SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
Sistemas de Equações do Primeiro Grau com Duas
Incógnitas
Quando  tratamos  as equações  do  1°  grau  com  duas  variáveis vimos  que  a  equação x  +  y  =  20  admite
infinitas  soluções,  pois  se  não  houver  restrições  como  as  do  exemplo  na  página  em  questão,  podemos  atribuir
qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 ­ x.
A equação x ­ y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções.
Como as equações x + y = 20 e x ­ y = 6 admitem infinitas soluções podemos nos perguntar:
Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo
tempo tanto a primeira, quanto à segunda equação?
Este é justamente o tema deste tópico que vamos tratar agora.
Métodos de Resolução
Há vários métodos para calcularmos a solução deste tipo de sistema. Agora veremos os dois mais utilizados, primeiro
ométodo da adição e em seguida o método da substituição.
Método da Adição
Este método consiste em realizarmos a soma dos respectivos termos de cada uma das equações, a fim de obtermos
uma equação com apenas uma incógnita.
Quando  a  simples  soma  não  nos  permite  alcançar  este  objetivo,  recorremos  ao  princípio  multiplicativo  da
igualdadepara multiplicarmos todos os termos de uma das equações por um determinado valor, de sorte que a
equação equivalente resultante, nos permita obter uma equação com uma única incógnita.
A seguir temos outras explicações que retratam estas situações.
Quando o sistema admite uma única solução?
Tomemos como ponto de partida o sistema composto pelas duas equações abaixo:
Perceba que iremos eliminar o termo com a variável y, se somarmos cada um dos termos da primeira equação com
o respectivo termo da segunda equação:
Agora  de  forma  simplificada  podemos  obter  o  valor  da  incógnita x simplesmente  passando  o  coeficiente  2  que
multiplica esta variável, para o outro lado com a operação inversa, dividindo assim todo o segundo membro por 2:
Agora que sabemos que x  =  13,  para  encontrarmos  o  valor  de y,  basta  que  troquemos x por 13  na  primeira
equação e depois isolemos y no primeiro membro:
Escolhemos a primeira e não a segunda equação, pois se escolhêssemos a segunda, teríamos que realizar um passo
a mais que seria multiplicar ambos os membros por ­1, já que teríamos ­y no primeiro membro e não y como é
preciso, no entanto podemos escolher a equação que quisermos. Normalmente iremos escolher a equação que nos
facilite a realização dos cálculos.
Observe também que neste caso primeiro obtivemos o valor da variável x e em função dele conseguimos obter o
valor dey, porque isto nos era conveniente. Se for mais fácil primeiro encontrarmos o valor da segunda incógnita, é
assim que devemos proceder.
Quando um sistema admite uma única solução dizemos que ele é um sistema possível e determinado.
Quando o sistema admite uma infinidade de
soluções?
Vejamos o sistema abaixo:
Note que somando todos os termos da primeira equação ao da segunda, não conseguiremos eliminar quaisquer
variáveis, então vamos multiplicar os termos da primeira por ­2 e então realizarmos a soma:
Veja que eliminamos não uma das variáveis, mas as duas. O fato de termos obtido 0 = 0 indica que o sistema
admite uma infinidade de soluções.
Quando  um  sistema  admite  uma  infinidade  de  soluções  dizemos  que  ele  é  um  sistema  possível  e
indeterminado.
Quando o sistema não admite solução?
Vejamos este outro sistema:
Note que se somarmos os termos da primeira equação com os da segunda, também não conseguiremos eliminar
nenhuma  das  variáveis,  mas  agora  veja  o  que  acontece  se  multiplicarmos  por 2  todos  os  termos  da  primeira
equação e realizarmos a soma das equações:
Obtivemos 0 = ­3 que é inválido, este é o indicativo de que o sistema não admite soluções.
Quando um sistema não admite soluções dizemos que ele é um sistema impossível.
Método da Substituição
Este método consiste em elegermos uma das equações e desta isolarmos uma das variáveis. Feito isto substituímos
na outra equação, a variável isolada pela expressão obtida no segundo membro da equação obtida quando isolamos
a variável.
Este procedimento também resultará em uma equação com uma única variável.
O  procedimento  é  menos  confuso  do  que  parece.  A  seguir  veremos  em  detalhes  algumas  situações  que
exemplificam tais conceitos, assim como fizemos no caso do método da adição.
Quando o sistema admite uma única solução?
Para  nos  permitir  a  comparação  entre  os  dois  métodos,  vamos  utilizar  o  mesmo  sistema  utilizado  no  método
anterior:
Vamos escolher a primeira equação e isolar a variável x:
Agora na segunda equação vamos substituir x por 20 ­ y:
Agora que sabemos que y = 7, podemos calcular o valor de x:
Quando o sistema admite uma infinidade de
soluções?
Solucionemos o sistema abaixo:
Este sistema já foi resolvido pelo método da adição, agora vamos resolvê­lo pelo método da substituição.
Por ser mais fácil e gerar em um resultado mais simples, vamos isolar a incógnita y da primeira equação:
Agora na outra equação vamos substituir y por 10 ­ 2x:
Como obtivemos 0 = 0, o sistema admite uma infinidade de soluções.
Quando o sistema não admite solução?
Novamente vamos solucionar o mesmo sistema utilizado no método anterior:
Observe que é mais viável isolarmos a variável x da primeira equação, pois o seu coeficiente 2 é divisor de ambos
coeficientes do primeiro membro da segunda equação, o que irá ajudar nos cálculos:
Agora substituímos x na segunda equação pelo valor encontrado:
Conforme explicado anteriormente, o resultado 0 = ­3 indica que este sistema não admite soluções.

