SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Lecture 10/14/09 Energy, cellular respiration and photosynthesis
[object Object],Copyright © 2009 Pearson Education, Inc.
5.10 Cells transform energy as they perform work ,[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
5.10 Cells transform energy as they perform work ,[object Object],[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
5.10 Cells transform energy as they perform work ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
5.10 Cells transform energy as they perform work ,[object Object],[object Object],Copyright © 2009 Pearson Education, Inc. Animation:  Energy Concepts
 
 
 
5.11 Two laws govern energy transformations ,[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
5.11 Two laws govern energy transformations ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Fuel Gasoline Energy conversion in a cell Energy for cellular work Cellular respiration Waste products Energy conversion Combustion Energy conversion in a car Oxygen Heat Glucose Oxygen Water Carbon dioxide Water Carbon dioxide Kinetic energy of movement Heat energy
Fuel Gasoline Waste products Energy conversion Combustion Energy conversion in a car Oxygen Water Carbon dioxide Kinetic energy of movement Heat energy
Energy conversion in a cell Energy for cellular work Cellular respiration Heat Glucose Oxygen Water Carbon dioxide Fuel Energy conversion Waste products
5.12 Chemical reactions either release or store energy ,[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Reactants Amount of energy released Potential energy of molecules Energy released Products
5.12 Chemical reactions either release or store energy ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Reactants Potential energy of molecules Energy required Products Amount of energy required
5.12 Chemical reactions either release or store energy ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
5.12 Chemical reactions either release or store energy ,[object Object],[object Object],[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
[object Object],[object Object],[object Object],5.13 ATP shuttles chemical energy and drives cellular work Copyright © 2009 Pearson Education, Inc.
5.13 ATP shuttles chemical energy and drives cellular work ,[object Object],[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Ribose Adenine Triphosphate  (ATP) Adenosine Phosphate group
Ribose Adenine Triphosphate  (ATP) Adenosine Phosphate group Hydrolysis Diphosphate  (ADP) Adenosine 
Chemical work Solute transported Molecule formed Product Reactants Motor protein Membrane protein Solute Transport work Mechanical work Protein moved
5.13 ATP shuttles chemical energy and drives cellular work ,[object Object],[object Object],Copyright © 2009 Pearson Education, Inc.
Energy from exergonic reactions Energy for endergonic reactions Phosphorylation Hydrolysis
[object Object],[object Object],[object Object],[object Object],You should now be able to Copyright © 2009 Pearson Education, Inc.

Weitere ähnliche Inhalte

Was ist angesagt?

Energy transformations in cells
Energy transformations in cellsEnergy transformations in cells
Energy transformations in cells
Ian Anderson
 
High energy compounds
High energy compounds High energy compounds
High energy compounds
Poonam Bhatia
 
Metabolic functions
Metabolic functionsMetabolic functions
Metabolic functions
frwalsh33
 
Bioenergetics MohanBio
Bioenergetics MohanBioBioenergetics MohanBio
Bioenergetics MohanBio
mohan bio
 
Photosynthesis and Cellular Respiration (An Introduction)
Photosynthesis and Cellular Respiration (An Introduction)Photosynthesis and Cellular Respiration (An Introduction)
Photosynthesis and Cellular Respiration (An Introduction)
Transition Academy
 
Assignment On Bioenergetics
Assignment On BioenergeticsAssignment On Bioenergetics
Assignment On Bioenergetics
Mugdha Padhye
 

Was ist angesagt? (19)

ATP
ATPATP
ATP
 
Metabolism Presentation
Metabolism PresentationMetabolism Presentation
Metabolism Presentation
 
ATP cycle
ATP cycleATP cycle
ATP cycle
 
Energy transformations in cells
Energy transformations in cellsEnergy transformations in cells
Energy transformations in cells
 
bioenergetics
bioenergeticsbioenergetics
bioenergetics
 
High energy compounds
High energy compounds High energy compounds
High energy compounds
 
An introduction to metabolism
An introduction to metabolismAn introduction to metabolism
An introduction to metabolism
 
Metabolic functions
Metabolic functionsMetabolic functions
Metabolic functions
 
Energy and metabolism
Energy and metabolismEnergy and metabolism
Energy and metabolism
 
Bioenergetics MohanBio
Bioenergetics MohanBioBioenergetics MohanBio
Bioenergetics MohanBio
 
