SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Kedar Nath DasKedar Nath Das
Hybrid Binary Coded GA for
Constrained Optimization
NIT SILCHAR, ASSAM,
INDIA
MOST GENERAL OPTIMIZATION PROBLEM
Minimize (Maximize) f (X),
where
s.t. X∈S ⊆ , where S is defined
by
( )nxxxX ...,,2,1=
RRf n
→:
n
R
.,........,2,1
,.......,2,10)(
;,......,2,10)(
niforbxa
ljforxg
mkforxh
iii
j
k
=≤≤
=≥
==
DETERMINISTIC
APPROACH
To Find the Global Optimal Solution
PROBABILISTIC
APPROACH
1. Genetic Algorithm
2. Memetic Algorithm
3. Random Search Methods
4. Tabu Search
5. Ant Colony Optimization
6. Particle Swarm Optimization,
etc…..
Approaches
Many
Working Principle of GA
 Encoding
 Selection
 Crossover
 Mutation
 Elitism (Opt.)
Repetition
a) Roulette Wheel
Selection
USED GA OPERATORS
b) Tournament
Selection
Mating
pool
30
23
37
24
38
26
37
20
23
24
20 26
BEFORE CROSS-OVER AFTER CROSS-OVER
101011
=s
001012
=s
001011
=
′
s
101012
=
′
s
c) One Point Cross-Over
d) Uniform Cross-Over
BEFORE CROSS-OVER AFTER CROSS-OVER
001002
=s
100011
=s
100012
=
′
s
001001
=
′
s
BEFORE MUTATION AFTER MUTATION
1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0
e) Bit-Wise Mutation
f) Elitism
12
17
18
2
45
2
12
8
20
41
2
2
8
12
20
Bigin of a
GA cycle End of the
GA cycle
Process of
Elitism
After
Mutation
Quadratic Approximation
(Hybridization)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 







