SlideShare ist ein Scribd-Unternehmen logo
1 von 70
Elasticity and Oscillations




                 Physics 101: Lecture 19, Pg 1
Young’s Modulus
Spring     F = -k x
  What happens to “k” if cut spring in half?
  1) decreases    2) same         3) increases

k is inversely proportional to length!
Define
   Deformación unitaria = ∆L / L
   Esfuerzo = F/A
Now
  Esfuerzo = [Y] Deformación unitaria
  F/A = Y ∆L/L
  k = Y A/L from F = k x
Y (Young’s Modules) independent of L
                                  Physics 101: Lecture 19, Pg 2
Simple Harmonic Motion
Vibrations
  Vocal cords when singing/speaking
  String/rubber band


Simple Harmonic Motion
  Restoring force proportional to displacement
  Springs F = -kx




                             Physics 101: Lecture 19, Pg 3
Ejemplos clásicos de osciladores armónicos


El péndulo                El sistema
  simple                 masa resorte


          L


              T

              m
      x
                  mg
Springs
Hooke’s Law: The force exerted by a spring is
proportional to the distance the spring is stretched
or compressed from its relaxed position.

  FX = -k x Where x is the displacement from
            the relaxed position and k is the
            constant of proportionality.

                            relaxed position


                        FX = 0
                                                   x
                  x=0

                                     Physics 101: Lecture 19, Pg 5
Springs
Hooke’s Law: The force exerted by a spring is
proportional to the distance the spring is stretched
or compressed from its relaxed position.

  FX = -k x Where x is the displacement from
            the relaxed position and k is the
            constant of proportionality.

                          relaxed position

           FX = -kx > 0

                                                  x
               x<0
                 x=0
                                   Physics 101: Lecture 19, Pg 6
Springs ACT
  Hooke’s Law: The force exerted by a spring is proportional
  to the distance the spring is stretched or compressed from its
  relaxed position.
    FX = -k x Where x is the displacement from
       the relaxed position and k is the
    constant of proportionality.
What is force of spring when it is stretched as shown
 below.
A) F > 0           B) F = 0             C) F < 0
                               relaxed position

                                      FX = - kx < 0


                                                      x
                             x>0
                      x=0
                                        Physics 101: Lecture 19, Pg 7
Spring ACT II
A mass on a spring oscillates back & forth with simple
harmonic motion of amplitude A. A plot of displacement (x)
versus time (t) is shown below. At what points during its
oscillation is the magnitude of the acceleration of the block
biggest?
1. When x = +A or -A (i.e. maximum displacement)
2. When x = 0 (i.e. zero displacement)
3. The acceleration of the mass is constant

F=ma
La aceleración del bloque    x
es máxima cuando la       +A
fuerza que actúa sobre él
es máxima                                                     t
                               -A          Physics 101: Lecture 19, Pg 8
Potential Energy in Spring
       Force of spring is Conservative
          F = -k x                Force
          W = Fx/2
                                  F
          W = -1/2 k x2
                                            work

                                                  x        x

         Work done only depends on initial and final
         position

         Define Potential Energy Uspring = ½ k x2
El trabajo que se realiza para deformar el resorte
queda almacenado en él en forma de energía potencial.
                                           Physics 101: Lecture 19, Pg 9
NOMENCLATURA
•Periodo (T) es el tiempo que un objeto tarda en dar una
vuelta o revolución.
•Frecuencia (f) es el número de vueltas o revoluciones que
un objeto da en un determinado intervalo de tiempo
•Frecuencia angular (ω)
                       1
                    f = ⇒( Hz )
                       T
          Angulo 1Re volucion 2π
       ω=        =           =   = 2π f , (rad / s )
          Tiempo   1Periodo    T
                      2π
                   ω=    = 2π f
                      T
En el movimiento armónico simple la fuerza que
 acelera el objeto NO es constante y se la llama
               fuerza restauradora




    El movimiento armónico simple es un
    movimiento con aceleración variable
En el M.A.S, sin fricción, la Energía Mecánica se
                     Conserva




     La amplitud (A) es la máxima elongación (x)




                                         Ver animación
El bloque es llevado a esta posición
                                         inicial (x=A) y se lo suelta
  Máxima elongación: Energía
cinética cero y Energía potencial
         elástica máxima


 Elongación cero: Energía
cinética máxima y Energía
  potencial elástica cero




  Máxima compresión:
 Energía cinética cero y
Energía potencial elástica
        máxima
La energía mecánica inicial se reparte entre
energía cinética y energía potencial elástica




  Si no hay disipación de energía, la suma
         es siempre una constante !
                                    Ver animación
***Energy in SHM***
A mass is attached to a spring and set to
motion. The maximum displacement is x=A
  ΣWnc = ∆K + ∆U
      0 = ∆K + ∆U or Energy U+K is
  constant!
             Energy = ½ k x2 + ½ m v2
  At maximum displacement x=A, v = 0                PES
             Energy = ½ k A2 + 0
  At zero displacement x = 0
             Energy = 0 + ½ mvm2
 Since Total Energy is same
             ½ k A2 = ½ m vm2                                           x
                                                      0
                      k
             vm = A                                         m
                      m
                                                    x=0                 x
                                       Physics 101: Lecture 19, Pg 15
En cualquier instante, la suma de K y U es
 una constante e igual al valor inicial de
     energía que se le dio al sistema.
Preflight 3+4
A mass on a spring oscillates back & forth with simple
harmonic motion of amplitude A. A plot of displacement (x)
versus time (t) is shown below. At what points during its
oscillation is the total energy (K+U) of the mass and spring a
maximum? (Ignore gravity).
1. When x = +A or -A (i.e. maximum displacement)
2. When x = 0 (i.e. zero displacement)
3. The energy of the system is constant.
            “When the kinetic energy is at a
              minimum, the potential energy is at a
              maximum and vice-versa.”
                                     x
                               +A
CONSERVATION OF ENERGY
  IS SACRED!!!!
                                                                 t
                                -A            Physics 101: Lecture 19, Pg 17
Preflight 1+2
A mass on a spring oscillates back & forth with simple
harmonic motion of amplitude A. A plot of displacement (x)
versus time (t) is shown below. At what points during its
oscillation is the speed of the block biggest?
1. When x = +A or -A (i.e. maximum displacement)
2. When x = 0 (i.e. zero displacement)
3. The speed of the mass is constant
   “well it isn’t constant, and it is zero at the
     maximums, so the zero position is the
     only other choice”

                                      x
                                +A

                                                                 t
                                 -A           Physics 101: Lecture 19, Pg 18
SHM ACT
      A spring oscillates back and forth on a frictionless horizontal
      surface. A camera takes pictures of the position every 1/10th of a
      second. Which plot best shows the positions of the mass.



