SlideShare ist ein Scribd-Unternehmen logo
1 von 43
Downloaden Sie, um offline zu lesen
Path integral representation and quantum-classical
correspondence for nonadiabatic systems
1
Mikiya Fujii, Yamashita-Ushiyama Lab,
Dept. of Chemical System Engineering, The Unviersity of Tokyo
1. Introduction to nonadiabatic transitions
2. Nonadiabatic path integral based on overlap integrals
3. Nonadiabatic partition functions: nonadiabatic beads model
4. Semiclassical nonadiabatic kernel: rigorous surface hopping
5. Semiclassical quantization of nonadiabatic systems: 

quantum-classical correspondence in nonadiabatic steady states
Transitions of nuclear wavepackets between
electronic eigenstates (adiabatic surfaces)
Femtosecond time-resolved spectroscopy of the dynamics at conical intersections, G.
Stock and W. Domcke, in: Conical Intersections, eds: W. Domcke, D. R. Yarkony, and H.
Koppel, (World Scientific, Singapore, 2003) , figure from http://www.moldyn.uni-
freiburg.de/research/ultrafast_nonadiabatic_photoreactions.html
NonAdiabatic Transitions (NATs)
G.-J. Kroes, Science 321, 794 (2008).
⃝surface reactions
G. Cerullo et.al, Nature 467, 440 (2010)
⃝vision
X.-Y. Zhu et.al, Nature Materials 12, 66 (2012)
⃝organic solar cells
⃝transition probability(’30∼)	

• Landau–Zener 	

• Stueckelberg	

• Zhu-Nakamura
⃝photo reactions
R. J. Sension et.al,
PCCP 16, 4439(2014)
applicationsbasics
⃝Theortical methods
T. Kubar and M. Elstner, J. R. Soc. Int.
2013 10, 20130415
Ehrenfest
Surface hopping
Notations
Electronic Hamiltonian
ˆHe( ˆR) =
ˆp2
2me
+ Vee(ˆr) + VNe(ˆr, ˆR) + VNN ( ˆR)
ˆHe(R)| n; Ri = ✏n(R)| n; Ri
Time independent electronic Schrödinger equation
Arbitrary state ket of a molecule
ni-th adiabatic surface
nuclear wavepacket 	

on ni-th adiabatic surface
3
| (t)i =
Z
dR
X
n
n(R, t)|Ri| n; Ri
Total Hamiltonian for molecules
ˆH = ˆTN + ˆHe( ˆR)
Schrödinger equation for NATs
Total wave function
is substituted to the time-dependent Schrödinger eq.
(r, R, t) =
X
n
n(R, t) n(r; R)
4
i~ ˙ (r, R, t) =

~2
2M
@2
@R2
~2
2me
@2
@r2
+ Vee(r) + VNe(r, R) + VNN (R) (r, R, t)
Multiplying
⇤
n(r; R) from left and integration r leads to
Nonadiabatic coupling between n-th and n’-th
adiabatic surfaces (derivative couplings)
i~ ˙n(R, t) =

~2
2M
@2
@R2
+ Vn(R) n(R, t)
X
m

~2
M
Xnm(R) 0
m(R, t) +
~2
2M
Ynm(R) m(R, t)
Xnm(R) =
Z
dr ⇤
n(r; R)
@
@R
m(r; R)
Ynm(R) =
Z
dr ⇤
n(r; R)
@2
@R2 m(r; R)
5
1. Introduction to nonadiabatic transitions
2. Nonadiabatic path integral based on overlap integrals:

derivative couplings vs. overlap integrals
3. Nonadiabatic partition functions: 

nonadiabatic beads model
4. Semiclassical nonadiabatic kernel: 

rigorous surface hopping
5. Semiclassical quantization of nonadiabatic systems: 

quantum-classical correspondence in nonadiabatic steady states
CONTENTS
NATs via overlap integrals
Total state ket of molecules is substituted to the time-dependent Schrödinger eq.:
| (t)i =
Z
dR
X
n
n(R, t)|Ri| n; Ri i~ ˙| (t)i = [ ˆTN + ˆHe]| (t)i
i~
Z
dR0
X
n0
˙n0 (R0
, t)|R0
i| n0 ; R0
i = [ ˆTN + ˆHe( ˆR)]
Z
dR0
X
n0
n0 (R0
, t)|R0
i| n0 ; R0
i
6
h n; R|hR|Multiplying from left leads to
i~
Z
dR0
X
n0
˙n0 (R0
, t)hR|R0
ih n; R| n0 ; R0
i = i~ ˙n(R, t)
(R R0
) nn0
Left=
2nd term
of right
= h n; R|hR| ˆHe(R0
)
Z
dR0
X
n0
n0 (R0
, t)|R0
i| n0 ; R0
i = ✏n(R) n(R, t)
NATs via overlap integrals
= h n; R|hR| ˆTN
Z
dR0
X
n0
n0 (R0
, t)|R0
i| n0 ; R0
i
=
Z
dR0
X
n0
n0 (R0
, t)h n; R|hR| ˆTN |R0
i| n0 ; R0
i
=
Z
dR0
X
n0
n0 (R0
, t)hR| ˆTN |R0
ih n; R| n0 ; R0
i
1st term
of right
Overlap integral between
different nuclear coordinates
i~ ˙n(R, t) =
Z
dR0
X
n0
hR| ˆTN |R0
ih n; R| n0 ; R0
i n0 (R0
, t) + ✏n(R) n(R, t)
Namely,
[
Nonadiabatic interaction between
n-th and n’-th adiabatic surfaces
via overlap integrals
7
commutable
Differential form vs. integral form of
Schrödinger equation
i~ ˙n(R, t) =
Z
dR0
X
n0
hR| ˆTN |R0
ih n; R| n0 ; R0
i n0 (R0
, t) + ✏n(R) n(R, t)
⃝differential form: NATS via derivative couplings
⃝Integral form: NATs via overlap integrals
They are Mathematically equivalent
Nonlocal propagation from R’ to R
↓ 
Suitable for the path integral
representation8
i~ ˙n(R, t) =

~2
2M
@2
@R2
✏n(R) n(R, t)
X
n0
~2
M
⌧
n(r; R)
@
@R
n0 (r; R)
@
@R
n0 (R, t)
X
n0
~2
2M
⌧
n(r; R)
@2
@R2 n0 (r; R) n0 (R, t)
Introduction of Nonadiabatic Kernel
Considering the infinitesimal time kernel of a molecule
h nf
; Rf |hRf |e
i
~
ˆH t
|Rii| ni
; Rii
Trotter decmp.
' h nf
; Rf |hRf |e
i
~
ˆTN t
e
i
h
ˆHe( ˆR) t
|Rii| ni
; Rii
9
= h nf
; Rf | ni
; RiihRf |e
i
~
ˆTN t
|Riie
i
~ ✏ni
(Ri) t
adiabatic propagation
on ni-th adiabatic surface
overlap integral 	

between ni@Ri and nf@Rf	

, representing nonadiabatic transition
Repeating this infinitesimal time kernel gives a finite time kernel
= h nf
; Rf |hRf |e
i
~
ˆTN t
|Riie
i
h
ˆHe(Ri) t
| ni
; Rii
10
K =
Z
D [R(⌧), n(⌧)] ⇠ exp

i
~
S
②Infinite product of the overlap integrals 	

(phase weighted probability of each path)
①Nuclear paths that are evolving through arbitrary	

positions and electronic eigenstates
{R(⌧), n(⌧)}
NonAdiabatic Path Integral (NAPI)
This nonadiabatic kernel holds 2 differences from adiabatic kernel
⇠ ⌘ lim
!1
Y
k=0
h n(tk+1); R(tk+1)| n(tk); R(tk)i
J. R. Schmidt and J. C. Tully, J. Chem. Phys. 127, 094103 (2007)	