−+−+−
−+−+−
321213132
3
2
2
2
12
2
1
2
31
2
3
2
2
)()(
)()(
RfRRRfRRRfRR
RfRRRfRRRfRR
 Find the point of minima (child) of the quadratic
surface passing through R1, R2 and R3 defined as:
Child = 0.5*
 Select the individuals R1, with the best fitness value.
Choose two random individuals R2 and R3.
Selection StrategySelection Strategy
forfor
ConstrainedConstrained
OptimizationOptimization
(A) Selection Strategy for Mating(A) Selection Strategy for Mating
PoolPool
• Roulette Wheel
Selection
• Penalty Parameter:
• Fitness:
where
(B) Selection Strategy for Best(B) Selection Strategy for Best
Individuals in a population:Individuals in a population:
Tournament Selection
1
2
3
The feasible solution
5
6
1 4
5
x1
x2 The feasible domain
1
2
3
The feasible solution
5
6
1 4
5
x1
x2 The feasible domain
1
2
3
The feasible solution
5
6
1 4
5
x1
x2 The feasible domain
1
2
3
The feasible solution
5
6
1 4
5
1
2
3
The feasible solution
5
6
1 4
5
The feasible solution
5
6
1 4
5
x1
x2 The feasible domain
4
Step 1: Begin with a random population (P) of size 10*N
Step 2: Evaluation fitness of P(t)
Step3: Stop if it satisfies the stopping criteria
Step 4: Select the individuals taking the tournament
selection strategy
Step 5: Apply Single Point Crossover
Step 6: Apply Bitwise Mutation
Step 7: Hybridize with Quadratic Approximation
Step 8: Apply Complete Elitism through tournament
selection
Methodology of HBGA-Methodology of HBGA-
CC
BGA: Pc – Pm
performance
Pm
Pc
0.6 0.7 0.8 0.9
0.001 0.6208 0.6399 0.6293 0.6396
0.005 0.7962 0.8381 0.8111 0.8259
0.009 0.8407 0.8854 0.8613 0.8914
0.013 0.8757 0.8722 0.8887 0.9065
HBGA: Pc – Pm
performance
Pm
Pc
0.6 0.7 0.8 0.9
0.001 0.8000 0.8455 0.8426 0.8258
0.005 0.9175 0.9149 0.8896 0.8761
0.009 0.9030 0.9062 0.9144 0.8960
0.013 0.8864 0.8974 0.9095 0.8944
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Pc=0.6 Pc=0.7 Pc=0.8 Pc=0.9
Performance
Pm=0.001 Pm=0.005
Pm=0.009 Pm=0.013
Finetune for BGA-C
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Pc=0.6 Pc=0.7 Pc=0.8 Pc=0.9
Performance
Pm=0.001 Pm=0.005
Pm=0.009 Pm=0.013
Finetune for HBGA-C
Recommended Values
for Pc and Pm:
Method Pc Pm
BGA-C 0.9 0.013
HBGA-C 0.6 0.005
RESULTRESULT
SS
P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C
1 98 100 14 5 39
2 4 51 15 2 2
3 9 5 16 71 15
4 9 92 17 12 7
5 3 7 18 5 41
6 5 7 19 49 74
7 16 17 20 49 65
8 11 49 21 77 100
9 100 100 22 99 100
10 0 4 23 2 2
11 100 100 24 26 9
12 70 100 25 8 4
13 11 27
Success RateSuccess Rate
P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C
1 30967 27046 14 10436 10168
2 38400 33494 15 12380 10420
3 11155 10392 16 10492 10258
4 50835 53256 17 29875 27142
5 35120 34602 18 36516 32784
6 10660 10337 19 41669 39396
7 10901 10261 20 78114 56984
8 25356 25491 21 10296 10234
9 10246 10093 22 10675 10042
10 * 10760 23 10250 10150
11 10540 10176 24 12620 11526
12 13649 10807 25 87642 87945
13 10709 11455
No. of Function CallsNo. of Function Calls
P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C
1 -320.000 -320.000 14 -0.096 -0.096
2 -308.484 -309.045 15 -6995.746 -6933.303
3 13.595 13.638 16 1.001 1.003
4 685.126 682.839 17 -17.000 -17.000
5 -11.983 -11.966 18 -211.557 -212.007
6 -5.480 -5.474 19 -10.965 -10.969
7 -16.727 -16.770 20 -39.000 -39.000
8 5136.792 5135.532 21 0.000 0.000
9 -1.000 -1.000 22 -2.214 -2.214
10 * -0.995 23 0.126 0.126
11 -1.000 -1.000 24 0.082 0.082
12 0.250 0.250 25 8810.958 8846.122
13 0.501 0.501
Mean FunctionMean Function
ValuesValues
P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C
1 0.000 0.000 14 0.001 0.000
2 0.936 0.852 15 27.801 24.068
3 0.034 0.054 16 1.001 0.003
4 1.573 1.464 17 0.000 0.000
5 0.065 0.059 18 0.563 0.634
6 0.013 0.012 19 0.031 0.030
7 0.099 0.077 20 0.000 0.000
