ) = 2 y; g ( y) = y 2 ; x + ex y + y2 = C 37. F = ∫ (cos x + ln y) dx = sin x + x ln y + g ( y ); Fy = x / y + g ′( y ) = x / y + e y = N g ′( y ) = e y ; g ( y) = e y ; sin x + x ln y + e y = C x x+ y ∫ ( x + tan + g ′( y ) = −1 38. F = y ) dx = 1 x 2 + x tan −1 y + g ( y ); Fy = = N 2 1+ y 2 1+ y2 y g ′( y ) = ; g ( y) = 1 ln(1 + y 2 ); 1 x 2 + x tan −1 y + 1 ln(1 + y 2 ) = C 1+ y2 2 2 2 F = ∫ (3x y 3 + y 4 ) dx = x 3 y 3 + x y 4 + g ( y ); 2 39. Fy = 3x 3 y 2 + 4 xy 3 + g ′( y ) = 3 x3 y 2 + y 4 + 4 xy 3 = N g ′( y ) = y 4 ; g ( y) = 1 5 y5 ; x3 y 3 + xy 4 + 1 y 5 = C 5 F = ∫ (e sin y + tan y ) dx = e x sin y + x tan y + g ( y ); x 40. Fy = e x cos y + x sec2 y + g ′( y ) = e x cos y + x sec2 y = N g ′( y ) = 0; g ( y ) = 0; e x sin y + x tan y = C ⌠  2x 3 y2  x2 y 2 41. F =   − 4  dx = + + g ( y ); ⌡ y x  y x3 x2 2 y x2 2 y 1 Fy = − 2 + 3 + g ′( y ) = − 2 + 3 + = N y x y x y 1 x2 y2 g ′( y ) = ; g ( y) = 2 y ; + +2 y = C y y x3 Section 1.6 5
  • 6. ⌠ 3  42. F =   y −2 / 3 − x −5 / 2 y  dx = x y −2 / 3 + x −3/ 2 y + g ( y ); ⌡ 2  2 −5 / 3 2 Fy = − xy + x −3/ 2 + g ′( y ) = x −3/ 2 − x y −5 / 3 = N 3 3 g ′( y ) = 0; g ( y ) = 0; x y −2 / 3 + x −3/ 2 y = C 43. The substitution v = ax + by + c, y = (v − ax − c) / b in y′ = F (ax + by + c ) yields the separable differential equation (dv / dx − a ) / b = F (v), that is, dv / dx = a + b F (v). 44. If v = y1− n then y = v1/(1− n ) so y′ = v n /(1− n ) v′ /(1 − n) . Hence the given Bernoulli equation transforms to v n /(1− n ) dv + P( x) v1/(1− n ) = Q( x) v n /(1− n ). 1 − n dx Multiplication by (1 − n) / v n /(1− n ) then yields the linear differential equation v′ + (1 − n) P v = (1 − n)Q v. 45. If v = ln y then y = ev so y′ = ev v′. Hence the given equation transforms to ev v′ + P( x) ev = Q( x) v ev . Cancellation of the factor ev then yields the linear differential equation v′ − Q( x) v = P( x). 46. The substitution v = ln y, y = ev, y' = ev v' yields the linear equation x v' + 2 v = 4x2 with integrating factor ρ = x2. Solution: y = exp(x2 + C/x2) 47. Substitution: x = u – 1, y = v – 2 Solution: x2 – 2xy – y2 – 2x – 6y = C 48. The substitution x = u + 3, y = v – 2 yields the homogeneous equation dv −u + 2 v = . du 4u − 3v The substitution v = pu leads to ⌠ (4 − 3 p) dp 1⌠ 1 15  ln u =  =  −  dp  ⌡ (3 p + 1)( p − 1) 4 ⌡  p −1 3 p + 1  1 = [ln( p − 1) − 5ln(3 p + 1) + ln C ]. 4 We thus obtain the implicit solution Section 1.6 6