1
    EndPoint         Equilibrium         EndPoint


2
    EndPoint         Equilibrium         EndPoint


3
    EndPoint         Equilibrium         EndPoint
                                                    Physics 101: Lecture 19, Pg 19
Un bloque de 40 kg de masa se ata a un resorte
horizontal de constante elástica 500 N/m. Si la masa
descansa sobre una superficie horizontal sin fricción,
¿cuál es la energía total de este sistema cuando se
pone en movimiento armónico simple al desplazarlo
una distancia de 0.2 metros?

A) 10 J
B) 20 J
C) 50 J
D) 4 000 J
E) 100 000 J
Un resorte comprimido tiene una energía
   potencial de 16 J. ¿Cuál es la máxima rapidez
   que se puede impartir a un bloque de 2.0 kg de
   masa ?
A. 2.8 m/s
B. 4.0 m/s
C. 5.6 m/s
D. 8.0 m/s
E. 16 m/s
Springs and Simple Harmonic
     X=0
           Motion
               X=A; v=0; a=-amax


               X=0; v=-vmax; a=0


                X=-A; v=0; a=amax


                X=0; v=vmax; a=0



                 X=A; v=0; a=-amax


  X=-A   X=A

                             Physics 101: Lecture 19, Pg 22
RELACIÓN ENTRE EL MOVIMIENTO
  CIRCULAR Y EL MOVIMIENTO
          ARMÓNICO
What does moving in a circle have to do with
          moving back & forth in a straight line ??
                            x = R cos θ = R cos (ωt)
                                         since θ = ω t                              Movie



                x                            x
                    1                            1
        2                       8
                                        R            2                               8

                θ
    3       R                                            3                      7
y                                        0                                                   θ
                                    7                        π         π            3π
                                                             2                       2
            4               6           -R                        4         6
                        5                                              5




                                                                 Physics 101: Lecture 19, Pg 24
SHM and Circles




           Physics 101: Lecture 19, Pg 25
Modelo matemático del
oscilador armónico simple
La posición (x) en función del tiempo (t)
x = A cos θ
θ = ωt
x = A cos ωt


t =0 ⇒x = A
                        x = A cos ωt
   T
t = ⇒x =0
   4
    T
t =   ⇒ x = −A
    2
La velocidad (v) en función del tiempo (t)
v =− o senθ
    V
θ =ωt
v =− o senω
    V      t
Vo =vmax ima = Aω


t = 0 ⇒v = 0
                            v = −ωAsenωt
   T
t = ⇒= Vo
     v −
   4
   T
t = ⇒=
     v 0
   2
      3
t =     T ⇒v = Vo
      4
La aceleración (a) en función del tiempo (t)
a = −ac cos θ
θ = ωt
a = −ac cos ωt
ac = amax ima = Aω2

             2
t = 0 ⇒ a = −ω A
                        a = −ω A cos ωt
                                2


   T
t = ⇒ =0
       a
   4
     T       2
t =    ⇒a = ω A
     2
Gráficas que representan la posición (x), velocidad (v) y
aceleración (a) de un objeto en M.A.S. En función del tiempo


 Observe el desfasamiento entre los valores de la posición,
                  velocidad y aceleración




            x = A cos ωt                       v = −ωAsenωt




                           a = −ω 2 A cos ωt
Q13.3
To the right is an x-t graph for an object in
simple harmonic motion.
Which of the graphs below correctly shows

the velocity versus time for this object?




                                                1. graph I
                                                2. graph II
                                                3. graph III
                                                4. graph IV
Q13.2


 This is an x-t graph for
 an object in simple
 harmonic motion.


         At which of the following times does the object have
         the most negative acceleration ax?

                       1. t = T/4
                       2. t = T/2
                       3. t = 3T/4
                       4. t = T
Q13.4
To the right is an x-t graph for an object in
simple harmonic motion.
Which of the graphs below correctly shows
the acceleration versus time for this object?




                                                1. graph I
                                                2. graph II
                                                3. graph III
                                                4. graph IV
Simple Harmonic Motion:

x(t) = [A]cos(ωt)               x(t) = [A]sin(ωt)

v(t) = -[Aω]sin(ωt)    OR       v(t) = [Aω]cos(ωt)

a(t) = -[Aω2]cos(ωt)            a(t) = -[Aω2]sin(ωt)

xmax = A        Period = T (seconds per cycle)
                Frequency = f = 1/T (cycles per second)
vmax = Aω
                Angular frequency = ω = 2πf = 2π/T
amax = Aω   2

                For spring: ω2 = k/m
                                       Physics 101: Lecture 19, Pg 34
Example
A 3 kg mass is attached to a spring (k=24 N/m). It is
 stretched 5 cm. At time t=0 it is released and oscillates.

Which equation describes the position as a function of
 time x(t) =
A) 5 sin(ωt)      B) 5 cos(ωt)        C) 24 sin(ωt)
      D) 24 cos(ωt)     E) -24 cos(ωt)

  We are told at t=0, x = +5 cm. x(t) = 5 cos(ωt) only
  one that works.

                                       Physics 101: Lecture 19, Pg 35
Example
A 3 kg mass is attached to a spring (k=24 N/m). It is
 stretched 5 cm. At time t=0 it is released and oscillates.

What is the total energy of the block spring system?
 A) 0.03 J          B) .05 J           C) .08 J
  E=U+K
  At t=0, x = 5 cm and v=0:
  E = ½ k x2 + 0
    = ½ (24 N/m) (5 cm)2
    = 0.03 J
                                       Physics 101: Lecture 19, Pg 36
Example
A 3 kg mass is attached to a spring (k=24 N/m). It is
 stretched 5 cm. At time t=0 it is released and oscillates.

