SlideShare ist ein Scribd-Unternehmen logo
1 von 82
Downloaden Sie, um offline zu lesen
Approximation and Coding
             with Orthogonal
             Decompositions
                 Gabriel Peyré
http://www.ceremade.dauphine.fr/~peyre/numerical-tour/
Overview

• Approximation and Compression

• Decay of Approximation Error

• Fourier for Smooth Functions

• Wavelet for Piecewise Smooth Functions

• Curvelets and Finite Elements for Cartoons
Sparse Approximation in a Basis
Sparse Approximation in a Basis
Sparse Approximation in a Basis
Hard Thresholding
Approximation Speed
Approximation error decay:


     (usually polynomial)
Approximation Speed
 Approximation error decay:


       (usually polynomial)




                                    fM ||)
                                   log10 (||f
Log/Log plot: approx. a ne curve



                                                log10 (M/N )
Efficiency of Transforms




                             fM ||)
                            log10 (||f
 Fourier         DCT




                                         log10 (M/N )


Local DCT        Wavelets
Overview

• Approximation and Compression

• Decay of Approximation Error

• Fourier for Smooth Functions

• Wavelet for Piecewise Smooth Functions

• Curvelets and Finite Elements for Cartoons
Compression by Transform-coding
    forward
f
    transform
                a[m] = ⇥f,   m⇤   R




    Image f                  Zoom on f
Compression by Transform-coding
     forward
 f
     transform
                 a[m] = ⇥f,   m⇤   R                   q[m]   Z
                                          bin T




                                            ⇥                 2T   T   T   2T   a[m
                                |a[m]|
Quantization: q[m] = sign(a[m])                    Z
                                  T                                    a[m]
                                                                       ˜




     Image f                  Zoom on f           Quantized q[m]
Compression by Transform-coding
     forward                                                       codi
 f
     transform
                 a[m] = ⇥f,   m⇤   R                   q[m]   Z        ng
                                          bin T




                                            ⇥                 2T   T        T   2T   a[m
                                |a[m]|
Quantization: q[m] = sign(a[m])                    Z
                                  T                                         a[m]
                                                                            ˜
Entropic coding: use statistical redundancy (many 0’s).




     Image f                  Zoom on f           Quantized q[m]
Compression by Transform-coding
     forward                                                            codi
 f
     transform
                 a[m] = ⇥f,   m⇤     R                     q[m]   Z          ng
                                            bin T
                                                                             ing
                                                                       decod
                                          dequantization
                                   a[m]
                                   ˜                       q[m]   Z
                                               ⇥                  2T    T          T   2T   a[m
                                |a[m]|
Quantization: q[m] = sign(a[m])                      Z
                                  T                                                a[m]
                                                                                   ˜
Entropic coding: use statistical redundancy (many 0’s).

Dequantization:




     Image f                  Zoom on f             Quantized q[m]
Compression by Transform-coding
       forward                                                              codi
 f
       transform
                     a[m] = ⇥f,   m⇤     R                     q[m]   Z          ng
                                                bin T
                                                                                 ing
                                                                           decod
                          backward            dequantization
fR =          a[m]
              ˜       m                a[m]
                                       ˜                       q[m]   Z
                          transform
       m IT
                                                   ⇥                  2T    T          T   2T     a[m
                                |a[m]|
Quantization: q[m] = sign(a[m])                          Z
                                  T                                                    a[m]
                                                                                       ˜
Entropic coding: use statistical redundancy (many 0’s).

Dequantization:




       Image f                    Zoom on f             Quantized q[m]          fR , R =0.2 bit/pixel
Thresholding vs. Quantizing
Non-linear Approximation and Compression
Non-linear Approximation and Compression




                2T   T       T   2T    a[m]
                              a[m]
                              ˜
                                           ⇥
                                  |a[m]|
Quantization:   q[m] = sign(a[m])                  Z                            T
                                    T                      =⇥   |a[m]   a[m]|
                                                                        ˜
                                                   ⇥
                                               1                                2
Dequantization: a[m] = sign(q[m]) |q[m]| +
                ˜                                      T
                                               2
Non-linear Approximation and Compression




                    2T    T         T     2T         a[m]
                                        a[m]
                                        ˜
                                                      ⇥
                                        |a[m]|
Quantization:         q[m] = sign(a[m])                       Z                                    T
                                          T                            =⇥        |a[m]     a[m]|
                                                                                           ˜
                                                              ⇥
                                                          1                                        2
Dequantization: a[m] = sign(q[m]) |q[m]| +
                ˜                                                 T
                                                          2
                  ⇤                            ⇤                        ⇤             ⇥2
                                                                                  T
  ||f   fR || =
           2
                      (a[m]    a[m])
                               ˜    2
                                                      |a[m]| + 2

                  m
                                                                                  2
                                          |a[m]|<T                    |a[m]| T

                                               ||f    fM ||2          #=M

        Theorem:         ||f    fR ||2     ||f       fM ||2 + M T 2 /4
                  where M = # {m  a[m] = 0}.
                                   ˜
A Naive Support Coding Approach
Coding: relate # bits R to # coe cients M .
                                                       +1
  (H1 ) Ordered coe cients | f,   m ⇥| decays like m   2    .
    =⇤    ||f    fM ||2 ⇥ M   .
A Naive Support Coding Approach
Coding: relate # bits R to # coe cients M .
                                                               +1
    (H1 ) Ordered coe cients | f,        m ⇥| decays like m    2    .
     =⇤      ||f    fM ||2 ⇥ M    .

f    RN sampled from f0 , error: ||f         f0 ||2 ⇥ N
    (H2 ) To ensure ||f   f0 ||2 ⇥ ||f   fM ||2 : M ⇥ N ⇥/ .
A Naive Support Coding Approach
Coding: relate # bits R to # coe cients M .
                                                                +1
    (H1 ) Ordered coe cients | f,         m ⇥| decays like m    2    .
     =⇤      ||f    fM ||2 ⇥ M       .

f    RN sampled from f0 , error: ||f          f0 ||2 ⇥ N
    (H2 ) To ensure ||f    f0 ||2 ⇥ ||f   fM ||2 : M ⇥ N ⇥/ .

Simple coding strategy: R = Rval + Rind


                               ⇥
                           N
      =    Rind     log2           = O(M log2 (N/M )) = O(M log2 (M )).
                           M
A Naive Support Coding Approach
Coding: relate # bits R to # coe cients M .
                                                                +1
    (H1 ) Ordered coe cients | f,         m ⇥| decays like m    2    .
     =⇤      ||f    fM ||2 ⇥ M       .

f    RN sampled from f0 , error: ||f          f0 ||2 ⇥ N
    (H2 ) To ensure ||f    f0 ||2 ⇥ ||f   fM ||2 : M ⇥ N ⇥/ .

Simple coding strategy: R = Rval + Rind


                               ⇥
                           N
      =    Rind     log2           = O(M log2 (N/M )) = O(M log2 (M )).
                           M


                                     =      Rval = O(M | log2 (T )|) = O(M log2 (M ))
A Naive Support Coding Approach
Coding: relate # bits R to # coe cients M .
                                                                 +1
     (H1 ) Ordered coe cients | f,         m ⇥| decays like m    2    .
       =⇤     ||f    fM ||2 ⇥ M       .

f     RN sampled from f0 , error: ||f          f0 ||2 ⇥ N
     (H2 ) To ensure ||f    f0 ||2 ⇥ ||f   fM ||2 : M ⇥ N ⇥/ .