M. Fujii, J. Chem. Phys. 135, 114102 (2011)
NA Schrödinger eq. is revisited from the NAPI
n(x, t + ✏) =
X
m
Z 1
1
d⌘hn; x|m; x + ⌘i exp

i
~
⌘2
2✏
i
~
Vm(x + ⌘)✏ m(x + ⌘, t)
Time propagation with infinitesimal time-width in NAPI:✏
p
2~✏ < ⌘ <
p
2~✏
The main contribution is from the range:
⌘2
2~✏
' 1
i.e.,
Then, we expand the NAPI up to .✏ or ⌘2
n(R, t + ✏) =
X
m
Z 1
1
d⌘A exp

M⌘2
2i~✏
⇢
hn; R|m; Ri m(R, t) +
1
i~
hn; R|m; RiVm(R) m(R, t)✏
+hn; R|m; Ri
@ m
@R
⌘ + Xnm(R) m(R, t)⌘
+hn; R|m; Ri
@2
m
@R2
⌘2
2
+ Xnm(R)
@ m
@R
⌘2
+ Ynm(R) m(R, t)
⌘2
2
nm
By solving the Gaussian integrals,
the nonadiabatic Schrödinger eq. is revisited:
i~ ˙n(R, t) =

~2
2M
@2
@R2
+ Vn(R) n(R, t)
X
m

~2
M
Xnm(R) 0
m(R, t) +
~2
2M
Ynm(R) m(R, t)
Xnm(R) =
Z
dr ⇤
n(r; R)
@
@R
m(r; R)
Ynm(R) =
Z
dr ⇤
n(r; R)
@2
@R2 m(r; R)
K =
Z
D [R(⌧), n(⌧)] ⇠ exp

i
~
S
i~ ˙n(R, t) =

~2
2M
@2
@R2
+ Vn(R) n(R, t)
X
m

~2
M
Xnm(R) 0
m(R, t) +
~2
2M
Ynm(R) m(R, t)
Xnm(R) =
Z
dr ⇤
n(r; R)
@
@R
m(r; R)
Ynm(R) =
Z
dr ⇤
n(r; R)
@2
@R2 m(r; R)
⇠ ⌘ lim
!1
Y
k=0
h n(tk+1); R(tk+1)| n(tk); R(tk)i
Nonadiabatic path integral with overlap integrals
Nonadiabatic Schrödinger eq. with derivative couplings
Mathematically equivalent
14
1. Introduction to nonadiabatic transitions
2. Nonadiabatic path integral based on overlap integrals:

derivative couplings vs. overlap integrals
3. Nonadiabatic partition functions: 

nonadiabatic beads model
4. Semiclassical nonadiabatic kernel: 

rigorous surface hopping
5. Semiclassical quantization of nonadiabatic systems: 

quantum-classical correspondence in nonadiabatic steady states
CONTENTS
Z( ) = Tre
ˆH
Quantum MC
by Adiabatic beads
Quantum MC
by Nonadiabatic beads
Nonadaibatic Partition function
K = e
i
~
ˆHt
t = i~time propagator partition function
Z( ) = Tr
h
e
ˆH
· · · e
ˆH
i
Boltzmann operator is divided to Γ peaces:
ˆ1 =
Z
dR
X
n
|Ri| n; Rih n; R|hR|
Inserting identity operators
leads to
⇠ =
Y
k=1
h nk
; Rk| nk+1
; Rk+1i
Z( ) =
Z
dR1 · · · dR
X
n1···n
⇠hR1|e
ˆHn1 |R2i · · · hR |e
ˆHn
|R1i
ˆHn = ˆTN + ✏n( ˆR)
Infinite product of overlaps:
n-th adibatic Hamiltonian:
16
17
The divided Boltzmann operators can be written as
hR|e
ˆHn
|R0
i = lim
!1
⇢0(R, R0
; )e ✏n(R0
)
⇢0(R, R0
; ) =
✓
M
2⇡~2
◆1
2
e
M
2~2 (R R0
)2
Boltzmann operator for free particles
After all, we obtained following representation:
Z( ) = lim
!1
✓
M
2⇡~2
◆ 2 X
n1,··· ,n
Z
dR1, · · · , dR
⇥⇠ exp
 ✓ X
k=1
M
2~2 2
(Rk Rk+1)2
+
✏nk
(Rk)
◆
nonadiabatic beads
quantum-classical mapping
under thermal equilibrium
Z( ) = Tre
ˆHTo calculate the partition function:
Hbeads =
X
k=1
M
2~2 2
(Rk Rk+1)2
+
✏nk
(Rk)
with weighting factor:
⇠ =
Y
k=1
h nk
; Rk| nk+1
; Rk+1iThis nonadiabatic beads model can be applied to
thermal average of physical quantities
quantum nonadiabatic particle classical nonadiabatic beads
18
classical mapping
J. R. Schmidt and et.al, JCP 127, 094103 (2007)
A simple model
, with m=1 [amu].
J. Morelli and S. Hammes-Schiffer, Chem. Phys. Lett. 269, 161 (1997)
Energy levels
20
✏n(R)[kcal/mol]
✏n(R)[kcal/mol]
Black: Adiabatic energy levels
Red: Nonadiabatic energy levels
Numerical example: thermal average
adiabatic (exact)
nonadiabatic (exact)
nonadiabatic beads
quantum-classical mapping
under thermal equilibrium
To calculate the partition function and thermal average
Hbeads =
X
k=1
M
2~2 2
(Rk Rk+1)2
+
✏nk
(Rk)
with weighting factor:
⇠ =
Y
k=1
h nk
; Rk| nk+1
; Rk+1i
classical mapping
quantum nonadiabatic particle classical nonadiabatic beads
22 J. R. Schmidt and et.al, JCP 127, 094103 (2007)
23
1. Introduction to nonadiabatic transitions
2. Nonadiabatic path integral based on overlap integrals:

derivative couplings vs. overlap integrals
3. Nonadiabatic partition functions: 

nonadiabatic beads model
4. Semiclassical nonadiabatic kernel: 

rigorous surface hopping
5. Semiclassical quantization of nonadiabatic systems: 

