SlideShare ist ein Scribd-Unternehmen logo
1 von 53
Downloaden Sie, um offline zu lesen
ICREA	
  Colloquium,	
  Barcelona,	
  27	
  September	
  2016	
  
Antonio	
  Acín	
  
ICREA	
  Professor	
  at	
  ICFO-­‐InsDtut	
  de	
  Ciencies	
  Fotoniques,	
  Barcelona	
  
What	
  can	
  and	
  cannot	
  be	
  said	
  about	
  
randomness	
  in	
  quantum	
  physics	
  
Our	
  goal:	
  to	
  “prove”	
  the	
  existence	
  
of	
  randomness	
  in	
  nature.	
  
DefiniDon	
  of	
  randomness	
  
bi
Observer	
  
DefiniDon	
  of	
  randomness	
  
bi
Observer	
   Eve	
  
A	
  process	
  is	
  (perfectly)	
  random	
  if	
  it	
  is	
  unpredictable,	
  not	
  only	
  to	
  the	
  observer,	
  but	
  to	
  
any	
  observer,	
  called	
  Eve	
  in	
  what	
  follows	
  and	
  possibly	
  correlated	
  to	
  the	
  process.	
  
DefiniDon	
  of	
  randomness	
  
bi
Observer	
   Eve	
  
A	
  process	
  is	
  (perfectly)	
  random	
  if	
  it	
  is	
  unpredictable,	
  not	
  only	
  to	
  the	
  observer,	
  but	
  to	
  
any	
  observer,	
  called	
  Eve	
  in	
  what	
  follows	
  and	
  possibly	
  correlated	
  to	
  the	
  process.	
  
This	
  definiDon	
  is	
  saDsfactory	
  both	
  from	
  a	
  fundamental	
  and	
  applied	
  perspecDve.	
  
•  From	
  a	
  fundamental	
  perspecDve	
  it	
  is	
  difficult	
  to	
  argue	
  that	
  a	
  process	
  is	
  random	
  
if	
  there	
  could	
  exist	
  an	
  observer	
  able	
  to	
  predict	
  its	
  outcomes.	
  	
  
•  PracDcally,	
  by	
  demanding	
  that	
  the	
  results	
  should	
  look	
  random	
  to	
  any	
  observer,	
  
the	
  generated	
  randomness	
  is	
  guaranteed	
  to	
  be	
  private.	
  
No	
  randomness	
  from	
  scratch	
  
The	
  generaDon	
  of	
  randomness	
  from	
  scratch	
  is	
  impossible!	
  
No	
  randomness	
  from	
  scratch	
  
The	
  generaDon	
  of	
  randomness	
  from	
  scratch	
  is	
  impossible!	
  
This	
  follows	
  from	
  the	
  non-­‐falsifiable	
  hypothesis	
  of	
  the	
  existence	
  of	
  a	
  super-­‐
determinisDc	
  model	
  in	
  which	
  everything,	
  including	
  all	
  the	
  history	
  of	
  our	
  universe,	
  
was	
  pre-­‐determined	
  in	
  advance	
  and	
  known	
  by	
  the	
  external	
  observer.	
  
	
  
Any	
  protocol	
  for	
  randomness	
  genera5on	
  must	
  be	
  based	
  on	
  assump5ons.	
  	
  
CerDfiable	
  physical	
  randomness	
  
Our	
  working	
  assumpDon	
  is	
  that	
  processes	
  are	
  physical	
  
and	
  therefore	
  obey	
  the	
  laws	
  of	
  physics.	
  	
  
The	
  random	
  numbers	
  should	
  be	
  unpredictable	
  to	
  any	
  
physical	
  observer,	
  that	
  is,	
  any	
  observer	
  whose	
  acDons	
  
are	
  constrained	
  by	
  the	
  laws	
  of	
  physics.	
  
¿Does	
  randomness	
  exist	
  in	
  
classical	
  physics?	
  
Randomness	
  in	
  classical	
  physics	
  
In	
  the	
  macroscopic	
  world,	
  there	
  is	
  no	
  such	
  thing	
  as	
  true	
  randomness.	
  Any	
  random	
  
process	
  is	
  simply	
  a	
  consequence	
  of:	
  
	
  1)	
  ImperfecDons	
  in	
  the	
  preparaDon	
  of	
  the	
  system	
  and/or	
  
	
  2)	
  ParDal	
  knowledge	
  
Randomness	
  in	
  classical	
  physics	
  
In	
  the	
  macroscopic	
  world,	
  there	
  is	
  no	
  such	
  thing	
  as	
  true	
  randomness.	
  Any	
  random	
  
process	
  is	
  simply	
  a	
  consequence	
  of:	
  
	
  1)	
  ImperfecDons	
  in	
  the	
  preparaDon	
  of	
  the	
  system	
  and/or	
  
	
  2)	
  ParDal	
  knowledge	
  
Example:	
  
One	
  can	
  never	
  exclude	
  the	
  
existence	
  of	
  an	
  observer	
  with	
  
perfect	
  knowledge	
  of	
  the	
  iniDal	
  
posiDon	
  and	
  speed	
  of	
  the	
  ball	
  
and	
  the	
  size	
  and	
  shape	
  of	
  the	
  
roule^e,	
  who	
  can	
  predict	
  the	
  
result	
  with	
  certainty.	
  
Randomness	
  is,	
  thus,	
  a	
  simple	
  consequence	
  of	
  our	
  limitaDons,	
  for	
  instance	
  
in	
  our	
  observaDon	
  and	
  computaDonal	
  capabiliDes,	
  informaDon	
  storage	
  and	
  
the	
  preparaDon	
  of	
  the	
  systems.	
  
Randomness	
  in	
  classical	
  physics	
  
Randomness	
  is,	
  thus,	
  a	
  simple	
  consequence	
  of	
  our	
  limitaDons,	
  for	
  instance	
  
in	
  our	
  observaDon	
  and	
  computaDonal	
  capabiliDes,	
  informaDon	
  storage	
  and	
  
the	
  preparaDon	
  of	
  the	
  systems.	
  
However,	
  the	
  theory	
  does	
  not	
  incorporate	
  any	
  form	
  of	
  intrinsic	
  randomness.	
  
Given	
  a	
  perfect	
  knowledge	
  of	
  the	
  iniDal	
  condiDons	
  in	
  a	
  system,	
  it	
  is	
  in	
  
principle	
  possible	
  to	
  predict	
  its	
  future	
  (and	
  past)	
  behaviour.	
  
Randomness	
  in	
  classical	
  physics	
  
Randomness	
  is,	
  thus,	
  a	
  simple	
  consequence	
  of	
  our	
  limitaDons,	
  for	
  instance	
  
in	
  our	
  observaDon	
  and	
  computaDonal	
  capabiliDes,	
  informaDon	
  storage	
  and	
  
the	
  preparaDon	
  of	
  the	
  systems.	
  
However,	
  the	
  theory	
  does	
  not	
  incorporate	
  any	
  form	
  of	
  intrinsic	
  randomness.	
  
Given	
  a	
  perfect	
  knowledge	
  of	
  the	
  iniDal	
  condiDons	
  in	
  a	
  system,	
  it	
  is	
  in	
  
principle	
  possible	
  to	
  predict	
  its	
  future	
  (and	
  past)	
  behaviour.	
  
LAPLACE	
  
We	
  may	
  regard	
  the	
  present	
  state	
  of	
  the	
  universe	
  as	
  the	
  effect	
  of	
  its	
  
past	
  and	
  the	
  cause	
  of	
  its	
  future.	
  An	
  intellect	
  which	
  at	
  a	
  certain	
  
moment	
  would	
  know	
  all	
  forces	
  that	
  set	
  nature	
  in	
  moDon,	
  and	
  all	
  
posiDons	
  of	
  all	
  items	
  of	
  which	
  nature	
  is	
  composed,	
  if	
  this	
  intellect	
  
were	
  also	
  vast	
  enough	
  to	
  submit	
  these	
  data	
  to	
  analysis,	
  it	
  would	
  
embrace	
  in	
  a	
  single	
  formula	
  the	
  movements	
  of	
  the	
  greatest	
  bodies	
  
of	
  the	
  universe	
  and	
  those	
  of	
  the	
  Dniest	
  atom;	
  for	
  such	
  an	
  intellect	
  
nothing	
  would	
  be	
  uncertain	
  and	
  the	
  future	
  just	
  like	
  the	
  past	
  would	
  
be	
  present	
  before	
  its	
  eyes.	
  