8 18.396 18.598 21 0.000 0.000
9 0.000 0.000 22 0.001 0.000
10 * 0.002 23 0.000 0.001
11 0.000 0.000 24 0.000 0.000
12 0.000 0.000 25 48.682 43.279
13 0.002 0.001
S.S.
D.D.
P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C
1 2.5799 2.3244 14 0.3376 0.4536
2 3.66 3.5825 15 0.422 0.422
3 0.3766 0.3812 16 0.3294 0.3687
4 6.1008 7.3675 17 2.4725 2.3703
5 3.3747 4.0133 18 3.5562 3.4954
6 0.3622 0.4153 19 4.0959 4.1448
7 0.3672 0.4098 20 13.2076 9.7502
8 1.7356 1.9778 21 0.3442 0
9 0.3717 0.4044 22 0.3527 0.3674
10 * 0.4258 23 0.336 0.3675
11 0.3705 0.4106 24 0.4267 0.4479
12 0.4632 0.4177 25 16.791 17.3633
13 0.3639 0.4681
TimTim
ee
Analysis of ResultsAnalysis of Results
Sl. Sense Better Tie Worse
1 Success Rate 17 4 4
2 Ave. Fun. Calls 21 0 4
3 Mean Obj. fun. Value 11 8 6
4 S. D. 14 5 6
5 Time 7 1 17
HBGA-C Vs. BGA-CHBGA-C Vs. BGA-C
HBGA-C is………HBGA-C is………
………….than BGA-C.than BGA-C
ConclusioConclusio
nn
 HBGA-C >>> BGA-CHBGA-C >>> BGA-C
(in more percentage of success)(in more percentage of success)
 HBGA-C >>> BGA-CHBGA-C >>> BGA-C
(in less no. of function evaluation)(in less no. of function evaluation)
 HBGA-C >>> BGA-C (in less S. D.)HBGA-C >>> BGA-C (in less S. D.)
 HBGA-C >>> BGA-CHBGA-C >>> BGA-C
(in better obj. fun. value)(in better obj. fun. value)
 HBGA-C <<< BGA-C (in time)HBGA-C <<< BGA-C (in time)
References:
[1] A. Osyczka, S. Krenich and S. Kundu. Proportional and Tournament
Selections for Constrained Optimization Problems using GAs. Evolutionary
Optimization, an Int. Jr. on the internet, 1(1): pp. 89-92, 1999.
[2] A. Osyczka. Evolutionary Algorithms for Single and Multi-criteria Design
Optimization, Physica-Verlag Heidelberg, New York, 2002.
[3] C. A. Coella and M. E. Mezura. Constraint-Handling in Genetic Algorithms
through the use of dominance-based tournament selection. Advance Engineering
Informatics, 16: pp. 193-203, 2002.
[4] D. Orvosh and L. Davis. Using a Genetic Algorithm to Optimize problems
with Feasibility Constraints. Proceeding of the Sixth Int. Conf. on Gas, Echelman,
L. J. Ed., pp. 548-552, 1995.
[5] H. Myung and J. H. Kim. Hybrid Evolutionary Programming for Heavily
Constrained Problems. Bio-Systems, 38, pp. 29-43, 1996.
[6] J. H. Kim and H. Myung. A Two Phase Evolutionary Programming for
general Constrained Optimization Problem. Proceedings of the Fifth Annual Conf.
on Evolutionary Programming, San Diego, 1996.
[7] K. Deb and S. Agarwal. A Niched-Penalty Approach for Constraint
Handling GAs, Proceeding of the ICANNGA, Portoroz, Slovenia, 1999.
[8] K. Deb. A Robust Optimal Design Technique Component Design in
Evolutionary Algorithms in Engineering Applications. Springer Verlag, pp. 497-514,
1997.
[9] K. Deb. Optimization for Engineering Design: Algorithms and
Examples, Prentice-Hall of India, NewDelhi, 1995.
[10] K. Deep and K. N. Das. Choice of selection and crossover on some
Benchmark problems. Int. Jr. of Computer, Mathematical Sciences and
Applications, Vol.1, No. 1, 99-117, 2007.
[11] K. Deep and K. N. Das. Quadratic approximation based Hybrid
Genetic Algorithm for Function Optimization. AMC, Elsevier, Vol. 203: 86-98,
2008.
[12] K. N. Das. Design and Applications of Hybrid Genetic Algorithms for
Function Optimization. PhD thesis, Indian Institute of Technology, Roorkee,
India, Dec. 2007 .
[13] S. Akhtar, K. Tai and T. Ray. A Socio-Behavioural Simulation Model
for Engineering Design Optimization, 34(4): pp.341-354, 2002.
[14] S. Kundu and A. Osyczka. Genetic Multi-criteria Optimization of
structural systems. Proceedings of the 19th ICTAM, Kyoto, Japan, IUTAM,
272, 1996.
[15] Z. Michalewicz. Genetic Algorithms, Numerical Optimization and
Constraints. Proceedings of Sixth Int. Conf. on Genetic Algorithms, Echelman
L. J. Ed., pp. 151-158, 1995.
P1121103467