What is the maximum speed of the block?
 A) .45 m/s            B) .23 m/s                  C) .14 m/s
  E=U+K
  When x = 0, maximum speed:
  E = ½ m v2 + 0
    .03 = ½ 3 kg v2
    v = .14 m/s
                                       Physics 101: Lecture 19, Pg 37
Example
A 3 kg mass is attached to a spring (k=24 N/m). It is
 stretched 5 cm. At time t=0 it is released and oscillates.

How long does it take for the block to return to x=+5cm?
 A) 1.4 s          B) 2.2 s            C) 3.5 s
  ω = sqrt(k/m)
    = sqrt(24/3)
    = 2.83 radians/sec
  Returns to original position after 2 π radians
  T = 2 π / ω = 6.28 / 2.83 = 2.2 seconds
                                            Physics 101: Lecture 19, Pg 38
Summary
Springs
  F = -kx
  U = ½ k x2
  ω = sqrt(k/m)


Simple Harmonic Motion
  Occurs when have linear restoring force F= -kx
   x(t) = [A] cos(ωt)    or [A] sin(ωt)
  v(t) = -[Aω] sin(ωt) or [Aω] cos(ωt)
  a(t) = -[Aω2] cos(ωt) or -[Aω2] sin(ωt)
                            Physics 101: Lecture 19, Pg 39
Review Energy in SHM
A mass is attached to a spring and set to motion.
The maximum displacement is x=A
  Energy = U + K = constant!
            = ½ k x 2 + ½ m v2
  At maximum displacement x=A, v = 0
                                            PES
            Energy = ½ k A2 + 0
  At zero displacement x = 0
            Energy = 0 + ½ mvm2
           ½ k A2 = ½ m vm2
                                                                x
                                              0
           vm = sqrt(k/m) A
  Analogy w/ marble in bowl                         m
                                            x=0                 x
                               Physics 101: Lecture 19, Pg 40
Kinetic Energy ACT
In Case 1 a mass on a spring oscillates back and forth. In Case
2, the mass is doubled but the spring and the amplitude of the
oscillation is the same as in Case 1.
In which case is the maximum kinetic energy of the mass the
biggest?

A. Case 1
B. Case 2
C. Same




                                           Physics 101: Lecture 19, Pg 41
Potential Energy ACT
In Case 1 a mass on a spring oscillates back and forth. In Case
2, the mass is doubled but the spring and the amplitude of the
oscillation is the same as in Case 1.
In which case is the maximum potential energy of the mass
and spring the biggest?

A. Case 1

B. Case 2

C. Same

Look at time of maximum displacement x = A
Energy = ½ k A2 + 0 Same for both!
                                           Physics 101: Lecture 19, Pg 42
Kinetic Energy ACT
                                              PE = 0
          PE = /2kx
                 1      2
                             same             KE = KEMAX
          KE = 0            for both
                                                same
                                              for both




x=-A    x=0          x=+A              x=-A   x=0       x=+A


   A) Case 1
   B)   Case 2
   C)   Same
                                               Physics 101: Lecture 19, Pg 43
Q13.6

 This is an x-t graph for
 an object connected to
 a spring and moving in
 simple harmonic
 motion.

         At which of the following times is the kinetic energy
         of the object the greatest?

                       1. t = T/8
                       2. t = T/4
                       3. t = 3T/8
                       4. t = T/2
                       5. More than one of the above
Velocity ACT
 In Case 1 a mass on a spring oscillates back and forth.
 In Case 2, the mass is doubled but the spring and the
 amplitude of the oscillation is the same as in Case 1.
 Which case has the largest maximum velocity?

 1. Case 1
 2. Case 2
 3. Same


Same maximum Kinetic Energy
K = ½ m v2   smaller mass requires larger v

                                      Physics 101: Lecture 19, Pg 45
Period T of a Spring
Simple Harmonic Oscillator
   ω=2πf =2π/T
  x(t) = [A] cos(ωt)
  v(t) = -[Aω] sin(ωt)                     m
  a(t) = -[Aω2] cos(ωt)            x=0                    x



For a Spring F = -kx
  amax = (k/m) A             k                   m
                          ω=              T = 2π
  Aω2 = (k/m) A              m                   k
                             Physics 101: Lecture 19, Pg 46
Period ACT
If the amplitude of the oscillation (same block and same spring)
is doubled, how would the period of the oscillation change? (The
period is the time it takes to make one complete oscillation)
A. The period of the oscillation would double.
B. The period of the oscillation would be halved
C. The period of the oscillation would stay the same

                  k                     m
               ω=                T = 2π
                  m                     k
                 x

             +2A


                                       t

              -2A
                                           Physics 101: Lecture 19, Pg 47
Vertical Mass and Spring
If we include gravity, there are two forces acting on mass. With
mass, new equilibrium position has spring stretched d
    ΣF = kd – mg = 0
         d = mg/k                 x
                               +A
 Let this point be y = 0
    ΣF = k(d-y) – mg                               t
                                -A
         = -k y
    Same as horizontal! SHO
    New equilibrium position y=-d



                                        Physics 101: Lecture 19, Pg 48
Vertical Spring ACT
If the springs were vertical, and stretched the same distance d from
their equilibrium position and then released, which would have the
largest maximum kinetic energy?
        1) M           2) 2M            3) Same




                                   PE = 1/2k y2



                                     Y=0
                                                                        PE = 1/2k y2
 Just before being released, v=0 y=d
 Etot = 0 + ½ k d2   Same total energy for both
 When pass through equilibrium all of this energy will                    Y=0
 be kinetic energy again same for both!          Physics 101: Lecture 19, Pg 49
Q13.1
 An object on the end of a spring is oscillating in simple harmonic
 motion.
 If the amplitude of oscillation is doubled,
            1. the oscillation period and the object’s maximum speed
            both double
            2. the oscillation period remains the same and the
            object’s maximum speed doubles
            3. the oscillation period and the object’s maximum speed
            both remain the same
            4. the oscillation period doubles and the object’s
            maximum speed remains the same
            5. the oscillation period remains the same and the
            object’s maximum speed increases by a factor of 21/2
Una masa m; atada a un resorte horizontal de constante
k; es puesto en movimiento armónico simple. El máximo
desplazamiento desde su posición de equilibrio es A.
¿Cuál es la magnitud de la velocidad de la masa en el
momento que pasa por su posición de equilibrio?
Un bloque de 1 kg se une a un resorte sobre una superficie sin
   fricción como se indica en la figura. La posición del bloque en
   el transcurso del tiempo está dada por la ecuación:
                 x = 0,05 sen 50π t (m). Determine:

a) La constante k del resorte
b) La rapidez máxima del bloque
c) La aceleración máxima del bloque
d) La posición del bloque a los dos segundos.
Energía potencial elástica del sistema
            masa resorte
Energía del Oscilador Armónico Simple
                                             1 2
                                         Eo = kA
                                             2
                                         1 2 1 2
                                 E (t ) = mv + kx
                                         2    2
                               1                 1
                       E (t ) = m( A ω sen ωt ) + k ( A2 cos 2 ωt )
                                    2 2   2

