SlideShare ist ein Scribd-Unternehmen logo
1 von 32
Francisco Förster Collaborators: Pierre Lesaffre, Philipp Podsiadlowski Padova - July 2011 Hydrostatic  12 C burning in CO WDs: the  simmering  phase
CHASE 50 cm robotic telescope  (SN search and follow up)
Start with BPS (~10 8-10  yr) Accrete to M Ch (~10 6  yr) Add ignition bubbles (few sec) DDT it (~1-0.1 s) Simulate spectrum... Compare and repeat... Cooking a Type Ia Supernova (SD M ch ) ~ Hydrostatic evolution Hydrodynamic evolution Simmer (~10 3  yr)
Path to Type Ia Supernova -  Close binary system formation:  CO WD + companion -  Mass transfer phase:  accretion + shrinking + heating -  Hydrostatic  12 C burning:  energy release + ashes pollution -  Simmering phase (C-flash):  convective core growth + steep L gradient -  Thermonuclear runaway + ignition -  Deflagration + detonation C-flash C-flash SN Ia ? CO WD CO WD CO WD
Cooling ~10 7 -10 10  yr Heating (accretion) ~10 6  yr Simmering (carbon burning) ~10 3  yr T c  [K] r c  [g cm -3 ] Hydrostatic  central evolution t burn  =  t conv e burn  =  e n
Cooling  (~ 1e8-10 yr) Simmering  (~1000 yr) Accretion  (~1e6 yr) Explosion  (~1 sec)
Cooling ~10 7 -10 10  yr Heating (accretion) ~10 6  yr Simmering (carbon burning) ~10 3  yr T -  r
s -   r
Problem 1: Diversity among galaxy types Dim, fast decliners. Early type galaxies Bright, slow decliners. Late type galaxies Progenitor evolution prediction: central density at ignition main parameter Lesaffre et al. 2006,  c.f. Townsley et al. 2009, Seitenzhal et al. 2011 C+O Si/S 56 Ni 54 Fe C+O Si/S 56 Ni 54 Fe
Lesaffre et al. 2006 Meng et al. 2009, 2011 Z Age effect Mass effect
Old progenitor Higher  r c   @ ignition Higher M WD   (BPS) Lower initial C/O ratio Less C/O~1 matter accreted to be mixed into the centre Higher Z environment Dimmer SNe Lower central C/O ratio @ignition
Problem 2:  Quantify neutronization More  metals  in the CO WD leads to more  stable NSE  matter in the ejecta (not radioactive). However, the mass of  iron group elements  (main  source of opacity ) would be constant  (Mazzali & Podsiadlowski 2008) 54 Fe,  58 Ni 56 Ni L k   (decline rate) = This could  break the one parameter  law that makes SNe Ia standardizable candles. ` Z
23 Na produced when  12 C burns At high densities (M~M Ch ), 23 Na can  become  23 Ne after capturing an electron. Add convection: fresh  23 Na can move to high density regions and be neutronized. Not enough time for  23 Ne to be de-neutronized in  low density regions. Convective Urca process Ratio between  23 Na e -  captures and  23 Ne  b  decays
t conv  ~   t EC   <  t burn Need time dependent theory of convection:  Lesaffre et al. 2005  Need accurate, but simplified nuclear physics:  Förster et al. 2010 (ApJS) 23 Ne Urca shell 23 Na Convective core Convective core Convective core Convective core e- captures n
Zingale et al. 2009 Convection in hydrodynamic simulation (MAESTRO) No e -  captures.
Nuclear physics  -  Burning prior to ignition : approximately six  12 C nuclei become  20 Ne,  23 Na,  16 O and  13 C, with one or two electron captures (Piro et al. 2008) New nuclear network 1. Reduced number of variables 2. Accuracy in relevant quantities 3. Remove short time-scales if possible Zegers et al. 2008 Förster et al 2010 ApJS
Simplified   networks We define four types of time-scales: 1.  Trace nuclei:  n, p,   a ,  13 N 2.  23 Ne  b- decays and  23 Na e- captures 3.  12 C burning 4.  Convection 2 One can show   t 1  <  t 2 ,  t 3 ,  t 4 3 3 1 1 1 1