Metabolism Presentation 2016
Metabolism Presentation 2016Metabolism Presentation 2016
Metabolism Presentation 2016
 
Bioenergetics [autosaved]
Bioenergetics [autosaved]Bioenergetics [autosaved]
Bioenergetics [autosaved]
 
Photosynthesis and Cellular Respiration (An Introduction)
Photosynthesis and Cellular Respiration (An Introduction)Photosynthesis and Cellular Respiration (An Introduction)
Photosynthesis and Cellular Respiration (An Introduction)
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
Cell bioenergentices
Cell bioenergenticesCell bioenergentices
Cell bioenergentices
 
8.1 How Organisms Obtain Energy 2014
8.1 How Organisms Obtain Energy 20148.1 How Organisms Obtain Energy 2014
8.1 How Organisms Obtain Energy 2014
 
Respiration
RespirationRespiration
Respiration
 
Medicine Lvl 1 Biochemistry: ENZYMES AND BIOENERGETICS
Medicine Lvl 1 Biochemistry: ENZYMES AND BIOENERGETICSMedicine Lvl 1 Biochemistry: ENZYMES AND BIOENERGETICS
Medicine Lvl 1 Biochemistry: ENZYMES AND BIOENERGETICS
 
Assignment On Bioenergetics
Assignment On BioenergeticsAssignment On Bioenergetics
Assignment On Bioenergetics
 

Andere mochten auch (8)

Full notes on kinetic particle theory
Full notes on kinetic particle theoryFull notes on kinetic particle theory
Full notes on kinetic particle theory
 
comprehensive guide on kinetic particle theory for o level
comprehensive guide on kinetic particle theory for o levelcomprehensive guide on kinetic particle theory for o level
comprehensive guide on kinetic particle theory for o level
 
Chapter 24 Conduction
Chapter 24 ConductionChapter 24 Conduction
Chapter 24 Conduction
 
Weather Energy And Heat Transfer
Weather Energy And Heat TransferWeather Energy And Heat Transfer
Weather Energy And Heat Transfer
 
Conduction ppt
Conduction pptConduction ppt
Conduction ppt
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
Types of Energy
Types of EnergyTypes of Energy
Types of Energy
 
Energy
EnergyEnergy
Energy
 

Ähnlich wie Lecture 10 14 09(2)

Chapter 6 Powerpoint Le
Chapter 6 Powerpoint LeChapter 6 Powerpoint Le
Chapter 6 Powerpoint Le
guest121530
 
A pc8metabolism ppt
A pc8metabolism pptA pc8metabolism ppt
A pc8metabolism ppt
cinhasler
 
Biology - Chp 8 - Photosynthesis - PowerPoint
Biology - Chp 8 - Photosynthesis - PowerPointBiology - Chp 8 - Photosynthesis - PowerPoint
Biology - Chp 8 - Photosynthesis - PowerPoint
Mr. Walajtys
 
Intro to cellular resp
Intro to cellular respIntro to cellular resp
Intro to cellular resp
Maria Donohue
 
Match the terms to the definitions provided.Question 2 optionsd.pdf
Match the terms to the definitions provided.Question 2 optionsd.pdfMatch the terms to the definitions provided.Question 2 optionsd.pdf
Match the terms to the definitions provided.Question 2 optionsd.pdf
arihantsherwani
 
Week 9 energy, metabolism, and atp (oct 10-13)
Week 9   energy, metabolism, and atp (oct 10-13)Week 9   energy, metabolism, and atp (oct 10-13)
Week 9 energy, metabolism, and atp (oct 10-13)
Transition Academy
 

Ähnlich wie Lecture 10 14 09(2) (20)

chapter8.ppt
chapter8.pptchapter8.ppt
chapter8.ppt
 
Chapter 6 Powerpoint Le
Chapter 6 Powerpoint LeChapter 6 Powerpoint Le
Chapter 6 Powerpoint Le
 
Chapter 25
Chapter 25Chapter 25
Chapter 25
 
Chapter 25
Chapter 25Chapter 25
Chapter 25
 
08 lecture Intro to Metabolism
08 lecture Intro to Metabolism08 lecture Intro to Metabolism
08 lecture Intro to Metabolism
 
Atp production
Atp productionAtp production
Atp production
 
section 1, chapter 4
section 1, chapter 4section 1, chapter 4
section 1, chapter 4
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Metabolism & Cellular Respiration
 Metabolism & Cellular Respiration Metabolism & Cellular Respiration
Metabolism & Cellular Respiration
 