	
  
Randomness	
  in	
  classical	
  physics	
  
¿What	
  happens	
  when	
  we	
  
move	
  to	
  the	
  quantum	
  world?	
  
Quantum	
  randomness	
  
Textbook:	
  the	
  outputs	
  of	
  a	
  quantum	
  measurement	
  are	
  random.	
  
Quantum	
  randomness	
  
Textbook:	
  the	
  outputs	
  of	
  a	
  quantum	
  measurement	
  are	
  random.	
  
50%
50%
T
R
The	
  outputs	
  of	
  this	
  experiment	
  are	
  
random	
  because:	
  
1.  Devices	
  are	
  quantum…	
  
Quantum	
  randomness	
  
Textbook:	
  the	
  outputs	
  of	
  a	
  quantum	
  measurement	
  are	
  random.	
  
50%
50%
T
R
The	
  output	
  randomnesss	
  does	
  not	
  rely	
  only	
  on	
  the	
  “quantumness”	
  of	
  the	
  process.	
  
The	
  outputs	
  of	
  this	
  experiment	
  are	
  
random	
  because:	
  
1.  Devices	
  are	
  quantum…	
  but	
  also	
  
2.  It	
  is	
  a	
  pure	
  single-­‐photon	
  state;	
  
3.  The	
  transmission	
  coefficient	
  of	
  
the	
  mirror	
  is	
  exactly	
  ½;	
  
4.  The	
  detectors	
  do	
  not	
  have	
  
memory	
  effects;	
  
5.  …	
  
Quantum	
  randomness	
  
Textbook:	
  the	
  outputs	
  of	
  a	
  quantum	
  measurement	
  are	
  random.	
  
50%
50%
T
R
The	
  output	
  randomnesss	
  does	
  not	
  rely	
  only	
  on	
  the	
  “quantumness”	
  of	
  the	
  process.	
  
The	
  outputs	
  of	
  this	
  experiment	
  are	
  
random	
  because:	
  
1.  Devices	
  are	
  quantum…	
  but	
  also	
  
2.  It	
  is	
  a	
  pure	
  single-­‐photon	
  state;	
  
3.  The	
  transmission	
  coefficient	
  of	
  
the	
  mirror	
  is	
  exactly	
  ½;	
  
4.  The	
  detectors	
  do	
  not	
  have	
  
memory	
  effects;	
  
5.  …	
  
It	
  is	
  unsaDsfactory	
  that	
  the	
  random	
  character	
  of	
  the	
  process	
  relies	
  on	
  our	
  
knowledge	
  of	
  it.	
  How	
  can	
  we	
  know	
  if	
  our	
  descripDon	
  is	
  correct?	
  If	
  not	
  correct,	
  is	
  
the	
  observed	
  randomness	
  again	
  an	
  arDfact	
  of	
  ignorance?	
  
Can	
  the	
  presence	
  of	
  randomness	
  be	
  guaranteed	
  
by	
  any	
  physical	
  mechanism?	
  
Known	
  soluDons	
  
•  Classical	
  Random	
  Number	
  Generators	
  (CRNG).	
  All	
  of	
  them	
  are	
  of	
  
determinisDc	
  Nature.	
  
•  Quantum	
  Random	
  Number	
  Generators	
  (QRNG).	
  There	
  exist	
  different	
  
soluDons,	
  but	
  the	
  main	
  idea	
  is	
  encapsulated	
  by	
  the	
  following	
  example:	
  
•  In	
  any	
  case,	
  all	
  these	
  soluDons	
  have	
  three	
  problems,	
  which	
  are	
  important	
  
both	
  from	
  a	
  fundamental	
  and	
  pracDcal	
  point	
  of	
  view.	
  
50%
50%
T
R
Single	
  photons	
  are	
  prepared	
  and	
  
sent	
  into	
  a	
  mirror	
  with	
  
transmilvity	
  equal	
  to	
  ½.	
  The	
  
random	
  numbers	
  are	
  provided	
  by	
  
the	
  clicks	
  in	
  the	
  detectors.	
  
Problem	
  1:	
  cerDficaDon	
  
•  Good	
  randomness	
  is	
  usually	
  verified	
  by	
  a	
  series	
  of	
  staDsDcal	
  tests.	
  
•  There	
  exist	
  chaoDc	
  systems,	
  of	
  determinisDc	
  nature,	
  that	
  pass	
  all	
  
exisDng	
  randomness	
  tests.	
  
•  Do	
  these	
  tests	
  really	
  cerDfy	
  the	
  presence	
  of	
  randomness?	
  It	
  is	
  well	
  
known	
  that	
  no	
  finite	
  set	
  of	
  tests	
  can	
  do	
  it.	
  
•  Do	
  these	
  tests	
  cerDfy	
  any	
  form	
  of	
  quantum	
  randomness?	
  Classical	
  
systems	
  pass	
  them!	
  
RANDU	
  
RANDU	
  is	
  an	
  infamous	
  linear	
  congruenDal	
  pseudorandom	
  number	
  generator	
  
of	
  the	
  Park–Miller	
  type,	
  which	
  has	
  been	
  used	
  since	
  the	
  1960s.	
  
Three-­‐dimensional	
  plot	
  of	
  100,000	
  values	
  generated	
  with	
  RANDU.	
  Each	
  
point	
  represents	
  3	
  subsequent	
  pseudorandom	
  values.	
  It	
  is	
  clearly	
  seen	
  
that	
  the	
  points	
  fall	
  in	
  15	
  two-­‐dimensional	
  planes.	
  
Problem	
  2:	
  privacy	
  
50%
50%
T
R
1r
2r
nr
.
.
.
Classical	
  
Memory	
  
The	
  provider	
  has	
  access	
  to	
  a	
  proper	
  RNG.	
  The	
  provider	
  uses	
  it	
  to	
  generate	
  a	
  
long	
  sequence	
  of	
  good	
  random	
  numbers,	
  stores	
  them	
  into	
  a	
  memory	
  sDck	
  
and	
  sells	
  it	
  as	
  a	
  proper	
  RNG	
  to	
  the	
  user.	
  	
  
50%
50%
T
R
1r
2r
nr
.
.
.
Classical	
  
Memory	
   1r 2r nr…	
  
The	
  provider	
  has	
  access	
  to	
  a	
  proper	
  RNG.	
  The	
  provider	
  uses	
  it	
  to	
  generate	
  a	
  
long	
  sequence	
  of	
  good	
  random	
  numbers,	
  stores	
  them	
  into	
  a	
  memory	
  sDck	
  
and	
  sells	
  it	
  as	
  a	
  proper	
  RNG	
  to	
  the	
  user.	
  	
  
	
  
The	
  numbers	
  generated	
  by	
  the	
  user	
  look	
  random.	
  	
  However,	
  they	
  can	
  be	
  
perfectly	
  predicted	
  by	
  the	
  adversary.	
  How	
  can	
  one	
  be	
  sure	
  that	
  the	
  observed	
  
random	
  numbers	
  are	
  also	
  random	
  to	
  any	
  other	
  observer,	
  possibly	
  adversarial?	
  
Problem	
  2:	
  privacy	
  
Problem	
  3:	
  device	
  dependence	
  
All	
  the	
  soluDons	
  rely	
  on	
  the	
  details	
  of	
  the	
  devices	
  used	
  in	
  the	
  generaDon.	
  
	
  
How	
  can	
  imperfecDons	
  in	
  the	
  devices	
  affect	
  the	
  quality	
  of	
  the	
  generated	
  
numbers?	
  Can	
  these	
  imperfecDons	
  be	
  exploited	
  by	
  an	
  adversary?	
  
50%
50%
T
R
Single	
  photons	
  are	
  prepared	
  and	
  
sent	
  into	
  a	
  mirror	
  with	
  
transmilvity	
  equal	
  to	
  ½.	
  The	
  
random	
  numbers	
  are	
  provided	
  by	
  
the	
  clicks	
  in	
  the	
  detectors.	
  