  • 7. C ( p − 1) C (v / u − 1) C u 4 (v − u ) u4 = = = (3 p + 1)5 (3v / u + 1)5 (3v + u )5 (3v + u )5 = C (v − u ) ( x + 3 y + 3)5 = C ( y − x − 5). 49. The substitution v = x – y yields the separable equation v' = 1 – sin v. With the aid of the identity 1 1 + sin v = = sec 2 v + sec v tan v 1 − sin v 2 cos v we obtain the solution x = tan(x – y) + sec(x – y) + C. 50. The substitution y = vx in the given homogeneous differential equation yields the separable equation x( 2v3 − 1) v′ = − ( v 4 + v ) that we solve as follows: ⌠ 2v − 1 3 dv = − ⌠ dx  4  ⌡ v +v ⌡ x ⌠  2v − 1 1 1  ⌠ dx  2 − +  dv = −  (partial fractions) ⌡  v − v +1 v v +1  ⌡ x ln(v 2 − v + 1) − ln v + ln(v + 1) = − ln x + ln C x (v 2 − v + 1)(v + 1) = C v ( y 2 − xy + x 2 )( x + y ) = C xy x3 + y 3 = C xy 51. If we substitute y = y1 + 1/ v, y ′ = y1′ − v′ / v 2 (primes denoting differentiation with respect to x) into the Riccati equation y′ = Ay 2 + By + C and use the fact that ′ y1 = Ay12 + By1 + C , then we immediately get the linear differential equation v′ + ( B + 2 A y1 ) v = − A . In Problems 52 and 53 we outline the application of the method of Problem 51 to the given Riccati equation. 52. The substitution y = x + 1/ v yields the linear equation v′ − 2 x v = 1 with integrating factor ρ = e− x . In Problem 29 of Section 1.5 we saw that the general solution of this 2 linear equation is v( x) = e x C + π erf ( x)  in terms of the error function erf(x) 2  2  Section 1.6 7
  • 8. introduced there Hence the general solution of our Riccati equation is given by −1 y ( x ) = x + e − x C + erf ( x)  . 2 π  2  53. The substitution y = x + 1/ v yields the trivial linear equation v′ = − 1 with immediate solution v( x) = C − x. Hence the general solution of our Riccati equation is given by y ( x) = x + 1/(C − x). 54. The substitution y' = C in the Clairaut equation immediately yields the general solution y = Cx + g(C). 55. Clearly the line y = Cx – C2/4 and the tangent line at (C/2, C2/4) to the parabola y = x2 both have slope C. 56. ( ln v + 1 + v 2 ) = − k ln x + k ln a = ln ( x / a ) −k v + 1 + v2 = ( x / a ) −k 2 ( x / a )− k − v  = 1 + v 2   (x / a) − 2v ( x / a ) + v 2 = 1 + v 2 −2 k −k 1  x    x − k 1  x   x  −2 k −k k v =   − 1 /   =   −    2  a    a  2  a   a   57. With a = 100 and k = 1/10, Equation (19) in the text is y = 50[(x/100)9/10 – (x/100)11/10]. The equation y'(x) = 0 then yields (x/100)1/10 = (9/11)1/2, so it follows that ymax = 50[(9/11)9/2 – (9/11)11/2] ≈ 3.68 mi. 59. (a) With a = 100 and k = w / v0 = 2 / 4 = 1/ 2, the solution given by equation (19) in the textbook is y(x) = 50[(x/100)1/2 – (x/100)3/2]. The fact that y(0) = 0 means that this trajectory goes through the origin where the tree is located. (b) With k = 4/4 = 1 the solution is y(x) = 50[1 – (x/100)2] and we see that the swimmer hits the bank at a distance y(0) = 50 north of the tree. Section 1.6 8
  • 9. (c) With k = 6/4 = 1 the solution is y(x) = 50[(x/100)–1/2 – (x/100)5/2]. This trajectory is asymptotic to the positive x-axis, so we see that the swimmer never reaches the west bank of the river. Section 1.6 9