Simple coding strategy: R = Rval + Rind


                                ⇥
                            N
        =   Rind     log2           = O(M log2 (N/M )) = O(M log2 (M )).
                            M


                                      =      Rval = O(M | log2 (T )|) = O(M log2 (M ))


    Theorem: Under hypotheses (H1 ) and (H2 ), ||f               fR ||2 = O(R     log (R)).
Entropic Coders
Entropic Coders
Entropic Coders
JPEG-2000 Overview
JPEG-2000 Overview
JPEG-2000 Overview
JPEG-2000 Overview
JPEG-2000 Overview
Contextual Coding




                      3 × 3 context window
                    code block width
JPEG-2000 vs. JPEG, 0.2bit/pixel
Overview

• Approximation and Compression

• Decay of Approximation Error

• Fourier for Smooth Functions

• Wavelet for Piecewise Smooth Functions

• Curvelets and Finite Elements for Cartoons
1D Fourier Approximation
1D Fourier Approximation
Sobolev and Fourier
Singularities and Fourier
            1
           0.8
           0.6
           0.4
           0.2
            0

            1
           0.8
           0.6
           0.4
           0.2
            0

            1
           0.8
           0.6
           0.4
           0.2
            0

            1
           0.8
           0.6
           0.4
           0.2
            0
Sobolev for Images
Sobolev for Images
Overview

• Approximation and Compression

• Decay of Approximation Error

• Fourier for Smooth Functions

• Wavelet for Piecewise Smooth Functions

• Curvelets and Finite Elements for Cartoons
Magnitude of Wavelet Coefficients
                                                     2
                                                           p=2
Vanishing moments:   k < p,   (x)x dx = 0
                                 k
                                                     1

                                                     0

                                                    −1

                                                    −2
                                                     −1          0               1           2

                                                      2
                                                           p=3
                                                      1


                                                      0


                                                    −1

                                                     −2     −1       0       1           2
                                                     1.5
                                                           p=4
                                                      1

                                                     0.5

                                            f (x)     0

                                                    −0.5

                                                     −1
                                                           −2            0           2       4
Magnitude of Wavelet Coefficients
                                                                           2
                                                                                 p=2
Vanishing moments:                 k < p,        (x)x dx = 0
                                                       k
                                                                           1

                                                   x       2j n
  If f is C on supp(⇥j,n ), p     : t=                                     0
                                              2j
                 ⇤                ⇥           ⇤
             1            x 2 n j
                                            d
                                                                          −1
⇥f, j,n ⇤ = d      f (x)            dx = 2j 2    R(2j t) (t)dt
            2j 2             2j                                           −2
                                                                           −1          0               1           2

                                                                            2
       f (x) = P (x     2 n) + R(x
                          j
                                            2 n) = P (2 t) + R(2 t)
                                             j             j        j
                                                                                 p=3
                                                                            1


                                                                            0

| f,    j,n ⇥|   Cf || ||1 2j(   +d/2)
                                                                          −1

                                                                           −2     −1       0       1           2
                                                                           1.5
                                                                                 p=4
                                                                            1

                                                                           0.5

                                                                  f (x)     0

                                                                          −0.5

                                                                           −1
                                                                                 −2            0           2       4
Magnitude of Wavelet Coefficients
                                                                                       2
                                                                                             p=2
Vanishing moments:                 k < p,        (x)x dx = 0
                                                       k
                                                                                       1

                                                   x       2j n
  If f is C on supp(⇥j,n ), p     : t=                                                 0
                                              2j
                 ⇤                ⇥           ⇤
             1            x 2 n j
                                            d
                                                                                      −1
⇥f, j,n ⇤ = d      f (x)            dx = 2j 2    R(2j t) (t)dt
            2j 2             2j                                                       −2
                                                                                       −1          0               1           2

                                                                                        2
       f (x) = P (x     2 n) + R(x
                          j
                                            2 n) = P (2 t) + R(2 t)
                                             j             j             j
                                                                                             p=3
                                                                                        1


                                                                                        0
                                                                                  d
| f,    j,n ⇥|   Cf || ||1 2j(   +d/2)
                                         | f,    j,n ⇥|        ||f || || ||1 2j   2
                                                                                      −1

                                                                                       −2     −1       0       1           2
                                                                                       1.5
                                                                                             p=4
                                                                                        1

                                                                                       0.5

                                                                      f (x)             0

                                                                                      −0.5

                                                                                       −1
                                                                                             −2            0           2       4
1D Wavelet Coefficient Behavior
               1

              0.8

              0.6

              0.4

              0.2

               0

              0.2

              0.1

               0

             −0.1

             −0.2

              0.2

              0.1

               0

             −0.1

             −0.2


              0.5



               0



             −0.5

              0.5



               0



             −0.5
1D Wavelet Coefficient Behavior
                                                   1

                                                  0.8

                                                  0.6

                                                  0.4

                                                  0.2

                                                   0

                                                  0.2

                                                  0.1

                                                   0

                                                 −0.1

                                                 −0.2

                                                  0.2

If f is C in supp(       j,n ),   then            0.1

                                                   0


                 2   j( +1/2)                    −0.1
 | f,   j,n ⇥|                  ||f ||C || ||1   −0.2


                                                  0.5



                                                   0



                                                 −0.5

                                                  0.5



                                                   0



                                                 −0.5
1D Wavelet Coefficient Behavior
                                                      1

                                                     0.8

                                                     0.6

                                                     0.4

                                                     0.2

                                                      0

                                                     0.2

                                                     0.1

                                                      0

                                                    −0.1

                                                    −0.2

                                                     0.2

If f is C in supp(            j,n ),   then          0.1

                                                      0


                   2   j( +1/2)                     −0.1
 | f,    j,n ⇥|                    ||f ||C || ||1   −0.2


                                                     0.5




If f is bounded (e.g. around                          0



 a singularity), then                               −0.5

                                                     0.5

  | f,    j,n ⇥|   2    j/2
                              ||f || || ||1
                                                      0



                                                    −0.5
Piecewise Regular Functions in 1D




   Theorem:       If f is C outside a finite set of discontinuities:
                                        O(M   1
                                                ) (Fourier),
          n
              [M ] = ||f   fM ||2
                            n
                                    =
                                        O(M   2
                                                 ) (wavelets).