No	
  randomness	
  for	
  single	
  systems	
  
It	
  is	
  impossible	
  to	
  cerDfy	
  that	
  the	
  outcomes	
  produced	
  by	
  a	
  single	
  system	
  are	
  
random	
  without	
  making	
  assumpDons	
  about	
  its	
  internal	
  working.	
  
No	
  randomness	
  for	
  single	
  systems	
  
It	
  is	
  impossible	
  to	
  cerDfy	
  that	
  the	
  outcomes	
  produced	
  by	
  a	
  single	
  system	
  are	
  
random	
  without	
  making	
  assumpDons	
  about	
  its	
  internal	
  working.	
  
This	
  follows	
  form	
  the	
  simple	
  fact	
  that	
  any	
  observed	
  probability	
  distribuDon	
  
can	
  be	
  wri^en	
  in	
  terms	
  of	
  determinisDc	
  assignments:	
  
P b =1,b = 2,…,b = r( )= p b = i( )
i=1
r
∑ δb.i
The	
  observed	
  randomness	
  is	
  just	
  a	
  consequence	
  of	
  the	
  ignorance	
  of:	
   p b = i( )
No	
  randomness	
  for	
  single	
  systems	
  
It	
  is	
  impossible	
  to	
  cerDfy	
  that	
  the	
  outcomes	
  produced	
  by	
  a	
  single	
  system	
  are	
  
random	
  without	
  making	
  assumpDons	
  about	
  its	
  internal	
  working.	
  
This	
  follows	
  form	
  the	
  simple	
  fact	
  that	
  any	
  observed	
  probability	
  distribuDon	
  
can	
  be	
  wri^en	
  in	
  terms	
  of	
  determinisDc	
  assignments:	
  
P b =1,b = 2,…,b = r( )= p b = i( )
i=1
r
∑ δb.i
The	
  observed	
  randomness	
  is	
  just	
  a	
  consequence	
  of	
  the	
  ignorance	
  of:	
   p b = i( )
Any	
  staDsDcs	
  obtained	
  by	
  measuring	
  a	
  quantum	
  systems	
  can	
  be	
  simulated	
  classically.	
  
Let’s	
  then	
  move	
  to	
  more	
  
than	
  one	
  system…	
  
CerDfied	
  randomness	
  
y
a b
x
P(a,b x, y)
e=a?
z
Eve	
  
Observer	
  
The	
  observer	
  can	
  now	
  observe	
  the	
  correlaDons	
  between	
  the	
  two	
  systems.	
  
	
  
From	
  the	
  point	
  of	
  view	
  of	
  correlaDons,	
  classical	
  and	
  quantum	
  physics	
  differ!	
  
A	
  crash	
  course	
  on	
  Bell	
  inequaliDes	
  
Example:	
  CHSH	
  Bell	
  inequality	
  
CHSH = A1B1 + A1B2 + A2B1 − A2B2
+1 -1 +1 -1
1 2 1 2
Source	
  
Example:	
  CHSH	
  Bell	
  inequality	
  
CHSH = A1B1 + A1B2 + A2B1 − A2B2
+1 -1 +1 -1
1 2 1 2
In	
  classical	
  physics,	
  observables	
  have	
  well-­‐defined	
  values,	
  now	
  +1	
  or	
  -­‐1.	
  	
  
	
  
Under	
  this	
  assumpDon:	
  
	
  
Example:	
  
	
  
So,	
  the	
  expectaDon	
  value	
  of	
  this	
  quanDty	
  also	
  saDsfies	
  
Source	
  
CHSH ≤ 2
A1 = A2 = B1 = B2 = +1⇒ CHSH = +2
CHSH ≤ 2
Quantum	
  Bell	
  inequality	
  violaDon	
  
A2
A1
B1
B2
Φ =
1
2
00 + 11( )
Classical	
  values	
  are	
  now	
  replaced	
  by	
  operators.	
  
-1 +1 -1
1 2 1 2
Source	
  
+1
Quantum	
  Bell	
  inequality	
  violaDon	
  
CHSH = A1B1 Φ
+ A1B2 Φ
+ A2B1 Φ
− A2B2 Φ
= 2 2 > 2
A2
A1
B1
B2
Φ =
1
2
00 + 11( )
Classical	
  values	
  are	
  now	
  replaced	
  by	
  operators.	
  
-1 +1 -1
1 2 1 2
Source	
  
+1
Quantum	
  non-­‐locality	
  
•  Bell	
  inequaliDes	
  are	
  condiDons	
  saDsfied	
  by	
  classical	
  models	
  in	
  which	
  
measurement	
  outputs	
  are	
  pre-­‐determined.	
  
•  CorrelaDons	
  observed	
  when	
  measuring	
  entangled	
  states	
  may	
  lead	
  to	
  a	
  violaDon	
  
of	
  Bell	
  inequality	
  and,	
  therefore,	
  do	
  not	
  have	
  a	
  classical	
  counterpart.	
  These	
  
correlaDons	
  are	
  usually	
  called	
  non-­‐local.	
  
•  If	
  some	
  observed	
  correlaDons	
  violate	
  a	
  Bell	
  inequality,	
  the	
  outcomes	
  could	
  not	
  
have	
  pre-­‐determined	
  in	
  advance	
  è	
  They	
  are	
  random.	
  
•  If	
  some	
  observed	
  correlaDons	
  violate	
  a	
  Bell	
  inequality,	
  they	
  cannot	
  be	
  
reproduced	
  classically	
  	
  è	
  The	
  devices	
  are	
  quantum.	
  
CerDfied	
  randomness	
  
y
a b
x
P(a,b x, y)
e=a?
z
Eve	
  
Observer	
  
Ask	
  the	
  provider	
  not	
  one	
  but	
  two	
  devices.	
  If	
  a	
  Bell	
  inequality	
  violaDon	
  is	
  
observed,	
  the	
  outputs	
  contain	
  some	
  randomness.	
  	
  
CerDfied	
  randomness	
  
y
a b
x
P(a,b x, y)
e=a?
z
Eve	
  
Observer	
  
Ask	
  the	
  provider	
  not	
  one	
  but	
  two	
  devices.	
  If	
  a	
  Bell	
  inequality	
  violaDon	
  is	
  
observed,	
  the	
  outputs	
  contain	
  some	
  randomness.	
  	
  
The	
  cerDficaDon	
  is	
  device-­‐independent,	
  in	
  the	
  sense	
  that	
  it	
  does	
  not	
  rely	
  on	
  
any	
  assumpDon	
  on	
  the	
  internal	
  working	
  of	
  the	
  device.	
  
CerDfied	
  randomness	
  
The	
  randomness	
  in	
  the	
  outputs	
  can	
  be	
  esDmated	
  from	
  the	
  amount	
  of	
  observed	
  
Bell	
  violaDon.	
  At	
  no	
  violaDon,	
  there	
  is	
  no	
  randomness.	
  
CerDfied	
  randomness	
  
The	
  randomness	
  in	
  the	
  outputs	
  can	
  be	
  esDmated	
  from	
  the	
  amount	
  of	
  observed	
  
Bell	
  violaDon.	
  At	
  no	
  violaDon,	
  there	
  is	
  no	
  randomness.	
  
	
  
This	
  randomness	
  is	
  not	
  a	
  consequence	
  of	
  ignorance!	
  This	
  region	
  is	
  impossible	
  
within	
  quantum	
  physics.	
  
What	
  did	
  we	
  use?	
  
•  We	
  assume	
  the	
  validity	
  of	
  the	
  whole	
  quantum	
  formalism.	
  
•  We	
  needed	
  two	
  different	
  systems.	
  What	
  does	
  it	
  mean?	
  Do	
  two	
  devices	
  define	
  
two	
  systems?	
  Not	
  if	
  they	
  could	
  be	
  jointly	
  	
  prepared	
  in	
  advance.	
  
a b
What	
  did	
  we	
  use?	
  
•  We	
  assume	
  the	
  validity	
  of	
  the	
  whole	
  quantum	
  formalism.	
  