quantum-classical correspondence in nonadiabatic steady states
CONTENTS
Semiclassical propagator (adiabatic)
Stationary phase approx. is applied to the time propagator
K = hRf |e i ˆH(tf ti)/~
|Rii =
Z
D[R(⌧)] exp

i
~
S[R(⌧)]
Ri
R1
R2
Rf
RN 1
RN
R0
t1
t2
tN 1
tf
ti
t
stationary phase condition:minimum action integral→classical trajectory:
S[R(⌧)]
R(⌧)
= 0
Rcl(⌧)
Rcl(⌧)
: Maslov index
S[Rcl(⌧)]: action integral
dRt
dPi
: Stability matrix
Formulated with quantities along classical trajectories
Quantum-Classical correspondence in dynamics
KSC =
X
Rcl
(2⇡i~)
1
2
dRt
dPi
1
2
exp

i
~
Scl[Rcl(⌧)]
i⇡
2
⌫
24
(a)→(b): Stationary approximation for summing up all trajectories on a surface
K /
Z
dth
Z
dRh⇠J exp

i
~
SnJ
cl (Rf , Rh) ⇠I exp

i
~
SnI
cl (Rh, R0)
25
Semiclassical approximation of the nonadiabatic kernel
(stationary phase approximation on the each surface)
K /
Z
dth
Z
dRh⇠J exp

i
~
SnJ
cl (Rf , Rh) ⇠I exp

i
~
SnI
cl (Rh, R0)
(b)→(c): Stationary approximation for the integral related to hopping points, Rh
d
dRh
[SnJ
cl (Rf , Rh) + SnI
cl (Rh, R0)] = PJ + PI = 0
Stationary phase condition:
momentum conservation
26
Semiclassical approximation of the nonadiabatic kernel
(stationary phase approximation for the hopping point)
27
Nonadiabatic Semiclassical Kernel
c.f., Adiabatic semiclassical kernel
KSC =
X
Rcl
(2⇡i~)
1
2
dRt
dPi
1
2
exp

i
~
Scl[Rcl(⌧)]
i⇡
2
⌫
KSC =
X
Rhcl
(2⇡i~)
1
2 ⇠
dRt
dPi
1
2
exp

i
~
Scl[Rhcl(⌧)]
i⇡
2
⌫
①Hopping classical trajectories
Two differences from adiabatic semiclassical kernel
⇠ ⌘ lim
!1
Y
k=0
h n(tk+1); R(tk+1)| n(tk); R(tk)i
amplitude of each overlap means probability
of the hopping at each time step
②Infinite product of the overlap integrals	

(phase weight probability of each hopping calssical traj.)
Nemerical example(Nonadiabatic SC-IVR, Herman-Kluk)
M. Fujii, J. Chem. Phys. 135, 114102 (2011)28
Black: Numerical exact
Blue&Green: present semi classical
107 trajectories
avoided crossing
Nonadiabatic wavepacket dynamics
including phase accompanied by
nonadiabatic transition is also reproduced.
Namely, rigorous surface hopping.
M. Fujii, J. Chem. Phys. 135, 114102 (2011)
29
Nemerical example(Nonadiabatic SC-IVR, Herman-Kluk)
Quantum-classical correspondence
in nonadiabatic dynamics
quantum wavepacket dynamics classical hopping dynamics
Classical hopping trajectories are taken out as dominant terms
of nonadiabatic propagation of quantum wavepackets
stationary phase
31
1. Introduction to nonadiabatic transitions
2. Nonadiabatic path integral based on overlap integrals:

derivative couplings vs. overlap integrals
3. Nonadiabatic partition functions: 

nonadiabatic beads model
4. Semiclassical nonadiabatic kernel: 

rigorous surface hopping
5. Semiclassical quantization of nonadiabatic systems: 

quantum-classical correspondence in nonadiabatic steady states
CONTENTS
Semiclassical Quantization
Revealing correspondence between time-invariant structures in
classical mechanics and steady states in quantum mechanics	

e.g. Bohr’s model for Hydrogen, Bohr-Sommerfeld, Einstein–
Brillouin–Keller, etc
ˆH| i = E| i
steady states 	

in quantum mechanics
q
p
time-invariant structures	

in phase space of 	

classical mechanics
periodic
orbits torus
big← →small~
32
Objective
Finding a quantum-classical correspondence for nonadiabatic steady states	

i.e. How time-invariant structures in nuclear phase space should be quantized
Especially, the semiclassical concepts of the nonadiabatic transition (i.e. classical
dynamics on adiabatic surfaces and hopping) should be held.	

!
The reason is that some pioneering studies that treat electrons and nuclei in equal-
footing-manner have been already presented for the semiclassical quantization.	

	

 	

 e.g. Meyer-Miller (JCP 70, 3214 (1979)) and Stock-Thoss (PRL. 78, 578 (1997))	

big← →small~
nonadiabatic 	

eigenstates
q
p
?nuclear phase space
Gutzwiller s trace formula
Semiclassical approximation to DOS, which has revealed correspondence between
quantum energy levels and classical periodic orbits through divergences of DOS.
classical action: Phase space volume
⌫ = 2
Scl
= 2⇡E/!
e.g. Harmonic oscillator
Maslov index: number of intersects between
trajectory and R-axis
geometric quantity
of a cycle of primitive
periodic orbit
number of cycle of primitive periodic orbit
Sum of k-cycle diverges at quantum energy levels
1 = exp
✓
i
~
2⇡E
!
i⇡
◆
) En =
✓
n +
1
2
◆
~!
}
⌦(E) /
1X
k=0

exp
✓
i
~
Scl i⇡
2
⌫
◆ k
=

1 exp
✓
i
~
Scl i⇡
2
⌫
◆ 1
34
⌦(E) /
X
2PHPO

1 ⇠ exp
✓
i
~
Scl i⇡
2
⌫
◆ 1
①Sum of “Primitive Hopping Periodic Orbits (PHPO)”
Taking the summation of geometric series related to k, naively, leads to
⇠ < 1This term does not diverge because .
35
②Infinite product of the overlap integrals: ⇠ ⌘ lim
!1
Y
k=0
h n(tk+1); R(tk+1)| n(tk); R(tk)i
There are 2 differences from the Gutzwiller’s (adiabatic) trace formula
⌦(E) /
X
2PHPO
1X
k=0

⇠ exp
✓
i
~
Scl i⇡
2
⌫
◆ k
Nonadiabatic Trace formula
That is, individual PHPO cannot be quantized.
We must introduce another way to take the summation of
infinite number of the PHPOs
Bit sequence which represents PHPO
A concrete example: Two adiabatic harmonic oscillators which interact nonadiabatically at the origin only.
D12 = (R) sin(✓)
Ri Rj Rk Rl 0, 1, 1, and 0 are assigned when a
trajectory passes through Ri, Rj, Rk, and Rl,
respectively
Assignment of bit
e.g.,	

adiabatic (no hopping) PO: 0000000…	

!
!
diabatic (fully nonadiabatic) PO: 0101010…	

!
!
Periodic bit sequences representing PHPOs can be expressed with dots on the fist and last bits
˙011˙1 ⌘ 011101110111 · · ·
˙0˙1 ⌘ 0101010101 · · ·
36
We can also confirm that the periodic and non-periodic orbits correspond to rational and irrational
numbers, respectively, because periodic bit sequences correspond to rational number in binary digits. 	

