SlideShare ist ein Scribd-Unternehmen logo
1 von 6
Downloaden Sie, um offline zu lesen
``

Hydrogen Fuel Cell in Automobiles
Panchal Girishkumar R.*§, Mehta Het D. § and Panchal Vinay A. §
*
Corresponding Author, Email Id: girishp099@gmail.com
§
Mechanical Engineering Department, K. J. Somaiya Polytechnic, Vidyavihar, Mumbai-400 077

Abstract: This paper describes about the technique of hydrogen fuel cells adopted in automobiles and storage technologies for
hydrogen and thus stepping to the way of green technology with economic power generation. The purpose of this paper is to
widespread the knowledge of hydrogen fuel cells which is taking its new place in the field of automobile engineering as a green
fuel and storage techniques which is major limiting factor. Few patents and papers are available on the subject under study as
very few people are aware about it.

Keywords: Hydrogen fuel cells, green fuel, green technology.

1.

Introduction: Both from the point of view of global
warming and from that of the inevitable exhaustion
of Earth's oil reserves; it has become highly desirable
to develop an alternative energy source for
automobiles. Since the development of the hydrogen
fuel cell, which is fueled by hydrogen and oxygen
(air) and produces only water, hydrogen has
generally been seen to be the most promising
approach. However, although the development of
Fig No.1 Fuel Cell
hydrogen fuel cell technology appears to be
Source: http://www.nrel.gov/hydrogen/photos.html
progressing smoothly towards eventual commercial
exploitation, a viable method for storing hydrogen on board a vehicle is still to be established. (Ross, 2006)

2.

Research methodology: The research methodology requires gathering relevant data from the specified
documents and compiling information in order to analyze the matter. I hope to shed the light on the
following questions through my research: how are automobiles operated with hydrogen fuel cells? What
actually takes place in the working of fuel cell? What are the specifications of hydrogen fuel cell? How it
is better than gasoline and electrically operated vehicles? How to store hydrogen under specific conditions?

3. Automobiles Operated With Fuel Cell:
Terminology:
a) Fuel cells: A fuel cell is a device that converts the chemical energy into electrical energy, water and heat
through chemical reactions.
b) Hydrogen tank: A cylinder tank used for storing hydrogen in a car.
c) Traction inverter module: The traction inverter module is used to convert supplied energy as efficiently as
possible and make it available to the drive motors in a suitable way. ( http://www.voith.com/en/productsservices/power-transmission/traction-inverter-10375.html)
d) Turbo compressor: A dynamic-type compressor is used for the compression and injection of gases
(oxygen).
e) Transaxle: An automotive part that combines the transmission and the differential and is used on vehicles
with front-wheel drive. (http://www.thefreedictionary.com/Transaxles)
``

How to use hydrogen to fuel a car?

Fig No.2 Actual Layout Of Hydrogen Car
Source: http://www.autoconcept-reviews.com/cars_reviews/ford/ford-hydrogen-fuel-cell-prototypes/cars_reviewsford-hydrogen-fuel-cell-prototypes-2008.html
Hydrogen gas from the hydrogen storage tank is supplied to the fuel cell and from the other side
atmospheric air is also supplied in it by using turbo compressor.
Reaction of oxygen from the air and hydrogen takes place in fuel cell which results in the generation of
electricity that is sent to the traction inverter module.
The traction inverter module plays an important role of converting the electricity and using it for driving
the electric motor which ultimately imparts rotary motion to the wheel.

What actually takes place in fuel cell?
Pressurized hydrogen gas (H2) enters cell on anode side.
Gas is forced through catalyst by pressure.
When H2 molecule comes contacts platinum catalyst, it splits
into two H+ ions and two electrons (e-).
Electrons are conducted through the anode which makes their
way through the external circuit (doing useful work such as
turning a motor) and return to the cathode side of the fuel cell.
On the cathode side, oxygen gas (O2) is forced through the
catalyst forms two oxygen atoms, each with a strong negative
charge.
Negative charge attracts the two H+ ions through the membrane,
combine with an oxygen atom and two electrons from the
external circuit to form a water molecule (H2O).
http://static.howstuffworks.com/flash/fuel-cell-animation.swf