A pc8metabolism ppt
A pc8metabolism pptA pc8metabolism ppt
A pc8metabolism ppt
 
bioenergetics and metabolism.ppt
bioenergetics and metabolism.pptbioenergetics and metabolism.ppt
bioenergetics and metabolism.ppt
 
Biology - Chp 8 - Photosynthesis - PowerPoint
Biology - Chp 8 - Photosynthesis - PowerPointBiology - Chp 8 - Photosynthesis - PowerPoint
Biology - Chp 8 - Photosynthesis - PowerPoint
 
Intro to cellular resp
Intro to cellular respIntro to cellular resp
Intro to cellular resp
 
08 metabolism text
08  metabolism text08  metabolism text
08 metabolism text
 
9.1 Cellular Respiration_ An Overview.pdf
9.1 Cellular Respiration_ An Overview.pdf9.1 Cellular Respiration_ An Overview.pdf
9.1 Cellular Respiration_ An Overview.pdf
 
forjeffpark
forjeffparkforjeffpark
forjeffpark
 
Photo respjeopardy
Photo respjeopardyPhoto respjeopardy
Photo respjeopardy
 
Cellular respiration
Cellular respiration   Cellular respiration
Cellular respiration
 
Match the terms to the definitions provided.Question 2 optionsd.pdf
Match the terms to the definitions provided.Question 2 optionsd.pdfMatch the terms to the definitions provided.Question 2 optionsd.pdf
Match the terms to the definitions provided.Question 2 optionsd.pdf
 
Week 9 energy, metabolism, and atp (oct 10-13)
Week 9   energy, metabolism, and atp (oct 10-13)Week 9   energy, metabolism, and atp (oct 10-13)
Week 9 energy, metabolism, and atp (oct 10-13)
 

Kürzlich hochgeladen

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Kürzlich hochgeladen (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 

Lecture 10 14 09(2)

  • 1. Lecture 10/14/09 Energy, cellular respiration and photosynthesis
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.  
  • 8.  
  • 9.  
  • 10.
  • 11.
  • 12. Fuel Gasoline Energy conversion in a cell Energy for cellular work Cellular respiration Waste products Energy conversion Combustion Energy conversion in a car Oxygen Heat Glucose Oxygen Water Carbon dioxide Water Carbon dioxide Kinetic energy of movement Heat energy
  • 13. Fuel Gasoline Waste products Energy conversion Combustion Energy conversion in a car Oxygen Water Carbon dioxide Kinetic energy of movement Heat energy
  • 14. Energy conversion in a cell Energy for cellular work Cellular respiration Heat Glucose Oxygen Water Carbon dioxide Fuel Energy conversion Waste products
  • 15.
  • 16. Reactants Amount of energy released Potential energy of molecules Energy released Products
  • 17.
  • 18. Reactants Potential energy of molecules Energy required Products Amount of energy required
  • 19.
  • 20.
  • 21.
  • 22.
  • 23. Ribose Adenine Triphosphate (ATP) Adenosine Phosphate group
  • 24. Ribose Adenine Triphosphate (ATP) Adenosine Phosphate group Hydrolysis Diphosphate (ADP) Adenosine 
  • 25. Chemical work Solute transported Molecule formed Product Reactants Motor protein Membrane protein Solute Transport work Mechanical work Protein moved
  • 26.
  • 27. Energy from exergonic reactions Energy for endergonic reactions Phosphorylation Hydrolysis
  • 28.

