SlideShare ist ein Scribd-Unternehmen logo
1 von 5
Downloaden Sie, um offline zu lesen
Offshore well 17-1/2" Intermediate section
≔ρSteel 65.4 ――
lb
gal
≔bbl 42 gal
1. Well and string Capacities data INPUT
Enter well tubular data into table as shown. From this table,
annular capacity and volumes are calculated.
Tod
((in))
5
5
5
5
8
9.5
Tid
((in))
4.1778
4.1778
4.1778
3
2.812
3
Wo
((in))
18.75
18.415
Wb
((in))
21
17.5
17.5
17.5
17.5
17.5
TL
((m))
30
970
820
90
60
30
Buoyancy, buoyed weight, buoyancy factor
≔ρmw 9.2 ――
lb
gal
≔ρsw 8.33 ――
lb
gal
≔Pumprate 1050 ――
gal
min
≔Bf =
⎛
⎜
⎝
-1 ――
ρmw
ρSteel
⎞
⎟
⎠
0.859
=ρmw 1102 ――
kg
m3
=ρsw 998 ――
kg
m3
=Pumprate
⎛⎝ ⋅3.975 103 ⎞⎠ ――
liter
min
String and wellbore
component volumes ≔Intvol =―――
⋅π Tid
2
4
0.0088
0.0088
0.0088
0.0046
0.004
0.0046
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
≔Annvol =――――――
⋅π ⎛
⎝ -Wb
2
Tod
2 ⎞
⎠
4
0.2108
0.1425
0.1425
0.1425
0.1227
0.1094
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
≔Wellvol =―――
⋅π ⎛
⎝Wb
2 ⎞
⎠
4
0.2235
0.1552
0.1552
0.1552
0.1552
0.1552
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
1a) Internal string volumes 1b) Annular volumes 1c) Well volume ONLY
≔DPid
⟨
0
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
0
⟩
⎞
⎟⎠
4
0.0088[[ ]] ――
m3
m
≔DPvol
⟨
0
⟩
=⋅――――
⋅π
⎛
⎝DPid
⟨
0
⟩
⎞
⎠
4
TL
⟨
0
⟩
0.21[[ ]] m3
≔DPann
⟨
0
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
0
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
0
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
0
⟩
6.32[[ ]] m3
≔Wbore
⟨
0
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
0
⟩
⎞
⎠
2
4
TL
⟨
0
⟩
6.7[[ ]] m3
≔DPid
⟨
1
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
1
⟩
⎞
⎟⎠
4
0.0088[[ ]] ――
m3
m
≔DPvol
⟨
1
⟩
=⋅――――
⋅π
⎛
⎝DPid
⟨
1
⟩
⎞
⎠
4
TL
⟨
1
⟩
6.74[[ ]] m3
≔DPann
⟨
1
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
1
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
1
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
1
⟩
138.24[[ ]] m3
≔Wbore
⟨
1
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
1
⟩
⎞
⎠
2
4
TL
⟨
1
⟩
150.52[[ ]] m3
≔HWDPid
⟨
2
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
2
⟩
⎞
⎟⎠
4
0.0088[[ ]] ――
m3
m
≔HWDPvol
⟨
2
⟩
=⋅―――――
⋅π
⎛
⎝HWDPid
⟨
2
⟩
⎞
⎠
4
TL
⟨
2
⟩
5.7[[ ]] m3
≔HWDPann
⟨
2
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
2
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
2
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
2
⟩
116.86[[ ]] m3
≔Wbore
⟨
2
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
2
⟩
⎞
⎠
2
4
TL
⟨
2
⟩
127.25[[ ]] m3
≔DC2id
⟨
3
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
3
⟩
⎞
⎟⎠
4
0.0046[[ ]] ――
m3
m
≔DC2vol
⟨
3
⟩
=⋅――――
⋅π
⎛
⎝DC2id
⟨
3
⟩
⎞
⎠
4
TL
⟨
3
⟩
0.32[[ ]] m3
≔DC2ann
⟨
3
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
3
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
3
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
3
⟩
12.83[[ ]] m3
≔Wbore
⟨
3
⟩
=⋅――――
⋅π
⎛
⎝Wb
⟨
3
⟩
⎞
⎠
2
4
TL
⟨
3
⟩
13.97[[ ]] m3
≔DC1id
⟨
4
⟩
=――――
⋅π
⎛
⎜⎝Tid
2
⟨
4
⟩
⎞
⎟⎠
4
0.004[[ ]] ――
m3
m
≔DC1vol
⟨
4
⟩
=⋅――――
⋅π
⎛
⎝DC1id
⟨
4
⟩
⎞
⎠
4
TL
⟨
4
⟩
0.19[[ ]] m3
≔DC1ann
⟨
4
⟩
=⋅―――――――
⋅π
⎛
⎜⎝ -
⎛
⎝Wb
⟨
4
⟩
⎞
⎠
2
⎛
⎝Tod
⟨
4
⟩
⎞
⎠
2 ⎞
⎟⎠
4
TL
⟨
4
⟩
7.36[[ ]] m3
≔Wbore40 =⋅――――
⋅π
⎛
⎝Wb
⟨
4
⟩
⎞
⎠
2
4
TL
⟨
4
⟩
9.31 m3
1.) Pumping times Total volumes
≔ΣTid =⋅―――
⋅π ⎛
⎝Tid
2 ⎞
⎠
4
TL 16.9 m3
≔ΣAnnvol =⋅――――――