For Fourier, linear non-linear, sub-optimal.
For wavelets, linear non-linear, optimal.
Examples of 1D Approximations
                             −1


                            −1.5


                             −2


                            −2.5


                             −3


                            −3.5
 1
0.8                          −4

0.6
                            −4.5
0.4
                             −5
0.2
 0                          −5.5


                             −6
                               −2   −1.8   −1.6   −1.4   −1.2   −1   −0.8




  1                     1
0.8                   0.8
0.6                   0.6
0.4                   0.4
0.2                   0.2
  0                     0


 1                     1
0.8                   0.8
0.6                   0.6
0.4                   0.4
0.2                   0.2
 0                     0

 1                      1
0.8                   0.8
0.6                   0.6
0.4                   0.4
0.2                   0.2
 0                      0
Localizing the Singular Support
                    S = {x1 , x2 }                Small coe cient
     f (x)                                         | f, jn ⇥| < T
x1             x2
                                                  Large coe cient
                                     j2
                                     j1           Singular support:


                                          |Cj |     K|S| = constant
Localizing the Singular Support
                              S = {x1 , x2 }                  Small coe cient
           f (x)                                               | f, jn ⇥| < T
  x1                     x2
                                                              Large coe cient
                                               j2
                                               j1             Singular support:


                                                      |Cj |     K|S| = constant


                      Regular, n       Cj :
                                        c
                                                    |⇥f,      j,n ⇤|   C2j(    +1/2)
Coe cient behavior:
                      Singular, n      Cj :     |⇥f,          j,n ⇤|   C2j/2
Localizing the Singular Support
                                 S = {x1 , x2 }                      Small coe cient
           f (x)                                                      | f, jn ⇥| < T
   x1                       x2
                                                                     Large coe cient
                                                      j2
                                                      j1             Singular support:


                                                             |Cj |     K|S| = constant


                        Regular, n        Cj :
                                           c
                                                           |⇥f,      j,n ⇤|      C2j(    +1/2)
Coe cient behavior:
                        Singular, n       Cj :          |⇥f,         j,n ⇤|      C2j/2
                                                                           1
                                 Singular:        2j1
                                                           = (T /C)       +1/2

Cut-o scales (depends on T ):
                                 Regular:         2j2 = (T /C)2
Localizing the Singular Support
                                  S = {x1 , x2 }                      Small coe cient
           f (x)                                                       | f, jn ⇥| < T
   x1                       x2
                                                                      Large coe cient
                                                       j2
                                                       j1             Singular support:


                                                              |Cj |     K|S| = constant


                         Regular, n        Cj :
                                            c
                                                            |⇥f,      j,n ⇤|      C2j(     +1/2)
Coe cient behavior:
                         Singular, n       Cj :          |⇥f,         j,n ⇤|      C2j/2
                                                                            1
                                 Singular:         2j1
                                                            = (T /C)       +1/2

Cut-o scales (depends on T ):
                                 Regular:          2j2 = (T /C)2

Hand-made approximate:     ˜
                           fM =               f,        j,n ⇥ j,n     +               f,    j,n ⇥ j,n
                                  j j2 n Cj                                       c
                                                                          j j1 n Cj
Computing Error and #Coefficients
                f (x)                                                          |Cj |         K|S| = constant

                                                                           n     Cj : |⇥f,
                                                                                  c
                                                                                                   j,n ⇤|      C2j(   +1/2)
                                                                     j2
                                                                     j1 n          Cj : |⇥f,      j,n ⇤|      C2j/2
                                                                                                             1
                                                                                   2   j1
                                                                                            = (T /C)        +1/2


                                                                                   2j2 = (T /C)2


||f   fM ||2    ||f     ˜
                        fM ||2                   |⇥f,     j,n ⇤|
                                                                2
                                                                     +                  |⇥f,     j,n ⇤|
                                                                                                       2

                                    j<j2 ,n Cj                                    c
                                                                         j<j1 ,n Cj

                       (K|S|)       C 2 2j +          2   j
                                                                C 2 2j(2     +1)
                                                                                                     Singulatities
                j<j2                           j<j1

               = O(2 + 2j2       2 j1
                                        ) = O(T + T
                                                 2            2
                                                              +1/2   ) = O(T
                                                                                    2
                                                                                    +1/2     )       regular part
Computing Error and #Coefficients
                  f (x)                                                                 |Cj |         K|S| = constant

                                                                                    n     Cj : |⇥f,
                                                                                           c
                                                                                                            j,n ⇤|      C2j(   +1/2)
                                                                              j2
                                                                              j1 n          Cj : |⇥f,      j,n ⇤|      C2j/2
                                                                                                                      1
                                                                                            2   j1
                                                                                                     = (T /C)        +1/2


                                                                                            2j2 = (T /C)2


||f    fM ||2      ||f     ˜
                           fM ||2                     |⇥f,       j,n ⇤|
                                                                       2
                                                                              +                  |⇥f,     j,n ⇤|
                                                                                                                2

                                         j<j2 ,n Cj                                        c
                                                                                  j<j1 ,n Cj

                          (K|S|)         C 2 2j +           2    j
                                                                         C 2 2j(2     +1)
                                                                                                              Singulatities
                   j<j2                             j<j1

                = O(2 + 2 j2        2 j1
                                           ) = O(T + T2              2
                                                                     +1/2   ) = O(T
                                                                                             2
                                                                                             +1/2     )       regular part

M              |Cj | +            c
                                |Cj |           K|S| +               2    j

        j j2             j j1            j j2                j j1
                                   1                       1
      = O(| log(T )| + T          +1/2   ) = O(T          +1/2   )
Computing Error and #Coefficients
                  f (x)                                                                 |Cj |          K|S| = constant

                                                                                    n     Cj : |⇥f,
                                                                                           c
                                                                                                             j,n ⇤|      C2j(   +1/2)
                                                                              j2
                                                                              j1 n          Cj : |⇥f,       j,n ⇤|      C2j/2
                                                                                                                       1
                                                                                            2   j1
                                                                                                     = (T /C)         +1/2


                                                                                            2j2 = (T /C)2


||f    fM ||2      ||f     ˜
                           fM ||2                     |⇥f,       j,n ⇤|
                                                                       2
                                                                              +                  |⇥f,      j,n ⇤|
                                                                                                                 2

                                         j<j2 ,n Cj                                        c
                                                                                  j<j1 ,n Cj

                          (K|S|)         C 2 2j +           2    j
                                                                         C 2 2j(2     +1)
                                                                                                               Singulatities
                   j<j2                             j<j1

                = O(2 + 2 j2        2 j1
                                           ) = O(T + T2              2
                                                                     +1/2   ) = O(T
                                                                                             2
                                                                                             +1/2      )       regular part

M              |Cj | +            c
                                |Cj |           K|S| +               2    j

        j j2             j j1            j j2                j j1
                                   1                       1
      = O(| log(T )| + T          +1/2   ) = O(T          +1/2   )                                   ||f   fM ||2 = O(M         2
                                                                                                                                    )
2D Wavelet Approximation




If f is C in supp(   j,n ),   then

             | f,    j,n ⇥|     2j(   +1)
                                            ||f ||C || ||1

If f is bounded (e.g. around a singularity), then
             | f,    j,n ⇥|     2j ||f || || ||1
Piecewise Regular Functions in 2D




     Theorem:        If f is C outside a set of finite length edge curves,
                                              O(M   1/2
                                                       ) (Fourier),
                n
                    [M ] = ||f   fM ||2
                                  n
                                          =
                                              O(M   1
                                                      ) (wavelets).