•  We	
  needed	
  two	
  different	
  systems.	
  What	
  does	
  it	
  mean?	
  Do	
  two	
  devices	
  define	
  
two	
  systems?	
  Not	
  if	
  they	
  could	
  be	
  jointly	
  	
  prepared	
  in	
  advance.	
  
•  We	
  need	
  the	
  inputs,	
  processes	
  that	
  happen	
  in	
  one	
  locaDon	
  and	
  is	
  not	
  known	
  
at	
  the	
  other	
  locaDon.	
  Then,	
  we	
  can	
  idenDfy	
  two	
  separate	
  systems.	
  
a b
x y
What	
  are	
  two	
  systems?	
  
•  All	
  this	
  is	
  related	
  to	
  the	
  noDon	
  of	
  causality	
  and	
  space-­‐Dme.	
  We	
  think	
  of	
  
regions	
  in	
  space-­‐Dme	
  that	
  are	
  staDsDcally	
  meaningful	
  and	
  independent	
  of	
  the	
  
rest.	
  We	
  need	
  these	
  noDons	
  for	
  making	
  scienDfic	
  predicDons!	
  
•  It	
  may	
  however	
  argued	
  that	
  assuming	
  that	
  something	
  happens	
  in	
  a	
  region	
  in	
  
space-­‐Dme	
  means	
  that	
  cannot	
  be	
  predicted	
  by	
  the	
  rest	
  of	
  observers	
  in	
  the	
  
remaining	
  space-­‐Dme	
  and,	
  therefore,	
  it	
  is	
  random.	
  
•  It	
  adds	
  a	
  form	
  of	
  circularity	
  in	
  the	
  argument:	
  randomness	
  is	
  needed	
  to	
  run	
  the	
  
Bell	
  test,	
  which	
  is	
  in	
  turn	
  used	
  to	
  cerDfy	
  the	
  presence	
  of	
  randomness.	
  
•  From	
  a	
  pracDcal	
  perspecDve,	
  or	
  even	
  from	
  a	
  reasonable	
  fundamental	
  point	
  of	
  
view,	
  we	
  can	
  assume	
  that	
  there	
  are	
  independent	
  events	
  (again,	
  the	
  whole	
  
noDon	
  of	
  causality	
  is	
  based	
  on	
  it,	
  otherwise	
  everything	
  would	
  be	
  connected).	
  
•  Yet,	
  it	
  is	
  a	
  logical	
  possibility	
  and	
  a	
  limitaDon	
  in	
  the	
  proofs	
  of	
  randomness.	
  
Randomness	
  expansion	
  
a b
x y
Source	
  
Perfect	
  random	
  bits	
  are	
  available	
  to	
  choose	
  the	
  inputs.	
  
	
  
One	
  can	
  prove	
  that	
  one	
  can	
  generate	
  using	
  the	
  outputs	
  more	
  random	
  bits	
  than	
  
are	
  used	
  for	
  the	
  inputs.	
  
	
  
There	
  even	
  exist	
  protocols	
  for	
  unbounded	
  randomness	
  expansion.	
  
Colbeck,	
  Kent,	
  Pironio,	
  Massar	
  and	
  others…	
  
Randomness	
  amplificaDon	
  
k
Santha-­‐Vazirani	
  source:	
  a	
  device	
  that	
  produces	
  bits	
  with	
  the	
  promise	
  
ε 1
2
−ε ≤ P k = 0 rest( )≤
1
2
+ε
Randomness	
  amplificaDon	
  
k
Santha-­‐Vazirani	
  source:	
  a	
  device	
  that	
  produces	
  bits	
  with	
  the	
  promise	
  
ε 1
2
−ε ≤ P k = 0 rest( )≤
1
2
+ε
0	
   1/2	
  
εi
εf
Randomness	
  amplificaDon:	
  improve	
  the	
  randomness	
  of	
  the	
  source.	
  
Randomness	
  amplificaDon	
  
k
Santha-­‐Vazirani	
  source:	
  a	
  device	
  that	
  produces	
  bits	
  with	
  the	
  promise	
  
ε 1
2
−ε ≤ P k = 0 rest( )≤
1
2
+ε
0	
   1/2	
  
εi
εf
Randomness	
  amplificaDon:	
  improve	
  the	
  randomness	
  of	
  the	
  source.	
  
Randomness	
  amplificaDon	
  is	
  impossible	
  classically.	
  
Randomness	
  amplificaDon	
  
0	
   1/2	
  
εi
εf
Randomness	
  amplificaDon	
  is	
  possible	
  using	
  quantum	
  non-­‐local	
  
correlaDons.	
  Colbeck	
  and	
  Renner	
  
	
  
Idea:	
  use	
  the	
  imperfect	
  source	
  to	
  choose	
  the	
  inputs	
  in	
  a	
  Bell	
  test	
  
define	
  the	
  final	
  source	
  from	
  the	
  outputs	
  of	
  the	
  experiment.	
  
	
  
Full	
  randomness	
  amplificaDon	
  is	
  possible:	
  arbitrarily	
  weak	
  random	
  
bits	
  can	
  be	
  mapped	
  into	
  arbitrarily	
  good	
  random	
  bits.	
  
Gallego	
  et	
  al.	
  
Experimental	
  realizaDon	
  
• 	
  The	
  two-­‐box	
  scenario	
  is	
  performed	
  by	
  two	
  atomic	
  parDcles	
  located	
  in	
  two	
  distant	
  
traps.	
  
• 	
  Using	
  our	
  theoreDcal	
  techniques,	
  we	
  can	
  cerDfy	
  that	
  42	
  new	
  random	
  bits	
  are	
  
generated	
  in	
  the	
  experiment.	
  
• It	
  is	
  the	
  first	
  Dme	
  that	
  randomness	
  generaDon	
  is	
  cerDfied	
  without	
  making	
  any	
  
detailed	
  assumpDon	
  about	
  the	
  internal	
  working	
  of	
  the	
  devices.	
  
• 	
  Similar	
  Bell	
  experiments	
  with	
  photons	
  have	
  recently	
  been	
  performed.	
  
NIST	
  Randomness	
  Beacon	
  
NIST	
  is	
  implemenDng	
  a	
  source	
  of	
  public	
  randomness.	
  The	
  service	
  (at	
  h^ps://
beacon.nist.gov/home)	
  uses	
  two	
  independent	
  commercially	
  available	
  sources	
  
of	
  randomness,	
  each	
  with	
  an	
  independent	
  hardware	
  entropy	
  source	
  and	
  SP	
  
800-­‐90-­‐approved	
  components.	
  
Commercially	
  available	
  physical	
  sources	
  of	
  randomness	
  are	
  adequate	
  as	
  
entropy	
  sources	
  for	
  currently	
  envisioned	
  applicaDons	
  of	
  the	
  Beacon.	
  However,	
  
demonstrably	
  unpredictable	
  values	
  are	
  not	
  possible	
  to	
  obtain	
  in	
  any	
  classical	
  
physical	
  context.	
  Given	
  this	
  fact,	
  our	
  team	
  established	
  a	
  collaboraDon	
  with	
  NIST	
  
physicists	
  from	
  the	
  Physical	
  Measurement	
  Laboratory	
  (PML).	
  The	
  aim	
  is	
  to	
  use	
  
quantum	
  effects	
  to	
  generate	
  a	
  sequence	
  of	
  truly	
  random	
  values,	
  guaranteed	
  to	
  
be	
  unpredictable,	
  even	
  if	
  an	
  a^acker	
  has	
  access	
  to	
  the	
  random	
  source.	
  In	
  
August	
  2012,	
  this	
  project	
  was	
  awarded	
  a	
  mulD-­‐year	
  grant	
  from	
  NIST's	
  
InnovaDons	
  in	
  Measurement	
  Science	
  (IMS)	
  Program.	
  
NIST	
  Randomness	
  Beacon	
  
Bell	
  cer5fied	
  randomess!	
  
Conclusions	
  
•  Randomness	
  can	
  be	
  cerDfied	
  using	
  the	
  non-­‐local	
  correlaDons	
  observed	
  when	
  
measuring	
  quantum	
  states.	
  