Detailed network abundances well reproduced. Förster et al 2010 ApJS
Stellar evolution code (preliminary)
Central temperature vs central density tracks t burn  =  t conv
Neutronization
Time scales
Implications for cosmology Simple model:  56 Ni +  54 Fe  post explosion composition X ( 56 Ni) = 1 –  X ( 54 Fe),  h f  =  X ( 54 Fe)  h ( 54 Fe) Because the explosion is very fast,  h f  ~  h 0 X ( 56 Ni) = 1 –  h 0 / h ( 54 Fe) = 1 – 27  h 0 h 0  =  h formation   +  Dh preWD   +  Dh Urca h formation  ~  X ( 56 Fe)  h ( 56 Fe)    ~ 3e-6  @ Z=0.02 Dh preWD  ~  X ( 22 Ne)  h ( 22 Ne)   ~ 22 [ X ( 12 C)/12 +  X ( 14 N)/14 +  X ( 16 O)/16)]  h ( 22 Ne)   ~ 1.8e-3  @ Z=0.02 Dh Urca  ~  X ( 13 C)  h ( 13 C) +  X ( 23 Na)  h ( 23 Na) +  X ( 23 Ne)  h ( 23 Ne)   up to ~1.2e-3 27 (3e-3) ~ 0.09 Neutronization  can change M( 56 Ni) up to 9%. 14 N( a , g ) 18 F( b +) 18 O( a , g ) 22 Ne
Implications for progenitor scenarios Type of ashes Nebular  spectra! > 10 8 > 6 x 10 9 5 x 10 7-8 5-6 x 10 9 < 5 x 10 7 2-3 x 10 9 < 5 x 10 7 3-5 x 10 9 Maeda et al. 2010 C+O IME 56 Ni Stable IGE Deflagration Detonation SD Detonation DD Detonation Sub Chandra r   [g cm -3 ] T max  [K]
Pakmor et al. 2010
~10 x M( 56 Ni) M( 54 Fe) M( 56 Ni) M(NSE) M(IME) HVG LVG faint 56 Ni IME C+O 54 Fe NSE
Conclusions / Discussion - Hydrostatic  12 C burning:   Relevant reactions understood (Piro et al. 2008, Chamulak et al. 2008 and  Förster et al. 2010 ).  Simplified nuclear network implemented in simultaneous structure+chemistry stellar evolution  code. - Neutronization: Pre WD enrichment (Timmes et al. 2003) important above solar metallicities  (Chamulak et al.  2008). Urca process important at lower metallicities (cosmological sample). Older systems would  undergo stronger neutronization. - Diversity between early and late type host galaxy SNe Ia: Progenitor evolution suggests central density as main parameter for SN Ia light curves  (Lesaffre et al. 2006, c.f. Townsley et al. 2009, but Seitenzhal et al. 2011) - Caveats: Need to include effects of heat diffusion from the accreting envelope (Nomoto 1984). Simplified energy equation, feedback into convective velocities work in progress. - If heat diffusion slow: More stable IGE in older/dimmer events (c.f. DD/sub-Chandra: no stable IGE?) Galactic SN Ia Fe enrichment faster than SN Ia Ni enrichment. More ignition points (strong def. + weaker det.) with increasing central density?
Stein & Wheeler  2006,  with 1000x Urca and nuclear rates No URCA process URCA process The Urca process can also affect the  convective velocities  (Lesaffre et al. 2005)
Neutron excess Relative excess of neutrons over protons: h  = (n - p) / (n + p) h mix  =  S   h i   X i The neutron excess can only be changed by weak forces, which are generally slower than strong forces. In fact, during a supernova explosion the neutron excess does not change, except in the inner ~0.1 Msun where the density is very high.
Detailed reaction network Flows at fixed  r , T 4 X 10 8  K, 3 X 10 9  g cm -3
Metallicity of the host decreases with redshift Sullivan et al. 2010
NSE IME C+O SN Ia ejecta composition (M Ch ) C+O:   unburnt material IME:   intermediate mass elements (Si, S, Mg), or partially burnt C NSE:   nuclear statistical equilibrium matter ( 56 Ni), or fully burnt C HD NSE:   High density NSE ( 54 Fe,  58 Ni), or fully burnt C with electron captures. HD NSE Radioactive ashes