Hinweis der Redaktion

  1. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face. Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions.
  2. Energy is fundamental to all metabolic processes. Bioenergetics is the study of how energy flows through living organisms. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face. Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions.
  3. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face. Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions.
  4. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. Teaching Tips 1. In our daily lives, we rely upon many energy transformations. On our classroom walls, a clock converts electrical energy to mechanical energy to sweep the hands around the clock’s face. Our physical (mechanical) activities walking to and from the classroom rely upon the chemical energy from our diet. This chemical energy in our diet also helps us maintain a steady body temperature (heat). Consider challenging your students to come up with additional examples of such common energy conversions.
  5. Figure 5.10A Kinetic energy, the energy of motion.
  6. Figure 5.10B Potential energy, stored energy as a result of location or structure.
  7. Figure 5.10C Potential energy being converted to kinetic energy.
  8. Some scientists study matter within a particular system. Some systems are isolated systems because they are unable to exchange energy or matter with their surroundings. An open system allows energy and matter to be transferred between the system and the surroundings. Organisms are open systems. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. All too often we hear or read that some thing or reaction creates energy. We might hear or read that a power plant “produces” energy or that mitochondria “make” energy. Even in our classroom conversations, we may occasionally slip into this error. When discussing the first law of thermodynamics, consider emphasizing the inaccuracy of such statements. 3. Although typically familiar with the concept of dietary calories, students often struggle to think of calories as a source of potential energy. For many students, it is not clear that potential energy is stored in food as calories. Teaching Tips 1. Some students can relate well to the concept of entropy as applied to the room where they live. Despite cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 2. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heater” works very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 3. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30°C (86°F) outside if their core body temperature is 37°C (98.6°F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need, to maintain a core body temperature around 37°C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration.
  9. In the process of carrying out chemical reactions that provide work for the cell, living cells unavoidably convert organized forms of energy to heat. Therefore, living systems increase the entropy of their surroundings. Some students can relate well to the concept of entropy as it relates to the room where they live. Despite cleaning up and organizing the room on a regular (or irregular) basis, the room increasingly becomes disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know “entropy” as the “dorm room effect.” Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. All too often we hear or read that some thing or reaction creates energy. We might hear or read that a power plant “produces” energy or that mitochondria “make” energy. Even in our classroom conversations, we may occasionally slip into this error. When discussing the first law of thermodynamics, consider emphasizing the inaccuracy of such statements. 3. Although typically familiar with the concept of dietary calories, students often struggle to think of calories as a source of potential energy. For many students, it is not clear that potential energy is stored in food as calories. Teaching Tips 1. Some students can relate well to the concept of entropy as applied to the room where they live. Despite cleaning up and organizing the room on a regular (or irregular) basis, the room becomes increasingly disorganized, a victim of entropy, until another energy input (or effort) is exerted to make the room more orderly again. Students might even get to know entropy as the “dorm room effect.” 2. The heat produced by the engine of a car is typically used to heat the car during cold weather. However, is this same heat available in warmer weather? Students are often unaware that their car “heater” works very well in the summer too. Just as exercise can warm us when it is cold, the same extra heat is released when we exercise in warm conditions. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. 3. Here is a question that might make cellular respiration a little more meaningful to your students. Ask your students why they feel warm when it is 30°C (86°F) outside if their core body temperature is 37°C (98.6°F). Shouldn’t they feel cold? The answer is, our bodies are always producing heat. At these higher temperatures, we are producing more heat than we need, to maintain a core body temperature around 37°C. Thus, we sweat and behave in ways that help release our extra heat generated in cellular respiration.
  10. Figure 5.11 Energy transformations (with an increase in entropy) in a car and a cell.
  11. Figure 5.11 Energy transformations (with an increase in entropy) in a car.
  12. Figure 5.11 Energy transformations (with an increase in entropy) in a cell.
  13. A car engine in the summer struggles to dissipate heat in the same way that a human struggles to cool off after exercising when weather is warm. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The same mass of fat stores nearly twice as many calories (about 9 kcal per gram) as an equivalent mass of protein or carbohydrates (about 4.5–5 kcal per gram). Thus, when comparing equal masses of fat, protein, and lipid, the fat has nearly twice the potential energy. Fat is therefore an efficient way to store energy in animals and many plants. To store an equivalent amount of energy in the form of carbohydrates or proteins would require about twice the mass, adding a significant burden to the organism’s structure. (For example, if you were 20 lbs overweight, you would be nearly 40 lbs overweight if the same energy were stored as carbohydrates or proteins instead of fat). 2. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.)