So, the number of periodic orbits is countable infinite while the number of arbitrary orbits is uncountable
infinite.
D12 = (R) sin(✓)
Ri Rj Rk Rl ˙01000111001˙1
0 in odd-numbered bits means “returning to Ri”.
Decomposition of each PHPO
01 + 00 + 0111 + 0011
At the 0 in odd-numbered bits, we can decompose this
PHPO to “more primitive (prime) bits (PHPOs)”.
Threfore, arbitrary hopping periodic orbits passing through Ri can be represented by combinations of
these prime PHPOs:
00, 01, 0110, 0111, 0010, 0011
,where 1 means combinations of 11 and 10.
Hereafter, this set of prime PHOPs are represented as
S0 ⌘
(Ⅰ) All prime PHPOs in Si pass through the same phase space point
(Ⅱ) Any pair of prime PHPOs (Γ, Γ’) in Si is coprime:
0
6⇢ _ r 0
62 S
38
S0 ⌘
00, 01, 0110, 0111, 0010, 0011
A set Si of prime PHPOs
D12 = (R) sin(✓)
Ri Rj Rk Rl
Sum of all HPOs as combination of coprime PHPOs
Sum of all HPOs, for example,
started from Ri
D12 = (R) sin(✓)
Ri Rj Rk Rl
00
01
+
+
0110
+
...
0000
0101
+
+
000110...
000000
010101...
k = 1
k = 2
k = 3
}
}
}
= Sum of geometric series	

of sum of prime PHPOs
=
X
k2N
(00 + 01 + 0110)
k
=
X
k2N
X
2S0
!k
Semiclassical(nonadiabatic)
Exact(nonadiabatic)
Exact(adiabatic)40
S0 ⌘
⌦(E) /
X
Si2{S}
1X
k=0
"
X
2Si
⇠ exp
✓
i
~
Scl i⇡
2
⌫
◆#k
=
X
Si2{S}
"
1
X
2Si
⇠ exp
✓
i
~
Scl i⇡
2
⌫
◆# 1
Divergence points give quantum levels	

=quantum condition
sum of all prime PHPOs
D12 = (R) sin(✓)
Ri Rj Rk Rl
!I = 27.6 [kcal1/2
mol 1/2˚A 1
amu 1/2
]
!II = 38.64 [kcal1/2
mol 1/2˚A 1
amu 1/2
]
m = 1[amu]
Quantum-classical correspondence
in nonadiabatic steady states
quantum nonadiabatic
eigenstates
Time-invariant structure in
classical nuclear phase space
big←  →small~ S0 ⌘
1 =
X
2S
⇠ exp
✓
i
~
Scl i⇡
2
⌫
◆
Semiclassical Quantization condition
Summary of this talk
S0 ⌘
1. Nonadiabatic path integral with overlap integrals
K =
Z
D [R(⌧), n(⌧)] ⇠ exp

i
~
S
⇠ ⌘ lim
!1
Y
k=0
h n(tk+1); R(tk+1)| n(tk); R(tk)i
3. Nonadiabatic semiclassical kernel (“rigorous” surface hopping)
KSC =
X
Rhcl
(2⇡i~)
1
2 ⇠
dRt
dPi
1
2
exp

i
~
Scl[Rhcl(⌧)]
i⇡
2
⌫
4. Semiclassical quantization condition
⌦(E) /
X
2PHPO
1X
k=0

⇠ exp
✓
i
~
Scl i⇡
2
⌫
◆ k
Nonadiabatic trace formula
42
M. Fujii, JCP, 135, 114102 (2011)
M. Fujii and K. Yamashita, JCP, 142, 074104 (2015)	

arXiv:1406.3769
J. R. Schmidt and et.al, JCP, 127, 094103 (2007)	

M. Fujii, JCP, 135, 114102 (2011)
2. Nonadiabatic beads
J. R. Schmidt and et.al, JCP 127, 094103 (2007)
Classical mapping under
thermal equilibrium
Classical counterparts of
nonadiabatic wavepacket dynamics
Classical counterparts of nonadiabatic eigenstates
Acknowledgments
• I appreciate valuable discussions with
Prof. K. Yamashita
Pfof. K. Takatsuka
Prof. H. Ushiyama
Prof. O. Kühn
• This work was supported by
JSPS KAKENHI Grant No. 24750012
CREST, JST.
本研究のみならず,有機薄膜太陽電池やポストリチウムイオ
ン電池など山下・牛山研の全ての研究において分子科学研究
所計算科学研究センターに大変お世話になっております.管
理運営されている先生およびスタッフの皆様に心より御礼申
し上げます.

Weitere ähnliche Inhalte

Was ist angesagt?

Conformal Anisotropic Mechanics And The HořAva Dispersion Relation
Conformal Anisotropic Mechanics And The HořAva Dispersion RelationConformal Anisotropic Mechanics And The HořAva Dispersion Relation
Conformal Anisotropic Mechanics And The HořAva Dispersion Relation
vcuesta
 
4YR-rjt111-00683371-2
4YR-rjt111-00683371-24YR-rjt111-00683371-2
4YR-rjt111-00683371-2
Ruben Tomlin
 

Was ist angesagt? (20)

Black Hole Dynamics From Atmospheric Science
Black Hole Dynamics From Atmospheric ScienceBlack Hole Dynamics From Atmospheric Science
Black Hole Dynamics From Atmospheric Science
 
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
Aurelian Isar - Decoherence And Transition From Quantum To Classical In Open ...
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum Electrodynamics
 
Engwavefunction
EngwavefunctionEngwavefunction
Engwavefunction
 
Hadronic1z 1
Hadronic1z  1 Hadronic1z  1
Hadronic1z 1
 
PART II.1 - Modern Physics
PART II.1 - Modern PhysicsPART II.1 - Modern Physics
PART II.1 - Modern Physics
 
Lecture 2 sapienza 2017
Lecture 2 sapienza 2017Lecture 2 sapienza 2017
Lecture 2 sapienza 2017
 
PART II.2 - Modern Physics
PART II.2 - Modern PhysicsPART II.2 - Modern Physics
PART II.2 - Modern Physics
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
The Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equationThe Einstein field equation in terms of the Schrödinger equation
The Einstein field equation in terms of the Schrödinger equation
 
Part VIII - The Standard Model
Part VIII - The Standard ModelPart VIII - The Standard Model
Part VIII - The Standard Model
 
"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic"Warm tachyon matter" - N. Bilic
"Warm tachyon matter" - N. Bilic
 