Fig No.3 Working Of Fuel Cell
Source: www.fuelcelleducation.org
``

Anode reaction: H2 = 2H+ + 2eCathode reaction: O2 + 2H+ = 2H2O
Heat and electrical energy is formed after the fusion of electrons. Therefore, electrical energy is used to drive the
vehicle and we get water (H2O) as our exhaust. The heat energy converts water into water vapor and thus our
exhaust from the vehicle is in the form of water vapor which ultimately has no effect to the environment.
Thus, no pollution is created using this technology.
Parts of fuel cell:
1) Anode
• Negative post of the fuel cell.
• Conducts the electrons that are freed from the hydrogen molecules so that they can be used in an
external circuit.
• Etched channels disperse hydrogen gas over the surface of catalyst.
2) Cathode
• Positive post of the fuel cell
• Etched channels distribute oxygen to the surface of the catalyst.
• Conducts electrons back from the external circuit to the catalyst
• Recombine with the hydrogen ions and oxygen to form water.
3) Electrolyte
• Proton exchange membrane.
• Specially treated material, only conducts positively charged ions.
• Membrane blocks electrons.
4) Catalyst
• Special material that facilitates reaction of oxygen and hydrogen
• Usually platinum powder very thinly coated onto carbon paper or cloth.
• Rough & porous maximizes surface area exposed to hydrogen or oxygen
• The platinum-coated side of the catalyst faces the PEM.
Types of fuel cells:
Alkaline fuel cell (AFC)
This is one of the oldest designs. It has been used in the U.S. space program since the 1960s. The AFC is very
susceptible to contamination, so it requires pure hydrogen and oxygen. It is also very expensive, so this type of fuel
cell is unlikely to be commercialized.
Phosphoric-acid fuel cell (PAFC)
The phosphoric-acid fuel cell has potential for use in small stationary power-generation systems. It operates at a
higher temperature than PEM fuel cells, so it has a longer warm-up time. This makes it unsuitable for use in cars.
Solid oxide fuel cell (SOFC)
These fuel cells are best suited for large-scale stationary power generators that could provide electricity for factories
or towns. This type of fuel cell operates at very high temperatures (around 1,832 F, 1,000 C). This high temperature
makes reliability a problem, but it also has an advantage: The steam produced by the fuel cell can be channeled into
turbines to generate more electricity. This improves the overall efficiency of the system.
``

Proton exchange membrane fuel cell (PEMFC)
In the polymer electrolyte membrane (PEM) fuel cell, also known as a
proton-exchange membrane cell, a catalyst in the anode separates
hydrogen atoms into protons and electrons. The membrane in the center
transports the protons to the cathode, leaving the electrons behind. The
electrons flow through a circuit to the cathode, forming an electric
current to do useful work. In the cathode, another catalyst helps the
electrons, hydrogen nuclei and oxygen from the air recombine. When the
input is pure hydrogen, the exhaust consists of water vapor. In fuel cells
using hydrocarbon fuels the exhaust is water and carbon dioxide.
(http://www.news.cornell.edu/releases/Nov03/Fuelcell.institute.deb.html)

Fig No. 4 PEM Cell
Source:http://en.wikipedia.org/wiki/Proton
_exchange_membrane_fuel_cell

Auto Power Efficiency Comparison:

Technology

System efficiency

Fuel cell

24-32%

Electric battery

26%

Gasoline engine

20%

Fig No.4 Efficiency vs. Range
Source: http://www.howstuffworks.com/fuel-cell.htm/printable
Comparison based on Calorific Value:
For hydrogen:
Higher calorific value: 141,790 kJ/kg
Lower calorific value: 121,000 kJ/kg
For petrol:
Calorific value: 48,000 kJ/kg
(http://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html)
Heat generated from the hydrogen is more than that of petrol or other gasoline fuels as the calorific value of
hydrogen is more. Thus, the power developed is more in vehicles running on hydrogen fuel cells.
Hydrogen Storage Technologies
In the development of fuel cell vehicles, hydrogen storage is “the biggest remaining research problem”
according to the January 2003 Office of Technology Policy report, Fuel Cell Vehicles: z to a New Automotive
Future. Current hydrogen storage systems are inadequate to meet the needs of consumers in a fuel cell vehicle.
The OTP report continues, “Hydrogen‟s low energy-density makes it difficult to store enough on board a
vehicle to achieve sufficient vehicle range without the storage container being too large or too heavy.”
``

Existing and proposed technologies for hydrogen storage include:
a) Physical storage: pressurized tanks for gaseous hydrogen and
pressurized cryo-tanks for liquid hydrogen;
b) Reversible hydrogen uptake in various metal-based compounds
including hydrides, nitrides, and imides; chemical storage in
irreversible hydrogen carriers such as methanol;
c) Cryo-adsorption with activated carbon as the most common
adsorbent; and
d) Advanced carbon materials absorption, including carbon nano
tubes, alkali-doped carbon nano tubes and graphite nano
fibers. (Craig et al., 2003)

Fig.No.5 Hydrogen Storage
Source: Craig et al., 2003

Hydrogen Fuel Storage Safety
Hydrogen has a reputation for being explosive and therefore raises concerns about the safety of carrying a
substantial quantity of H2 in a vehicle fuel tank. However, because H2 is the lightest gas, it has a tendency to
diffuse away quickly in case its container is breached and consequently may represent less of a hazard than
gasoline.
The simplest way to carry hydrogen fuel in a car or other vehicle is as a high-pressure gas 3-10 kpsi (21-69 MPa)
in metal or composite-reinforced (fiberglass, carbon fiber, Kevlar) tanks. This is similar to the way compressed
natural gas (CNG) vehicles operate.
The authors conclude that “hydrogen is no more or less dangerous than any other energy carrier and furthermore
that hydrogen has properties that in certain areas make it safer than other energy carriers: it is not poisonous, and
has the ability to dissipate quickly into the atmosphere because of its light weight compared to air.” (Craig et al.,
2003)