Fourier   Wavelet, both sub-optimal.
Wavelets: same result for BV functions (optimal).
Example of 2D Approximations
Localizing the Singular Support in 2D
f (x, y)      Length(S) = L


                        j2
                        j1



                              |Cj |   LK2   j
                                                = constant
Localizing the Singular Support in 2D
         f (x, y)             Length(S) = L


                                           j2
                                           j1



                                                  |Cj |     LK2    j
                                                                       = constant

                      Regular, n    Cj :
                                     c
                                                |⇥f,      j,n ⇤|   C2j(    +1)
Coe cient behavior:
                      Singular, n   Cj :    |⇥f,          j,n ⇤|   C2j
Localizing the Singular Support in 2D
          f (x, y)               Length(S) = L


                                                   j2
                                                   j1



                                                          |Cj |     LK2    j
                                                                               = constant

                        Regular, n      Cj :
                                         c
                                                        |⇥f,      j,n ⇤|   C2j(    +1)
Coe cient behavior:
                        Singular, n     Cj :         |⇥f,         j,n ⇤|   C2j
                                                                      1
                                Singular:      2j1
                                                        = (T /C)      +1

Cut-o scales (depends on T ):
                                Regular:       2j2 = T /C
Localizing the Singular Support in 2D
          f (x, y)                Length(S) = L


                                                    j2
                                                    j1



                                                           |Cj |     LK2     j
                                                                                 = constant

                         Regular, n      Cj :
                                          c
                                                         |⇥f,      j,n ⇤|   C2j(        +1)
Coe cient behavior:
                         Singular, n     Cj :           |⇥f,       j,n ⇤|   C2j
                                                                       1
                                Singular:       2  j1
                                                         = (T /C)      +1

Cut-o scales (depends on T ):
                                Regular:        2j2 = T /C

Hand-made approximate:     ˜
                           fM =               f,     j,n ⇥ j,n     +               f,    j,n ⇥ j,n
                                  j j2 n Cj                                    c
                                                                       j j1 n Cj
Computing Error and #Coefficients
                f (x, y)                                                        |Cj |         LK2    j
                                                                                                          = constant

                                                                           n       Cj : |⇥f,
                                                                                    c
                                                                                                    j,n ⇤|    C2j(   +1)
                                                                    j2
                                                                            n      Cj : |⇥f,        j,n ⇤|    C2j
                                                                    j1
                                                                                                             1
                                                                                     2   j1
                                                                                              = (T /C)       +1


                                                                                        2j2 = T /C


||f   fM ||2    ||f    ˜
                       fM ||2                    |⇥f,     j,n ⇤|
                                                                2
                                                                    +                   |⇥f,    j,n ⇤|
                                                                                                      2

                                    j<j2 ,n Cj                                   c
                                                                        j<j1 ,n Cj

                       LK2      j
                                       C 2 22j +          2   2j
                                                                    C 2 22j(     +1)
                                                                                                     Singulatities
                j<j2                               j<j1

               = O(2 + 2
                       j2       2 j1
                                       ) = O(T + T
                                                          2
                                                           +1   ) = O(T )                            regular part
Computing Error and #Coefficients
                    f (x, y)                                                                |Cj |         LK2    j
                                                                                                                      = constant

                                                                                       n       Cj : |⇥f,
                                                                                                c
                                                                                                                j,n ⇤|    C2j(   +1)
                                                                                 j2
                                                                                        n      Cj : |⇥f,        j,n ⇤|    C2j
                                                                                 j1
                                                                                                                         1
                                                                                                 2   j1
                                                                                                          = (T /C)       +1


                                                                                                    2j2 = T /C


||f    fM ||2       ||f     ˜
                            fM ||2                         |⇥f,       j,n ⇤|
                                                                            2
                                                                                +                   |⇥f,    j,n ⇤|
                                                                                                                  2

                                         j<j2 ,n Cj                                          c
                                                                                    j<j1 ,n Cj

                           LK2       j
                                            C 2 22j +             2     2j
                                                                                 C 2 22j(    +1)
                                                                                                                 Singulatities
                    j<j2                                   j<j1

                = O(2 + 2  j2        2 j1
                                            ) = O(T + T
                                                                  2
                                                                   +1    ) = O(T )                               regular part

M             |Cj | +              c
                                 |Cj |             LK2       j
                                                                  +          2   2j

       j j2               j j1              j j2                      j j1
                             1
      = O(T     1
                    +T      +1   ) = O(T           1
                                                       )
Computing Error and #Coefficients
                    f (x, y)                                                                |Cj |         LK2    j
                                                                                                                       = constant

                                                                                       n       Cj : |⇥f,
                                                                                                c
                                                                                                                j,n ⇤|    C2j(   +1)
                                                                                 j2
                                                                                        n      Cj : |⇥f,        j,n ⇤|    C2j
                                                                                 j1
                                                                                                                         1
                                                                                                 2   j1
                                                                                                           = (T /C)      +1


                                                                                                    2j2 = T /C


||f    fM ||2       ||f     ˜
                            fM ||2                         |⇥f,       j,n ⇤|
                                                                            2
                                                                                +                   |⇥f,     j,n ⇤|
                                                                                                                   2

                                         j<j2 ,n Cj                                          c
                                                                                    j<j1 ,n Cj

                           LK2       j
                                            C 2 22j +             2     2j
                                                                                 C 2 22j(    +1)
                                                                                                                 Singulatities
                    j<j2                                   j<j1

                = O(2 + 2  j2        2 j1
                                            ) = O(T + T
                                                                  2
                                                                   +1    ) = O(T )                               regular part

M             |Cj | +              c
                                 |Cj |             LK2       j
                                                                  +          2   2j

       j j2               j j1              j j2                      j j1
                             1
      = O(T     1
                    +T      +1   ) = O(T           1
                                                       )                                             ||f     fM ||2 = O(M        1
                                                                                                                                     )
Overview

• Approximation and Compression

• Decay of Approximation Error

• Fourier for Smooth Functions

• Wavelet for Piecewise Smooth Functions

• Curvelets and Finite Elements for Cartoons
Geometrically Regular Images
Geometric image model: f is C outside a set of C edge curves.
     BV image: level sets have finite lengths.
     Geometric image: level sets are regular.




                                                                | f|




   Geometry = cartoon image           Sharp edges          Smoothed edges
Geometic Construction : Finite Elements

Approximation of f , C2 outside C2 edges.

                                               ˜
Piecewise linear approximation on M triangles: fM .
Geometic Construction : Finite Elements

Approximation of f , C2 outside C2 edges.             Regular areas:
                                                       M/2 equilateral triangles.
                                               ˜
Piecewise linear approximation on M triangles: fM .

                                                                           1/2
                                                                       M


                                                                 1/2
                                                             M
Geometic Construction : Finite Elements

Approximation of f , C2 outside C2 edges.             Regular areas:
                                                       M/2 equilateral triangles.
                                               ˜
Piecewise linear approximation on M triangles: fM .

                                                                           1/2
                                                                       M


                                                                 1/2
                                                             M
                                                      Singular areas:
                                                        M/2 anisotropic triangles.
Geometic Construction : Finite Elements

Approximation of f , C2 outside C2 edges.             Regular areas:
                                                       M/2 equilateral triangles.
                                               ˜
Piecewise linear approximation on M triangles: fM .

                                                                            1/2
                                                                        M


                                                                  1/2
                                                              M
                                                      Singular areas:
                                                        M/2 anisotropic triangles.




  Theorem:    If f is C2 outside a set of C2 contours, then one has for an adapted
                                 ˜
              triangulation ||f fM ||2 = O(M 2 ).

 Di culties to build e cient approximations.
 No optimal strategies (greedy solutions).
Greedy Triangulation Optimization
Bougleux, Peyr´, Cohen, ECCV’08
              e
Curvelet Atoms
                [Candes, Donoho] [Candes, Demanet, Ying, Donoho]

Parabolic dyadic scaling:
Rotation:


                        “width     length2 ”
Curvelet Tight Frame
Angular sampling:

Spacial sampling:

Tight frame of L2 (R2 ):
Curvelet Approximation
 M -term curvelet approximation:




  Theorem:   If f is C2 outside a set of C2 edges, ||f   fM ||2 = O(M   2
                                                                            (log M )3 ).