Uncertainty quantification
Uncertainty quantificationUncertainty quantification
Uncertainty quantification
 
Conformal Anisotropic Mechanics And The HořAva Dispersion Relation
Conformal Anisotropic Mechanics And The HořAva Dispersion RelationConformal Anisotropic Mechanics And The HořAva Dispersion Relation
Conformal Anisotropic Mechanics And The HořAva Dispersion Relation
 
4YR-rjt111-00683371-2
4YR-rjt111-00683371-24YR-rjt111-00683371-2
4YR-rjt111-00683371-2
 
Enders-HP-5
Enders-HP-5Enders-HP-5
Enders-HP-5
 
Light Stop Notes
Light Stop NotesLight Stop Notes
Light Stop Notes
 
Part IX - Supersymmetry
Part IX - SupersymmetryPart IX - Supersymmetry
Part IX - Supersymmetry
 
Causality in special relativity
Causality in special relativityCausality in special relativity
Causality in special relativity
 

Ähnlich wie 20150304 ims mikiya_fujii_dist

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
Computational Materials Science Initiative
 

Ähnlich wie 20150304 ims mikiya_fujii_dist (20)

Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
Pcv ch2
Pcv ch2Pcv ch2
Pcv ch2
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
Atomic Structure-21092023.pdf
Atomic Structure-21092023.pdfAtomic Structure-21092023.pdf
Atomic Structure-21092023.pdf
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
Neutral Electronic Excitations: a Many-body approach to the optical absorptio...
 
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 1. KKR法
 
Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2Theoretical Spectroscopy Lectures: real-time approach 2
Theoretical Spectroscopy Lectures: real-time approach 2
 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
SV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCsSV-InclusionSOcouplinginNaCs
SV-InclusionSOcouplinginNaCs
 
Dispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguideDispersion equation for groove nonradiative dielectric waveguide
Dispersion equation for groove nonradiative dielectric waveguide
 
Real Time Spectroscopy
Real Time SpectroscopyReal Time Spectroscopy
Real Time Spectroscopy
 
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
 
Dumitru Vulcanov - Numerical simulations with Ricci flow, an overview and cos...
Dumitru Vulcanov - Numerical simulations with Ricci flow, an overview and cos...Dumitru Vulcanov - Numerical simulations with Ricci flow, an overview and cos...
Dumitru Vulcanov - Numerical simulations with Ricci flow, an overview and cos...
 
Pimc 20131206
Pimc 20131206Pimc 20131206
Pimc 20131206
 

Kürzlich hochgeladen

Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
Sérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
PirithiRaju
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
RohitNehra6
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Sérgio Sacani
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
RizalinePalanog2
 

Kürzlich hochgeladen (20)

TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 

20150304 ims mikiya_fujii_dist

  • 1. Path integral representation and quantum-classical correspondence for nonadiabatic systems 1 Mikiya Fujii, Yamashita-Ushiyama Lab, Dept. of Chemical System Engineering, The Unviersity of Tokyo 1. Introduction to nonadiabatic transitions 2. Nonadiabatic path integral based on overlap integrals 3. Nonadiabatic partition functions: nonadiabatic beads model 4. Semiclassical nonadiabatic kernel: rigorous surface hopping 5. Semiclassical quantization of nonadiabatic systems: 
 quantum-classical correspondence in nonadiabatic steady states
  • 2. Transitions of nuclear wavepackets between electronic eigenstates (adiabatic surfaces) Femtosecond time-resolved spectroscopy of the dynamics at conical intersections, G. Stock and W. Domcke, in: Conical Intersections, eds: W. Domcke, D. R. Yarkony, and H. Koppel, (World Scientific, Singapore, 2003) , figure from http://www.moldyn.uni- freiburg.de/research/ultrafast_nonadiabatic_photoreactions.html NonAdiabatic Transitions (NATs) G.-J. Kroes, Science 321, 794 (2008). ⃝surface reactions G. Cerullo et.al, Nature 467, 440 (2010) ⃝vision X.-Y. Zhu et.al, Nature Materials 12, 66 (2012) ⃝organic solar cells ⃝transition probability(’30∼) • Landau–Zener • Stueckelberg • Zhu-Nakamura ⃝photo reactions R. J. Sension et.al, PCCP 16, 4439(2014) applicationsbasics ⃝Theortical methods T. Kubar and M. Elstner, J. R. Soc. Int. 2013 10, 20130415 Ehrenfest Surface hopping
  • 3. Notations Electronic Hamiltonian ˆHe( ˆR) = ˆp2 2me + Vee(ˆr) + VNe(ˆr, ˆR) + VNN ( ˆR) ˆHe(R)| n; Ri = ✏n(R)| n; Ri Time independent electronic Schrödinger equation Arbitrary state ket of a molecule ni-th adiabatic surface nuclear wavepacket on ni-th adiabatic surface 3 | (t)i = Z dR X n n(R, t)|Ri| n; Ri Total Hamiltonian for molecules ˆH = ˆTN + ˆHe( ˆR)
  • 4. Schrödinger equation for NATs Total wave function is substituted to the time-dependent Schrödinger eq. (r, R, t) = X n n(R, t) n(r; R) 4 i~ ˙ (r, R, t) =  ~2 2M @2 @R2 ~2 2me @2 @r2 + Vee(r) + VNe(r, R) + VNN (R) (r, R, t) Multiplying ⇤ n(r; R) from left and integration r leads to Nonadiabatic coupling between n-th and n’-th adiabatic surfaces (derivative couplings) i~ ˙n(R, t) =  ~2 2M @2 @R2 + Vn(R) n(R, t) X m  ~2 M Xnm(R) 0 m(R, t) + ~2 2M Ynm(R) m(R, t) Xnm(R) = Z dr ⇤ n(r; R) @ @R m(r; R) Ynm(R) = Z dr ⇤ n(r; R) @2 @R2 m(r; R)
  • 5. 5 1. Introduction to nonadiabatic transitions 2. Nonadiabatic path integral based on overlap integrals:
 derivative couplings vs. overlap integrals 3. Nonadiabatic partition functions: 
 nonadiabatic beads model 4. Semiclassical nonadiabatic kernel: 
 rigorous surface hopping 5. Semiclassical quantization of nonadiabatic systems: 
 quantum-classical correspondence in nonadiabatic steady states CONTENTS
  • 6. NATs via overlap integrals Total state ket of molecules is substituted to the time-dependent Schrödinger eq.: | (t)i = Z dR X n n(R, t)|Ri| n; Ri i~ ˙| (t)i = [ ˆTN + ˆHe]| (t)i i~ Z dR0 X n0 ˙n0 (R0 , t)|R0 i| n0 ; R0 i = [ ˆTN + ˆHe( ˆR)] Z dR0 X n0 n0 (R0 , t)|R0 i| n0 ; R0 i 6 h n; R|hR|Multiplying from left leads to i~ Z dR0 X n0 ˙n0 (R0 , t)hR|R0 ih n; R| n0 ; R0 i = i~ ˙n(R, t) (R R0 ) nn0 Left= 2nd term of right = h n; R|hR| ˆHe(R0 ) Z dR0 X n0 n0 (R0 , t)|R0 i| n0 ; R0 i = ✏n(R) n(R, t)
  • 7. NATs via overlap integrals = h n; R|hR| ˆTN Z dR0 X n0 n0 (R0 , t)|R0 i| n0 ; R0 i = Z dR0 X n0 n0 (R0 , t)h n; R|hR| ˆTN |R0 i| n0 ; R0 i = Z dR0 X n0 n0 (R0 , t)hR| ˆTN |R0 ih n; R| n0 ; R0 i 1st term of right Overlap integral between different nuclear coordinates i~ ˙n(R, t) = Z dR0 X n0 hR| ˆTN |R0 ih n; R| n0 ; R0 i n0 (R0 , t) + ✏n(R) n(R, t) Namely, [ Nonadiabatic interaction between n-th and n’-th adiabatic surfaces via overlap integrals 7 commutable
  • 8. Differential form vs. integral form of Schrödinger equation i~ ˙n(R, t) = Z dR0 X n0 hR| ˆTN |R0 ih n; R| n0 ; R0 i n0 (R0 , t) + ✏n(R) n(R, t) ⃝differential form: NATS via derivative couplings ⃝Integral form: NATs via overlap integrals They are Mathematically equivalent Nonlocal propagation from R’ to R ↓  Suitable for the path integral representation8 i~ ˙n(R, t) =  ~2 2M @2 @R2 ✏n(R) n(R, t) X n0 ~2 M ⌧ n(r; R) @ @R n0 (r; R) @ @R n0 (R, t) X n0 ~2 2M ⌧ n(r; R) @2 @R2 n0 (r; R) n0 (R, t)
  • 9. Introduction of Nonadiabatic Kernel Considering the infinitesimal time kernel of a molecule h nf ; Rf |hRf |e i ~ ˆH t |Rii| ni ; Rii Trotter decmp. ' h nf ; Rf |hRf |e i ~ ˆTN t e i h ˆHe( ˆR) t |Rii| ni ; Rii 9 = h nf ; Rf | ni ; RiihRf |e i ~ ˆTN t |Riie i ~ ✏ni (Ri) t adiabatic propagation on ni-th adiabatic surface overlap integral between ni@Ri and nf@Rf , representing nonadiabatic transition Repeating this infinitesimal time kernel gives a finite time kernel = h nf ; Rf |hRf |e i ~ ˆTN t |Riie i h ˆHe(Ri) t | ni ; Rii
  • 10. 10 K = Z D [R(⌧), n(⌧)] ⇠ exp  i ~ S ②Infinite product of the overlap integrals (phase weighted probability of each path) ①Nuclear paths that are evolving through arbitrary positions and electronic eigenstates {R(⌧), n(⌧)} NonAdiabatic Path Integral (NAPI) This nonadiabatic kernel holds 2 differences from adiabatic kernel ⇠ ⌘ lim !1 Y k=0 h n(tk+1); R(tk+1)| n(tk); R(tk)i J. R. Schmidt and J. C. Tully, J. Chem. Phys. 127, 094103 (2007) M. Fujii, J. Chem. Phys. 135, 114102 (2011)
  • 11. NA Schrödinger eq. is revisited from the NAPI n(x, t + ✏) = X m Z 1 1 d⌘hn; x|m; x + ⌘i exp  i ~ ⌘2 2✏ i ~ Vm(x + ⌘)✏ m(x + ⌘, t) Time propagation with infinitesimal time-width in NAPI:✏ p 2~✏ < ⌘ < p 2~✏ The main contribution is from the range: ⌘2 2~✏ ' 1 i.e., Then, we expand the NAPI up to .✏ or ⌘2
  • 12. n(R, t + ✏) = X m Z 1 1 d⌘A exp  M⌘2 2i~✏ ⇢ hn; R|m; Ri m(R, t) + 1 i~ hn; R|m; RiVm(R) m(R, t)✏ +hn; R|m; Ri @ m @R ⌘ + Xnm(R) m(R, t)⌘ +hn; R|m; Ri @2 m @R2 ⌘2 2 + Xnm(R) @ m @R ⌘2 + Ynm(R) m(R, t) ⌘2 2 nm By solving the Gaussian integrals, the nonadiabatic Schrödinger eq. is revisited: i~ ˙n(R, t) =  ~2 2M @2 @R2 + Vn(R) n(R, t) X m  ~2 M Xnm(R) 0 m(R, t) + ~2 2M Ynm(R) m(R, t) Xnm(R) = Z dr ⇤ n(r; R) @ @R m(r; R) Ynm(R) = Z dr ⇤ n(r; R) @2 @R2 m(r; R)