⋅π ⎛
⎝ -Wb
2
Tod
2 ⎞
⎠
4
TL 284.9 m3
≔ΣWellvol =⋅―――
⋅π ⎛
⎝Wb
2 ⎞
⎠
4
TL 312.4 m3
≔ΔStime =―――
ΣTid
Pumprate
4.248 min ≔ΔAnntime =―――
ΣAnnvol
Pumprate
71.677 min ≔Totaltime =+ΔStime ΔAnntime 75.92 min
Peter Aird
2a.) Open ended displacement of steel
tubular based on the wall thickness od and id
string dimensions as input. Total 'open and closed ended'
displacement volumes≔OEDS =――――――
⋅π ⎛
⎝ -Tod
2
Tid
2 ⎞
⎠
4
0.0038
0.0038
0.0038
0.0081
0.0284
0.0412
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
≔ΣOEDS =⋅OEDS TL 10.63 m3
2b.) Close ended displacement of steel tubular
based on the od string dimensions as input. ≔ΣCEDS =⋅――――
⋅π ⎛
⎝Tod
2 ⎞
⎠
4
TL 27.51 m3
≔CEDS =――――
⋅π ⎛
⎝Tod
2 ⎞
⎠
4
0.0127
0.0127
0.0127
0.0127
0.0324
0.0457
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
m3
m
2c1) Total open ended displacement of all steel tubulars
based on the wall thicknesses and lengths input .
≔ΣOED =⋅OEDS TL 10.63 m3
2c2) Total closed ended displacement of all steel
tubulars based on the outer diameter and lengths input .
≔ΣCED =⋅CEDS TL 27.51 m3
≔OET1 =⋅OEDS
⟨
0
⟩
TL
⟨
0
⟩
1 bbl ≔OET2 =⋅OEDS
⟨1⟩
TL
⟨
1
⟩
3.71 m3
≔CET1 =⋅CEDS
⟨
0
⟩
TL
⟨
0
⟩
0.38 m3
≔CET2 =⋅CEDS
⟨
1
⟩
TL
⟨
1
⟩
12.29 m3
≔OEHW =⋅OEDS
⟨
2
⟩
TL
⟨
2
⟩
20 bbl ≔OEDC2 =⋅OEDS
⟨
3
⟩
TL
⟨3⟩
0.73 m3
≔CEHW =⋅CEDS
⟨
2
⟩
TL
⟨
2
⟩
10.39 m3
≔CEDC2 =⋅CEDS
⟨
3
⟩
TL
⟨
3
⟩
1.14 m3
≔OEDc1 =⋅OEDS
⟨
4
⟩
TL
⟨
4
⟩
11 bbl ≔OEDS =++++OET1 OET2 OEHW OEDC2 OEDc1 9.39 m3
≔CEDc1 =⋅CEDS
⟨
4
⟩
TL
⟨
4
⟩
1.95 m3
≔CEDS =++++CET1 CET2 CEHW CEDC2 CEDc1 26.14 m3
3.) Component and Total string weights Total string weigth
(in mud)≔WS =⋅――――――
⋅π ⎛
⎝ -Tod
2
Tid
2 ⎞
⎠
4
ρSteel
30
30
30
63.5
222.7
322.6
⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
―
kg
m
≔ΣWS =⋅⋅⋅――――――
⋅π ⎛
⎝ -Tod
2
Tid
2 ⎞
⎠
4
ρSteel TL Bf 79 ton
Individual Component weight calculations
≔Wdp
⟨
0
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
0
⟩
Tid
2
⟨
0
⟩
⎞
⎟⎠
4
ρSteel 30[[ ]] ―
kg
m
≔BWdp
⟨
0
⟩
=⋅
⎛
⎝ ⋅Wdp
⟨
0
⟩
TL
⟨
0
⟩
⎞
⎠ Bf 772[[ ]] kg ≔Wdp
⟨
1
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
1
⟩
Tid
2
⟨
1
⟩
⎞
⎟⎠
4
ρSteel 30[[ ]] ―
kg
m
≔BWdp
⟨
1
⟩
=⋅
⎛
⎝ ⋅Wdp
⟨
1
⟩
TL
⟨
1
⟩
⎞
⎠ Bf 24977[[ ]] ⋅m ―
kg
m
≔Wdp
⟨
2
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
2
⟩
Tid
2
⟨
2
⟩
⎞
⎟⎠
4
ρSteel 30[[ ]] ―
kg
m
≔BWdp
⟨
2
⟩
=⋅
⎛
⎝ ⋅Wdp
⟨
2
⟩
TL
⟨
2
⟩
⎞
⎠ Bf 21114[[ ]] kg ≔Whwdp
⟨
3
⟩ =⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
3
⟩
Tid
2
⟨
3
⟩
⎞
⎟⎠
4
ρSteel 63.5[[ ]] ―
kg
m
≔BWhwdp
⟨
3
⟩
=⋅
⎛
⎝ ⋅Whwdp
⟨
3
⟩
TL
⟨
3
⟩
⎞
⎠ Bf 4914[[ ]] ⋅m ―
kg
m
≔Wdc2
⟨
4
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
4
⟩
Tid
2
⟨
4
⟩
⎞
⎟⎠
4
ρSteel 222.7[[ ]] ―
kg
m
≔BWdc2
⟨
4
⟩
=⋅
⎛
⎝ ⋅Wdc2
⟨
4
⟩
TL
⟨
4
⟩
⎞
⎠ Bf 11484[[ ]] kg ≔Wdc1
⟨
5
⟩
=⋅――――――
⋅π
⎛
⎜⎝ -Tod
2
⟨
5
⟩
Tid
2
⟨
5
⟩
⎞
⎟⎠
4
ρSteel 322.6[[ ]] ―
kg
m
≔BWdc1
⟨
5
⟩
=⋅
⎛
⎝ ⋅Wdc1
⟨
5
⟩
TL
⟨
5
⟩
⎞
⎠ Bf 8317[[ ]] ⋅m ―
kg
m
≔Stringweight =+++++BWdp
⟨
0
⟩
BWdp
⟨
1
⟩
BWdp
⟨
2
⟩
BWhwdp
⟨
3
⟩
BWdc2
⟨
4
⟩
BWdc1
⟨
5
⟩
79[[ ]] ton
≔Wdc2 =⋅――――――
4
ρSteel 222.7[ ] ―
m
≔BWdc2 =⋅⎝ ⋅Wdc2 TL ⎠ Bf 11484[ ] kg ≔Wdc1 =⋅――――――
4
ρSteel 322.6[ ] ―
m
≔BWdc1 =⋅⎝ ⋅Wdc1 TL ⎠ Bf 8317[ ] ⋅m ―
m
≔Stringweight =+++++BWdp
⟨
0
⟩
BWdp
⟨
1
⟩
BWdp
⟨
2
⟩
BWhwdp
⟨
3
⟩
BWdc2
⟨
4
⟩
BWdc1
⟨
5
⟩
79[[ ]] ton
Triplex mud pump calculations
Triplex mud pump calculator
Note: A triplex mud pump has three pump liners. For one revolution of the mud pump