Discrete curvelets: O(N log(N )) algorithm.


Redundancy     5   =⇥      not e cient for compression.
Curvelets Denoising




Works on elongated edges.

Works also on locally parallel textures !
Conclusion
Conclusion
Conclusion




              1
             0.8
             0.6
             0.4
             0.2
              0
Conclusion




              1
             0.8
             0.6
             0.4
             0.2
              0

Weitere ähnliche Inhalte

Was ist angesagt?

Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsArvind Devaraj
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Christian Robert
 
fourier series and fourier transform
fourier series and fourier transformfourier series and fourier transform
fourier series and fourier transformVikas Rathod
 
Pages from fin econometrics brandt_1
Pages from fin econometrics brandt_1Pages from fin econometrics brandt_1
Pages from fin econometrics brandt_1NBER
 
Fin econometricslecture
Fin econometricslectureFin econometricslecture
Fin econometricslectureNBER
 
Multicurrency project
Multicurrency projectMulticurrency project
Multicurrency projectIlya Gikhman
 
Fourier transformation
Fourier transformationFourier transformation
Fourier transformationzertux
 
Tele4653 l7
Tele4653 l7Tele4653 l7
Tele4653 l7Vin Voro
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformskalung0313
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5Vin Voro
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010Christian Robert
 
大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価Yahoo!デベロッパーネットワーク
 
лекция райгородский слайды версия 1.1
лекция райгородский слайды версия 1.1лекция райгородский слайды версия 1.1
лекция райгородский слайды версия 1.1csedays
 
Overview of Stochastic Calculus Foundations
Overview of Stochastic Calculus FoundationsOverview of Stochastic Calculus Foundations
Overview of Stochastic Calculus FoundationsAshwin Rao
 
Upm scube-dynsys-presentation
Upm scube-dynsys-presentationUpm scube-dynsys-presentation
Upm scube-dynsys-presentationidragan
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformsIffat Anjum
 

Was ist angesagt? (20)

Signal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier TransformsSignal Processing Introduction using Fourier Transforms
Signal Processing Introduction using Fourier Transforms
 
Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010
 
Pv
PvPv
Pv
 
fourier series and fourier transform
fourier series and fourier transformfourier series and fourier transform
fourier series and fourier transform
 
Pages from fin econometrics brandt_1
Pages from fin econometrics brandt_1Pages from fin econometrics brandt_1
Pages from fin econometrics brandt_1
 
Fin econometricslecture
Fin econometricslectureFin econometricslecture
Fin econometricslecture
 
Multicurrency project
Multicurrency projectMulticurrency project
Multicurrency project
 
Fourier transformation
Fourier transformationFourier transformation
Fourier transformation
 
Tele4653 l7
Tele4653 l7Tele4653 l7
Tele4653 l7
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010
 
大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価大規模日本語ブログコーパスにおける言語モデルの構築と評価
大規模日本語ブログコーパスにおける言語モデルの構築と評価
 
лекция райгородский слайды версия 1.1
лекция райгородский слайды версия 1.1лекция райгородский слайды версия 1.1
лекция райгородский слайды версия 1.1
 
Nabaa
NabaaNabaa
Nabaa
 
Overview of Stochastic Calculus Foundations
Overview of Stochastic Calculus FoundationsOverview of Stochastic Calculus Foundations
Overview of Stochastic Calculus Foundations
 
Adaptive
AdaptiveAdaptive
Adaptive
 
Upm scube-dynsys-presentation
Upm scube-dynsys-presentationUpm scube-dynsys-presentation
Upm scube-dynsys-presentation
 
Notes 17
Notes 17Notes 17
Notes 17
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 

Ähnlich wie Signal Processing Course : Approximation

Adaptive Signal and Image Processing
Adaptive Signal and Image ProcessingAdaptive Signal and Image Processing
Adaptive Signal and Image ProcessingGabriel Peyré
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGabriel Peyré
 
Tele3113 wk9wed
Tele3113 wk9wedTele3113 wk9wed
Tele3113 wk9wedVin Voro
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsGabriel Peyré
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterAsaad Drake
 
Tele4653 l8
Tele4653 l8Tele4653 l8
Tele4653 l8Vin Voro
 

Ähnlich wie Signal Processing Course : Approximation (9)

Adaptive Signal and Image Processing
Adaptive Signal and Image ProcessingAdaptive Signal and Image Processing
Adaptive Signal and Image Processing
 
Angle modulation
Angle modulationAngle modulation
Angle modulation
 
Geodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and GraphicsGeodesic Method in Computer Vision and Graphics
Geodesic Method in Computer Vision and Graphics
 
Tele3113 wk9wed
Tele3113 wk9wedTele3113 wk9wed
Tele3113 wk9wed
 
Mesh Processing Course : Geodesics
Mesh Processing Course : GeodesicsMesh Processing Course : Geodesics
Mesh Processing Course : Geodesics
 
Quadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitterQuadrature amplitude modulation qam transmitter
Quadrature amplitude modulation qam transmitter
 
Bull whip effect
Bull whip effectBull whip effect
Bull whip effect
 
Bull whip effect
Bull whip effectBull whip effect
Bull whip effect
 
Tele4653 l8
Tele4653 l8Tele4653 l8
Tele4653 l8
 

Mehr von Gabriel Peyré

Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Gabriel Peyré
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Gabriel Peyré
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsGabriel Peyré
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsGabriel Peyré
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesGabriel Peyré
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationGabriel Peyré
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportGabriel Peyré
 
Learning Sparse Representation
Learning Sparse RepresentationLearning Sparse Representation
Learning Sparse RepresentationGabriel Peyré
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationGabriel Peyré
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionGabriel Peyré
 
Mesh Processing Course : Introduction
Mesh Processing Course : IntroductionMesh Processing Course : Introduction
Mesh Processing Course : IntroductionGabriel Peyré
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingGabriel Peyré
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusGabriel Peyré
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursGabriel Peyré
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoveryGabriel Peyré
 
Signal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseSignal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseGabriel Peyré
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesGabriel Peyré
 
Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsGabriel Peyré
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : FourierGabriel Peyré
 
Signal Processing Course : Denoising
Signal Processing Course : DenoisingSignal Processing Course : Denoising
Signal Processing Course : DenoisingGabriel Peyré
 

Mehr von Gabriel Peyré (20)

Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
Low Complexity Regularization of Inverse Problems - Course #3 Proximal Splitt...
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
 
Signal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems RegularizationSignal Processing Course : Inverse Problems Regularization
Signal Processing Course : Inverse Problems Regularization
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
 
Learning Sparse Representation
Learning Sparse RepresentationLearning Sparse Representation
Learning Sparse Representation
 
Mesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh ParameterizationMesh Processing Course : Mesh Parameterization
Mesh Processing Course : Mesh Parameterization
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Mesh Processing Course : Introduction
Mesh Processing Course : IntroductionMesh Processing Course : Introduction
Mesh Processing Course : Introduction
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
Signal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse RecoverySignal Processing Course : Theory for Sparse Recovery
Signal Processing Course : Theory for Sparse Recovery
 
Signal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the CourseSignal Processing Course : Presentation of the Course
Signal Processing Course : Presentation of the Course
 