Weitere ähnliche Inhalte

Was ist angesagt?

Dublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 FinalDublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 Final
Andrew Dublin
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
blachman
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
Swayandipta Dey
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
Kris Ann Ferrer
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Lewis Larsen
 
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Lewis Larsen
 
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
Ppt djy 2011 2   topic 7 and 13 nuclear reactionsPpt djy 2011 2   topic 7 and 13 nuclear reactions
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
David Young
 

Was ist angesagt? (20)

Simulation and Modeling of Gravitational Wave Sources
Simulation and Modeling of Gravitational Wave SourcesSimulation and Modeling of Gravitational Wave Sources
Simulation and Modeling of Gravitational Wave Sources
 
Ppt nuclear strability
Ppt nuclear strabilityPpt nuclear strability
Ppt nuclear strability
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
Dublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 FinalDublin- Talk 8.25.15 Final
Dublin- Talk 8.25.15 Final
 
Ch18 z7e nuclear
Ch18 z7e nuclearCh18 z7e nuclear
Ch18 z7e nuclear
 
Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?Room Temperature Superconductivity: Dream or Reality?
Room Temperature Superconductivity: Dream or Reality?
 
Elementarymodernphysics
ElementarymodernphysicsElementarymodernphysics
Elementarymodernphysics
 
Principles of nuclear energy
Principles of nuclear energyPrinciples of nuclear energy
Principles of nuclear energy
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
Quntum Theory powerpoint
Quntum Theory powerpointQuntum Theory powerpoint
Quntum Theory powerpoint
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
The tale of neutrino oscillations
The tale of neutrino oscillationsThe tale of neutrino oscillations
The tale of neutrino oscillations
 
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
Srivastava Widom and Larsen-Primer for Electroweak Induced Low Energy Nuclear...
 
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
Ppt djy 2011 2   topic 7 and 13 nuclear reactionsPpt djy 2011 2   topic 7 and 13 nuclear reactions
Ppt djy 2011 2 topic 7 and 13 nuclear reactions
 
Nuclear Chemistry Powerpoint
Nuclear Chemistry PowerpointNuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
 
Nuclear chemistry
Nuclear chemistryNuclear chemistry
Nuclear chemistry
 
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07  Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
Experimental summary (neutrinos) - Rencontres du Vietnam - - 2017.07
 
Neutrinos
NeutrinosNeutrinos
Neutrinos
 
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMSELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
 

Andere mochten auch

Center of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body revCenter of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body rev
Natalie Ulza
 
Force and Pressure
Force and PressureForce and Pressure
Force and Pressure
marjerin
 

Andere mochten auch (20)

Hydrolec
HydrolecHydrolec
Hydrolec
 
3 Best Practices for 100% Regulatory Compliant Testing
3 Best Practices for 100% Regulatory Compliant Testing3 Best Practices for 100% Regulatory Compliant Testing
3 Best Practices for 100% Regulatory Compliant Testing
 
Introduction to Buoyancy
Introduction to BuoyancyIntroduction to Buoyancy
Introduction to Buoyancy
 
Buoyancy Demonstration
Buoyancy DemonstrationBuoyancy Demonstration
Buoyancy Demonstration
 
Hydrostatic transmission
Hydrostatic transmissionHydrostatic transmission
Hydrostatic transmission
 
Hydraulic system
Hydraulic systemHydraulic system
Hydraulic system
 
Hydrostatic pressure
Hydrostatic pressureHydrostatic pressure
Hydrostatic pressure
 
Pascal's principle
Pascal's principlePascal's principle
Pascal's principle
 
SHIP THEORY : Basics Of Ship Geometry : Lines Plan__by jishnu saji
SHIP THEORY : Basics Of Ship Geometry : Lines Plan__by jishnu sajiSHIP THEORY : Basics Of Ship Geometry : Lines Plan__by jishnu saji
SHIP THEORY : Basics Of Ship Geometry : Lines Plan__by jishnu saji
 