Method
High pressure in cylinders
Metal hydride
Cryogenic liquid
Methanol

Sodium hydride pellets
NaBH4 solution in water

Table 1: Data for comparing the methods of storing hydrogen fuels
Gravimetric storage
Volumetric mass (in kg)
Comments
efficiency,% mass H2
of H2 per litre
0.7 – 3.0
0.015
„cheap and cheerful‟
widely used
0.65
0.028
Suitable for small
systems
14.2
0.040
Widely used for bulk
storage
6.9
0.055
Low-cost chemical.
Potentially useful in wide
range of systems
2.2
0.02
Problem of disposing of
spent solution
3.35
0.036
Very expensive to run
Table 2: Hydrogen storage parameters goals

Metric
System energy per unit weight for conventional
vehicles with 300 mile range
System energy per unit volume for conventional
vehicles with 300 mile range
Usable energy consumed in releasing H2
H2 release temperature
Refueling time
H2 ambient release temp. range
Durability (to maintain 80% capacity)

Goals
> 6 MJ/kg
> 6 MJ/kg
> 5%
~ 80%
< 5 minutes
-40/+45°C
150,000 miles
``

4. Limitations:
The hydrogen is not so readily available, however.
Hydrogen has some limitations that make it impractical for use in most applications.
a) For instance, you don't have a hydrogen pipeline coming to your house, and you can't pull up to a
hydrogen pump at your local gas station.
b) Hydrogen is difficult to store and distribute, so it would be much more convenient if fuel cells could
use fuels that are more readily available.
c) Technology is currently expensive.
5.

Conclusion: Thus, it can be said that there will be a bright future if this hydrogen fuel cell is put up to use
in all vehicles by properly considering the safety matter first. And if this eco-friendly technology is used,
the rate of pollution is surely going to come down. It is not only eco-friendly but, also serves to be a great
fuel source. Since the conventional sources of fuel may not prove to be sufficient, there arises a need to
develop a new alternative source of energy. Although there are a few problems related with the storage of
hydrogen gas, which might be overcome as the technology develops further.
“Hydrogen holds the great promise to meet our future energy needs concerned with our environment.”

6. Future scope:
There is a lot of advancement been done by the RnD sectors and it is an on-going process of developing new
technologies, it is sure that the there will be many changes done in hydrogen fuel cells in automobiles and its
storage facilities.
1.) The technology should be made cost effective.
2.) Developing more safety features to the onboard hydrogen tank and also at refilling stations by making the
use of „Auto-locking of supply valves by using hydrogen detector.‟
In this technique, if the hydrogen is leaked from the cylinder or supply line then hydrogen will be
detected by the sensor provided to it by sensing the tlv (threshold limit value) of hydrogen.
When the gas is detected, the supply valves from the hydrogen tank are closed. Thus, hydrogen gas
leaking is thus avoided.
3.) The other technique is to splash the water where the hydrogen gas is leaked. But for this, there will be
separate water storing facility required. Thus, hazards expected from hydrogen gas leaking are thus
avoided
This initiative, supported by legislation in the Energy Policy Act of 2005 (EPACT 2005) and the Advanced Energy
Initiative of 2006, aims to develop hydrogen, fuel cell and infrastructure technologies to make fuel-cell vehicles
practical and cost-effective by 2020. (Nice, Strickland)

Reference:
[1]
[2]
[3]

Brand, D. Cornell Chronicle (31 Oct,2003) (http://www.news.cornell.edu/releases/Nov03/Fuelcell.institute.deb.html)
Craig, D. Edelstein,B. Evenson,B. Brecher,A. Cox,D. (12 June,2003) “Hydrogen fuel cell vehicle study”
Ford hydrogen fuel cell prototypes (2009) (http://www.autoconcept-reviews.com/cars_reviews/ford/ford-hydrogen-fuel-cellprototypes/cars_reviews-ford-hydrogen-fuel-cell-prototypes-2008.html)
[4] Freedom CAR and Fuel technical partnership: Technical goals (http://www.eere.energy.gov/vehiclesand
fuels/about/partnerships/freedomcar/index.shtml)
[5] Fuel Cell Animation (http://static.howstuffworks.com/flash/fuel-cell-animation.swf)
[6] Fuel Cells (www.fuelcelleducation.org/wp.../pdf/Intro%20to%20Fuel%20Cells.ppt)
[7] Houghton Mifflin Company (2009) (http://www.thefreedictionary.com/Transaxles)
[8] Nice, K. Strickland, J. “How fuel cell works” (http://www.howstuffworks.com/fuel-cell.htm/printable)
[9] Proton exchange membrane fuel cell (http://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cell)
[10] Ross, D.K.( 3 August 2006) “Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell car,
Vacuum.”Volume80, Issue 10, Pages 1084-1089
[11] The Engineering Toolbox (http://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html)
[12] Traction Inverter (http://www.voith.com/en/products-services/power-transmission/traction-inverter-10375.html)

Weitere ähnliche Inhalte

Was ist angesagt?