drive, each pump piston would therefore have pumped the equivalent of one strokes total
liner volume.
≔Stroke ⋅1 Hz ≔bbl ⋅42 gal
Data input
Liner diameter, d, inches
Liner length, L, inches
Pump efficiency, η %,
≔LL ⋅14 in
≔d ⋅
5
5.5
6
6.5
7
⎡
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥⎦
in ≔Sp ⋅1 Stroke
≔η 0.95
≔Pumpvol ――――――
⋅⋅3 ⋅
⎛
⎜
⎝
――
⋅π d2
4
⎞
⎟
⎠
LL η
Sp
=Pumpvol
12.838
15.534
18.487
21.697
25.163
⎡
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥⎦
―――
liter
Stroke
Step #1; Calculates the triplex mud pump output volume (Pumpvol) for the various pump liner sizes (d, inches),
liner stroke length (L, inches) , and volumetric efficiency (η) as input.
Example hand held calculation;
=――――――――――
⋅⋅⋅⋅3
⎛
⎜
⎜⎝
―――――
⋅π (( ⋅5.5 in))
2
4
⎞
⎟
⎟⎠
12 in 0.95
⋅1 Stroke
13.315 ―――
liter
Stroke =Pumpvol
12.838
15.534
18.487
21.697
25.163
⎡
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥⎦
―――
liter
Stroke
Comments
Depending on rig and pump conditions safe operating speeds of 100-110rpm can normally be achieved particulary if the rig has three pumps.
e.g Best practices would be to work two pumps at optimal rates,maintaining the 3rd pump as contingency back up so that continuous operations would in most cases and circumstances result.
Step #2; For a selected pump liner output (Pout, gal/stroke). This step calculates the total pumping volume of the
triplex mud pump(s) for the range of strokes (n) that can be used, presenting results in both tabular & graphical
output for 2 and 3 pumps.
Liner size = 6inches ≔Pout ⋅4.884 ―――
gal
Stroke
≔f((n)) ⋅⋅Pout
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
2
Define pump rate range (n); ≔n , ‥30 40 110 ≔fa((n)) ⋅⋅Pout
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
3
1.4⋅10³
1.95⋅10³
2.5⋅10³
3.05⋅10³
3.6⋅10³
4.15⋅10³
4.7⋅10³
5.25⋅10³
5.8⋅10³
300
850
6.35⋅10³
38 47 56 65 74 83 92 10120 29 110
⋅4.5 103
⋅3 103
60 90
f((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
fa((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
n
=f((n))
⋅1.109 103
⋅1.479 103
⋅1.849 103
⋅2.219 103
⋅2.588 103
⋅2.958 103
⋅3.328 103
⋅3.698 103
⋅4.067 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min =fa((n))
⋅1.664 103
⋅2.219 103
⋅2.773 103
⋅3.328 103
⋅3.882 103
⋅4.437 103
⋅4.992 103
⋅5.546 103
⋅6.101 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min
Step #3; For a selected pump liner output (Pout2, gal/stroke). This step calculates the total
pumping volume of the triplex mud pump(s) for the range of strokes (n2) that can be used,
presenting results in both tabular & graphical output for two and three mud pumps used.
Liner size = 6 1/2 inches ≔Pout2 ⋅5.732 ―――
gal
Stroke
≔f2((n)) ⋅⋅Pout2
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
2
≔f3((n)) ⋅⋅Pout2
⎛
⎜
⎝
⋅n ―――
Stroke
min
⎞
⎟
⎠
3
1.6⋅10³
2.25⋅10³
2.9⋅10³
3.55⋅10³
4.2⋅10³
4.85⋅10³
5.5⋅10³
6.15⋅10³
6.8⋅10³
300
950
7.45⋅10³
38 47 56 65 74 83 92 10120 29 110
⋅4 103
⋅6 103
60 90
f2((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
f3((n))
⎛
⎜
⎝
――
liter
min
⎞
⎟
⎠
n
=f2((n))
⋅1.302 103
⋅1.736 103
⋅2.17 103
⋅2.604 103
⋅3.038 103
⋅3.472 103
⋅3.906 103
⋅4.34 103
⋅4.774 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min
=f3((n))
⋅1.953 103
⋅2.604 103
⋅3.255 103
⋅3.906 103
⋅4.557 103
⋅5.208 103
⋅5.858 103
⋅6.509 103
⋅7.16 103
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
――
liter
min