Introduction to Hydrostatic Pressure
Introduction to Hydrostatic PressureIntroduction to Hydrostatic Pressure
Introduction to Hydrostatic Pressure
 
Manometer
ManometerManometer
Manometer
 
AP Physics 2 - Hydrostatics
AP Physics 2 - HydrostaticsAP Physics 2 - Hydrostatics
AP Physics 2 - Hydrostatics
 
Pressure gauge calibration process
Pressure gauge calibration processPressure gauge calibration process
Pressure gauge calibration process
 
Center of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body revCenter of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body rev
 
Hydrostatics 1 n 2
Hydrostatics 1 n 2 Hydrostatics 1 n 2
Hydrostatics 1 n 2
 
State of Pascal’s law
State of Pascal’s law State of Pascal’s law
State of Pascal’s law
 
Hydrostatics
HydrostaticsHydrostatics
Hydrostatics
 
Pressure
PressurePressure
Pressure
 
Force and Pressure
Force and PressureForce and Pressure
Force and Pressure
 
Interstitial fluid hydrostatic pressure
Interstitial fluid hydrostatic pressureInterstitial fluid hydrostatic pressure
Interstitial fluid hydrostatic pressure
 

Ähnlich wie 2011 padova

8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
30jayporwal
 

Ähnlich wie 2011 padova (20)

Hanle Effect Measurements of Spin Lifetime in Zn0.4Cd0.6Se Epilayers Grown on...
Hanle Effect Measurements of Spin Lifetime in Zn0.4Cd0.6Se Epilayers Grown on...Hanle Effect Measurements of Spin Lifetime in Zn0.4Cd0.6Se Epilayers Grown on...
Hanle Effect Measurements of Spin Lifetime in Zn0.4Cd0.6Se Epilayers Grown on...
 
Charla de nucleosintesis Teresa Kurtukian Nieto INAOE
Charla de nucleosintesis Teresa Kurtukian Nieto INAOECharla de nucleosintesis Teresa Kurtukian Nieto INAOE
Charla de nucleosintesis Teresa Kurtukian Nieto INAOE
 
Science Talk-091102-郭光宇
Science Talk-091102-郭光宇Science Talk-091102-郭光宇
Science Talk-091102-郭光宇
 
13.30 o8 f natali
13.30 o8 f natali13.30 o8 f natali
13.30 o8 f natali
 
Biermann clusters
Biermann clustersBiermann clusters
Biermann clusters
 
Iván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scaleIván Brihuega-Probing graphene physics at the atomic scale
Iván Brihuega-Probing graphene physics at the atomic scale
 
revision xi - chapters1-5.pdf
revision xi - chapters1-5.pdfrevision xi - chapters1-5.pdf
revision xi - chapters1-5.pdf
 
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation8m_ATOMS__NUCLEI.pdf chapter best notes preparation
8m_ATOMS__NUCLEI.pdf chapter best notes preparation
 
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
3d modeling of_gj1214b_atmosphere_formation_of_inhomogeneous_high_cloouds_and...
 
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
Surface Ablation in Fiber-Reinforced Composite Laminates Subjected to Continu...
 
Thermoelectricity
ThermoelectricityThermoelectricity
Thermoelectricity
 
Chemistry zimsec chapter 10 chemical periodicity
Chemistry zimsec chapter 10 chemical periodicityChemistry zimsec chapter 10 chemical periodicity
Chemistry zimsec chapter 10 chemical periodicity
 
Fission
FissionFission
Fission
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018Toma Susi – Atom manipulation @ MRS2018
Toma Susi – Atom manipulation @ MRS2018
 
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
From the workshop "High-Resolution Submillimeter Spectroscopy of the Interste...
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
Francisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene researchFrancisco Guinea-Recent advances in graphene research
Francisco Guinea-Recent advances in graphene research
 
Introduction to the phenomenology of HiTc superconductors.
Introduction to  the phenomenology of HiTc superconductors.Introduction to  the phenomenology of HiTc superconductors.
Introduction to the phenomenology of HiTc superconductors.
 