•  The	
  cerDficaDon	
  is	
  device-­‐independent:	
  it	
  does	
  not	
  rely	
  on	
  any	
  assumpDon	
  on	
  the	
  
internal	
  working	
  of	
  the	
  devices.	
  
•  The	
  argument	
  requires	
  two	
  different	
  devices.	
  	
  
•  Independent	
  (random?)	
  inputs	
  are	
  needed	
  to	
  define	
  the	
  two	
  different	
  devices.	
  
This	
  requirement	
  may	
  introduce	
  some	
  circularity	
  in	
  the	
  argument.	
  
•  Despite	
  this	
  circularity,	
  using	
  non-­‐local	
  quantum	
  correlaDons	
  randomness	
  can	
  be	
  
arbitrarily	
  expanded	
  or	
  amplified.	
  	
  
•  The	
  device-­‐independent	
  approach	
  can	
  be	
  used	
  to	
  design	
  novel	
  devices	
  producing	
  
cer5fied	
  quantum	
  randomness.	
  

Weitere ähnliche Inhalte

Andere mochten auch

69th ICREA Colloquium "Everything you always wanted to know about creating a ...
69th ICREA Colloquium "Everything you always wanted to know about creating a ...69th ICREA Colloquium "Everything you always wanted to know about creating a ...
69th ICREA Colloquium "Everything you always wanted to know about creating a ...ICREA
 
71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...
71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...
71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...ICREA
 
New ways to reimagine quantum physics
New ways to reimagine quantum physicsNew ways to reimagine quantum physics
New ways to reimagine quantum physicsJulien Bobroff
 
OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...
OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...
OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...Out of The Box Seminar
 
68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...
68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...
68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...ICREA
 
Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...
Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...
Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...Kim Solez ,
 
Quantum Implications 07262011
Quantum Implications 07262011Quantum Implications 07262011
Quantum Implications 07262011Gary Stilwell
 
Quantum Physics
Quantum PhysicsQuantum Physics
Quantum PhysicsStudent
 
“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...
“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...
“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...ICREA
 
Quantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeQuantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeSean Carroll
 

Andere mochten auch (10)

69th ICREA Colloquium "Everything you always wanted to know about creating a ...
69th ICREA Colloquium "Everything you always wanted to know about creating a ...69th ICREA Colloquium "Everything you always wanted to know about creating a ...
69th ICREA Colloquium "Everything you always wanted to know about creating a ...
 
71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...
71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...
71st ICREA Colloquium "Intrinsically disordered proteins (id ps) the challeng...
 
New ways to reimagine quantum physics
New ways to reimagine quantum physicsNew ways to reimagine quantum physics
New ways to reimagine quantum physics
 
OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...
OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...
OBC | Quantum physics out of equilbrium: A new paradigm of computation and in...
 
68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...
68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...
68th ICREA Colloquium "The Worldwide LHC Computing Grid: Riding the computing...
 
Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...
Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...
Jack Tuszynski From Quantum Physics to Quantum Biology in 100 Years. How long...
 
Quantum Implications 07262011
Quantum Implications 07262011Quantum Implications 07262011
Quantum Implications 07262011
 
Quantum Physics
Quantum PhysicsQuantum Physics
Quantum Physics
 
“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...
“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...
“La intel·ligència com a estratègia evolutiva” - Arcadi Navarro - Debats ICRE...
 
Quantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of KnowledgeQuantum Field Theory and the Limits of Knowledge
Quantum Field Theory and the Limits of Knowledge
 

Ähnlich wie 72nd ICREA Colloquium "What can and cannot be said about randomness using quantum physics" by Antonio Acín

Eliano Pessa
Eliano PessaEliano Pessa
Eliano Pessaagrilinea
 
Quantum models of brain
Quantum models of brainQuantum models of brain
Quantum models of brainHaskell Lambda
 
The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1Bruno Fedrici, PhD
 
Quantum Information
Quantum Information Quantum Information
Quantum Information Dario Scotto
 
Unexpectedness and Bayes' Rule
Unexpectedness and Bayes' RuleUnexpectedness and Bayes' Rule
Unexpectedness and Bayes' RuleGiovanni Sileno
 
QUANTUM OCCASIONALISM
QUANTUM OCCASIONALISMQUANTUM OCCASIONALISM
QUANTUM OCCASIONALISMVasil Penchev
 
ugc journal 19.pdf
ugc journal 19.pdfugc journal 19.pdf
ugc journal 19.pdfnareshkotra
 
Errors of Artificial Intelligence, their Correction and Simplicity Revolution...
Errors of Artificial Intelligence, their Correction and Simplicity Revolution...Errors of Artificial Intelligence, their Correction and Simplicity Revolution...
Errors of Artificial Intelligence, their Correction and Simplicity Revolution...Alexander Gorban
 
Quantum Philosophy
Quantum PhilosophyQuantum Philosophy
Quantum PhilosophySaurav Suman
 
Barra Presentation
Barra PresentationBarra Presentation
Barra Presentationspgreiner
 
Quantum Cloning on Macroorganisms Containing Quantum Information
Quantum Cloning on Macroorganisms Containing Quantum InformationQuantum Cloning on Macroorganisms Containing Quantum Information
Quantum Cloning on Macroorganisms Containing Quantum InformationQUESTJOURNAL
 
Entanglement witnesses for hybrid systems
Entanglement witnesses for hybrid systemsEntanglement witnesses for hybrid systems
Entanglement witnesses for hybrid systemsSM588
 
Shahjahan notes:Physical world1
Shahjahan notes:Physical world1Shahjahan notes:Physical world1
Shahjahan notes:Physical world1Shahjahan Physics
 
Utility of chaos theory in product development
Utility of chaos theory in product developmentUtility of chaos theory in product development
Utility of chaos theory in product developmentTapani Taskinen
 
Practical Methods for Identifying Anomalies That Matter in Large Datasets
Practical Methods for Identifying Anomalies That Matter in Large DatasetsPractical Methods for Identifying Anomalies That Matter in Large Datasets
Practical Methods for Identifying Anomalies That Matter in Large DatasetsRobert Grossman
 
Decohering environment and coupled quantum states and internal resonance in ...
Decohering environment and coupled quantum states  and internal resonance in ...Decohering environment and coupled quantum states  and internal resonance in ...
Decohering environment and coupled quantum states and internal resonance in ...Alexander Decker
 
Biology of Language, Humberto Maturana, 1978
Biology of Language, Humberto Maturana, 1978Biology of Language, Humberto Maturana, 1978
Biology of Language, Humberto Maturana, 1978David Alcántara
 

Ähnlich wie 72nd ICREA Colloquium "What can and cannot be said about randomness using quantum physics" by Antonio Acín (20)

Eliano Pessa
Eliano PessaEliano Pessa
Eliano Pessa
 
Quantum models of brain
Quantum models of brainQuantum models of brain
Quantum models of brain
 
The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1The second quantum revolution: the world beyond binary 0 and 1
The second quantum revolution: the world beyond binary 0 and 1
 
Chaos Theory
Chaos TheoryChaos Theory
Chaos Theory
 
Quantum Information
Quantum Information Quantum Information
Quantum Information
 
Unexpectedness and Bayes' Rule
Unexpectedness and Bayes' RuleUnexpectedness and Bayes' Rule
Unexpectedness and Bayes' Rule
 
QUANTUM OCCASIONALISM
QUANTUM OCCASIONALISMQUANTUM OCCASIONALISM
QUANTUM OCCASIONALISM
 
ugc journal 19.pdf
ugc journal 19.pdfugc journal 19.pdf
ugc journal 19.pdf
 
Errors of Artificial Intelligence, their Correction and Simplicity Revolution...
Errors of Artificial Intelligence, their Correction and Simplicity Revolution...Errors of Artificial Intelligence, their Correction and Simplicity Revolution...
Errors of Artificial Intelligence, their Correction and Simplicity Revolution...
 