Weitere ähnliche Inhalte

Was ist angesagt?

Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
asghar123456
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
asghar123456
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
Vaidyanathan Ramakrishnan
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
Abrar Hussain
 

Was ist angesagt? (20)

Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
 
Free convection heat and mass transfer
Free convection heat and mass transferFree convection heat and mass transfer
Free convection heat and mass transfer
 
Metodod kremser liq liq extr
Metodod kremser liq liq extrMetodod kremser liq liq extr
Metodod kremser liq liq extr
 
Pelton turbine (1)
Pelton turbine (1)Pelton turbine (1)
Pelton turbine (1)
 
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsAnswers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
 
Kaplan turbines
Kaplan turbinesKaplan turbines
Kaplan turbines
 
Answers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanicsAnswers assignment 4 real fluids-fluid mechanics
Answers assignment 4 real fluids-fluid mechanics
 
Gas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswersGas dynamics and jet propulsion – presentationof problemsanswers
Gas dynamics and jet propulsion – presentationof problemsanswers
 
Kill sheet
Kill sheetKill sheet
Kill sheet
 
Me2351 gas dynamics and jet propulsion-qb
Me2351 gas dynamics and jet propulsion-qbMe2351 gas dynamics and jet propulsion-qb
Me2351 gas dynamics and jet propulsion-qb
 
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
Class lectures on Hydrology by Rabindra Ranjan Saha Lecture 11
 
Examples on seepage
Examples on seepageExamples on seepage
Examples on seepage
 
Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Solutions manual for thermodynamics an interactive approach 1st edition by bh...Solutions manual for thermodynamics an interactive approach 1st edition by bh...
Solutions manual for thermodynamics an interactive approach 1st edition by bh...
 
Aircraft propulsion non ideal cycle analysis
Aircraft propulsion   non ideal cycle analysisAircraft propulsion   non ideal cycle analysis
Aircraft propulsion non ideal cycle analysis
 
Solucionario de fluidos_white
Solucionario de fluidos_whiteSolucionario de fluidos_white
Solucionario de fluidos_white
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
 
Problem 3.1
Problem 3.1Problem 3.1
Problem 3.1
 
EES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculationsEES Procedures and Functions for Heat exchanger calculations
EES Procedures and Functions for Heat exchanger calculations
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
 

Ähnlich wie Offshore well intermediate

Coagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdfCoagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdf
zgrSALAM2
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
CangTo Cheah
 
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxechnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
tidwellveronique
 

Ähnlich wie Offshore well intermediate (20)

Coagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdfCoagulation and Floculation_062_Part 2.pdf
Coagulation and Floculation_062_Part 2.pdf
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
 