Kürzlich hochgeladen

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Kürzlich hochgeladen (20)

MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 

2011 padova

  • 1. Francisco Förster Collaborators: Pierre Lesaffre, Philipp Podsiadlowski Padova - July 2011 Hydrostatic 12 C burning in CO WDs: the simmering phase
  • 2. CHASE 50 cm robotic telescope (SN search and follow up)
  • 3. Start with BPS (~10 8-10 yr) Accrete to M Ch (~10 6 yr) Add ignition bubbles (few sec) DDT it (~1-0.1 s) Simulate spectrum... Compare and repeat... Cooking a Type Ia Supernova (SD M ch ) ~ Hydrostatic evolution Hydrodynamic evolution Simmer (~10 3 yr)
  • 4. Path to Type Ia Supernova - Close binary system formation: CO WD + companion - Mass transfer phase: accretion + shrinking + heating - Hydrostatic 12 C burning: energy release + ashes pollution - Simmering phase (C-flash): convective core growth + steep L gradient - Thermonuclear runaway + ignition - Deflagration + detonation C-flash C-flash SN Ia ? CO WD CO WD CO WD
  • 5. Cooling ~10 7 -10 10 yr Heating (accretion) ~10 6 yr Simmering (carbon burning) ~10 3 yr T c [K] r c [g cm -3 ] Hydrostatic central evolution t burn = t conv e burn = e n
  • 6. Cooling (~ 1e8-10 yr) Simmering (~1000 yr) Accretion (~1e6 yr) Explosion (~1 sec)
  • 7. Cooling ~10 7 -10 10 yr Heating (accretion) ~10 6 yr Simmering (carbon burning) ~10 3 yr T - r
  • 8. s - r
  • 9. Problem 1: Diversity among galaxy types Dim, fast decliners. Early type galaxies Bright, slow decliners. Late type galaxies Progenitor evolution prediction: central density at ignition main parameter Lesaffre et al. 2006, c.f. Townsley et al. 2009, Seitenzhal et al. 2011 C+O Si/S 56 Ni 54 Fe C+O Si/S 56 Ni 54 Fe
  • 10. Lesaffre et al. 2006 Meng et al. 2009, 2011 Z Age effect Mass effect
  • 11. Old progenitor Higher r c @ ignition Higher M WD (BPS) Lower initial C/O ratio Less C/O~1 matter accreted to be mixed into the centre Higher Z environment Dimmer SNe Lower central C/O ratio @ignition
  • 12. Problem 2: Quantify neutronization More metals in the CO WD leads to more stable NSE matter in the ejecta (not radioactive). However, the mass of iron group elements (main source of opacity ) would be constant (Mazzali & Podsiadlowski 2008) 54 Fe, 58 Ni 56 Ni L k (decline rate) = This could break the one parameter law that makes SNe Ia standardizable candles. ` Z
  • 13. 23 Na produced when 12 C burns At high densities (M~M Ch ), 23 Na can become 23 Ne after capturing an electron. Add convection: fresh 23 Na can move to high density regions and be neutronized. Not enough time for 23 Ne to be de-neutronized in low density regions. Convective Urca process Ratio between 23 Na e - captures and 23 Ne b decays
  • 14. t conv ~ t EC < t burn Need time dependent theory of convection: Lesaffre et al. 2005 Need accurate, but simplified nuclear physics: Förster et al. 2010 (ApJS) 23 Ne Urca shell 23 Na Convective core Convective core Convective core Convective core e- captures n
  • 15. Zingale et al. 2009 Convection in hydrodynamic simulation (MAESTRO) No e - captures.
  • 16. Nuclear physics - Burning prior to ignition : approximately six 12 C nuclei become 20 Ne, 23 Na, 16 O and 13 C, with one or two electron captures (Piro et al. 2008) New nuclear network 1. Reduced number of variables 2. Accuracy in relevant quantities 3. Remove short time-scales if possible Zegers et al. 2008 Förster et al 2010 ApJS