  14. Figure 5.12A Exergonic reaction, energy released.
  15. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The same mass of fat stores nearly twice as many calories (about 9 kcal per gram) as an equivalent mass of protein or carbohydrates (about 4.5–5 kcal per gram). Thus, when comparing equal masses of fat, protein, and lipid, the fat has nearly twice the potential energy. Fat is therefore an efficient way to store energy in animals and many plants. To store an equivalent amount of energy in the form of carbohydrates or proteins would require about twice the mass, adding a significant burden to the organism’s structure. (For example, if you were 20 lbs overweight, you would be nearly 40 lbs overweight if the same energy were stored as carbohydrates or proteins instead of fat). 2. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.)
  16. Figure 5.12B Endergonic reaction, energy required.
  17. Metabolism requires energy, which is taken from sugar or other molecules containing energy. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The same mass of fat stores nearly twice as many calories (about 9 kcal per gram) as an equivalent mass of protein or carbohydrates (about 4.5–5 kcal per gram). Thus, when comparing equal masses of fat, protein, and lipid, the fat has nearly twice the potential energy. Fat is therefore an efficient way to store energy in animals and many plants. To store an equivalent amount of energy in the form of carbohydrates or proteins would require about twice the mass, adding a significant burden to the organism’s structure. (For example, if you were 20 lbs overweight, you would be nearly 40 lbs overweight if the same energy were stored as carbohydrates or proteins instead of fat). 2. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.)
  18. ATP is responsible for mediating most energy coupling in cells. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The same mass of fat stores nearly twice as many calories (about 9 kcal per gram) as an equivalent mass of protein or carbohydrates (about 4.5–5 kcal per gram). Thus, when comparing equal masses of fat, protein, and lipid, the fat has nearly twice the potential energy. Fat is therefore an efficient way to store energy in animals and many plants. To store an equivalent amount of energy in the form of carbohydrates or proteins would require about twice the mass, adding a significant burden to the organism’s structure. (For example, if you were 20 lbs overweight, you would be nearly 40 lbs overweight if the same energy were stored as carbohydrates or proteins instead of fat). 2. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.)
  19. The phosphate group serves as a functional group, and the hydrolysis of this group releases energy. ATP is also one of the nucleoside triphosphates used to make RNA. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider having them think of the terms as A-3-P and A-2-P, noting that the word roots tri- = 3 and di- = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population).
  20. For the BLAST Animation ATP/ADP Cycle, go to Animation and Video Files. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider having them think of the terms as A-3-P and A-2-P, noting that the word roots tri- = 3 and di- = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population).
  21. Figure 5.13A The structure and hydrolysis of ATP. The reaction of ATP and water yields ADP, a phosphate group, and energy.
  22. Figure 5.13A The structure and hydrolysis of ATP. The reaction of ATP and water yields ADP, a phosphate group, and energy.
  23. Figure 5.13B How ATP powers cellular work.
  24. For the BLAST Animation Structure of ATP, go to Animation and Video Files. Student Misconceptions and Concerns 1. Students with limited exposure to physics may have never understood the concepts of energy and the conservation of energy or distinguished between potential and kinetic energy. Understanding such broad and new abstract concepts requires time and concrete examples. 2. Energy coupling at the cellular level may be new to many students, but it is a familiar concept when related to the use of money in our society. Students might be discouraged if the only benefit of work was the ability to make purchases from the employer. (We all might soon tire of a fast-food job that only paid its employees in food!) Money permits the coupling of a generation of value (a paycheck, analogous to an energy-releasing reaction) to an energy-consuming reaction (money, which allows us to make purchases in distant locations). This idea of earning and spending is a common concept we all know well. Teaching Tips 1. The amount of energy each adult human needs to generate the ATP required in a day is tremendous. Here is a calculation that has impressed many students. Depending upon the size and activity of a person, a human might burn 2,000 dietary calories (kilocalories) a day. This is enough energy to raise the temperature of 20 liters of liquid water from 0° to 100°C. This is something to think about the next time you heat water on the stove! If you can bring in ten 2-liter bottles, you can help students visualize how much liquid water can be raised from 0° to 100°C. (Note: 100 calories raises about 1 liter of water 100°C, but it takes much more energy to melt ice or to convert boiling water into steam.) 2. When introducing ATP and ADP, consider having them think of the terms as A-3-P and A-2-P, noting that the word roots tri- = 3 and di- = 2. It might help students to keep track of the number of phosphates more easily. 3. Recycling is essential in cell biology. Damaged organelles are broken down intracellularly and chemical components, the monomers of the cytoskeleton, and ADP are routinely recycled. There are several advantages common to human recycling of garbage and cellular recycling. Both save energy by avoiding the need to remanufacture the basic units, and both avoid an accumulation of waste products that could interfere with other “environmental” chemistry (the environment of the cell or the environment of the human population).
  25. Figure 5.13C The ATP cycle.