Thermo 5th chap05_p001
Thermo 5th chap05_p001Thermo 5th chap05_p001
Thermo 5th chap05_p001
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
Vacuum pump-sizing
Vacuum pump-sizingVacuum pump-sizing
Vacuum pump-sizing
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010Axial compressor theory - stage-by-stage approach - 28th January 2010
Axial compressor theory - stage-by-stage approach - 28th January 2010
 
Axial Flow Turbine.ppt
Axial Flow Turbine.pptAxial Flow Turbine.ppt
Axial Flow Turbine.ppt
 
Aircraft propulsion non ideal turbofan cycle analysis
Aircraft propulsion   non ideal turbofan cycle analysisAircraft propulsion   non ideal turbofan cycle analysis
Aircraft propulsion non ideal turbofan cycle analysis
 
Tugas 3 Contoh Perhitungan Pompa.pptx
Tugas 3 Contoh Perhitungan Pompa.pptxTugas 3 Contoh Perhitungan Pompa.pptx
Tugas 3 Contoh Perhitungan Pompa.pptx
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxechnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Centrifugal pump design rev 2
Centrifugal pump design   rev 2Centrifugal pump design   rev 2
Centrifugal pump design rev 2
 
Principle of turbomachinery
Principle of turbomachineryPrinciple of turbomachinery
Principle of turbomachinery
 
DJA3032 CHAPTER 2
DJA3032   CHAPTER 2DJA3032   CHAPTER 2
DJA3032 CHAPTER 2
 
chiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhorchiller system by Mr.Seng Sunhor
chiller system by Mr.Seng Sunhor
 
Flow in Pipes
Flow in PipesFlow in Pipes
Flow in Pipes
 

Kürzlich hochgeladen

Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 

Kürzlich hochgeladen (20)