  • 17. Simplified networks We define four types of time-scales: 1. Trace nuclei: n, p, a , 13 N 2. 23 Ne b- decays and 23 Na e- captures 3. 12 C burning 4. Convection 2 One can show t 1 < t 2 , t 3 , t 4 3 3 1 1 1 1
  • 18. Detailed network abundances well reproduced. Förster et al 2010 ApJS
  • 19. Stellar evolution code (preliminary)
  • 20. Central temperature vs central density tracks t burn = t conv
  • 23. Implications for cosmology Simple model: 56 Ni + 54 Fe post explosion composition X ( 56 Ni) = 1 – X ( 54 Fe), h f = X ( 54 Fe) h ( 54 Fe) Because the explosion is very fast, h f ~ h 0 X ( 56 Ni) = 1 – h 0 / h ( 54 Fe) = 1 – 27 h 0 h 0 = h formation + Dh preWD + Dh Urca h formation ~ X ( 56 Fe) h ( 56 Fe) ~ 3e-6 @ Z=0.02 Dh preWD ~ X ( 22 Ne) h ( 22 Ne) ~ 22 [ X ( 12 C)/12 + X ( 14 N)/14 + X ( 16 O)/16)] h ( 22 Ne) ~ 1.8e-3 @ Z=0.02 Dh Urca ~ X ( 13 C) h ( 13 C) + X ( 23 Na) h ( 23 Na) + X ( 23 Ne) h ( 23 Ne) up to ~1.2e-3 27 (3e-3) ~ 0.09 Neutronization can change M( 56 Ni) up to 9%. 14 N( a , g ) 18 F( b +) 18 O( a , g ) 22 Ne
  • 24. Implications for progenitor scenarios Type of ashes Nebular spectra! > 10 8 > 6 x 10 9 5 x 10 7-8 5-6 x 10 9 < 5 x 10 7 2-3 x 10 9 < 5 x 10 7 3-5 x 10 9 Maeda et al. 2010 C+O IME 56 Ni Stable IGE Deflagration Detonation SD Detonation DD Detonation Sub Chandra r [g cm -3 ] T max [K]
  • 26. ~10 x M( 56 Ni) M( 54 Fe) M( 56 Ni) M(NSE) M(IME) HVG LVG faint 56 Ni IME C+O 54 Fe NSE
  • 27. Conclusions / Discussion - Hydrostatic 12 C burning: Relevant reactions understood (Piro et al. 2008, Chamulak et al. 2008 and Förster et al. 2010 ). Simplified nuclear network implemented in simultaneous structure+chemistry stellar evolution code. - Neutronization: Pre WD enrichment (Timmes et al. 2003) important above solar metallicities (Chamulak et al. 2008). Urca process important at lower metallicities (cosmological sample). Older systems would undergo stronger neutronization. - Diversity between early and late type host galaxy SNe Ia: Progenitor evolution suggests central density as main parameter for SN Ia light curves (Lesaffre et al. 2006, c.f. Townsley et al. 2009, but Seitenzhal et al. 2011) - Caveats: Need to include effects of heat diffusion from the accreting envelope (Nomoto 1984). Simplified energy equation, feedback into convective velocities work in progress. - If heat diffusion slow: More stable IGE in older/dimmer events (c.f. DD/sub-Chandra: no stable IGE?) Galactic SN Ia Fe enrichment faster than SN Ia Ni enrichment. More ignition points (strong def. + weaker det.) with increasing central density?
  • 28. Stein & Wheeler 2006, with 1000x Urca and nuclear rates No URCA process URCA process The Urca process can also affect the convective velocities (Lesaffre et al. 2005)
  • 29. Neutron excess Relative excess of neutrons over protons: h = (n - p) / (n + p) h mix = S h i X i The neutron excess can only be changed by weak forces, which are generally slower than strong forces. In fact, during a supernova explosion the neutron excess does not change, except in the inner ~0.1 Msun where the density is very high.
  • 30. Detailed reaction network Flows at fixed r , T 4 X 10 8 K, 3 X 10 9 g cm -3
  • 31. Metallicity of the host decreases with redshift Sullivan et al. 2010
  • 32. NSE IME C+O SN Ia ejecta composition (M Ch ) C+O: unburnt material IME: intermediate mass elements (Si, S, Mg), or partially burnt C NSE: nuclear statistical equilibrium matter ( 56 Ni), or fully burnt C HD NSE: High density NSE ( 54 Fe, 58 Ni), or fully burnt C with electron captures. HD NSE Radioactive ashes