Signal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal BasesSignal Processing Course : Orthogonal Bases
Signal Processing Course : Orthogonal Bases
 
Signal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse ProblemsSignal Processing Course : Sparse Regularization of Inverse Problems
Signal Processing Course : Sparse Regularization of Inverse Problems
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 
Signal Processing Course : Denoising
Signal Processing Course : DenoisingSignal Processing Course : Denoising
Signal Processing Course : Denoising
 

Signal Processing Course : Approximation

  • 1. Approximation and Coding with Orthogonal Decompositions Gabriel Peyré http://www.ceremade.dauphine.fr/~peyre/numerical-tour/
  • 2. Overview • Approximation and Compression • Decay of Approximation Error • Fourier for Smooth Functions • Wavelet for Piecewise Smooth Functions • Curvelets and Finite Elements for Cartoons
  • 7. Approximation Speed Approximation error decay: (usually polynomial)
  • 8. Approximation Speed Approximation error decay: (usually polynomial) fM ||) log10 (||f Log/Log plot: approx. a ne curve log10 (M/N )
  • 9. Efficiency of Transforms fM ||) log10 (||f Fourier DCT log10 (M/N ) Local DCT Wavelets
  • 10. Overview • Approximation and Compression • Decay of Approximation Error • Fourier for Smooth Functions • Wavelet for Piecewise Smooth Functions • Curvelets and Finite Elements for Cartoons
  • 11. Compression by Transform-coding forward f transform a[m] = ⇥f, m⇤ R Image f Zoom on f
  • 12. Compression by Transform-coding forward f transform a[m] = ⇥f, m⇤ R q[m] Z bin T ⇥ 2T T T 2T a[m |a[m]| Quantization: q[m] = sign(a[m]) Z T a[m] ˜ Image f Zoom on f Quantized q[m]
  • 13. Compression by Transform-coding forward codi f transform a[m] = ⇥f, m⇤ R q[m] Z ng bin T ⇥ 2T T T 2T a[m |a[m]| Quantization: q[m] = sign(a[m]) Z T a[m] ˜ Entropic coding: use statistical redundancy (many 0’s). Image f Zoom on f Quantized q[m]
  • 14. Compression by Transform-coding forward codi f transform a[m] = ⇥f, m⇤ R q[m] Z ng bin T ing decod dequantization a[m] ˜ q[m] Z ⇥ 2T T T 2T a[m |a[m]| Quantization: q[m] = sign(a[m]) Z T a[m] ˜ Entropic coding: use statistical redundancy (many 0’s). Dequantization: Image f Zoom on f Quantized q[m]
  • 15. Compression by Transform-coding forward codi f transform a[m] = ⇥f, m⇤ R q[m] Z ng bin T ing decod backward dequantization fR = a[m] ˜ m a[m] ˜ q[m] Z transform m IT ⇥ 2T T T 2T a[m |a[m]| Quantization: q[m] = sign(a[m]) Z T a[m] ˜ Entropic coding: use statistical redundancy (many 0’s). Dequantization: Image f Zoom on f Quantized q[m] fR , R =0.2 bit/pixel
  • 18. Non-linear Approximation and Compression 2T T T 2T a[m] a[m] ˜ ⇥ |a[m]| Quantization: q[m] = sign(a[m]) Z T T =⇥ |a[m] a[m]| ˜ ⇥ 1 2 Dequantization: a[m] = sign(q[m]) |q[m]| + ˜ T 2
  • 19. Non-linear Approximation and Compression 2T T T 2T a[m] a[m] ˜ ⇥ |a[m]| Quantization: q[m] = sign(a[m]) Z T T =⇥ |a[m] a[m]| ˜ ⇥ 1 2 Dequantization: a[m] = sign(q[m]) |q[m]| + ˜ T 2 ⇤ ⇤ ⇤ ⇥2 T ||f fR || = 2 (a[m] a[m]) ˜ 2 |a[m]| + 2 m 2 |a[m]|<T |a[m]| T ||f fM ||2 #=M Theorem: ||f fR ||2 ||f fM ||2 + M T 2 /4 where M = # {m a[m] = 0}. ˜
  • 20. A Naive Support Coding Approach Coding: relate # bits R to # coe cients M . +1 (H1 ) Ordered coe cients | f, m ⇥| decays like m 2 . =⇤ ||f fM ||2 ⇥ M .
  • 21. A Naive Support Coding Approach Coding: relate # bits R to # coe cients M . +1 (H1 ) Ordered coe cients | f, m ⇥| decays like m 2 . =⇤ ||f fM ||2 ⇥ M . f RN sampled from f0 , error: ||f f0 ||2 ⇥ N (H2 ) To ensure ||f f0 ||2 ⇥ ||f fM ||2 : M ⇥ N ⇥/ .
  • 22. A Naive Support Coding Approach Coding: relate # bits R to # coe cients M . +1 (H1 ) Ordered coe cients | f, m ⇥| decays like m 2 . =⇤ ||f fM ||2 ⇥ M . f RN sampled from f0 , error: ||f f0 ||2 ⇥ N (H2 ) To ensure ||f f0 ||2 ⇥ ||f fM ||2 : M ⇥ N ⇥/ . Simple coding strategy: R = Rval + Rind ⇥ N = Rind log2 = O(M log2 (N/M )) = O(M log2 (M )). M
  • 23. A Naive Support Coding Approach Coding: relate # bits R to # coe cients M . +1 (H1 ) Ordered coe cients | f, m ⇥| decays like m 2 . =⇤ ||f fM ||2 ⇥ M . f RN sampled from f0 , error: ||f f0 ||2 ⇥ N (H2 ) To ensure ||f f0 ||2 ⇥ ||f fM ||2 : M ⇥ N ⇥/ . Simple coding strategy: R = Rval + Rind ⇥ N = Rind log2 = O(M log2 (N/M )) = O(M log2 (M )). M = Rval = O(M | log2 (T )|) = O(M log2 (M ))
  • 24. A Naive Support Coding Approach Coding: relate # bits R to # coe cients M . +1 (H1 ) Ordered coe cients | f, m ⇥| decays like m 2 . =⇤ ||f fM ||2 ⇥ M . f RN sampled from f0 , error: ||f f0 ||2 ⇥ N (H2 ) To ensure ||f f0 ||2 ⇥ ||f fM ||2 : M ⇥ N ⇥/ . Simple coding strategy: R = Rval + Rind ⇥ N = Rind log2 = O(M log2 (N/M )) = O(M log2 (M )). M = Rval = O(M | log2 (T )|) = O(M log2 (M )) Theorem: Under hypotheses (H1 ) and (H2 ), ||f fR ||2 = O(R log (R)).
  • 33. Contextual Coding 3 × 3 context window code block width