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 

Offshore well intermediate

  • 1. Offshore well 17-1/2" Intermediate section ≔ρSteel 65.4 ―― lb gal ≔bbl 42 gal 1. Well and string Capacities data INPUT Enter well tubular data into table as shown. From this table, annular capacity and volumes are calculated. Tod ((in)) 5 5 5 5 8 9.5 Tid ((in)) 4.1778 4.1778 4.1778 3 2.812 3 Wo ((in)) 18.75 18.415 Wb ((in)) 21 17.5 17.5 17.5 17.5 17.5 TL ((m)) 30 970 820 90 60 30 Buoyancy, buoyed weight, buoyancy factor ≔ρmw 9.2 ―― lb gal ≔ρsw 8.33 ―― lb gal ≔Pumprate 1050 ―― gal min ≔Bf = ⎛ ⎜ ⎝ -1 ―― ρmw ρSteel ⎞ ⎟ ⎠ 0.859 =ρmw 1102 ―― kg m3 =ρsw 998 ―― kg m3 =Pumprate ⎛⎝ ⋅3.975 103 ⎞⎠ ―― liter min String and wellbore component volumes ≔Intvol =――― ⋅π Tid 2 4 0.0088 0.0088 0.0088 0.0046 0.004 0.0046 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m ≔Annvol =―――――― ⋅π ⎛ ⎝ -Wb 2 Tod 2 ⎞ ⎠ 4 0.2108 0.1425 0.1425 0.1425 0.1227 0.1094 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m ≔Wellvol =――― ⋅π ⎛ ⎝Wb 2 ⎞ ⎠ 4 0.2235 0.1552 0.1552 0.1552 0.1552 0.1552 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m 1a) Internal string volumes 1b) Annular volumes 1c) Well volume ONLY ≔DPid ⟨ 0 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 0 ⟩ ⎞ ⎟⎠ 4 0.0088[[ ]] ―― m3 m ≔DPvol ⟨ 0 ⟩ =⋅―――― ⋅π ⎛ ⎝DPid ⟨ 0 ⟩ ⎞ ⎠ 4 TL ⟨ 0 ⟩ 0.21[[ ]] m3 ≔DPann ⟨ 0 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 0 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 0 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 0 ⟩ 6.32[[ ]] m3 ≔Wbore ⟨ 0 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 0 ⟩ ⎞ ⎠ 2 4 TL ⟨ 0 ⟩ 6.7[[ ]] m3 ≔DPid ⟨ 1 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 1 ⟩ ⎞ ⎟⎠ 4 0.0088[[ ]] ―― m3 m ≔DPvol ⟨ 1 ⟩ =⋅―――― ⋅π ⎛ ⎝DPid ⟨ 1 ⟩ ⎞ ⎠ 4 TL ⟨ 1 ⟩ 6.74[[ ]] m3 ≔DPann ⟨ 1 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 1 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 1 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 1 ⟩ 138.24[[ ]] m3 ≔Wbore ⟨ 1 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 1 ⟩ ⎞ ⎠ 2 4 TL ⟨ 1 ⟩ 150.52[[ ]] m3 ≔HWDPid ⟨ 2 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 2 ⟩ ⎞ ⎟⎠ 4 0.0088[[ ]] ―― m3 m ≔HWDPvol ⟨ 2 ⟩ =⋅――――― ⋅π ⎛ ⎝HWDPid ⟨ 2 ⟩ ⎞ ⎠ 4 TL ⟨ 2 ⟩ 5.7[[ ]] m3 ≔HWDPann ⟨ 2 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 2 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 2 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 2 ⟩ 116.86[[ ]] m3 ≔Wbore ⟨ 2 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 2 ⟩ ⎞ ⎠ 2 4 TL ⟨ 2 ⟩ 127.25[[ ]] m3 ≔DC2id ⟨ 3 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 3 ⟩ ⎞ ⎟⎠ 4 0.0046[[ ]] ―― m3 m ≔DC2vol ⟨ 3 ⟩ =⋅―――― ⋅π ⎛ ⎝DC2id ⟨ 3 ⟩ ⎞ ⎠ 4 TL ⟨ 3 ⟩ 0.32[[ ]] m3 ≔DC2ann ⟨ 3 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 3 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 3 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 3 ⟩ 12.83[[ ]] m3 ≔Wbore ⟨ 3 ⟩ =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 3 ⟩ ⎞ ⎠ 2 4 TL ⟨ 3 ⟩ 13.97[[ ]] m3 ≔DC1id ⟨ 4 ⟩ =―――― ⋅π ⎛ ⎜⎝Tid 2 ⟨ 4 ⟩ ⎞ ⎟⎠ 4 0.004[[ ]] ―― m3 m ≔DC1vol ⟨ 4 ⟩ =⋅―――― ⋅π ⎛ ⎝DC1id ⟨ 4 ⟩ ⎞ ⎠ 4 TL ⟨ 4 ⟩ 0.19[[ ]] m3 ≔DC1ann ⟨ 4 ⟩ =⋅――――――― ⋅π ⎛ ⎜⎝ - ⎛ ⎝Wb ⟨ 4 ⟩ ⎞ ⎠ 2 ⎛ ⎝Tod ⟨ 4 ⟩ ⎞ ⎠ 2 ⎞ ⎟⎠ 4 TL ⟨ 4 ⟩ 7.36[[ ]] m3 ≔Wbore40 =⋅―――― ⋅π ⎛ ⎝Wb ⟨ 4 ⟩ ⎞ ⎠ 2 4 TL ⟨ 4 ⟩ 9.31 m3 1.) Pumping times Total volumes ≔ΣTid =⋅――― ⋅π ⎛ ⎝Tid 2 ⎞ ⎠ 4 TL 16.9 m3 ≔ΣAnnvol =⋅―――――― ⋅π ⎛ ⎝ -Wb 2 Tod 2 ⎞ ⎠ 4 TL 284.9 m3 ≔ΣWellvol =⋅――― ⋅π ⎛ ⎝Wb 2 ⎞ ⎠ 4 TL 312.4 m3 ≔ΔStime =――― ΣTid Pumprate 4.248 min ≔ΔAnntime =――― ΣAnnvol Pumprate 71.677 min ≔Totaltime =+ΔStime ΔAnntime 75.92 min Peter Aird