Weitere ähnliche Inhalte

Andere mochten auch (8)

P1121352313
P1121352313P1121352313
P1121352313
 
El hockey
El hockeyEl hockey
El hockey
 
E C G Part 1
E C G  Part 1E C G  Part 1
E C G Part 1
 
quicloud Apr 20 2010 Boulder New Tech Presentation
quicloud Apr 20 2010 Boulder New Tech Presentationquicloud Apr 20 2010 Boulder New Tech Presentation
quicloud Apr 20 2010 Boulder New Tech Presentation
 
P1121340296
P1121340296P1121340296
P1121340296
 
Ryan's photo slide
Ryan's photo slideRyan's photo slide
Ryan's photo slide
 
Digital photography
Digital photographyDigital photography
Digital photography
 
E C G Part 4
E C G  Part 4E C G  Part 4
E C G Part 4
 

Ähnlich wie P1121103467

Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodologyCHUN-HAO KUNG
 
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using FeaIRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using FeaIRJET Journal
 
Lazy Join Optimizations Without Upfront Statistics with Matteo Interlandi
Lazy Join Optimizations Without Upfront Statistics with Matteo InterlandiLazy Join Optimizations Without Upfront Statistics with Matteo Interlandi
Lazy Join Optimizations Without Upfront Statistics with Matteo InterlandiDatabricks
 
MAtrix Multiplication Parallel.ppsx
MAtrix Multiplication Parallel.ppsxMAtrix Multiplication Parallel.ppsx
MAtrix Multiplication Parallel.ppsxBharathiLakshmiAAssi
 
Future of Xiaomi in Indian Market
Future of Xiaomi in Indian MarketFuture of Xiaomi in Indian Market
Future of Xiaomi in Indian MarketSoochna Sahu
 
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...RISC-V International
 
re:Invent 2019 BPF Performance Analysis at Netflix
re:Invent 2019 BPF Performance Analysis at Netflixre:Invent 2019 BPF Performance Analysis at Netflix
re:Invent 2019 BPF Performance Analysis at NetflixBrendan Gregg
 
TMPA-2017: Defect Report Classification in Accordance with Areas of Testing
TMPA-2017: Defect Report Classification in Accordance with Areas of TestingTMPA-2017: Defect Report Classification in Accordance with Areas of Testing
TMPA-2017: Defect Report Classification in Accordance with Areas of TestingIosif Itkin
 
Optimization of micro machining processes
Optimization of micro machining processesOptimization of micro machining processes
Optimization of micro machining processeskulk0003
 
Ag o product overview
Ag o product overviewAg o product overview
Ag o product overviewManoj Nagesh
 
Scrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryScrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryDr. Bikram Jit Singh
 
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介Masayuki Matsushita
 
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...NVIDIA Taiwan
 
A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...
A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...
A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...NECST Lab @ Politecnico di Milano
 
An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...NECST Lab @ Politecnico di Milano
 

Ähnlich wie P1121103467 (20)

Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodology
 
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using FeaIRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
 
Lazy Join Optimizations Without Upfront Statistics with Matteo Interlandi
Lazy Join Optimizations Without Upfront Statistics with Matteo InterlandiLazy Join Optimizations Without Upfront Statistics with Matteo Interlandi
Lazy Join Optimizations Without Upfront Statistics with Matteo Interlandi
 
MAtrix Multiplication Parallel.ppsx
MAtrix Multiplication Parallel.ppsxMAtrix Multiplication Parallel.ppsx
MAtrix Multiplication Parallel.ppsx
 
matrixmultiplicationparallel.ppsx
matrixmultiplicationparallel.ppsxmatrixmultiplicationparallel.ppsx
matrixmultiplicationparallel.ppsx
 
Future of Xiaomi in Indian Market
Future of Xiaomi in Indian MarketFuture of Xiaomi in Indian Market
Future of Xiaomi in Indian Market
 
Dmaic
DmaicDmaic
Dmaic
 
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
 
Six sigma technique
Six sigma techniqueSix sigma technique
Six sigma technique
 
re:Invent 2019 BPF Performance Analysis at Netflix
re:Invent 2019 BPF Performance Analysis at Netflixre:Invent 2019 BPF Performance Analysis at Netflix
re:Invent 2019 BPF Performance Analysis at Netflix
 
Gg3611321138
Gg3611321138Gg3611321138
Gg3611321138
 
TMPA-2017: Defect Report Classification in Accordance with Areas of Testing
TMPA-2017: Defect Report Classification in Accordance with Areas of TestingTMPA-2017: Defect Report Classification in Accordance with Areas of Testing
TMPA-2017: Defect Report Classification in Accordance with Areas of Testing
 
Optimization of micro machining processes
Optimization of micro machining processesOptimization of micro machining processes
Optimization of micro machining processes
 
Ag o product overview
Ag o product overviewAg o product overview
Ag o product overview
 
Scrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryScrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundry
 
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
クラウドDWHとしても進化を続けるPivotal Greenplumご紹介
 
Introduction to Genetic algorithm and its significance in VLSI design and aut...
Introduction to Genetic algorithm and its significance in VLSI design and aut...Introduction to Genetic algorithm and its significance in VLSI design and aut...
Introduction to Genetic algorithm and its significance in VLSI design and aut...
 
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
Recent Progress in SCCS on GPU Simulation of Biomedical and Hydrodynamic Prob...
 
A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...
A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...
A Parallel, Energy Efficient Hardware Architecture for the merAligner on FPGA...
 
An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...
 