Weitere ähnliche Inhalte

Was ist angesagt?

Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
Angela Costa
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
estrelaeia
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
leilamaluf
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
betontem
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
giselelamas
 
Sistemas de equacões
 Sistemas de equacões Sistemas de equacões
Sistemas de equacões
marilia65
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
Raquel1966
 

Was ist angesagt? (20)

Equacoes de 7º Ano
Equacoes de 7º AnoEquacoes de 7º Ano
Equacoes de 7º Ano
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
 
Aula - semelhança de figuras
Aula - semelhança de figurasAula - semelhança de figuras
Aula - semelhança de figuras
 
Sistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentaçãoSistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentação
 
Expressões numéricas
Expressões numéricasExpressões numéricas
Expressões numéricas
 
Slide aula angulos
Slide aula angulosSlide aula angulos
Slide aula angulos
 
Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
 
Área e Volume
Área e VolumeÁrea e Volume
Área e Volume
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
 
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionais
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Aula 14 números irracionais
Aula 14   números irracionaisAula 14   números irracionais
Aula 14 números irracionais
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Sistemas de equacões
 Sistemas de equacões Sistemas de equacões
Sistemas de equacões
 
Raiz quadrada aproximada
Raiz quadrada aproximadaRaiz quadrada aproximada
Raiz quadrada aproximada
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 

Andere mochten auch (7)

Portifolio da 8 serie = 9 ano de 2013 prof mm
Portifolio da 8 serie = 9 ano  de 2013   prof mmPortifolio da 8 serie = 9 ano  de 2013   prof mm
Portifolio da 8 serie = 9 ano de 2013 prof mm
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grau
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parenteses
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
 
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
 
Revisão para prova
Revisão para provaRevisão para prova
Revisão para prova
 

Ähnlich wie Sistemas de equações do 1° grau com 2 incógnitas

A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...
Gustavo Wyllian
 
Sistemas de equações
 Sistemas de equações Sistemas de equações
Sistemas de equações
marilia65
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações lineares
Rafael Freitas
 
Ideia básica para se resolver equações
Ideia básica para se resolver equaçõesIdeia básica para se resolver equações
Ideia básica para se resolver equações
Arildo de Souza
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações lineares
Rafael Freitas
 
Resolução de sistemas lineares
Resolução de sistemas linearesResolução de sistemas lineares
Resolução de sistemas lineares
Otávio Sales
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitas
rosilenedalmolin
 

Ähnlich wie Sistemas de equações do 1° grau com 2 incógnitas (17)

EquaçAo Do 2º Grau
EquaçAo Do 2º GrauEquaçAo Do 2º Grau
EquaçAo Do 2º Grau
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...
 