  • 2. 2a.) Open ended displacement of steel tubular based on the wall thickness od and id string dimensions as input. Total 'open and closed ended' displacement volumes≔OEDS =―――――― ⋅π ⎛ ⎝ -Tod 2 Tid 2 ⎞ ⎠ 4 0.0038 0.0038 0.0038 0.0081 0.0284 0.0412 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m ≔ΣOEDS =⋅OEDS TL 10.63 m3 2b.) Close ended displacement of steel tubular based on the od string dimensions as input. ≔ΣCEDS =⋅―――― ⋅π ⎛ ⎝Tod 2 ⎞ ⎠ 4 TL 27.51 m3 ≔CEDS =―――― ⋅π ⎛ ⎝Tod 2 ⎞ ⎠ 4 0.0127 0.0127 0.0127 0.0127 0.0324 0.0457 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― m3 m 2c1) Total open ended displacement of all steel tubulars based on the wall thicknesses and lengths input . ≔ΣOED =⋅OEDS TL 10.63 m3 2c2) Total closed ended displacement of all steel tubulars based on the outer diameter and lengths input . ≔ΣCED =⋅CEDS TL 27.51 m3 ≔OET1 =⋅OEDS ⟨ 0 ⟩ TL ⟨ 0 ⟩ 1 bbl ≔OET2 =⋅OEDS ⟨1⟩ TL ⟨ 1 ⟩ 3.71 m3 ≔CET1 =⋅CEDS ⟨ 0 ⟩ TL ⟨ 0 ⟩ 0.38 m3 ≔CET2 =⋅CEDS ⟨ 1 ⟩ TL ⟨ 1 ⟩ 12.29 m3 ≔OEHW =⋅OEDS ⟨ 2 ⟩ TL ⟨ 2 ⟩ 20 bbl ≔OEDC2 =⋅OEDS ⟨ 3 ⟩ TL ⟨3⟩ 0.73 m3 ≔CEHW =⋅CEDS ⟨ 2 ⟩ TL ⟨ 2 ⟩ 10.39 m3 ≔CEDC2 =⋅CEDS ⟨ 3 ⟩ TL ⟨ 3 ⟩ 1.14 m3 ≔OEDc1 =⋅OEDS ⟨ 4 ⟩ TL ⟨ 4 ⟩ 11 bbl ≔OEDS =++++OET1 OET2 OEHW OEDC2 OEDc1 9.39 m3 ≔CEDc1 =⋅CEDS ⟨ 4 ⟩ TL ⟨ 4 ⟩ 1.95 m3 ≔CEDS =++++CET1 CET2 CEHW CEDC2 CEDc1 26.14 m3 3.) Component and Total string weights Total string weigth (in mud)≔WS =⋅―――――― ⋅π ⎛ ⎝ -Tod 2 Tid 2 ⎞ ⎠ 4 ρSteel 30 30 30 63.5 222.7 322.6 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ― kg m ≔ΣWS =⋅⋅⋅―――――― ⋅π ⎛ ⎝ -Tod 2 Tid 2 ⎞ ⎠ 4 ρSteel TL Bf 79 ton Individual Component weight calculations ≔Wdp ⟨ 0 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 0 ⟩ Tid 2 ⟨ 0 ⟩ ⎞ ⎟⎠ 4 ρSteel 30[[ ]] ― kg m ≔BWdp ⟨ 0 ⟩ =⋅ ⎛ ⎝ ⋅Wdp ⟨ 0 ⟩ TL ⟨ 0 ⟩ ⎞ ⎠ Bf 772[[ ]] kg ≔Wdp ⟨ 1 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 1 ⟩ Tid 2 ⟨ 1 ⟩ ⎞ ⎟⎠ 4 ρSteel 30[[ ]] ― kg m ≔BWdp ⟨ 1 ⟩ =⋅ ⎛ ⎝ ⋅Wdp ⟨ 1 ⟩ TL ⟨ 1 ⟩ ⎞ ⎠ Bf 24977[[ ]] ⋅m ― kg m ≔Wdp ⟨ 2 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 2 ⟩ Tid 2 ⟨ 2 ⟩ ⎞ ⎟⎠ 4 ρSteel 30[[ ]] ― kg m ≔BWdp ⟨ 2 ⟩ =⋅ ⎛ ⎝ ⋅Wdp ⟨ 2 ⟩ TL ⟨ 2 ⟩ ⎞ ⎠ Bf 21114[[ ]] kg ≔Whwdp ⟨ 3 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 3 ⟩ Tid 2 ⟨ 3 ⟩ ⎞ ⎟⎠ 4 ρSteel 63.5[[ ]] ― kg m ≔BWhwdp ⟨ 3 ⟩ =⋅ ⎛ ⎝ ⋅Whwdp ⟨ 3 ⟩ TL ⟨ 3 ⟩ ⎞ ⎠ Bf 4914[[ ]] ⋅m ― kg m ≔Wdc2 ⟨ 4 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 4 ⟩ Tid 2 ⟨ 4 ⟩ ⎞ ⎟⎠ 4 ρSteel 222.7[[ ]] ― kg m ≔BWdc2 ⟨ 4 ⟩ =⋅ ⎛ ⎝ ⋅Wdc2 ⟨ 4 ⟩ TL ⟨ 4 ⟩ ⎞ ⎠ Bf 11484[[ ]] kg ≔Wdc1 ⟨ 5 ⟩ =⋅―――――― ⋅π ⎛ ⎜⎝ -Tod 2 ⟨ 5 ⟩ Tid 2 ⟨ 5 ⟩ ⎞ ⎟⎠ 4 ρSteel 322.6[[ ]] ― kg m ≔BWdc1 ⟨ 5 ⟩ =⋅ ⎛ ⎝ ⋅Wdc1 ⟨ 5 ⟩ TL ⟨ 5 ⟩ ⎞ ⎠ Bf 8317[[ ]] ⋅m ― kg m ≔Stringweight =+++++BWdp ⟨ 0 ⟩ BWdp ⟨ 1 ⟩ BWdp ⟨ 2 ⟩ BWhwdp ⟨ 3 ⟩ BWdc2 ⟨ 4 ⟩ BWdc1 ⟨ 5 ⟩ 79[[ ]] ton