                               2                 2

                             1  2 k        1 2
                     E (t ) = mA  ÷ sen ωt + kA cos 2 ωt
                                        2

                             2   m         2

                                         1 2
                              E (t ) =     kA ( sen 2ωt + cos 2 ωt )
La energía mecánica                      2
total del oscilador A.S.                        1 2
                                          E(t) = kA
se mantiene constante!!                         2
Q13.5

 This is an x-t graph for
 an object connected to
 a spring and moving in
 simple harmonic
 motion.

         At which of the following times is the potential energy
         of the spring the greatest?

                       1. t = T/8
                       2. t = T/4
                       3. t = 3T/8
                       4. t = T/2
                       5. More than one of the above
EL PÉNDULO SIMPLE
    (frecuencia natural de oscilación)
Fmax ima = Mamax ima
Mgsenθ = M ω x   2


 gsenθ = ω 2 x
  Si, θ ≤ 10o

 gθ = ω x   2


  x =θL
        g
ω=               Period does not depend on x, or m!
        L
                       Ver animación    Ver animación
Pendulum Motion
For small angles
  T = mg
  Tx = -mg (x/L)        Note: F proportional to x!
  Σ F x = m ax
    -mg (x/L) = m ax
  ax = -(g/L) x                                                L

  Recall for SHO a = -ω2 x                                         T
    ω = sqrt(g/L)
                                                                   m
    T = 2 π sqrt(L/g)                                      x

  Period does not depend on A, or m!                                   mg

                                    Physics 101: Lecture 19, Pg 57
Preflight 1
Suppose a grandfather clock (a simple pendulum) runs
slow. In order to make it run on time you should:
1. Make the pendulum shorter
2. Make the pendulum longer
                                                       g
                                                    ω=
                                                       L


                                                 2π      L
                                           T=       = 2π
                                                 ω       g




                                   Physics 101: Lecture 19, Pg 58
ACT
A pendulum is hanging vertically from the ceiling of an
elevator. Initially the elevator is at rest and the period of the
pendulum is T. Now the pendulum accelerates upward. The
period of the pendulum will now be. If you are accelerating
upward your weight is the same as if g had

1. increased
2. same
3. decreased



                            “Effective g” is larger when accelerating upward
                                           (you feel heavier)

                                              Physics 101: Lecture 19, Pg 59
Elevator ACT
A pendulum is hanging vertically from the ceiling of an
elevator. Initially the elevator is at rest and the period of the
pendulum is T. Now the pendulum accelerates upward. The
period of the pendulum will now be
1. greater than T
2. equal to T
                                                                  g
3. less than T                                             ω=
                                                                  L


                                                            2π      L
                                                      T=       = 2π
                                                            ω       g
                            “Effective g” is larger when accelerating upward
                                           (you feel heavier)

                                              Physics 101: Lecture 19, Pg 60
Preflight
Imagine you have been kidnapped by space invaders and are being held
prisoner in a room with no windows. All you have is a cheap digital
wristwatch and a pair of shoes (including shoelaces of known length).
Explain how you might figure out whether this room is on the earth or on
the moon
                                                                      g
                                                                   ω=
                                                                      L

                                                            2π      L
                                                         T=    = 2π
                                                            ω       g
                                                         L
                                              g = ( 2π ) 2
                                                         2
                                                        T




                                                  Physics 101: Lecture 19, Pg 61
Q13.7

        A simple pendulum consists of a point mass
        suspended by a massless, unstretchable string.
        If the mass is doubled while the length of the string
        remains the same, the period of the pendulum

             1. becomes 4 times greater
             2. becomes twice as great
             3. becomes 21/2 times greater
             4. remains unchanged
             5. decreases
Un péndulo simple de masa m y longitud L tiene un
periodo de oscilación T a una amplitud angular de θ
= 5o medida desde su posición de equilibrio. Si la
amplitud es cambiada a 10o y todos los demás
parámetros permanecen constantes, el nuevo valor del
periodo sería aproximadamente:
La energía de un péndulo simple de longitud
L y masa M que oscila con una amplitud A es

a) independiente de M
b) independiente de L
c) independiente de A
d) independiente de A, L, M
EN LAS SIGUIENTES 3 PREGUNTAS EL PÉNDULO
A TIENE UNA MASA MA Y LONGITUD LA. EL
PÉNDULO B TIENE UNA MASA MB Y UNA
LONGITUD LB

Si LA = LB y MA = 2MB, y las amplitudes de vibración son
iguales, entonces.

a) TA = TB y son iguales las energías de los péndulos.
b) TA = ½ TB y las energías de los péndulos son iguales.
c) TA = TB y A tiene mayor energía que B.
d) TA = TB y A tiene menor energía que B.
SI LA = 2LB, Y MA = MB,Y A DEMÁS LOS DOS
PÉNDULOS TIENEN IGUAL ENERGÍA DE
VIBRACIÓN, ENTONCES


a) sus amplitudes de movimiento angular son iguales
b) sus periodos de movimiento son iguales
c) B tiene mayor amplitud angular que A
d) ninguna de las afirmaciones anteriores es correcta
SI EL PÉNDULO A TIENE EL DOBLE DE PERIODO QUE
EL PÉNDULO B, ENTONCES



a) LA = 2LB y MA = 2 MB
b) LA = 2 LB, y las masas no cuentan
c) LA = 2 LB y MA = MB/2
d) Ninguna de las afirmaciones anteriores es correcta
PROBLEMA:

La aceleración de la gravedad varía ligeramente sobre la
superficie de nuestro planeta. Si un péndulo tiene un periodo de
3.000 s en un lugar donde g = 9.803 m/s2 y un periodo de
3.0024 s en otro lugar, ¿cuál es el valor de g en este último
lugar?
PROBLEMA

Un péndulo simple que
oscila con un periodo de
0.60 s en la Tierra es lleva a
la Luna. ¿Cuál será allí su
periodo?
Un péndulo simple tiene una masa de 0.25 kg y
una longitud de 1.00 m. Se desplaza por un ángulo
de 15o con la vertical y luego se suelta. Determine:

a) La rapidez máxima
b) La aceleración angular máxima
c) La fuerza restauradora máxima

Weitere ähnliche Inhalte

Was ist angesagt?

Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)icano7
 
M.A.S Péndulo simple
M.A.S Péndulo simpleM.A.S Péndulo simple
M.A.S Péndulo simplepanickdiego
 
electricidad y magnetismo ejercicios resueltos Capitulo 7
electricidad y magnetismo  ejercicios resueltos Capitulo 7electricidad y magnetismo  ejercicios resueltos Capitulo 7
electricidad y magnetismo ejercicios resueltos Capitulo 7J Alexander A Cabrera
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidosVasco Nuñez
 
Resolucion de problema 27 6
Resolucion de problema 27 6Resolucion de problema 27 6
Resolucion de problema 27 6Zulma Medrano
 
Potencial eléctrico
Potencial eléctricoPotencial eléctrico
Potencial eléctricoYuri Milachay
 
Problemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayProblemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayDavid Ballena
 
LEY DE GAUSS: Física C-ESPOL
LEY DE GAUSS: Física C-ESPOLLEY DE GAUSS: Física C-ESPOL
LEY DE GAUSS: Física C-ESPOLESPOL
 
CAPACITORES: Física C-ESPOL
CAPACITORES: Física C-ESPOLCAPACITORES: Física C-ESPOL
CAPACITORES: Física C-ESPOLESPOL
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angularYuri Milachay
 
Ondas mecanicas
Ondas mecanicasOndas mecanicas
Ondas mecanicasaleexrodz
 
Corriente electrica y_resistencia_7445
Corriente electrica y_resistencia_7445Corriente electrica y_resistencia_7445
Corriente electrica y_resistencia_7445Alfredo Loayza Guzmán
 
Informe Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una CuerdaInforme Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una Cuerdaguest9ba94
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02ayoyototal123
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Andrea Alarcon
 
Problemas resueltos de_campo_magnetico
Problemas resueltos de_campo_magneticoProblemas resueltos de_campo_magnetico
Problemas resueltos de_campo_magneticoeguinbe
 

Was ist angesagt? (20)

Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)Movimiento Armónico Simple (M.A.S)
Movimiento Armónico Simple (M.A.S)
 
M.A.S Péndulo simple
M.A.S Péndulo simpleM.A.S Péndulo simple
M.A.S Péndulo simple
 
electricidad y magnetismo ejercicios resueltos Capitulo 7
electricidad y magnetismo  ejercicios resueltos Capitulo 7electricidad y magnetismo  ejercicios resueltos Capitulo 7
electricidad y magnetismo ejercicios resueltos Capitulo 7
 
Zemansky
ZemanskyZemansky
Zemansky
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidos
 
Resolucion de problema 27 6
Resolucion de problema 27 6Resolucion de problema 27 6
Resolucion de problema 27 6
 
Potencial eléctrico
Potencial eléctricoPotencial eléctrico
Potencial eléctrico
 
Problemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serwayProblemas resueltos-cap-20-fisica-serway
Problemas resueltos-cap-20-fisica-serway
 
LEY DE GAUSS: Física C-ESPOL
LEY DE GAUSS: Física C-ESPOLLEY DE GAUSS: Física C-ESPOL
LEY DE GAUSS: Física C-ESPOL
 
Fluido hidrostática
Fluido hidrostáticaFluido hidrostática
Fluido hidrostática
 
CAPACITORES: Física C-ESPOL
CAPACITORES: Física C-ESPOLCAPACITORES: Física C-ESPOL
CAPACITORES: Física C-ESPOL
 
Energía rotacional y momentum angular
Energía rotacional y momentum angularEnergía rotacional y momentum angular
Energía rotacional y momentum angular
 
Ondas mecanicas
Ondas mecanicasOndas mecanicas
Ondas mecanicas
 
Corriente electrica y_resistencia_7445
Corriente electrica y_resistencia_7445Corriente electrica y_resistencia_7445
Corriente electrica y_resistencia_7445
 
Lab Física B - informe #6 (ondas 2)
Lab Física B -  informe #6 (ondas 2)Lab Física B -  informe #6 (ondas 2)
Lab Física B - informe #6 (ondas 2)
 
Informe Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una CuerdaInforme Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una Cuerda
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2
 
Problemas resueltos de_campo_magnetico
Problemas resueltos de_campo_magneticoProblemas resueltos de_campo_magnetico
Problemas resueltos de_campo_magnetico
 
Guia fii-2013-ii
Guia fii-2013-iiGuia fii-2013-ii
Guia fii-2013-ii
 

Andere mochten auch

MOMENTO LINEAL: BACHILLERATO
MOMENTO LINEAL: BACHILLERATOMOMENTO LINEAL: BACHILLERATO
MOMENTO LINEAL: BACHILLERATOESPOL
 
Peer Project Learning
Peer Project LearningPeer Project Learning
Peer Project LearningESPOL
 
TERMODINAMICA: BACHILLERATO
TERMODINAMICA: BACHILLERATOTERMODINAMICA: BACHILLERATO
TERMODINAMICA: BACHILLERATOESPOL
 
Ley De Faraday: FISICA C - ESPOL
Ley De Faraday: FISICA C - ESPOLLey De Faraday: FISICA C - ESPOL
Ley De Faraday: FISICA C - ESPOLESPOL
 
Fuerza Magnética Sobre Partículas
Fuerza Magnética  Sobre PartículasFuerza Magnética  Sobre Partículas
Fuerza Magnética Sobre PartículasESPOL
 
ONDAS SONORAS: BACHILLERATO
ONDAS SONORAS: BACHILLERATOONDAS SONORAS: BACHILLERATO
ONDAS SONORAS: BACHILLERATOESPOL
 
MOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLMOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLESPOL
 