Mat74a
Mat74aMat74a
Mat74a
 
Sistemas de equações
 Sistemas de equações Sistemas de equações
Sistemas de equações
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Equações do 1º grau II.ppt
Equações do 1º grau II.pptEquações do 1º grau II.ppt
Equações do 1º grau II.ppt
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações lineares
 
Resolvendo sistemas
Resolvendo sistemasResolvendo sistemas
Resolvendo sistemas
 
Ideia básica para se resolver equações
Ideia básica para se resolver equaçõesIdeia básica para se resolver equações
Ideia básica para se resolver equações
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações lineares
 
Teorema chinês do resto
Teorema chinês do restoTeorema chinês do resto
Teorema chinês do resto
 
Equação do segundo grau
Equação do segundo grauEquação do segundo grau
Equação do segundo grau
 
Resolução de sistemas lineares
Resolução de sistemas linearesResolução de sistemas lineares
Resolução de sistemas lineares
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitas
 
58ad47702e6f04f314a21718ac26d233.pdf
58ad47702e6f04f314a21718ac26d233.pdf58ad47702e6f04f314a21718ac26d233.pdf
58ad47702e6f04f314a21718ac26d233.pdf
 
Exercícios sistemas de equações
Exercícios sistemas de equaçõesExercícios sistemas de equações
Exercícios sistemas de equações
 

Kürzlich hochgeladen

Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
RavenaSales1
 
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxSlide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
edelon1
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
NarlaAquino
 
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
LeloIurk1
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
marlene54545
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
FabianeMartins35
 

Kürzlich hochgeladen (20)

Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcanteCOMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
COMPETÊNCIA 2 da redação do enem prodção textual professora vanessa cavalcante
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)
 
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptxProjeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
Projeto Nós propomos! Sertã, 2024 - Chupetas Eletrónicas.pptx
 
Seminário Biologia e desenvolvimento da matrinxa.pptx
Seminário Biologia e desenvolvimento da matrinxa.pptxSeminário Biologia e desenvolvimento da matrinxa.pptx
Seminário Biologia e desenvolvimento da matrinxa.pptx
 
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdfGEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
GEOGRAFIA - COMÉRCIO INTERNACIONAL E BLOCOS ECONÔMICOS - PROF. LUCAS QUEIROZ.pdf
 
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptxSlide - EBD ADEB 2024 Licao 02 2Trim.pptx
Slide - EBD ADEB 2024 Licao 02 2Trim.pptx
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para criançasJogo de Rimas - Para impressão em pdf a ser usado para crianças
Jogo de Rimas - Para impressão em pdf a ser usado para crianças
 
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffffSSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
SSE_BQ_Matematica_4A_SR.pdfffffffffffffffffffffffffffffffffff
 
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIAPROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
PROJETO DE EXTENSÃO I - AGRONOMIA.pdf AGRONOMIAAGRONOMIA
 
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
2° ANO - ENSINO FUNDAMENTAL ENSINO RELIGIOSO
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 
19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf19- Pedagogia (60 mapas mentais) - Amostra.pdf
19- Pedagogia (60 mapas mentais) - Amostra.pdf
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
 