Mehr von Ashraf Aboshosha (20)

P1151351311
P1151351311P1151351311
P1151351311
 
P1151345302
P1151345302P1151345302
P1151345302
 
P1121340294
P1121340294P1121340294
P1121340294
 
P1121327289
P1121327289P1121327289
P1121327289
 
P1151442348
P1151442348P1151442348
P1151442348
 
P1151442347
P1151442347P1151442347
P1151442347
 
P1151439345
P1151439345P1151439345
P1151439345
 
P1151424332
P1151424332P1151424332
P1151424332
 
P1151423331
P1151423331P1151423331
P1151423331
 
P1151420328
P1151420328P1151420328
P1151420328
 
P1151418327
P1151418327P1151418327
P1151418327
 
P1151404314
P1151404314P1151404314
P1151404314
 
P1111351312
P1111351312P1111351312
P1111351312
 
P1111444352
P1111444352P1111444352
P1111444352
 
P1111440346
P1111440346P1111440346
P1111440346
 
P1111431335
P1111431335P1111431335
P1111431335
 
P1111410320
P1111410320P1111410320
P1111410320
 
P1111410321
P1111410321P1111410321
P1111410321
 
P1111350310
P1111350310P1111350310
P1111350310
 
P1111348307
P1111348307P1111348307
P1111348307
 

P1121103467

  • 1. Kedar Nath DasKedar Nath Das Hybrid Binary Coded GA for Constrained Optimization NIT SILCHAR, ASSAM, INDIA
  • 2. MOST GENERAL OPTIMIZATION PROBLEM Minimize (Maximize) f (X), where s.t. X∈S ⊆ , where S is defined by ( )nxxxX ...,,2,1= RRf n →: n R .,........,2,1 ,.......,2,10)( ;,......,2,10)( niforbxa ljforxg mkforxh iii j k =≤≤ =≥ ==
  • 3. DETERMINISTIC APPROACH To Find the Global Optimal Solution PROBABILISTIC APPROACH 1. Genetic Algorithm 2. Memetic Algorithm 3. Random Search Methods 4. Tabu Search 5. Ant Colony Optimization 6. Particle Swarm Optimization, etc….. Approaches Many
  • 4. Working Principle of GA  Encoding  Selection  Crossover  Mutation  Elitism (Opt.) Repetition
  • 5. a) Roulette Wheel Selection USED GA OPERATORS b) Tournament Selection Mating pool 30 23 37 24 38 26 37 20 23 24 20 26
  • 6. BEFORE CROSS-OVER AFTER CROSS-OVER 101011 =s 001012 =s 001011 = ′ s 101012 = ′ s c) One Point Cross-Over d) Uniform Cross-Over BEFORE CROSS-OVER AFTER CROSS-OVER 001002 =s 100011 =s 100012 = ′ s 001001 = ′ s
  • 7. BEFORE MUTATION AFTER MUTATION 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 e) Bit-Wise Mutation f) Elitism 12 17 18 2 45 2 12 8 20 41 2 2 8 12 20 Bigin of a GA cycle End of the GA cycle Process of Elitism After Mutation
  • 8. Quadratic Approximation (Hybridization) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )         −+−+− −+−+− 321213132 3 2 2 2 12 2 1 2 31 2 3 2 2 )()( )()( RfRRRfRRRfRR RfRRRfRRRfRR  Find the point of minima (child) of the quadratic surface passing through R1, R2 and R3 defined as: Child = 0.5*  Select the individuals R1, with the best fitness value. Choose two random individuals R2 and R3.
  • 10. (A) Selection Strategy for Mating(A) Selection Strategy for Mating PoolPool • Roulette Wheel Selection • Penalty Parameter: • Fitness: where
  • 11. (B) Selection Strategy for Best(B) Selection Strategy for Best Individuals in a population:Individuals in a population: Tournament Selection
  • 12. 1 2 3 The feasible solution 5 6 1 4 5 x1 x2 The feasible domain 1 2 3 The feasible solution 5 6 1 4 5 x1 x2 The feasible domain 1 2 3 The feasible solution 5 6 1 4 5 x1 x2 The feasible domain 1 2 3 The feasible solution 5 6 1 4 5 1 2 3 The feasible solution 5 6 1 4 5 The feasible solution 5 6 1 4 5 x1 x2 The feasible domain 4