  • 34. JPEG-2000 vs. JPEG, 0.2bit/pixel
  • 35. Overview • Approximation and Compression • Decay of Approximation Error • Fourier for Smooth Functions • Wavelet for Piecewise Smooth Functions • Curvelets and Finite Elements for Cartoons
  • 39. Singularities and Fourier 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0
  • 42. Overview • Approximation and Compression • Decay of Approximation Error • Fourier for Smooth Functions • Wavelet for Piecewise Smooth Functions • Curvelets and Finite Elements for Cartoons
  • 43. Magnitude of Wavelet Coefficients 2 p=2 Vanishing moments: k < p, (x)x dx = 0 k 1 0 −1 −2 −1 0 1 2 2 p=3 1 0 −1 −2 −1 0 1 2 1.5 p=4 1 0.5 f (x) 0 −0.5 −1 −2 0 2 4
  • 44. Magnitude of Wavelet Coefficients 2 p=2 Vanishing moments: k < p, (x)x dx = 0 k 1 x 2j n If f is C on supp(⇥j,n ), p : t= 0 2j ⇤ ⇥ ⇤ 1 x 2 n j d −1 ⇥f, j,n ⇤ = d f (x) dx = 2j 2 R(2j t) (t)dt 2j 2 2j −2 −1 0 1 2 2 f (x) = P (x 2 n) + R(x j 2 n) = P (2 t) + R(2 t) j j j p=3 1 0 | f, j,n ⇥| Cf || ||1 2j( +d/2) −1 −2 −1 0 1 2 1.5 p=4 1 0.5 f (x) 0 −0.5 −1 −2 0 2 4
  • 45. Magnitude of Wavelet Coefficients 2 p=2 Vanishing moments: k < p, (x)x dx = 0 k 1 x 2j n If f is C on supp(⇥j,n ), p : t= 0 2j ⇤ ⇥ ⇤ 1 x 2 n j d −1 ⇥f, j,n ⇤ = d f (x) dx = 2j 2 R(2j t) (t)dt 2j 2 2j −2 −1 0 1 2 2 f (x) = P (x 2 n) + R(x j 2 n) = P (2 t) + R(2 t) j j j p=3 1 0 d | f, j,n ⇥| Cf || ||1 2j( +d/2) | f, j,n ⇥| ||f || || ||1 2j 2 −1 −2 −1 0 1 2 1.5 p=4 1 0.5 f (x) 0 −0.5 −1 −2 0 2 4
  • 46. 1D Wavelet Coefficient Behavior 1 0.8 0.6 0.4 0.2 0 0.2 0.1 0 −0.1 −0.2 0.2 0.1 0 −0.1 −0.2 0.5 0 −0.5 0.5 0 −0.5
  • 47. 1D Wavelet Coefficient Behavior 1 0.8 0.6 0.4 0.2 0 0.2 0.1 0 −0.1 −0.2 0.2 If f is C in supp( j,n ), then 0.1 0 2 j( +1/2) −0.1 | f, j,n ⇥| ||f ||C || ||1 −0.2 0.5 0 −0.5 0.5 0 −0.5
  • 48. 1D Wavelet Coefficient Behavior 1 0.8 0.6 0.4 0.2 0 0.2 0.1 0 −0.1 −0.2 0.2 If f is C in supp( j,n ), then 0.1 0 2 j( +1/2) −0.1 | f, j,n ⇥| ||f ||C || ||1 −0.2 0.5 If f is bounded (e.g. around 0 a singularity), then −0.5 0.5 | f, j,n ⇥| 2 j/2 ||f || || ||1 0 −0.5
  • 49. Piecewise Regular Functions in 1D Theorem: If f is C outside a finite set of discontinuities: O(M 1 ) (Fourier), n [M ] = ||f fM ||2 n = O(M 2 ) (wavelets). For Fourier, linear non-linear, sub-optimal. For wavelets, linear non-linear, optimal.
  • 50. Examples of 1D Approximations −1 −1.5 −2 −2.5 −3 −3.5 1 0.8 −4 0.6 −4.5 0.4 −5 0.2 0 −5.5 −6 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0
  • 51. Localizing the Singular Support S = {x1 , x2 } Small coe cient f (x) | f, jn ⇥| < T x1 x2 Large coe cient j2 j1 Singular support: |Cj | K|S| = constant
  • 52. Localizing the Singular Support S = {x1 , x2 } Small coe cient f (x) | f, jn ⇥| < T x1 x2 Large coe cient j2 j1 Singular support: |Cj | K|S| = constant Regular, n Cj : c |⇥f, j,n ⇤| C2j( +1/2) Coe cient behavior: Singular, n Cj : |⇥f, j,n ⇤| C2j/2
  • 53. Localizing the Singular Support S = {x1 , x2 } Small coe cient f (x) | f, jn ⇥| < T x1 x2 Large coe cient j2 j1 Singular support: |Cj | K|S| = constant Regular, n Cj : c |⇥f, j,n ⇤| C2j( +1/2) Coe cient behavior: Singular, n Cj : |⇥f, j,n ⇤| C2j/2 1 Singular: 2j1 = (T /C) +1/2 Cut-o scales (depends on T ): Regular: 2j2 = (T /C)2
  • 54. Localizing the Singular Support S = {x1 , x2 } Small coe cient f (x) | f, jn ⇥| < T x1 x2 Large coe cient j2 j1 Singular support: |Cj | K|S| = constant Regular, n Cj : c |⇥f, j,n ⇤| C2j( +1/2) Coe cient behavior: Singular, n Cj : |⇥f, j,n ⇤| C2j/2 1 Singular: 2j1 = (T /C) +1/2 Cut-o scales (depends on T ): Regular: 2j2 = (T /C)2 Hand-made approximate: ˜ fM = f, j,n ⇥ j,n + f, j,n ⇥ j,n j j2 n Cj c j j1 n Cj
  • 55. Computing Error and #Coefficients f (x) |Cj | K|S| = constant n Cj : |⇥f, c j,n ⇤| C2j( +1/2) j2 j1 n Cj : |⇥f, j,n ⇤| C2j/2 1 2 j1 = (T /C) +1/2 2j2 = (T /C)2 ||f fM ||2 ||f ˜ fM ||2 |⇥f, j,n ⇤| 2 + |⇥f, j,n ⇤| 2 j<j2 ,n Cj c j<j1 ,n Cj (K|S|) C 2 2j + 2 j C 2 2j(2 +1) Singulatities j<j2 j<j1 = O(2 + 2j2 2 j1 ) = O(T + T 2 2 +1/2 ) = O(T 2 +1/2 ) regular part
  • 56. Computing Error and #Coefficients f (x) |Cj | K|S| = constant n Cj : |⇥f, c j,n ⇤| C2j( +1/2) j2 j1 n Cj : |⇥f, j,n ⇤| C2j/2 1 2 j1 = (T /C) +1/2 2j2 = (T /C)2 ||f fM ||2 ||f ˜ fM ||2 |⇥f, j,n ⇤| 2 + |⇥f, j,n ⇤| 2 j<j2 ,n Cj c j<j1 ,n Cj (K|S|) C 2 2j + 2 j C 2 2j(2 +1) Singulatities j<j2 j<j1 = O(2 + 2 j2 2 j1 ) = O(T + T2 2 +1/2 ) = O(T 2 +1/2 ) regular part M |Cj | + c |Cj | K|S| + 2 j j j2 j j1 j j2 j j1 1 1 = O(| log(T )| + T +1/2 ) = O(T +1/2 )
  • 57. Computing Error and #Coefficients f (x) |Cj | K|S| = constant n Cj : |⇥f, c j,n ⇤| C2j( +1/2) j2 j1 n Cj : |⇥f, j,n ⇤| C2j/2 1 2 j1 = (T /C) +1/2 2j2 = (T /C)2 ||f fM ||2 ||f ˜ fM ||2 |⇥f, j,n ⇤| 2 + |⇥f, j,n ⇤| 2 j<j2 ,n Cj c j<j1 ,n Cj (K|S|) C 2 2j + 2 j C 2 2j(2 +1) Singulatities j<j2 j<j1 = O(2 + 2 j2 2 j1 ) = O(T + T2 2 +1/2 ) = O(T 2 +1/2 ) regular part M |Cj | + c |Cj | K|S| + 2 j j j2 j j1 j j2 j j1 1 1 = O(| log(T )| + T +1/2 ) = O(T +1/2 ) ||f fM ||2 = O(M 2 )