Sistemas de equações do 1° grau com 2 incógnitas

  • 1. Sistemas de Equações do Primeiro Grau com Duas Incógnitas Quando  tratamos  as equações  do  1°  grau  com  duas  variáveis vimos  que  a  equação x  +  y  =  20  admite infinitas  soluções,  pois  se  não  houver  restrições  como  as  do  exemplo  na  página  em  questão,  podemos  atribuir qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 ­ x. A equação x ­ y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções. Como as equações x + y = 20 e x ­ y = 6 admitem infinitas soluções podemos nos perguntar: Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo tempo tanto a primeira, quanto à segunda equação? Este é justamente o tema deste tópico que vamos tratar agora. Métodos de Resolução Há vários métodos para calcularmos a solução deste tipo de sistema. Agora veremos os dois mais utilizados, primeiro ométodo da adição e em seguida o método da substituição. Método da Adição Este método consiste em realizarmos a soma dos respectivos termos de cada uma das equações, a fim de obtermos uma equação com apenas uma incógnita. Quando  a  simples  soma  não  nos  permite  alcançar  este  objetivo,  recorremos  ao  princípio  multiplicativo  da igualdadepara multiplicarmos todos os termos de uma das equações por um determinado valor, de sorte que a equação equivalente resultante, nos permita obter uma equação com uma única incógnita. A seguir temos outras explicações que retratam estas situações. Quando o sistema admite uma única solução? Tomemos como ponto de partida o sistema composto pelas duas equações abaixo: Perceba que iremos eliminar o termo com a variável y, se somarmos cada um dos termos da primeira equação com o respectivo termo da segunda equação:
  • 2. Agora  de  forma  simplificada  podemos  obter  o  valor  da  incógnita x simplesmente  passando  o  coeficiente  2  que multiplica esta variável, para o outro lado com a operação inversa, dividindo assim todo o segundo membro por 2: Agora que sabemos que x  =  13,  para  encontrarmos  o  valor  de y,  basta  que  troquemos x por 13  na  primeira equação e depois isolemos y no primeiro membro: Escolhemos a primeira e não a segunda equação, pois se escolhêssemos a segunda, teríamos que realizar um passo a mais que seria multiplicar ambos os membros por ­1, já que teríamos ­y no primeiro membro e não y como é preciso, no entanto podemos escolher a equação que quisermos. Normalmente iremos escolher a equação que nos facilite a realização dos cálculos. Observe também que neste caso primeiro obtivemos o valor da variável x e em função dele conseguimos obter o valor dey, porque isto nos era conveniente. Se for mais fácil primeiro encontrarmos o valor da segunda incógnita, é assim que devemos proceder. Quando um sistema admite uma única solução dizemos que ele é um sistema possível e determinado. Quando o sistema admite uma infinidade de soluções? Vejamos o sistema abaixo: Note que somando todos os termos da primeira equação ao da segunda, não conseguiremos eliminar quaisquer variáveis, então vamos multiplicar os termos da primeira por ­2 e então realizarmos a soma: Veja que eliminamos não uma das variáveis, mas as duas. O fato de termos obtido 0 = 0 indica que o sistema admite uma infinidade de soluções. Quando  um  sistema  admite  uma  infinidade  de  soluções  dizemos  que  ele  é  um  sistema  possível  e indeterminado. Quando o sistema não admite solução? Vejamos este outro sistema: Note que se somarmos os termos da primeira equação com os da segunda, também não conseguiremos eliminar
  • 3. nenhuma  das  variáveis,  mas  agora  veja  o  que  acontece  se  multiplicarmos  por 2  todos  os  termos  da  primeira equação e realizarmos a soma das equações: Obtivemos 0 = ­3 que é inválido, este é o indicativo de que o sistema não admite soluções. Quando um sistema não admite soluções dizemos que ele é um sistema impossível. Método da Substituição Este método consiste em elegermos uma das equações e desta isolarmos uma das variáveis. Feito isto substituímos na outra equação, a variável isolada pela expressão obtida no segundo membro da equação obtida quando isolamos a variável. Este procedimento também resultará em uma equação com uma única variável. O  procedimento  é  menos  confuso  do  que  parece.  A  seguir  veremos  em  detalhes  algumas  situações  que exemplificam tais conceitos, assim como fizemos no caso do método da adição. Quando o sistema admite uma única solução? Para  nos  permitir  a  comparação  entre  os  dois  métodos,  vamos  utilizar  o  mesmo  sistema  utilizado  no  método anterior: Vamos escolher a primeira equação e isolar a variável x: Agora na segunda equação vamos substituir x por 20 ­ y: Agora que sabemos que y = 7, podemos calcular o valor de x: Quando o sistema admite uma infinidade de soluções? Solucionemos o sistema abaixo:
  • 4. Este sistema já foi resolvido pelo método da adição, agora vamos resolvê­lo pelo método da substituição. Por ser mais fácil e gerar em um resultado mais simples, vamos isolar a incógnita y da primeira equação: Agora na outra equação vamos substituir y por 10 ­ 2x: Como obtivemos 0 = 0, o sistema admite uma infinidade de soluções. Quando o sistema não admite solução? Novamente vamos solucionar o mesmo sistema utilizado no método anterior: Observe que é mais viável isolarmos a variável x da primeira equação, pois o seu coeficiente 2 é divisor de ambos coeficientes do primeiro membro da segunda equação, o que irá ajudar nos cálculos: Agora substituímos x na segunda equação pelo valor encontrado: Conforme explicado anteriormente, o resultado 0 = ­3 indica que este sistema não admite soluções.