  • 13. Step 1: Begin with a random population (P) of size 10*N Step 2: Evaluation fitness of P(t) Step3: Stop if it satisfies the stopping criteria Step 4: Select the individuals taking the tournament selection strategy Step 5: Apply Single Point Crossover Step 6: Apply Bitwise Mutation Step 7: Hybridize with Quadratic Approximation Step 8: Apply Complete Elitism through tournament selection Methodology of HBGA-Methodology of HBGA- CC
  • 14. BGA: Pc – Pm performance Pm Pc 0.6 0.7 0.8 0.9 0.001 0.6208 0.6399 0.6293 0.6396 0.005 0.7962 0.8381 0.8111 0.8259 0.009 0.8407 0.8854 0.8613 0.8914 0.013 0.8757 0.8722 0.8887 0.9065
  • 15. HBGA: Pc – Pm performance Pm Pc 0.6 0.7 0.8 0.9 0.001 0.8000 0.8455 0.8426 0.8258 0.005 0.9175 0.9149 0.8896 0.8761 0.009 0.9030 0.9062 0.9144 0.8960 0.013 0.8864 0.8974 0.9095 0.8944
  • 16. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Pc=0.6 Pc=0.7 Pc=0.8 Pc=0.9 Performance Pm=0.001 Pm=0.005 Pm=0.009 Pm=0.013 Finetune for BGA-C
  • 17. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Pc=0.6 Pc=0.7 Pc=0.8 Pc=0.9 Performance Pm=0.001 Pm=0.005 Pm=0.009 Pm=0.013 Finetune for HBGA-C
  • 18. Recommended Values for Pc and Pm: Method Pc Pm BGA-C 0.9 0.013 HBGA-C 0.6 0.005
  • 20. P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C 1 98 100 14 5 39 2 4 51 15 2 2 3 9 5 16 71 15 4 9 92 17 12 7 5 3 7 18 5 41 6 5 7 19 49 74 7 16 17 20 49 65 8 11 49 21 77 100 9 100 100 22 99 100 10 0 4 23 2 2 11 100 100 24 26 9 12 70 100 25 8 4 13 11 27 Success RateSuccess Rate
  • 21. P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C 1 30967 27046 14 10436 10168 2 38400 33494 15 12380 10420 3 11155 10392 16 10492 10258 4 50835 53256 17 29875 27142 5 35120 34602 18 36516 32784 6 10660 10337 19 41669 39396 7 10901 10261 20 78114 56984 8 25356 25491 21 10296 10234 9 10246 10093 22 10675 10042 10 * 10760 23 10250 10150 11 10540 10176 24 12620 11526 12 13649 10807 25 87642 87945 13 10709 11455 No. of Function CallsNo. of Function Calls
  • 22. P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C 1 -320.000 -320.000 14 -0.096 -0.096 2 -308.484 -309.045 15 -6995.746 -6933.303 3 13.595 13.638 16 1.001 1.003 4 685.126 682.839 17 -17.000 -17.000 5 -11.983 -11.966 18 -211.557 -212.007 6 -5.480 -5.474 19 -10.965 -10.969 7 -16.727 -16.770 20 -39.000 -39.000 8 5136.792 5135.532 21 0.000 0.000 9 -1.000 -1.000 22 -2.214 -2.214 10 * -0.995 23 0.126 0.126 11 -1.000 -1.000 24 0.082 0.082 12 0.250 0.250 25 8810.958 8846.122 13 0.501 0.501 Mean FunctionMean Function ValuesValues
  • 23. P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C 1 0.000 0.000 14 0.001 0.000 2 0.936 0.852 15 27.801 24.068 3 0.034 0.054 16 1.001 0.003 4 1.573 1.464 17 0.000 0.000 5 0.065 0.059 18 0.563 0.634 6 0.013 0.012 19 0.031 0.030 7 0.099 0.077 20 0.000 0.000 8 18.396 18.598 21 0.000 0.000 9 0.000 0.000 22 0.001 0.000 10 * 0.002 23 0.000 0.001 11 0.000 0.000 24 0.000 0.000 12 0.000 0.000 25 48.682 43.279 13 0.002 0.001 S.S. D.D.
  • 24. P. N. BGA-C HBGA-C P. N. BGA-C HBGA-C 1 2.5799 2.3244 14 0.3376 0.4536 2 3.66 3.5825 15 0.422 0.422 3 0.3766 0.3812 16 0.3294 0.3687 4 6.1008 7.3675 17 2.4725 2.3703 5 3.3747 4.0133 18 3.5562 3.4954 6 0.3622 0.4153 19 4.0959 4.1448 7 0.3672 0.4098 20 13.2076 9.7502 8 1.7356 1.9778 21 0.3442 0 9 0.3717 0.4044 22 0.3527 0.3674 10 * 0.4258 23 0.336 0.3675 11 0.3705 0.4106 24 0.4267 0.4479 12 0.4632 0.4177 25 16.791 17.3633 13 0.3639 0.4681 TimTim ee