CAMPOS MAGNETICOS: FISICA C -ESPOL
CAMPOS MAGNETICOS: FISICA C -ESPOLCAMPOS MAGNETICOS: FISICA C -ESPOL
CAMPOS MAGNETICOS: FISICA C -ESPOLESPOL
 
ONDAS MECANICAS:BACHILLERATO
ONDAS MECANICAS:BACHILLERATOONDAS MECANICAS:BACHILLERATO
ONDAS MECANICAS:BACHILLERATOESPOL
 
VECTORES: Física Conceptual-ESPOL
VECTORES: Física Conceptual-ESPOLVECTORES: Física Conceptual-ESPOL
VECTORES: Física Conceptual-ESPOLESPOL
 
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...Lizeth Maritza Pena Pena
 
Problemas Fuerza Magnet Sobre Particulas
Problemas Fuerza Magnet Sobre ParticulasProblemas Fuerza Magnet Sobre Particulas
Problemas Fuerza Magnet Sobre ParticulasESPOL
 
Circuitos RC: Física C-ESPOL
Circuitos RC: Física C-ESPOLCircuitos RC: Física C-ESPOL
Circuitos RC: Física C-ESPOLESPOL
 
Fuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOLFuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOLESPOL
 
CIRCUITOS RESISTIVOS: Física C-ESPOL
CIRCUITOS RESISTIVOS: Física C-ESPOLCIRCUITOS RESISTIVOS: Física C-ESPOL
CIRCUITOS RESISTIVOS: Física C-ESPOLESPOL
 
LEYES DE NEWTON:Física Conceptual-ESPOL
LEYES DE NEWTON:Física Conceptual-ESPOLLEYES DE NEWTON:Física Conceptual-ESPOL
LEYES DE NEWTON:Física Conceptual-ESPOLESPOL
 
Cap5 ondas longitudinales 1
Cap5 ondas longitudinales 1Cap5 ondas longitudinales 1
Cap5 ondas longitudinales 1Abel JaguaR Acua
 
Problemas Propuestos Trabajo Y Energia
Problemas Propuestos Trabajo Y EnergiaProblemas Propuestos Trabajo Y Energia
Problemas Propuestos Trabajo Y EnergiaESPOL
 
Problemas Trabajo Y EnergíA
Problemas Trabajo Y EnergíAProblemas Trabajo Y EnergíA
Problemas Trabajo Y EnergíAESPOL
 
Problemas fuerza magnetica
Problemas fuerza magneticaProblemas fuerza magnetica
Problemas fuerza magneticaESPOL
 

Andere mochten auch (20)

MOMENTO LINEAL: BACHILLERATO
MOMENTO LINEAL: BACHILLERATOMOMENTO LINEAL: BACHILLERATO
MOMENTO LINEAL: BACHILLERATO
 
Peer Project Learning
Peer Project LearningPeer Project Learning
Peer Project Learning
 
TERMODINAMICA: BACHILLERATO
TERMODINAMICA: BACHILLERATOTERMODINAMICA: BACHILLERATO
TERMODINAMICA: BACHILLERATO
 
Ley De Faraday: FISICA C - ESPOL
Ley De Faraday: FISICA C - ESPOLLey De Faraday: FISICA C - ESPOL
Ley De Faraday: FISICA C - ESPOL
 
Fuerza Magnética Sobre Partículas
Fuerza Magnética  Sobre PartículasFuerza Magnética  Sobre Partículas
Fuerza Magnética Sobre Partículas
 
ONDAS SONORAS: BACHILLERATO
ONDAS SONORAS: BACHILLERATOONDAS SONORAS: BACHILLERATO
ONDAS SONORAS: BACHILLERATO
 
MOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOLMOMENTO LINEAL: Fisica Conceptual-ESPOL
MOMENTO LINEAL: Fisica Conceptual-ESPOL
 
CAMPOS MAGNETICOS: FISICA C -ESPOL
CAMPOS MAGNETICOS: FISICA C -ESPOLCAMPOS MAGNETICOS: FISICA C -ESPOL
CAMPOS MAGNETICOS: FISICA C -ESPOL
 
ONDAS MECANICAS:BACHILLERATO
ONDAS MECANICAS:BACHILLERATOONDAS MECANICAS:BACHILLERATO
ONDAS MECANICAS:BACHILLERATO
 
VECTORES: Física Conceptual-ESPOL
VECTORES: Física Conceptual-ESPOLVECTORES: Física Conceptual-ESPOL
VECTORES: Física Conceptual-ESPOL
 
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
 
Problemas Fuerza Magnet Sobre Particulas
Problemas Fuerza Magnet Sobre ParticulasProblemas Fuerza Magnet Sobre Particulas
Problemas Fuerza Magnet Sobre Particulas
 
Circuitos RC: Física C-ESPOL
Circuitos RC: Física C-ESPOLCircuitos RC: Física C-ESPOL
Circuitos RC: Física C-ESPOL
 
Fuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOLFuerza Magnética Física C: ESPOL
Fuerza Magnética Física C: ESPOL
 
CIRCUITOS RESISTIVOS: Física C-ESPOL
CIRCUITOS RESISTIVOS: Física C-ESPOLCIRCUITOS RESISTIVOS: Física C-ESPOL
CIRCUITOS RESISTIVOS: Física C-ESPOL
 
LEYES DE NEWTON:Física Conceptual-ESPOL
LEYES DE NEWTON:Física Conceptual-ESPOLLEYES DE NEWTON:Física Conceptual-ESPOL
LEYES DE NEWTON:Física Conceptual-ESPOL
 
Cap5 ondas longitudinales 1
Cap5 ondas longitudinales 1Cap5 ondas longitudinales 1
Cap5 ondas longitudinales 1
 
Problemas Propuestos Trabajo Y Energia
Problemas Propuestos Trabajo Y EnergiaProblemas Propuestos Trabajo Y Energia
Problemas Propuestos Trabajo Y Energia
 
Problemas Trabajo Y EnergíA
Problemas Trabajo Y EnergíAProblemas Trabajo Y EnergíA
Problemas Trabajo Y EnergíA
 
Problemas fuerza magnetica
Problemas fuerza magneticaProblemas fuerza magnetica
Problemas fuerza magnetica
 