Fuel cells presentation
Fuel cells presentationFuel cells presentation
Fuel cells presentation
Vaibhav Chavan
 
Hydrogen Production
Hydrogen ProductionHydrogen Production
Hydrogen Production
chrisd
 

Was ist angesagt? (20)

Hydrogen Fuel Cells
Hydrogen Fuel CellsHydrogen Fuel Cells
Hydrogen Fuel Cells
 
Fuel cells presentation
Fuel cells presentationFuel cells presentation
Fuel cells presentation
 
Hydrogen fuel cell Technology
Hydrogen fuel cell TechnologyHydrogen fuel cell Technology
Hydrogen fuel cell Technology
 
Hydrogen fuel cells
Hydrogen fuel cells Hydrogen fuel cells
Hydrogen fuel cells
 
Hydrogen energy
Hydrogen energyHydrogen energy
Hydrogen energy
 
Hydrogen Fuel Cell Vehicles
Hydrogen Fuel Cell VehiclesHydrogen Fuel Cell Vehicles
Hydrogen Fuel Cell Vehicles
 
hydrogen energy fuel for the future
hydrogen energy fuel for the futurehydrogen energy fuel for the future
hydrogen energy fuel for the future
 
HYDROGEN FUEL CELL VEHICLES
HYDROGEN FUEL CELL VEHICLESHYDROGEN FUEL CELL VEHICLES
HYDROGEN FUEL CELL VEHICLES
 
fuel cell technology
fuel cell technologyfuel cell technology
fuel cell technology
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
fuel cell
fuel cellfuel cell
fuel cell
 
Fuel cell
Fuel cell Fuel cell
Fuel cell
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Hydrogen fuel an alternative source of energy
Hydrogen fuel  an alternative source of energyHydrogen fuel  an alternative source of energy
Hydrogen fuel an alternative source of energy
 
How fuel cells work
How fuel cells workHow fuel cells work
How fuel cells work
 
Hydrogen as fuel
Hydrogen as fuel Hydrogen as fuel
Hydrogen as fuel
 
Hydrogen Production
Hydrogen ProductionHydrogen Production
Hydrogen Production
 
A review on fuel cell and its applications
A review on fuel cell and its applicationsA review on fuel cell and its applications
A review on fuel cell and its applications
 
HYDROGEN BASED Fuel cell
HYDROGEN BASED Fuel cellHYDROGEN BASED Fuel cell
HYDROGEN BASED Fuel cell
 
Principle and types of Fuel cells
Principle and types of Fuel cells Principle and types of Fuel cells
Principle and types of Fuel cells
 

Andere mochten auch

Hydrogen fuel cells
Hydrogen fuel cellsHydrogen fuel cells
Hydrogen fuel cells
guest0c2139
 
Automatic solar tracker
Automatic solar tracker Automatic solar tracker
Automatic solar tracker
ciril0
 
Seminar presentation on nuclear batteries
Seminar presentation on nuclear batteriesSeminar presentation on nuclear batteries
Seminar presentation on nuclear batteries
Pratik Patil
 
Solar Tower
Solar TowerSolar Tower
Solar Tower
hjayan
 
air powered car presentation
air powered car presentationair powered car presentation
air powered car presentation
John Peter Raja
 

Andere mochten auch (20)

Hydrogen fuel cells
Hydrogen fuel cellsHydrogen fuel cells
Hydrogen fuel cells
 
Automatic solar tracker
Automatic solar tracker Automatic solar tracker
Automatic solar tracker
 
Ppt on hydrogen fuel cell
Ppt on hydrogen fuel cellPpt on hydrogen fuel cell
Ppt on hydrogen fuel cell
 
Solar tower
Solar towerSolar tower
Solar tower
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cell
 
Seminar presentation on nuclear batteries
Seminar presentation on nuclear batteriesSeminar presentation on nuclear batteries
Seminar presentation on nuclear batteries
 
Air powered car
Air powered carAir powered car
Air powered car
 
Paper Battery PPT
Paper Battery PPTPaper Battery PPT
Paper Battery PPT
 
Solar Tower
Solar TowerSolar Tower
Solar Tower
 
Nuclear Battery PPT
Nuclear Battery PPTNuclear Battery PPT
Nuclear Battery PPT
 
hydrogen fuel cell vehicle ppt
hydrogen fuel cell vehicle ppthydrogen fuel cell vehicle ppt
hydrogen fuel cell vehicle ppt
 