Quantum Philosophy
Quantum PhilosophyQuantum Philosophy
Quantum Philosophy
 
Barra Presentation
Barra PresentationBarra Presentation
Barra Presentation
 
Quantum Cloning on Macroorganisms Containing Quantum Information
Quantum Cloning on Macroorganisms Containing Quantum InformationQuantum Cloning on Macroorganisms Containing Quantum Information
Quantum Cloning on Macroorganisms Containing Quantum Information
 
Entanglement witnesses for hybrid systems
Entanglement witnesses for hybrid systemsEntanglement witnesses for hybrid systems
Entanglement witnesses for hybrid systems
 
Shahjahan notes:Physical world1
Shahjahan notes:Physical world1Shahjahan notes:Physical world1
Shahjahan notes:Physical world1
 
Quantum Computing Report
Quantum Computing ReportQuantum Computing Report
Quantum Computing Report
 
QUANTUM COMPUTING REALITY CHECK
QUANTUM COMPUTING REALITY CHECKQUANTUM COMPUTING REALITY CHECK
QUANTUM COMPUTING REALITY CHECK
 
Utility of chaos theory in product development
Utility of chaos theory in product developmentUtility of chaos theory in product development
Utility of chaos theory in product development
 
Practical Methods for Identifying Anomalies That Matter in Large Datasets
Practical Methods for Identifying Anomalies That Matter in Large DatasetsPractical Methods for Identifying Anomalies That Matter in Large Datasets
Practical Methods for Identifying Anomalies That Matter in Large Datasets
 
Decohering environment and coupled quantum states and internal resonance in ...
Decohering environment and coupled quantum states  and internal resonance in ...Decohering environment and coupled quantum states  and internal resonance in ...
Decohering environment and coupled quantum states and internal resonance in ...
 
Biology of Language, Humberto Maturana, 1978
Biology of Language, Humberto Maturana, 1978Biology of Language, Humberto Maturana, 1978
Biology of Language, Humberto Maturana, 1978
 

Mehr von ICREA

84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...ICREA
 
84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...ICREA
 
83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...
83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...
83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...ICREA
 
81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...ICREA
 
81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...ICREA
 
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...ICREA
 
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...ICREA
 
67th ICREA Colloquium "What are we learning when looking at the genetic diver...
67th ICREA Colloquium "What are we learning when looking at the genetic diver...67th ICREA Colloquium "What are we learning when looking at the genetic diver...
67th ICREA Colloquium "What are we learning when looking at the genetic diver...ICREA
 

Mehr von ICREA (8)

84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA Colloquium 'Carbon pricing and energy use pathways for staying wit...
 
84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...
84th ICREA colloquium 'Carbon pricing and energy use pathways for staying wit...
 
83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...
83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...
83rd ICREA Colloquium 'Aging as a treatable condition: New approaches to brin...
 
81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium 'Two Perspectives on the Relation between Philosophy an...
 
81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...
81st ICREA Colloquium "Two Perspectives on the Relation between Philosophy an...
 
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
 
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
80th ICREA Colloquium "Archaeology and Colonialism: multiple perspectives" by...
 
67th ICREA Colloquium "What are we learning when looking at the genetic diver...
67th ICREA Colloquium "What are we learning when looking at the genetic diver...67th ICREA Colloquium "What are we learning when looking at the genetic diver...
67th ICREA Colloquium "What are we learning when looking at the genetic diver...
 

Kürzlich hochgeladen

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 

Kürzlich hochgeladen (20)

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 

72nd ICREA Colloquium "What can and cannot be said about randomness using quantum physics" by Antonio Acín