  • 25. Analysis of ResultsAnalysis of Results Sl. Sense Better Tie Worse 1 Success Rate 17 4 4 2 Ave. Fun. Calls 21 0 4 3 Mean Obj. fun. Value 11 8 6 4 S. D. 14 5 6 5 Time 7 1 17 HBGA-C Vs. BGA-CHBGA-C Vs. BGA-C HBGA-C is………HBGA-C is……… ………….than BGA-C.than BGA-C
  • 26. ConclusioConclusio nn  HBGA-C >>> BGA-CHBGA-C >>> BGA-C (in more percentage of success)(in more percentage of success)  HBGA-C >>> BGA-CHBGA-C >>> BGA-C (in less no. of function evaluation)(in less no. of function evaluation)  HBGA-C >>> BGA-C (in less S. D.)HBGA-C >>> BGA-C (in less S. D.)  HBGA-C >>> BGA-CHBGA-C >>> BGA-C (in better obj. fun. value)(in better obj. fun. value)  HBGA-C <<< BGA-C (in time)HBGA-C <<< BGA-C (in time)
  • 27. References: [1] A. Osyczka, S. Krenich and S. Kundu. Proportional and Tournament Selections for Constrained Optimization Problems using GAs. Evolutionary Optimization, an Int. Jr. on the internet, 1(1): pp. 89-92, 1999. [2] A. Osyczka. Evolutionary Algorithms for Single and Multi-criteria Design Optimization, Physica-Verlag Heidelberg, New York, 2002. [3] C. A. Coella and M. E. Mezura. Constraint-Handling in Genetic Algorithms through the use of dominance-based tournament selection. Advance Engineering Informatics, 16: pp. 193-203, 2002. [4] D. Orvosh and L. Davis. Using a Genetic Algorithm to Optimize problems with Feasibility Constraints. Proceeding of the Sixth Int. Conf. on Gas, Echelman, L. J. Ed., pp. 548-552, 1995. [5] H. Myung and J. H. Kim. Hybrid Evolutionary Programming for Heavily Constrained Problems. Bio-Systems, 38, pp. 29-43, 1996. [6] J. H. Kim and H. Myung. A Two Phase Evolutionary Programming for general Constrained Optimization Problem. Proceedings of the Fifth Annual Conf. on Evolutionary Programming, San Diego, 1996. [7] K. Deb and S. Agarwal. A Niched-Penalty Approach for Constraint Handling GAs, Proceeding of the ICANNGA, Portoroz, Slovenia, 1999. [8] K. Deb. A Robust Optimal Design Technique Component Design in Evolutionary Algorithms in Engineering Applications. Springer Verlag, pp. 497-514, 1997.
  • 28. [9] K. Deb. Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall of India, NewDelhi, 1995. [10] K. Deep and K. N. Das. Choice of selection and crossover on some Benchmark problems. Int. Jr. of Computer, Mathematical Sciences and Applications, Vol.1, No. 1, 99-117, 2007. [11] K. Deep and K. N. Das. Quadratic approximation based Hybrid Genetic Algorithm for Function Optimization. AMC, Elsevier, Vol. 203: 86-98, 2008. [12] K. N. Das. Design and Applications of Hybrid Genetic Algorithms for Function Optimization. PhD thesis, Indian Institute of Technology, Roorkee, India, Dec. 2007 . [13] S. Akhtar, K. Tai and T. Ray. A Socio-Behavioural Simulation Model for Engineering Design Optimization, 34(4): pp.341-354, 2002. [14] S. Kundu and A. Osyczka. Genetic Multi-criteria Optimization of structural systems. Proceedings of the 19th ICTAM, Kyoto, Japan, IUTAM, 272, 1996. [15] Z. Michalewicz. Genetic Algorithms, Numerical Optimization and Constraints. Proceedings of Sixth Int. Conf. on Genetic Algorithms, Echelman L. J. Ed., pp. 151-158, 1995.