  • 13. K = Z D [R(⌧), n(⌧)] ⇠ exp  i ~ S i~ ˙n(R, t) =  ~2 2M @2 @R2 + Vn(R) n(R, t) X m  ~2 M Xnm(R) 0 m(R, t) + ~2 2M Ynm(R) m(R, t) Xnm(R) = Z dr ⇤ n(r; R) @ @R m(r; R) Ynm(R) = Z dr ⇤ n(r; R) @2 @R2 m(r; R) ⇠ ⌘ lim !1 Y k=0 h n(tk+1); R(tk+1)| n(tk); R(tk)i Nonadiabatic path integral with overlap integrals Nonadiabatic Schrödinger eq. with derivative couplings Mathematically equivalent
  • 14. 14 1. Introduction to nonadiabatic transitions 2. Nonadiabatic path integral based on overlap integrals:
 derivative couplings vs. overlap integrals 3. Nonadiabatic partition functions: 
 nonadiabatic beads model 4. Semiclassical nonadiabatic kernel: 
 rigorous surface hopping 5. Semiclassical quantization of nonadiabatic systems: 
 quantum-classical correspondence in nonadiabatic steady states CONTENTS
  • 15. Z( ) = Tre ˆH Quantum MC by Adiabatic beads Quantum MC by Nonadiabatic beads Nonadaibatic Partition function K = e i ~ ˆHt t = i~time propagator partition function
  • 16. Z( ) = Tr h e ˆH · · · e ˆH i Boltzmann operator is divided to Γ peaces: ˆ1 = Z dR X n |Ri| n; Rih n; R|hR| Inserting identity operators leads to ⇠ = Y k=1 h nk ; Rk| nk+1 ; Rk+1i Z( ) = Z dR1 · · · dR X n1···n ⇠hR1|e ˆHn1 |R2i · · · hR |e ˆHn |R1i ˆHn = ˆTN + ✏n( ˆR) Infinite product of overlaps: n-th adibatic Hamiltonian: 16
  • 17. 17 The divided Boltzmann operators can be written as hR|e ˆHn |R0 i = lim !1 ⇢0(R, R0 ; )e ✏n(R0 ) ⇢0(R, R0 ; ) = ✓ M 2⇡~2 ◆1 2 e M 2~2 (R R0 )2 Boltzmann operator for free particles After all, we obtained following representation: Z( ) = lim !1 ✓ M 2⇡~2 ◆ 2 X n1,··· ,n Z dR1, · · · , dR ⇥⇠ exp  ✓ X k=1 M 2~2 2 (Rk Rk+1)2 + ✏nk (Rk) ◆ nonadiabatic beads
  • 18. quantum-classical mapping under thermal equilibrium Z( ) = Tre ˆHTo calculate the partition function: Hbeads = X k=1 M 2~2 2 (Rk Rk+1)2 + ✏nk (Rk) with weighting factor: ⇠ = Y k=1 h nk ; Rk| nk+1 ; Rk+1iThis nonadiabatic beads model can be applied to thermal average of physical quantities quantum nonadiabatic particle classical nonadiabatic beads 18 classical mapping J. R. Schmidt and et.al, JCP 127, 094103 (2007)
  • 19. A simple model , with m=1 [amu]. J. Morelli and S. Hammes-Schiffer, Chem. Phys. Lett. 269, 161 (1997)
  • 20. Energy levels 20 ✏n(R)[kcal/mol] ✏n(R)[kcal/mol] Black: Adiabatic energy levels Red: Nonadiabatic energy levels
  • 21. Numerical example: thermal average adiabatic (exact) nonadiabatic (exact) nonadiabatic beads
  • 22. quantum-classical mapping under thermal equilibrium To calculate the partition function and thermal average Hbeads = X k=1 M 2~2 2 (Rk Rk+1)2 + ✏nk (Rk) with weighting factor: ⇠ = Y k=1 h nk ; Rk| nk+1 ; Rk+1i classical mapping quantum nonadiabatic particle classical nonadiabatic beads 22 J. R. Schmidt and et.al, JCP 127, 094103 (2007)
  • 23. 23 1. Introduction to nonadiabatic transitions 2. Nonadiabatic path integral based on overlap integrals:
 derivative couplings vs. overlap integrals 3. Nonadiabatic partition functions: 
 nonadiabatic beads model 4. Semiclassical nonadiabatic kernel: 
 rigorous surface hopping 5. Semiclassical quantization of nonadiabatic systems: 
 quantum-classical correspondence in nonadiabatic steady states CONTENTS
  • 24. Semiclassical propagator (adiabatic) Stationary phase approx. is applied to the time propagator K = hRf |e i ˆH(tf ti)/~ |Rii = Z D[R(⌧)] exp  i ~ S[R(⌧)] Ri R1 R2 Rf RN 1 RN R0 t1 t2 tN 1 tf ti t stationary phase condition:minimum action integral→classical trajectory: S[R(⌧)] R(⌧) = 0 Rcl(⌧) Rcl(⌧) : Maslov index S[Rcl(⌧)]: action integral dRt dPi : Stability matrix Formulated with quantities along classical trajectories Quantum-Classical correspondence in dynamics KSC = X Rcl (2⇡i~) 1 2 dRt dPi 1 2 exp  i ~ Scl[Rcl(⌧)] i⇡ 2 ⌫ 24
  • 25. (a)→(b): Stationary approximation for summing up all trajectories on a surface K / Z dth Z dRh⇠J exp  i ~ SnJ cl (Rf , Rh) ⇠I exp  i ~ SnI cl (Rh, R0) 25 Semiclassical approximation of the nonadiabatic kernel (stationary phase approximation on the each surface)
  • 26. K / Z dth Z dRh⇠J exp  i ~ SnJ cl (Rf , Rh) ⇠I exp  i ~ SnI cl (Rh, R0) (b)→(c): Stationary approximation for the integral related to hopping points, Rh d dRh [SnJ cl (Rf , Rh) + SnI cl (Rh, R0)] = PJ + PI = 0 Stationary phase condition: momentum conservation 26 Semiclassical approximation of the nonadiabatic kernel (stationary phase approximation for the hopping point)
  • 27. 27 Nonadiabatic Semiclassical Kernel c.f., Adiabatic semiclassical kernel KSC = X Rcl (2⇡i~) 1 2 dRt dPi 1 2 exp  i ~ Scl[Rcl(⌧)] i⇡ 2 ⌫ KSC = X Rhcl (2⇡i~) 1 2 ⇠ dRt dPi 1 2 exp  i ~ Scl[Rhcl(⌧)] i⇡ 2 ⌫ ①Hopping classical trajectories Two differences from adiabatic semiclassical kernel ⇠ ⌘ lim !1 Y k=0 h n(tk+1); R(tk+1)| n(tk); R(tk)i amplitude of each overlap means probability of the hopping at each time step ②Infinite product of the overlap integrals (phase weight probability of each hopping calssical traj.)
  • 28. Nemerical example(Nonadiabatic SC-IVR, Herman-Kluk) M. Fujii, J. Chem. Phys. 135, 114102 (2011)28 Black: Numerical exact Blue&Green: present semi classical 107 trajectories avoided crossing Nonadiabatic wavepacket dynamics including phase accompanied by nonadiabatic transition is also reproduced. Namely, rigorous surface hopping.
  • 29. M. Fujii, J. Chem. Phys. 135, 114102 (2011) 29 Nemerical example(Nonadiabatic SC-IVR, Herman-Kluk)
  • 30. Quantum-classical correspondence in nonadiabatic dynamics quantum wavepacket dynamics classical hopping dynamics Classical hopping trajectories are taken out as dominant terms of nonadiabatic propagation of quantum wavepackets stationary phase
  • 31. 31 1. Introduction to nonadiabatic transitions 2. Nonadiabatic path integral based on overlap integrals:
 derivative couplings vs. overlap integrals 3. Nonadiabatic partition functions: 
 nonadiabatic beads model 4. Semiclassical nonadiabatic kernel: 
 rigorous surface hopping 5. Semiclassical quantization of nonadiabatic systems: 