  • 58. 2D Wavelet Approximation If f is C in supp( j,n ), then | f, j,n ⇥| 2j( +1) ||f ||C || ||1 If f is bounded (e.g. around a singularity), then | f, j,n ⇥| 2j ||f || || ||1
  • 59. Piecewise Regular Functions in 2D Theorem: If f is C outside a set of finite length edge curves, O(M 1/2 ) (Fourier), n [M ] = ||f fM ||2 n = O(M 1 ) (wavelets). Fourier Wavelet, both sub-optimal. Wavelets: same result for BV functions (optimal).
  • 60. Example of 2D Approximations
  • 61. Localizing the Singular Support in 2D f (x, y) Length(S) = L j2 j1 |Cj | LK2 j = constant
  • 62. Localizing the Singular Support in 2D f (x, y) Length(S) = L j2 j1 |Cj | LK2 j = constant Regular, n Cj : c |⇥f, j,n ⇤| C2j( +1) Coe cient behavior: Singular, n Cj : |⇥f, j,n ⇤| C2j
  • 63. Localizing the Singular Support in 2D f (x, y) Length(S) = L j2 j1 |Cj | LK2 j = constant Regular, n Cj : c |⇥f, j,n ⇤| C2j( +1) Coe cient behavior: Singular, n Cj : |⇥f, j,n ⇤| C2j 1 Singular: 2j1 = (T /C) +1 Cut-o scales (depends on T ): Regular: 2j2 = T /C
  • 64. Localizing the Singular Support in 2D f (x, y) Length(S) = L j2 j1 |Cj | LK2 j = constant Regular, n Cj : c |⇥f, j,n ⇤| C2j( +1) Coe cient behavior: Singular, n Cj : |⇥f, j,n ⇤| C2j 1 Singular: 2 j1 = (T /C) +1 Cut-o scales (depends on T ): Regular: 2j2 = T /C Hand-made approximate: ˜ fM = f, j,n ⇥ j,n + f, j,n ⇥ j,n j j2 n Cj c j j1 n Cj
  • 65. Computing Error and #Coefficients f (x, y) |Cj | LK2 j = constant n Cj : |⇥f, c j,n ⇤| C2j( +1) j2 n Cj : |⇥f, j,n ⇤| C2j j1 1 2 j1 = (T /C) +1 2j2 = T /C ||f fM ||2 ||f ˜ fM ||2 |⇥f, j,n ⇤| 2 + |⇥f, j,n ⇤| 2 j<j2 ,n Cj c j<j1 ,n Cj LK2 j C 2 22j + 2 2j C 2 22j( +1) Singulatities j<j2 j<j1 = O(2 + 2 j2 2 j1 ) = O(T + T 2 +1 ) = O(T ) regular part
  • 66. Computing Error and #Coefficients f (x, y) |Cj | LK2 j = constant n Cj : |⇥f, c j,n ⇤| C2j( +1) j2 n Cj : |⇥f, j,n ⇤| C2j j1 1 2 j1 = (T /C) +1 2j2 = T /C ||f fM ||2 ||f ˜ fM ||2 |⇥f, j,n ⇤| 2 + |⇥f, j,n ⇤| 2 j<j2 ,n Cj c j<j1 ,n Cj LK2 j C 2 22j + 2 2j C 2 22j( +1) Singulatities j<j2 j<j1 = O(2 + 2 j2 2 j1 ) = O(T + T 2 +1 ) = O(T ) regular part M |Cj | + c |Cj | LK2 j + 2 2j j j2 j j1 j j2 j j1 1 = O(T 1 +T +1 ) = O(T 1 )
  • 67. Computing Error and #Coefficients f (x, y) |Cj | LK2 j = constant n Cj : |⇥f, c j,n ⇤| C2j( +1) j2 n Cj : |⇥f, j,n ⇤| C2j j1 1 2 j1 = (T /C) +1 2j2 = T /C ||f fM ||2 ||f ˜ fM ||2 |⇥f, j,n ⇤| 2 + |⇥f, j,n ⇤| 2 j<j2 ,n Cj c j<j1 ,n Cj LK2 j C 2 22j + 2 2j C 2 22j( +1) Singulatities j<j2 j<j1 = O(2 + 2 j2 2 j1 ) = O(T + T 2 +1 ) = O(T ) regular part M |Cj | + c |Cj | LK2 j + 2 2j j j2 j j1 j j2 j j1 1 = O(T 1 +T +1 ) = O(T 1 ) ||f fM ||2 = O(M 1 )
  • 68. Overview • Approximation and Compression • Decay of Approximation Error • Fourier for Smooth Functions • Wavelet for Piecewise Smooth Functions • Curvelets and Finite Elements for Cartoons
  • 69. Geometrically Regular Images Geometric image model: f is C outside a set of C edge curves. BV image: level sets have finite lengths. Geometric image: level sets are regular. | f| Geometry = cartoon image Sharp edges Smoothed edges
  • 70. Geometic Construction : Finite Elements Approximation of f , C2 outside C2 edges. ˜ Piecewise linear approximation on M triangles: fM .
  • 71. Geometic Construction : Finite Elements Approximation of f , C2 outside C2 edges. Regular areas: M/2 equilateral triangles. ˜ Piecewise linear approximation on M triangles: fM . 1/2 M 1/2 M
  • 72. Geometic Construction : Finite Elements Approximation of f , C2 outside C2 edges. Regular areas: M/2 equilateral triangles. ˜ Piecewise linear approximation on M triangles: fM . 1/2 M 1/2 M Singular areas: M/2 anisotropic triangles.
  • 73. Geometic Construction : Finite Elements Approximation of f , C2 outside C2 edges. Regular areas: M/2 equilateral triangles. ˜ Piecewise linear approximation on M triangles: fM . 1/2 M 1/2 M Singular areas: M/2 anisotropic triangles. Theorem: If f is C2 outside a set of C2 contours, then one has for an adapted ˜ triangulation ||f fM ||2 = O(M 2 ). Di culties to build e cient approximations. No optimal strategies (greedy solutions).
  • 74. Greedy Triangulation Optimization Bougleux, Peyr´, Cohen, ECCV’08 e
  • 75. Curvelet Atoms [Candes, Donoho] [Candes, Demanet, Ying, Donoho] Parabolic dyadic scaling: Rotation: “width length2 ”
  • 76. Curvelet Tight Frame Angular sampling: Spacial sampling: Tight frame of L2 (R2 ):
  • 77. Curvelet Approximation M -term curvelet approximation: Theorem: If f is C2 outside a set of C2 edges, ||f fM ||2 = O(M 2 (log M )3 ). Discrete curvelets: O(N log(N )) algorithm. Redundancy 5 =⇥ not e cient for compression.
  • 78. Curvelets Denoising Works on elongated edges. Works also on locally parallel textures !
  • 81. Conclusion 1 0.8 0.6 0.4 0.2 0
  • 82. Conclusion 1 0.8 0.6 0.4 0.2 0