Solar tracker
Solar trackerSolar tracker
Solar tracker
 
Presentation on Paper battery
Presentation on Paper battery Presentation on Paper battery
Presentation on Paper battery
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
Hybrid Electric Vehicle
Hybrid Electric VehicleHybrid Electric Vehicle
Hybrid Electric Vehicle
 
AIR POWERED ENGINE PPT
AIR POWERED ENGINE PPTAIR POWERED ENGINE PPT
AIR POWERED ENGINE PPT
 
air powered car presentation
air powered car presentationair powered car presentation
air powered car presentation
 
Solar tracker ppt
Solar tracker pptSolar tracker ppt
Solar tracker ppt
 
Paper battery
Paper batteryPaper battery
Paper battery
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare
 

Ähnlich wie Hydrogen fuel cell

Chapter 66
Chapter 66Chapter 66
Chapter 66
mcfalltj
 
ppt on seminar.pptx 1111111111236566680909
ppt on seminar.pptx 1111111111236566680909ppt on seminar.pptx 1111111111236566680909
ppt on seminar.pptx 1111111111236566680909
srilekha865
 
HySchools Principles Student Powerpoint.pptx
HySchools Principles Student Powerpoint.pptxHySchools Principles Student Powerpoint.pptx
HySchools Principles Student Powerpoint.pptx
KWCheah3
 

Ähnlich wie Hydrogen fuel cell (20)

Chapter 66
Chapter 66Chapter 66
Chapter 66
 
hydrogenfuelcell ppt.pptx
hydrogenfuelcell ppt.pptxhydrogenfuelcell ppt.pptx
hydrogenfuelcell ppt.pptx
 
Seminar report shaik hussain abbas
Seminar report shaik hussain abbasSeminar report shaik hussain abbas
Seminar report shaik hussain abbas
 
Nanotechnology in fuel cell
Nanotechnology in fuel cellNanotechnology in fuel cell
Nanotechnology in fuel cell
 
Hydrogen Fuel Cell vehicles.pptx
Hydrogen Fuel Cell vehicles.pptxHydrogen Fuel Cell vehicles.pptx
Hydrogen Fuel Cell vehicles.pptx
 
Production of hydrogen.pptx
Production of hydrogen.pptxProduction of hydrogen.pptx
Production of hydrogen.pptx
 
Hydrogen fuel cell cars
Hydrogen fuel cell carsHydrogen fuel cell cars
Hydrogen fuel cell cars
 
ppt on seminar.pptx 1111111111236566680909
ppt on seminar.pptx 1111111111236566680909ppt on seminar.pptx 1111111111236566680909
ppt on seminar.pptx 1111111111236566680909
 
Hydrogen fuel cell seminar
Hydrogen fuel cell seminar Hydrogen fuel cell seminar
Hydrogen fuel cell seminar
 
fuelcells++++-.pptx
fuelcells++++-.pptxfuelcells++++-.pptx
fuelcells++++-.pptx
 
HySchools Principles Student Powerpoint.pptx
HySchools Principles Student Powerpoint.pptxHySchools Principles Student Powerpoint.pptx
HySchools Principles Student Powerpoint.pptx
 
SEMINAR REPORT ON NANO FUEL CELL
SEMINAR REPORT ON NANO FUEL CELLSEMINAR REPORT ON NANO FUEL CELL
SEMINAR REPORT ON NANO FUEL CELL
 
Fuel cell_types,working,applications
Fuel cell_types,working,applicationsFuel cell_types,working,applications
Fuel cell_types,working,applications
 
Fuel cell ppt
Fuel cell pptFuel cell ppt
Fuel cell ppt
 
Fuel cell: an Overview
Fuel cell: an OverviewFuel cell: an Overview
Fuel cell: an Overview
 
Draftexp2
Draftexp2Draftexp2
Draftexp2
 
Fuelcell
FuelcellFuelcell
Fuelcell
 
Term paper Hydrogen Fuel Cell
Term paper Hydrogen Fuel CellTerm paper Hydrogen Fuel Cell
Term paper Hydrogen Fuel Cell
 
hfc-161127042406.pptx
hfc-161127042406.pptxhfc-161127042406.pptx
hfc-161127042406.pptx
 
IRJET- Analysis and Study of Hydrogen Fuel Cell Systems used as an Electricit...
IRJET- Analysis and Study of Hydrogen Fuel Cell Systems used as an Electricit...IRJET- Analysis and Study of Hydrogen Fuel Cell Systems used as an Electricit...
IRJET- Analysis and Study of Hydrogen Fuel Cell Systems used as an Electricit...
 