Ähnlich wie Movimiento armónico Simple

Phys111_lecture14.ppt
Phys111_lecture14.pptPhys111_lecture14.ppt
Phys111_lecture14.pptmodal3
 
B conservative and non conservative forces
B conservative and non conservative forcesB conservative and non conservative forces
B conservative and non conservative forcesdukies_2000
 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motionsaba majeed
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionMichael Marty
 
Lecture 06 wave energy. interference. standing waves.
Lecture 06   wave energy. interference. standing waves.Lecture 06   wave energy. interference. standing waves.
Lecture 06 wave energy. interference. standing waves.Albania Energy Association
 
Work energy and potential energy
Work energy and potential energyWork energy and potential energy
Work energy and potential energyAnurag Tomer
 
Mech_Oscillations03.ppt
Mech_Oscillations03.pptMech_Oscillations03.ppt
Mech_Oscillations03.pptJavonSalmon
 
Simple Harmonic Motion.ppt
Simple Harmonic Motion.pptSimple Harmonic Motion.ppt
Simple Harmonic Motion.pptAymanEid20
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxBrijeshMishra525980
 

Ähnlich wie Movimiento armónico Simple (20)

Lecture19
Lecture19Lecture19
Lecture19
 
Lecture19
Lecture19Lecture19
Lecture19
 
Phys111_lecture14.ppt
Phys111_lecture14.pptPhys111_lecture14.ppt
Phys111_lecture14.ppt
 
B conservative and non conservative forces
B conservative and non conservative forcesB conservative and non conservative forces
B conservative and non conservative forces
 
Simple harmonic motion
Simple harmonic motionSimple harmonic motion
Simple harmonic motion
 
simple harmonic motion
simple harmonic motionsimple harmonic motion
simple harmonic motion
 
Introduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motionIntroduction to oscillations and simple harmonic motion
Introduction to oscillations and simple harmonic motion
 
Lecture 06 wave energy. interference. standing waves.
Lecture 06   wave energy. interference. standing waves.Lecture 06   wave energy. interference. standing waves.
Lecture 06 wave energy. interference. standing waves.
 
Shm
ShmShm
Shm
 
turutot2.ppt
turutot2.pptturutot2.ppt
turutot2.ppt
 
Work energy and potential energy
Work energy and potential energyWork energy and potential energy
Work energy and potential energy
 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics
 
Learning object 1
Learning object 1Learning object 1
Learning object 1
 
Mech_Oscillations03.ppt
Mech_Oscillations03.pptMech_Oscillations03.ppt
Mech_Oscillations03.ppt
 
Teaching Slide1
Teaching Slide1Teaching Slide1
Teaching Slide1
 
ch10 SHM 13 04 2023F.pptx
ch10  SHM 13 04 2023F.pptxch10  SHM 13 04 2023F.pptx
ch10 SHM 13 04 2023F.pptx
 
Lecture13
Lecture13Lecture13
Lecture13
 
Simple Harmonic Motion.ppt
Simple Harmonic Motion.pptSimple Harmonic Motion.ppt
Simple Harmonic Motion.ppt
 
S h m by athar
S h m by atharS h m by athar
S h m by athar
 
Damped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptxDamped and undamped motion differential equations.pptx
Damped and undamped motion differential equations.pptx
 

Mehr von ESPOL

Problemas ElectrostáTica Nivel 0B
Problemas ElectrostáTica Nivel 0BProblemas ElectrostáTica Nivel 0B
Problemas ElectrostáTica Nivel 0BESPOL
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BESPOL
 
Nivel 0B: Problemas Movimiento Circular
Nivel 0B: Problemas Movimiento CircularNivel 0B: Problemas Movimiento Circular
Nivel 0B: Problemas Movimiento CircularESPOL
 
Nivel 0B: Problemas Movimiento Relativo
Nivel 0B: Problemas Movimiento RelativoNivel 0B: Problemas Movimiento Relativo
Nivel 0B: Problemas Movimiento RelativoESPOL
 
Cinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y PropuestosCinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y PropuestosESPOL
 
Vectores Problemas Nivel 0B
Vectores   Problemas Nivel 0BVectores   Problemas Nivel 0B
Vectores Problemas Nivel 0BESPOL
 
CINEMATICA:Física Conceptual-ESPOL
CINEMATICA:Física Conceptual-ESPOLCINEMATICA:Física Conceptual-ESPOL
CINEMATICA:Física Conceptual-ESPOLESPOL
 
Campo Electrico: Física C-ESPOL
Campo Electrico: Física C-ESPOLCampo Electrico: Física C-ESPOL
Campo Electrico: Física C-ESPOLESPOL
 
LEY DE COULOMB: Física C-ESPOL
LEY DE COULOMB: Física C-ESPOLLEY DE COULOMB: Física C-ESPOL
LEY DE COULOMB: Física C-ESPOLESPOL
 
Potencial Electrico: Física C-ESPOL
Potencial Electrico: Física C-ESPOLPotencial Electrico: Física C-ESPOL
Potencial Electrico: Física C-ESPOLESPOL
 

Mehr von ESPOL (10)

Problemas ElectrostáTica Nivel 0B
Problemas ElectrostáTica Nivel 0BProblemas ElectrostáTica Nivel 0B
Problemas ElectrostáTica Nivel 0B
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0B
 
Nivel 0B: Problemas Movimiento Circular
Nivel 0B: Problemas Movimiento CircularNivel 0B: Problemas Movimiento Circular
Nivel 0B: Problemas Movimiento Circular
 
Nivel 0B: Problemas Movimiento Relativo
Nivel 0B: Problemas Movimiento RelativoNivel 0B: Problemas Movimiento Relativo
Nivel 0B: Problemas Movimiento Relativo
 
Cinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y PropuestosCinematica Nivel Cero Problemas Resueltos Y Propuestos
Cinematica Nivel Cero Problemas Resueltos Y Propuestos
 
Vectores Problemas Nivel 0B
Vectores   Problemas Nivel 0BVectores   Problemas Nivel 0B
Vectores Problemas Nivel 0B
 
CINEMATICA:Física Conceptual-ESPOL
CINEMATICA:Física Conceptual-ESPOLCINEMATICA:Física Conceptual-ESPOL
CINEMATICA:Física Conceptual-ESPOL
 