 quantum-classical correspondence in nonadiabatic steady states CONTENTS
  • 32. Semiclassical Quantization Revealing correspondence between time-invariant structures in classical mechanics and steady states in quantum mechanics e.g. Bohr’s model for Hydrogen, Bohr-Sommerfeld, Einstein– Brillouin–Keller, etc ˆH| i = E| i steady states in quantum mechanics q p time-invariant structures in phase space of classical mechanics periodic orbits torus big← →small~ 32
  • 33. Objective Finding a quantum-classical correspondence for nonadiabatic steady states i.e. How time-invariant structures in nuclear phase space should be quantized Especially, the semiclassical concepts of the nonadiabatic transition (i.e. classical dynamics on adiabatic surfaces and hopping) should be held. ! The reason is that some pioneering studies that treat electrons and nuclei in equal- footing-manner have been already presented for the semiclassical quantization. e.g. Meyer-Miller (JCP 70, 3214 (1979)) and Stock-Thoss (PRL. 78, 578 (1997)) big← →small~ nonadiabatic eigenstates q p ?nuclear phase space
  • 34. Gutzwiller s trace formula Semiclassical approximation to DOS, which has revealed correspondence between quantum energy levels and classical periodic orbits through divergences of DOS. classical action: Phase space volume ⌫ = 2 Scl = 2⇡E/! e.g. Harmonic oscillator Maslov index: number of intersects between trajectory and R-axis geometric quantity of a cycle of primitive periodic orbit number of cycle of primitive periodic orbit Sum of k-cycle diverges at quantum energy levels 1 = exp ✓ i ~ 2⇡E ! i⇡ ◆ ) En = ✓ n + 1 2 ◆ ~! } ⌦(E) / 1X k=0  exp ✓ i ~ Scl i⇡ 2 ⌫ ◆ k =  1 exp ✓ i ~ Scl i⇡ 2 ⌫ ◆ 1 34
  • 35. ⌦(E) / X 2PHPO  1 ⇠ exp ✓ i ~ Scl i⇡ 2 ⌫ ◆ 1 ①Sum of “Primitive Hopping Periodic Orbits (PHPO)” Taking the summation of geometric series related to k, naively, leads to ⇠ < 1This term does not diverge because . 35 ②Infinite product of the overlap integrals: ⇠ ⌘ lim !1 Y k=0 h n(tk+1); R(tk+1)| n(tk); R(tk)i There are 2 differences from the Gutzwiller’s (adiabatic) trace formula ⌦(E) / X 2PHPO 1X k=0  ⇠ exp ✓ i ~ Scl i⇡ 2 ⌫ ◆ k Nonadiabatic Trace formula That is, individual PHPO cannot be quantized. We must introduce another way to take the summation of infinite number of the PHPOs
  • 36. Bit sequence which represents PHPO A concrete example: Two adiabatic harmonic oscillators which interact nonadiabatically at the origin only. D12 = (R) sin(✓) Ri Rj Rk Rl 0, 1, 1, and 0 are assigned when a trajectory passes through Ri, Rj, Rk, and Rl, respectively Assignment of bit e.g., adiabatic (no hopping) PO: 0000000… ! ! diabatic (fully nonadiabatic) PO: 0101010… ! ! Periodic bit sequences representing PHPOs can be expressed with dots on the fist and last bits ˙011˙1 ⌘ 011101110111 · · · ˙0˙1 ⌘ 0101010101 · · · 36 We can also confirm that the periodic and non-periodic orbits correspond to rational and irrational numbers, respectively, because periodic bit sequences correspond to rational number in binary digits. So, the number of periodic orbits is countable infinite while the number of arbitrary orbits is uncountable infinite.
  • 37. D12 = (R) sin(✓) Ri Rj Rk Rl ˙01000111001˙1 0 in odd-numbered bits means “returning to Ri”. Decomposition of each PHPO 01 + 00 + 0111 + 0011 At the 0 in odd-numbered bits, we can decompose this PHPO to “more primitive (prime) bits (PHPOs)”. Threfore, arbitrary hopping periodic orbits passing through Ri can be represented by combinations of these prime PHPOs: 00, 01, 0110, 0111, 0010, 0011 ,where 1 means combinations of 11 and 10. Hereafter, this set of prime PHOPs are represented as S0 ⌘
  • 38. (Ⅰ) All prime PHPOs in Si pass through the same phase space point (Ⅱ) Any pair of prime PHPOs (Γ, Γ’) in Si is coprime: 0 6⇢ _ r 0 62 S 38 S0 ⌘ 00, 01, 0110, 0111, 0010, 0011 A set Si of prime PHPOs D12 = (R) sin(✓) Ri Rj Rk Rl
  • 39. Sum of all HPOs as combination of coprime PHPOs Sum of all HPOs, for example, started from Ri D12 = (R) sin(✓) Ri Rj Rk Rl 00 01 + + 0110 + ... 0000 0101 + + 000110... 000000 010101... k = 1 k = 2 k = 3 } } } = Sum of geometric series of sum of prime PHPOs = X k2N (00 + 01 + 0110) k = X k2N X 2S0 !k
  • 40. Semiclassical(nonadiabatic) Exact(nonadiabatic) Exact(adiabatic)40 S0 ⌘ ⌦(E) / X Si2{S} 1X k=0 " X 2Si ⇠ exp ✓ i ~ Scl i⇡ 2 ⌫ ◆#k = X Si2{S} " 1 X 2Si ⇠ exp ✓ i ~ Scl i⇡ 2 ⌫ ◆# 1 Divergence points give quantum levels =quantum condition sum of all prime PHPOs D12 = (R) sin(✓) Ri Rj Rk Rl !I = 27.6 [kcal1/2 mol 1/2˚A 1 amu 1/2 ] !II = 38.64 [kcal1/2 mol 1/2˚A 1 amu 1/2 ] m = 1[amu]
  • 41. Quantum-classical correspondence in nonadiabatic steady states quantum nonadiabatic eigenstates Time-invariant structure in classical nuclear phase space big←  →small~ S0 ⌘ 1 = X 2S ⇠ exp ✓ i ~ Scl i⇡ 2 ⌫ ◆ Semiclassical Quantization condition
  • 42. Summary of this talk S0 ⌘ 1. Nonadiabatic path integral with overlap integrals K = Z D [R(⌧), n(⌧)] ⇠ exp  i ~ S ⇠ ⌘ lim !1 Y k=0 h n(tk+1); R(tk+1)| n(tk); R(tk)i 3. Nonadiabatic semiclassical kernel (“rigorous” surface hopping) KSC = X Rhcl (2⇡i~) 1 2 ⇠ dRt dPi 1 2 exp  i ~ Scl[Rhcl(⌧)] i⇡ 2 ⌫ 4. Semiclassical quantization condition ⌦(E) / X 2PHPO 1X k=0  ⇠ exp ✓ i ~ Scl i⇡ 2 ⌫ ◆ k Nonadiabatic trace formula 42 M. Fujii, JCP, 135, 114102 (2011) M. Fujii and K. Yamashita, JCP, 142, 074104 (2015) arXiv:1406.3769 J. R. Schmidt and et.al, JCP, 127, 094103 (2007) M. Fujii, JCP, 135, 114102 (2011) 2. Nonadiabatic beads J. R. Schmidt and et.al, JCP 127, 094103 (2007) Classical mapping under thermal equilibrium Classical counterparts of nonadiabatic wavepacket dynamics Classical counterparts of nonadiabatic eigenstates
  • 43. Acknowledgments • I appreciate valuable discussions with Prof. K. Yamashita Pfof. K. Takatsuka Prof. H. Ushiyama Prof. O. Kühn • This work was supported by JSPS KAKENHI Grant No. 24750012 CREST, JST. 本研究のみならず,有機薄膜太陽電池やポストリチウムイオ ン電池など山下・牛山研の全ての研究において分子科学研究 所計算科学研究センターに大変お世話になっております.管 理運営されている先生およびスタッフの皆様に心より御礼申 し上げます.