  • 1. ICREA  Colloquium,  Barcelona,  27  September  2016   Antonio  Acín   ICREA  Professor  at  ICFO-­‐InsDtut  de  Ciencies  Fotoniques,  Barcelona   What  can  and  cannot  be  said  about   randomness  in  quantum  physics  
  • 2. Our  goal:  to  “prove”  the  existence   of  randomness  in  nature.  
  • 3. DefiniDon  of  randomness   bi Observer  
  • 4. DefiniDon  of  randomness   bi Observer   Eve   A  process  is  (perfectly)  random  if  it  is  unpredictable,  not  only  to  the  observer,  but  to   any  observer,  called  Eve  in  what  follows  and  possibly  correlated  to  the  process.  
  • 5. DefiniDon  of  randomness   bi Observer   Eve   A  process  is  (perfectly)  random  if  it  is  unpredictable,  not  only  to  the  observer,  but  to   any  observer,  called  Eve  in  what  follows  and  possibly  correlated  to  the  process.   This  definiDon  is  saDsfactory  both  from  a  fundamental  and  applied  perspecDve.   •  From  a  fundamental  perspecDve  it  is  difficult  to  argue  that  a  process  is  random   if  there  could  exist  an  observer  able  to  predict  its  outcomes.     •  PracDcally,  by  demanding  that  the  results  should  look  random  to  any  observer,   the  generated  randomness  is  guaranteed  to  be  private.  
  • 6. No  randomness  from  scratch   The  generaDon  of  randomness  from  scratch  is  impossible!  
  • 7. No  randomness  from  scratch   The  generaDon  of  randomness  from  scratch  is  impossible!   This  follows  from  the  non-­‐falsifiable  hypothesis  of  the  existence  of  a  super-­‐ determinisDc  model  in  which  everything,  including  all  the  history  of  our  universe,   was  pre-­‐determined  in  advance  and  known  by  the  external  observer.     Any  protocol  for  randomness  genera5on  must  be  based  on  assump5ons.    
  • 8. CerDfiable  physical  randomness   Our  working  assumpDon  is  that  processes  are  physical   and  therefore  obey  the  laws  of  physics.     The  random  numbers  should  be  unpredictable  to  any   physical  observer,  that  is,  any  observer  whose  acDons   are  constrained  by  the  laws  of  physics.  
  • 9. ¿Does  randomness  exist  in   classical  physics?  
  • 10. Randomness  in  classical  physics   In  the  macroscopic  world,  there  is  no  such  thing  as  true  randomness.  Any  random   process  is  simply  a  consequence  of:    1)  ImperfecDons  in  the  preparaDon  of  the  system  and/or    2)  ParDal  knowledge  
  • 11. Randomness  in  classical  physics   In  the  macroscopic  world,  there  is  no  such  thing  as  true  randomness.  Any  random   process  is  simply  a  consequence  of:    1)  ImperfecDons  in  the  preparaDon  of  the  system  and/or    2)  ParDal  knowledge   Example:   One  can  never  exclude  the   existence  of  an  observer  with   perfect  knowledge  of  the  iniDal   posiDon  and  speed  of  the  ball   and  the  size  and  shape  of  the   roule^e,  who  can  predict  the   result  with  certainty.  
  • 12. Randomness  is,  thus,  a  simple  consequence  of  our  limitaDons,  for  instance   in  our  observaDon  and  computaDonal  capabiliDes,  informaDon  storage  and   the  preparaDon  of  the  systems.   Randomness  in  classical  physics  
  • 13. Randomness  is,  thus,  a  simple  consequence  of  our  limitaDons,  for  instance   in  our  observaDon  and  computaDonal  capabiliDes,  informaDon  storage  and   the  preparaDon  of  the  systems.   However,  the  theory  does  not  incorporate  any  form  of  intrinsic  randomness.   Given  a  perfect  knowledge  of  the  iniDal  condiDons  in  a  system,  it  is  in   principle  possible  to  predict  its  future  (and  past)  behaviour.   Randomness  in  classical  physics  
  • 14. Randomness  is,  thus,  a  simple  consequence  of  our  limitaDons,  for  instance   in  our  observaDon  and  computaDonal  capabiliDes,  informaDon  storage  and   the  preparaDon  of  the  systems.   However,  the  theory  does  not  incorporate  any  form  of  intrinsic  randomness.   Given  a  perfect  knowledge  of  the  iniDal  condiDons  in  a  system,  it  is  in   principle  possible  to  predict  its  future  (and  past)  behaviour.   LAPLACE   We  may  regard  the  present  state  of  the  universe  as  the  effect  of  its   past  and  the  cause  of  its  future.  An  intellect  which  at  a  certain   moment  would  know  all  forces  that  set  nature  in  moDon,  and  all   posiDons  of  all  items  of  which  nature  is  composed,  if  this  intellect   were  also  vast  enough  to  submit  these  data  to  analysis,  it  would   embrace  in  a  single  formula  the  movements  of  the  greatest  bodies   of  the  universe  and  those  of  the  Dniest  atom;  for  such  an  intellect   nothing  would  be  uncertain  and  the  future  just  like  the  past  would   be  present  before  its  eyes.     Randomness  in  classical  physics  
  • 15. ¿What  happens  when  we   move  to  the  quantum  world?  
  • 16. Quantum  randomness   Textbook:  the  outputs  of  a  quantum  measurement  are  random.  
  • 17. Quantum  randomness   Textbook:  the  outputs  of  a  quantum  measurement  are  random.   50% 50% T R The  outputs  of  this  experiment  are   random  because:   1.  Devices  are  quantum…  
  • 18. Quantum  randomness   Textbook:  the  outputs  of  a  quantum  measurement  are  random.   50% 50% T R The  output  randomnesss  does  not  rely  only  on  the  “quantumness”  of  the  process.   The  outputs  of  this  experiment  are   random  because:   1.  Devices  are  quantum…  but  also   2.  It  is  a  pure  single-­‐photon  state;   3.  The  transmission  coefficient  of   the  mirror  is  exactly  ½;   4.  The  detectors  do  not  have   memory  effects;   5.  …  
  • 19. Quantum  randomness   Textbook:  the  outputs  of  a  quantum  measurement  are  random.   50% 50% T R The  output  randomnesss  does  not  rely  only  on  the  “quantumness”  of  the  process.   The  outputs  of  this  experiment  are   random  because:   1.  Devices  are  quantum…  but  also   2.  It  is  a  pure  single-­‐photon  state;   3.  The  transmission  coefficient  of   the  mirror  is  exactly  ½;   4.  The  detectors  do  not  have   memory  effects;   5.  …   It  is  unsaDsfactory  that  the  random  character  of  the  process  relies  on  our   knowledge  of  it.  How  can  we  know  if  our  descripDon  is  correct?  If  not  correct,  is   the  observed  randomness  again  an  arDfact  of  ignorance?  
  • 20. Can  the  presence  of  randomness  be  guaranteed   by  any  physical  mechanism?  
  • 21. Known  soluDons   •  Classical  Random  Number  Generators  (CRNG).  All  of  them  are  of   determinisDc  Nature.   •  Quantum  Random  Number  Generators  (QRNG).  There  exist  different   soluDons,  but  the  main  idea  is  encapsulated  by  the  following  example:   •  In  any  case,  all  these  soluDons  have  three  problems,  which  are  important   both  from  a  fundamental  and  pracDcal  point  of  view.   50% 50% T R Single  photons  are  prepared  and   sent  into  a  mirror  with   transmilvity  equal  to  ½.  The   random  numbers  are  provided  by   the  clicks  in  the  detectors.  
  • 22. Problem  1:  cerDficaDon   •  Good  randomness  is  usually  verified  by  a  series  of  staDsDcal  tests.   •  There  exist  chaoDc  systems,  of  determinisDc  nature,  that  pass  all   exisDng  randomness  tests.   •  Do  these  tests  really  cerDfy  the  presence  of  randomness?  It  is  well   known  that  no  finite  set  of  tests  can  do  it.   •  Do  these  tests  cerDfy  any  form  of  quantum  randomness?  Classical   systems  pass  them!  
  • 23. RANDU   RANDU  is  an  infamous  linear  congruenDal  pseudorandom  number  generator   of  the  Park–Miller  type,  which  has  been  used  since  the  1960s.   Three-­‐dimensional  plot  of  100,000  values  generated  with  RANDU.  Each   point  represents  3  subsequent  pseudorandom  values.  It  is  clearly  seen   that  the  points  fall  in  15  two-­‐dimensional  planes.  
  • 24. Problem  2:  privacy   50% 50% T R 1r 2r nr . . . Classical   Memory   The  provider  has  access  to  a  proper  RNG.  The  provider  uses  it  to  generate  a   long  sequence  of  good  random  numbers,  stores  them  into  a  memory  sDck   and  sells  it  as  a  proper  RNG  to  the  user.    
  • 25. 50% 50% T R 1r 2r nr . . . Classical   Memory   1r 2r nr…   The  provider  has  access  to  a  proper  RNG.  The  provider  uses  it  to  generate  a   long  sequence  of  good  random  numbers,  stores  them  into  a  memory  sDck   and  sells  it  as  a  proper  RNG  to  the  user.       The  numbers  generated  by  the  user  look  random.    However,  they  can  be   perfectly  predicted  by  the  adversary.  How  can  one  be  sure  that  the  observed   random  numbers  are  also  random  to  any  other  observer,  possibly  adversarial?   Problem  2:  privacy  
  • 26. Problem  3:  device  dependence   All  the  soluDons  rely  on  the  details  of  the  devices  used  in  the  generaDon.     How  can  imperfecDons  in  the  devices  affect  the  quality  of  the  generated   numbers?  Can  these  imperfecDons  be  exploited  by  an  adversary?   50% 50% T R Single  photons  are  prepared  and   sent  into  a  mirror  with   transmilvity  equal  to  ½.  The   random  numbers  are  provided  by   the  clicks  in  the  detectors.  
  • 27. No  randomness  for  single  systems   It  is  impossible  to  cerDfy  that  the  outcomes  produced  by  a  single  system  are   random  without  making  assumpDons  about  its  internal  working.  