  • 3. ≔Wdc2 =⋅―――――― 4 ρSteel 222.7[ ] ― m ≔BWdc2 =⋅⎝ ⋅Wdc2 TL ⎠ Bf 11484[ ] kg ≔Wdc1 =⋅―――――― 4 ρSteel 322.6[ ] ― m ≔BWdc1 =⋅⎝ ⋅Wdc1 TL ⎠ Bf 8317[ ] ⋅m ― m ≔Stringweight =+++++BWdp ⟨ 0 ⟩ BWdp ⟨ 1 ⟩ BWdp ⟨ 2 ⟩ BWhwdp ⟨ 3 ⟩ BWdc2 ⟨ 4 ⟩ BWdc1 ⟨ 5 ⟩ 79[[ ]] ton Triplex mud pump calculations Triplex mud pump calculator Note: A triplex mud pump has three pump liners. For one revolution of the mud pump drive, each pump piston would therefore have pumped the equivalent of one strokes total liner volume. ≔Stroke ⋅1 Hz ≔bbl ⋅42 gal Data input Liner diameter, d, inches Liner length, L, inches Pump efficiency, η %, ≔LL ⋅14 in ≔d ⋅ 5 5.5 6 6.5 7 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦ in ≔Sp ⋅1 Stroke ≔η 0.95 ≔Pumpvol ―――――― ⋅⋅3 ⋅ ⎛ ⎜ ⎝ ―― ⋅π d2 4 ⎞ ⎟ ⎠ LL η Sp =Pumpvol 12.838 15.534 18.487 21.697 25.163 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ――― liter Stroke Step #1; Calculates the triplex mud pump output volume (Pumpvol) for the various pump liner sizes (d, inches), liner stroke length (L, inches) , and volumetric efficiency (η) as input. Example hand held calculation; =―――――――――― ⋅⋅⋅⋅3 ⎛ ⎜ ⎜⎝ ――――― ⋅π (( ⋅5.5 in)) 2 4 ⎞ ⎟ ⎟⎠ 12 in 0.95 ⋅1 Stroke 13.315 ――― liter Stroke =Pumpvol 12.838 15.534 18.487 21.697 25.163 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ――― liter Stroke
  • 4. Comments Depending on rig and pump conditions safe operating speeds of 100-110rpm can normally be achieved particulary if the rig has three pumps. e.g Best practices would be to work two pumps at optimal rates,maintaining the 3rd pump as contingency back up so that continuous operations would in most cases and circumstances result. Step #2; For a selected pump liner output (Pout, gal/stroke). This step calculates the total pumping volume of the triplex mud pump(s) for the range of strokes (n) that can be used, presenting results in both tabular & graphical output for 2 and 3 pumps. Liner size = 6inches ≔Pout ⋅4.884 ――― gal Stroke ≔f((n)) ⋅⋅Pout ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 2 Define pump rate range (n); ≔n , ‥30 40 110 ≔fa((n)) ⋅⋅Pout ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 3 1.4⋅10³ 1.95⋅10³ 2.5⋅10³ 3.05⋅10³ 3.6⋅10³ 4.15⋅10³ 4.7⋅10³ 5.25⋅10³ 5.8⋅10³ 300 850 6.35⋅10³ 38 47 56 65 74 83 92 10120 29 110 ⋅4.5 103 ⋅3 103 60 90 f((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ fa((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ n =f((n)) ⋅1.109 103 ⋅1.479 103 ⋅1.849 103 ⋅2.219 103 ⋅2.588 103 ⋅2.958 103 ⋅3.328 103 ⋅3.698 103 ⋅4.067 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min =fa((n)) ⋅1.664 103 ⋅2.219 103 ⋅2.773 103 ⋅3.328 103 ⋅3.882 103 ⋅4.437 103 ⋅4.992 103 ⋅5.546 103 ⋅6.101 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min
  • 5. Step #3; For a selected pump liner output (Pout2, gal/stroke). This step calculates the total pumping volume of the triplex mud pump(s) for the range of strokes (n2) that can be used, presenting results in both tabular & graphical output for two and three mud pumps used. Liner size = 6 1/2 inches ≔Pout2 ⋅5.732 ――― gal Stroke ≔f2((n)) ⋅⋅Pout2 ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 2 ≔f3((n)) ⋅⋅Pout2 ⎛ ⎜ ⎝ ⋅n ――― Stroke min ⎞ ⎟ ⎠ 3 1.6⋅10³ 2.25⋅10³ 2.9⋅10³ 3.55⋅10³ 4.2⋅10³ 4.85⋅10³ 5.5⋅10³ 6.15⋅10³ 6.8⋅10³ 300 950 7.45⋅10³ 38 47 56 65 74 83 92 10120 29 110 ⋅4 103 ⋅6 103 60 90 f2((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ f3((n)) ⎛ ⎜ ⎝ ―― liter min ⎞ ⎟ ⎠ n =f2((n)) ⋅1.302 103 ⋅1.736 103 ⋅2.17 103 ⋅2.604 103 ⋅3.038 103 ⋅3.472 103 ⋅3.906 103 ⋅4.34 103 ⋅4.774 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min =f3((n)) ⋅1.953 103 ⋅2.604 103 ⋅3.255 103 ⋅3.906 103 ⋅4.557 103 ⋅5.208 103 ⋅5.858 103 ⋅6.509 103 ⋅7.16 103 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦ ―― liter min