Mehr von Girish Panchal (6)

Supply chain of Motorola
Supply chain of MotorolaSupply chain of Motorola
Supply chain of Motorola
 
Recording and reproduction system
Recording and reproduction systemRecording and reproduction system
Recording and reproduction system
 
War and Terrorism
War and TerrorismWar and Terrorism
War and Terrorism
 
War and Terrorism
War and TerrorismWar and Terrorism
War and Terrorism
 
Transmission system
Transmission systemTransmission system
Transmission system
 
Coolant separator
Coolant separatorCoolant separator
Coolant separator
 

Kürzlich hochgeladen

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 

Kürzlich hochgeladen (20)

Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 

Hydrogen fuel cell

  • 1. `` Hydrogen Fuel Cell in Automobiles Panchal Girishkumar R.*§, Mehta Het D. § and Panchal Vinay A. § * Corresponding Author, Email Id: girishp099@gmail.com § Mechanical Engineering Department, K. J. Somaiya Polytechnic, Vidyavihar, Mumbai-400 077 Abstract: This paper describes about the technique of hydrogen fuel cells adopted in automobiles and storage technologies for hydrogen and thus stepping to the way of green technology with economic power generation. The purpose of this paper is to widespread the knowledge of hydrogen fuel cells which is taking its new place in the field of automobile engineering as a green fuel and storage techniques which is major limiting factor. Few patents and papers are available on the subject under study as very few people are aware about it. Keywords: Hydrogen fuel cells, green fuel, green technology. 1. Introduction: Both from the point of view of global warming and from that of the inevitable exhaustion of Earth's oil reserves; it has become highly desirable to develop an alternative energy source for automobiles. Since the development of the hydrogen fuel cell, which is fueled by hydrogen and oxygen (air) and produces only water, hydrogen has generally been seen to be the most promising approach. However, although the development of Fig No.1 Fuel Cell hydrogen fuel cell technology appears to be Source: http://www.nrel.gov/hydrogen/photos.html progressing smoothly towards eventual commercial exploitation, a viable method for storing hydrogen on board a vehicle is still to be established. (Ross, 2006) 2. Research methodology: The research methodology requires gathering relevant data from the specified documents and compiling information in order to analyze the matter. I hope to shed the light on the following questions through my research: how are automobiles operated with hydrogen fuel cells? What actually takes place in the working of fuel cell? What are the specifications of hydrogen fuel cell? How it is better than gasoline and electrically operated vehicles? How to store hydrogen under specific conditions? 3. Automobiles Operated With Fuel Cell: Terminology: a) Fuel cells: A fuel cell is a device that converts the chemical energy into electrical energy, water and heat through chemical reactions. b) Hydrogen tank: A cylinder tank used for storing hydrogen in a car. c) Traction inverter module: The traction inverter module is used to convert supplied energy as efficiently as possible and make it available to the drive motors in a suitable way. ( http://www.voith.com/en/productsservices/power-transmission/traction-inverter-10375.html) d) Turbo compressor: A dynamic-type compressor is used for the compression and injection of gases (oxygen). e) Transaxle: An automotive part that combines the transmission and the differential and is used on vehicles with front-wheel drive. (http://www.thefreedictionary.com/Transaxles)
  • 2. `` How to use hydrogen to fuel a car? Fig No.2 Actual Layout Of Hydrogen Car Source: http://www.autoconcept-reviews.com/cars_reviews/ford/ford-hydrogen-fuel-cell-prototypes/cars_reviewsford-hydrogen-fuel-cell-prototypes-2008.html Hydrogen gas from the hydrogen storage tank is supplied to the fuel cell and from the other side atmospheric air is also supplied in it by using turbo compressor. Reaction of oxygen from the air and hydrogen takes place in fuel cell which results in the generation of electricity that is sent to the traction inverter module. The traction inverter module plays an important role of converting the electricity and using it for driving the electric motor which ultimately imparts rotary motion to the wheel. What actually takes place in fuel cell? Pressurized hydrogen gas (H2) enters cell on anode side. Gas is forced through catalyst by pressure. When H2 molecule comes contacts platinum catalyst, it splits into two H+ ions and two electrons (e-). Electrons are conducted through the anode which makes their way through the external circuit (doing useful work such as turning a motor) and return to the cathode side of the fuel cell. On the cathode side, oxygen gas (O2) is forced through the catalyst forms two oxygen atoms, each with a strong negative charge. Negative charge attracts the two H+ ions through the membrane, combine with an oxygen atom and two electrons from the external circuit to form a water molecule (H2O). http://static.howstuffworks.com/flash/fuel-cell-animation.swf Fig No.3 Working Of Fuel Cell Source: www.fuelcelleducation.org