  • 28. No  randomness  for  single  systems   It  is  impossible  to  cerDfy  that  the  outcomes  produced  by  a  single  system  are   random  without  making  assumpDons  about  its  internal  working.   This  follows  form  the  simple  fact  that  any  observed  probability  distribuDon   can  be  wri^en  in  terms  of  determinisDc  assignments:   P b =1,b = 2,…,b = r( )= p b = i( ) i=1 r ∑ δb.i The  observed  randomness  is  just  a  consequence  of  the  ignorance  of:   p b = i( )
  • 29. No  randomness  for  single  systems   It  is  impossible  to  cerDfy  that  the  outcomes  produced  by  a  single  system  are   random  without  making  assumpDons  about  its  internal  working.   This  follows  form  the  simple  fact  that  any  observed  probability  distribuDon   can  be  wri^en  in  terms  of  determinisDc  assignments:   P b =1,b = 2,…,b = r( )= p b = i( ) i=1 r ∑ δb.i The  observed  randomness  is  just  a  consequence  of  the  ignorance  of:   p b = i( ) Any  staDsDcs  obtained  by  measuring  a  quantum  systems  can  be  simulated  classically.  
  • 30. Let’s  then  move  to  more   than  one  system…  
  • 31. CerDfied  randomness   y a b x P(a,b x, y) e=a? z Eve   Observer   The  observer  can  now  observe  the  correlaDons  between  the  two  systems.     From  the  point  of  view  of  correlaDons,  classical  and  quantum  physics  differ!  
  • 32. A  crash  course  on  Bell  inequaliDes  
  • 33. Example:  CHSH  Bell  inequality   CHSH = A1B1 + A1B2 + A2B1 − A2B2 +1 -1 +1 -1 1 2 1 2 Source  
  • 34. Example:  CHSH  Bell  inequality   CHSH = A1B1 + A1B2 + A2B1 − A2B2 +1 -1 +1 -1 1 2 1 2 In  classical  physics,  observables  have  well-­‐defined  values,  now  +1  or  -­‐1.       Under  this  assumpDon:     Example:     So,  the  expectaDon  value  of  this  quanDty  also  saDsfies   Source   CHSH ≤ 2 A1 = A2 = B1 = B2 = +1⇒ CHSH = +2 CHSH ≤ 2
  • 35. Quantum  Bell  inequality  violaDon   A2 A1 B1 B2 Φ = 1 2 00 + 11( ) Classical  values  are  now  replaced  by  operators.   -1 +1 -1 1 2 1 2 Source   +1
  • 36. Quantum  Bell  inequality  violaDon   CHSH = A1B1 Φ + A1B2 Φ + A2B1 Φ − A2B2 Φ = 2 2 > 2 A2 A1 B1 B2 Φ = 1 2 00 + 11( ) Classical  values  are  now  replaced  by  operators.   -1 +1 -1 1 2 1 2 Source   +1
  • 37. Quantum  non-­‐locality   •  Bell  inequaliDes  are  condiDons  saDsfied  by  classical  models  in  which   measurement  outputs  are  pre-­‐determined.   •  CorrelaDons  observed  when  measuring  entangled  states  may  lead  to  a  violaDon   of  Bell  inequality  and,  therefore,  do  not  have  a  classical  counterpart.  These   correlaDons  are  usually  called  non-­‐local.   •  If  some  observed  correlaDons  violate  a  Bell  inequality,  the  outcomes  could  not   have  pre-­‐determined  in  advance  è  They  are  random.   •  If  some  observed  correlaDons  violate  a  Bell  inequality,  they  cannot  be   reproduced  classically    è  The  devices  are  quantum.  
  • 38. CerDfied  randomness   y a b x P(a,b x, y) e=a? z Eve   Observer   Ask  the  provider  not  one  but  two  devices.  If  a  Bell  inequality  violaDon  is   observed,  the  outputs  contain  some  randomness.    
  • 39. CerDfied  randomness   y a b x P(a,b x, y) e=a? z Eve   Observer   Ask  the  provider  not  one  but  two  devices.  If  a  Bell  inequality  violaDon  is   observed,  the  outputs  contain  some  randomness.     The  cerDficaDon  is  device-­‐independent,  in  the  sense  that  it  does  not  rely  on   any  assumpDon  on  the  internal  working  of  the  device.  
  • 40. CerDfied  randomness   The  randomness  in  the  outputs  can  be  esDmated  from  the  amount  of  observed   Bell  violaDon.  At  no  violaDon,  there  is  no  randomness.  
  • 41. CerDfied  randomness   The  randomness  in  the  outputs  can  be  esDmated  from  the  amount  of  observed   Bell  violaDon.  At  no  violaDon,  there  is  no  randomness.     This  randomness  is  not  a  consequence  of  ignorance!  This  region  is  impossible   within  quantum  physics.  
  • 42. What  did  we  use?   •  We  assume  the  validity  of  the  whole  quantum  formalism.   •  We  needed  two  different  systems.  What  does  it  mean?  Do  two  devices  define   two  systems?  Not  if  they  could  be  jointly    prepared  in  advance.   a b
  • 43. What  did  we  use?   •  We  assume  the  validity  of  the  whole  quantum  formalism.   •  We  needed  two  different  systems.  What  does  it  mean?  Do  two  devices  define   two  systems?  Not  if  they  could  be  jointly    prepared  in  advance.   •  We  need  the  inputs,  processes  that  happen  in  one  locaDon  and  is  not  known   at  the  other  locaDon.  Then,  we  can  idenDfy  two  separate  systems.   a b x y
  • 44. What  are  two  systems?   •  All  this  is  related  to  the  noDon  of  causality  and  space-­‐Dme.  We  think  of   regions  in  space-­‐Dme  that  are  staDsDcally  meaningful  and  independent  of  the   rest.  We  need  these  noDons  for  making  scienDfic  predicDons!   •  It  may  however  argued  that  assuming  that  something  happens  in  a  region  in   space-­‐Dme  means  that  cannot  be  predicted  by  the  rest  of  observers  in  the   remaining  space-­‐Dme  and,  therefore,  it  is  random.   •  It  adds  a  form  of  circularity  in  the  argument:  randomness  is  needed  to  run  the   Bell  test,  which  is  in  turn  used  to  cerDfy  the  presence  of  randomness.   •  From  a  pracDcal  perspecDve,  or  even  from  a  reasonable  fundamental  point  of   view,  we  can  assume  that  there  are  independent  events  (again,  the  whole   noDon  of  causality  is  based  on  it,  otherwise  everything  would  be  connected).   •  Yet,  it  is  a  logical  possibility  and  a  limitaDon  in  the  proofs  of  randomness.  
  • 45. Randomness  expansion   a b x y Source   Perfect  random  bits  are  available  to  choose  the  inputs.     One  can  prove  that  one  can  generate  using  the  outputs  more  random  bits  than   are  used  for  the  inputs.     There  even  exist  protocols  for  unbounded  randomness  expansion.   Colbeck,  Kent,  Pironio,  Massar  and  others…  
  • 46. Randomness  amplificaDon   k Santha-­‐Vazirani  source:  a  device  that  produces  bits  with  the  promise   ε 1 2 −ε ≤ P k = 0 rest( )≤ 1 2 +ε
  • 47. Randomness  amplificaDon   k Santha-­‐Vazirani  source:  a  device  that  produces  bits  with  the  promise   ε 1 2 −ε ≤ P k = 0 rest( )≤ 1 2 +ε 0   1/2   εi εf Randomness  amplificaDon:  improve  the  randomness  of  the  source.  
  • 48. Randomness  amplificaDon   k Santha-­‐Vazirani  source:  a  device  that  produces  bits  with  the  promise   ε 1 2 −ε ≤ P k = 0 rest( )≤ 1 2 +ε 0   1/2   εi εf Randomness  amplificaDon:  improve  the  randomness  of  the  source.   Randomness  amplificaDon  is  impossible  classically.  
  • 49. Randomness  amplificaDon   0   1/2   εi εf Randomness  amplificaDon  is  possible  using  quantum  non-­‐local   correlaDons.  Colbeck  and  Renner     Idea:  use  the  imperfect  source  to  choose  the  inputs  in  a  Bell  test   define  the  final  source  from  the  outputs  of  the  experiment.     Full  randomness  amplificaDon  is  possible:  arbitrarily  weak  random   bits  can  be  mapped  into  arbitrarily  good  random  bits.   Gallego  et  al.  
  • 50. Experimental  realizaDon   •   The  two-­‐box  scenario  is  performed  by  two  atomic  parDcles  located  in  two  distant   traps.   •   Using  our  theoreDcal  techniques,  we  can  cerDfy  that  42  new  random  bits  are   generated  in  the  experiment.   • It  is  the  first  Dme  that  randomness  generaDon  is  cerDfied  without  making  any   detailed  assumpDon  about  the  internal  working  of  the  devices.   •   Similar  Bell  experiments  with  photons  have  recently  been  performed.  
  • 51. NIST  Randomness  Beacon   NIST  is  implemenDng  a  source  of  public  randomness.  The  service  (at  h^ps:// beacon.nist.gov/home)  uses  two  independent  commercially  available  sources   of  randomness,  each  with  an  independent  hardware  entropy  source  and  SP   800-­‐90-­‐approved  components.   Commercially  available  physical  sources  of  randomness  are  adequate  as   entropy  sources  for  currently  envisioned  applicaDons  of  the  Beacon.  However,   demonstrably  unpredictable  values  are  not  possible  to  obtain  in  any  classical   physical  context.  Given  this  fact,  our  team  established  a  collaboraDon  with  NIST   physicists  from  the  Physical  Measurement  Laboratory  (PML).  The  aim  is  to  use   quantum  effects  to  generate  a  sequence  of  truly  random  values,  guaranteed  to   be  unpredictable,  even  if  an  a^acker  has  access  to  the  random  source.  In   August  2012,  this  project  was  awarded  a  mulD-­‐year  grant  from  NIST's   InnovaDons  in  Measurement  Science  (IMS)  Program.  
  • 52. NIST  Randomness  Beacon   Bell  cer5fied  randomess!  
  • 53. Conclusions   •  Randomness  can  be  cerDfied  using  the  non-­‐local  correlaDons  observed  when   measuring  quantum  states.   •  The  cerDficaDon  is  device-­‐independent:  it  does  not  rely  on  any  assumpDon  on  the   internal  working  of  the  devices.   •  The  argument  requires  two  different  devices.     •  Independent  (random?)  inputs  are  needed  to  define  the  two  different  devices.   This  requirement  may  introduce  some  circularity  in  the  argument.   •  Despite  this  circularity,  using  non-­‐local  quantum  correlaDons  randomness  can  be   arbitrarily  expanded  or  amplified.     •  The  device-­‐independent  approach  can  be  used  to  design  novel  devices  producing   cer5fied  quantum  randomness.