  • 3. `` Anode reaction: H2 = 2H+ + 2eCathode reaction: O2 + 2H+ = 2H2O Heat and electrical energy is formed after the fusion of electrons. Therefore, electrical energy is used to drive the vehicle and we get water (H2O) as our exhaust. The heat energy converts water into water vapor and thus our exhaust from the vehicle is in the form of water vapor which ultimately has no effect to the environment. Thus, no pollution is created using this technology. Parts of fuel cell: 1) Anode • Negative post of the fuel cell. • Conducts the electrons that are freed from the hydrogen molecules so that they can be used in an external circuit. • Etched channels disperse hydrogen gas over the surface of catalyst. 2) Cathode • Positive post of the fuel cell • Etched channels distribute oxygen to the surface of the catalyst. • Conducts electrons back from the external circuit to the catalyst • Recombine with the hydrogen ions and oxygen to form water. 3) Electrolyte • Proton exchange membrane. • Specially treated material, only conducts positively charged ions. • Membrane blocks electrons. 4) Catalyst • Special material that facilitates reaction of oxygen and hydrogen • Usually platinum powder very thinly coated onto carbon paper or cloth. • Rough & porous maximizes surface area exposed to hydrogen or oxygen • The platinum-coated side of the catalyst faces the PEM. Types of fuel cells: Alkaline fuel cell (AFC) This is one of the oldest designs. It has been used in the U.S. space program since the 1960s. The AFC is very susceptible to contamination, so it requires pure hydrogen and oxygen. It is also very expensive, so this type of fuel cell is unlikely to be commercialized. Phosphoric-acid fuel cell (PAFC) The phosphoric-acid fuel cell has potential for use in small stationary power-generation systems. It operates at a higher temperature than PEM fuel cells, so it has a longer warm-up time. This makes it unsuitable for use in cars. Solid oxide fuel cell (SOFC) These fuel cells are best suited for large-scale stationary power generators that could provide electricity for factories or towns. This type of fuel cell operates at very high temperatures (around 1,832 F, 1,000 C). This high temperature makes reliability a problem, but it also has an advantage: The steam produced by the fuel cell can be channeled into turbines to generate more electricity. This improves the overall efficiency of the system.
  • 4. `` Proton exchange membrane fuel cell (PEMFC) In the polymer electrolyte membrane (PEM) fuel cell, also known as a proton-exchange membrane cell, a catalyst in the anode separates hydrogen atoms into protons and electrons. The membrane in the center transports the protons to the cathode, leaving the electrons behind. The electrons flow through a circuit to the cathode, forming an electric current to do useful work. In the cathode, another catalyst helps the electrons, hydrogen nuclei and oxygen from the air recombine. When the input is pure hydrogen, the exhaust consists of water vapor. In fuel cells using hydrocarbon fuels the exhaust is water and carbon dioxide. (http://www.news.cornell.edu/releases/Nov03/Fuelcell.institute.deb.html) Fig No. 4 PEM Cell Source:http://en.wikipedia.org/wiki/Proton _exchange_membrane_fuel_cell Auto Power Efficiency Comparison: Technology System efficiency Fuel cell 24-32% Electric battery 26% Gasoline engine 20% Fig No.4 Efficiency vs. Range Source: http://www.howstuffworks.com/fuel-cell.htm/printable Comparison based on Calorific Value: For hydrogen: Higher calorific value: 141,790 kJ/kg Lower calorific value: 121,000 kJ/kg For petrol: Calorific value: 48,000 kJ/kg (http://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html) Heat generated from the hydrogen is more than that of petrol or other gasoline fuels as the calorific value of hydrogen is more. Thus, the power developed is more in vehicles running on hydrogen fuel cells. Hydrogen Storage Technologies In the development of fuel cell vehicles, hydrogen storage is “the biggest remaining research problem” according to the January 2003 Office of Technology Policy report, Fuel Cell Vehicles: z to a New Automotive Future. Current hydrogen storage systems are inadequate to meet the needs of consumers in a fuel cell vehicle. The OTP report continues, “Hydrogen‟s low energy-density makes it difficult to store enough on board a vehicle to achieve sufficient vehicle range without the storage container being too large or too heavy.”
  • 5. `` Existing and proposed technologies for hydrogen storage include: a) Physical storage: pressurized tanks for gaseous hydrogen and pressurized cryo-tanks for liquid hydrogen; b) Reversible hydrogen uptake in various metal-based compounds including hydrides, nitrides, and imides; chemical storage in irreversible hydrogen carriers such as methanol; c) Cryo-adsorption with activated carbon as the most common adsorbent; and d) Advanced carbon materials absorption, including carbon nano tubes, alkali-doped carbon nano tubes and graphite nano fibers. (Craig et al., 2003) Fig.No.5 Hydrogen Storage Source: Craig et al., 2003 Hydrogen Fuel Storage Safety Hydrogen has a reputation for being explosive and therefore raises concerns about the safety of carrying a substantial quantity of H2 in a vehicle fuel tank. However, because H2 is the lightest gas, it has a tendency to diffuse away quickly in case its container is breached and consequently may represent less of a hazard than gasoline. The simplest way to carry hydrogen fuel in a car or other vehicle is as a high-pressure gas 3-10 kpsi (21-69 MPa) in metal or composite-reinforced (fiberglass, carbon fiber, Kevlar) tanks. This is similar to the way compressed natural gas (CNG) vehicles operate. The authors conclude that “hydrogen is no more or less dangerous than any other energy carrier and furthermore that hydrogen has properties that in certain areas make it safer than other energy carriers: it is not poisonous, and has the ability to dissipate quickly into the atmosphere because of its light weight compared to air.” (Craig et al., 2003) Method High pressure in cylinders Metal hydride Cryogenic liquid Methanol Sodium hydride pellets NaBH4 solution in water Table 1: Data for comparing the methods of storing hydrogen fuels Gravimetric storage Volumetric mass (in kg) Comments efficiency,% mass H2 of H2 per litre 0.7 – 3.0 0.015 „cheap and cheerful‟ widely used 0.65 0.028 Suitable for small systems 14.2 0.040 Widely used for bulk storage 6.9 0.055 Low-cost chemical. Potentially useful in wide range of systems 2.2 0.02 Problem of disposing of spent solution 3.35 0.036 Very expensive to run Table 2: Hydrogen storage parameters goals Metric System energy per unit weight for conventional vehicles with 300 mile range System energy per unit volume for conventional vehicles with 300 mile range Usable energy consumed in releasing H2 H2 release temperature Refueling time H2 ambient release temp. range Durability (to maintain 80% capacity) Goals > 6 MJ/kg > 6 MJ/kg > 5% ~ 80% < 5 minutes -40/+45°C 150,000 miles
  • 6. `` 4. Limitations: The hydrogen is not so readily available, however. Hydrogen has some limitations that make it impractical for use in most applications. a) For instance, you don't have a hydrogen pipeline coming to your house, and you can't pull up to a hydrogen pump at your local gas station. b) Hydrogen is difficult to store and distribute, so it would be much more convenient if fuel cells could use fuels that are more readily available. c) Technology is currently expensive. 5. Conclusion: Thus, it can be said that there will be a bright future if this hydrogen fuel cell is put up to use in all vehicles by properly considering the safety matter first. And if this eco-friendly technology is used, the rate of pollution is surely going to come down. It is not only eco-friendly but, also serves to be a great fuel source. Since the conventional sources of fuel may not prove to be sufficient, there arises a need to develop a new alternative source of energy. Although there are a few problems related with the storage of hydrogen gas, which might be overcome as the technology develops further. “Hydrogen holds the great promise to meet our future energy needs concerned with our environment.” 6. Future scope: There is a lot of advancement been done by the RnD sectors and it is an on-going process of developing new technologies, it is sure that the there will be many changes done in hydrogen fuel cells in automobiles and its storage facilities. 1.) The technology should be made cost effective. 2.) Developing more safety features to the onboard hydrogen tank and also at refilling stations by making the use of „Auto-locking of supply valves by using hydrogen detector.‟ In this technique, if the hydrogen is leaked from the cylinder or supply line then hydrogen will be detected by the sensor provided to it by sensing the tlv (threshold limit value) of hydrogen. When the gas is detected, the supply valves from the hydrogen tank are closed. Thus, hydrogen gas leaking is thus avoided. 3.) The other technique is to splash the water where the hydrogen gas is leaked. But for this, there will be separate water storing facility required. Thus, hazards expected from hydrogen gas leaking are thus avoided This initiative, supported by legislation in the Energy Policy Act of 2005 (EPACT 2005) and the Advanced Energy Initiative of 2006, aims to develop hydrogen, fuel cell and infrastructure technologies to make fuel-cell vehicles practical and cost-effective by 2020. (Nice, Strickland) Reference: [1] [2] [3] Brand, D. Cornell Chronicle (31 Oct,2003) (http://www.news.cornell.edu/releases/Nov03/Fuelcell.institute.deb.html) Craig, D. Edelstein,B. Evenson,B. Brecher,A. Cox,D. (12 June,2003) “Hydrogen fuel cell vehicle study” Ford hydrogen fuel cell prototypes (2009) (http://www.autoconcept-reviews.com/cars_reviews/ford/ford-hydrogen-fuel-cellprototypes/cars_reviews-ford-hydrogen-fuel-cell-prototypes-2008.html) [4] Freedom CAR and Fuel technical partnership: Technical goals (http://www.eere.energy.gov/vehiclesand fuels/about/partnerships/freedomcar/index.shtml) [5] Fuel Cell Animation (http://static.howstuffworks.com/flash/fuel-cell-animation.swf) [6] Fuel Cells (www.fuelcelleducation.org/wp.../pdf/Intro%20to%20Fuel%20Cells.ppt) [7] Houghton Mifflin Company (2009) (http://www.thefreedictionary.com/Transaxles) [8] Nice, K. Strickland, J. “How fuel cell works” (http://www.howstuffworks.com/fuel-cell.htm/printable) [9] Proton exchange membrane fuel cell (http://en.wikipedia.org/wiki/Proton_exchange_membrane_fuel_cell) [10] Ross, D.K.( 3 August 2006) “Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell car, Vacuum.”Volume80, Issue 10, Pages 1084-1089 [11] The Engineering Toolbox (http://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html) [12] Traction Inverter (http://www.voith.com/en/products-services/power-transmission/traction-inverter-10375.html)