Campo Electrico: Física C-ESPOL
Campo Electrico: Física C-ESPOLCampo Electrico: Física C-ESPOL
Campo Electrico: Física C-ESPOL
 
LEY DE COULOMB: Física C-ESPOL
LEY DE COULOMB: Física C-ESPOLLEY DE COULOMB: Física C-ESPOL
LEY DE COULOMB: Física C-ESPOL
 
Potencial Electrico: Física C-ESPOL
Potencial Electrico: Física C-ESPOLPotencial Electrico: Física C-ESPOL
Potencial Electrico: Física C-ESPOL
 

Kürzlich hochgeladen

Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 

Kürzlich hochgeladen (20)

Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 

Movimiento armónico Simple

  • 1. Elasticity and Oscillations Physics 101: Lecture 19, Pg 1
  • 2. Young’s Modulus Spring F = -k x What happens to “k” if cut spring in half? 1) decreases 2) same 3) increases k is inversely proportional to length! Define Deformación unitaria = ∆L / L Esfuerzo = F/A Now Esfuerzo = [Y] Deformación unitaria F/A = Y ∆L/L k = Y A/L from F = k x Y (Young’s Modules) independent of L Physics 101: Lecture 19, Pg 2
  • 3. Simple Harmonic Motion Vibrations Vocal cords when singing/speaking String/rubber band Simple Harmonic Motion Restoring force proportional to displacement Springs F = -kx Physics 101: Lecture 19, Pg 3
  • 4. Ejemplos clásicos de osciladores armónicos El péndulo El sistema simple masa resorte L T m x mg
  • 5. Springs Hooke’s Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position. FX = -k x Where x is the displacement from the relaxed position and k is the constant of proportionality. relaxed position FX = 0 x x=0 Physics 101: Lecture 19, Pg 5
  • 6. Springs Hooke’s Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position. FX = -k x Where x is the displacement from the relaxed position and k is the constant of proportionality. relaxed position FX = -kx > 0 x x<0 x=0 Physics 101: Lecture 19, Pg 6
  • 7. Springs ACT Hooke’s Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position. FX = -k x Where x is the displacement from the relaxed position and k is the constant of proportionality. What is force of spring when it is stretched as shown below. A) F > 0 B) F = 0 C) F < 0 relaxed position FX = - kx < 0 x x>0 x=0 Physics 101: Lecture 19, Pg 7
  • 8. Spring ACT II A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the magnitude of the acceleration of the block biggest? 1. When x = +A or -A (i.e. maximum displacement) 2. When x = 0 (i.e. zero displacement) 3. The acceleration of the mass is constant F=ma La aceleración del bloque x es máxima cuando la +A fuerza que actúa sobre él es máxima t -A Physics 101: Lecture 19, Pg 8
  • 9. Potential Energy in Spring Force of spring is Conservative F = -k x Force W = Fx/2 F W = -1/2 k x2 work x x Work done only depends on initial and final position Define Potential Energy Uspring = ½ k x2 El trabajo que se realiza para deformar el resorte queda almacenado en él en forma de energía potencial. Physics 101: Lecture 19, Pg 9
  • 10. NOMENCLATURA •Periodo (T) es el tiempo que un objeto tarda en dar una vuelta o revolución. •Frecuencia (f) es el número de vueltas o revoluciones que un objeto da en un determinado intervalo de tiempo •Frecuencia angular (ω) 1 f = ⇒( Hz ) T Angulo 1Re volucion 2π ω= = = = 2π f , (rad / s ) Tiempo 1Periodo T 2π ω= = 2π f T
  • 11. En el movimiento armónico simple la fuerza que acelera el objeto NO es constante y se la llama fuerza restauradora El movimiento armónico simple es un movimiento con aceleración variable
  • 12. En el M.A.S, sin fricción, la Energía Mecánica se Conserva La amplitud (A) es la máxima elongación (x) Ver animación
  • 13. El bloque es llevado a esta posición inicial (x=A) y se lo suelta Máxima elongación: Energía cinética cero y Energía potencial elástica máxima Elongación cero: Energía cinética máxima y Energía potencial elástica cero Máxima compresión: Energía cinética cero y Energía potencial elástica máxima
  • 14. La energía mecánica inicial se reparte entre energía cinética y energía potencial elástica Si no hay disipación de energía, la suma es siempre una constante ! Ver animación
  • 15. ***Energy in SHM*** A mass is attached to a spring and set to motion. The maximum displacement is x=A ΣWnc = ∆K + ∆U 0 = ∆K + ∆U or Energy U+K is constant! Energy = ½ k x2 + ½ m v2 At maximum displacement x=A, v = 0 PES Energy = ½ k A2 + 0 At zero displacement x = 0 Energy = 0 + ½ mvm2 Since Total Energy is same ½ k A2 = ½ m vm2 x 0 k vm = A m m x=0 x Physics 101: Lecture 19, Pg 15
  • 16. En cualquier instante, la suma de K y U es una constante e igual al valor inicial de energía que se le dio al sistema.
  • 17. Preflight 3+4 A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the total energy (K+U) of the mass and spring a maximum? (Ignore gravity). 1. When x = +A or -A (i.e. maximum displacement) 2. When x = 0 (i.e. zero displacement) 3. The energy of the system is constant. “When the kinetic energy is at a minimum, the potential energy is at a maximum and vice-versa.” x +A CONSERVATION OF ENERGY IS SACRED!!!! t -A Physics 101: Lecture 19, Pg 17
  • 18. Preflight 1+2 A mass on a spring oscillates back & forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the speed of the block biggest? 1. When x = +A or -A (i.e. maximum displacement) 2. When x = 0 (i.e. zero displacement) 3. The speed of the mass is constant “well it isn’t constant, and it is zero at the maximums, so the zero position is the only other choice” x +A t -A Physics 101: Lecture 19, Pg 18
  • 19. SHM ACT A spring oscillates back and forth on a frictionless horizontal surface. A camera takes pictures of the position every 1/10th of a second. Which plot best shows the positions of the mass. 1 EndPoint Equilibrium EndPoint 2 EndPoint Equilibrium EndPoint 3 EndPoint Equilibrium EndPoint Physics 101: Lecture 19, Pg 19
  • 20. Un bloque de 40 kg de masa se ata a un resorte horizontal de constante elástica 500 N/m. Si la masa descansa sobre una superficie horizontal sin fricción, ¿cuál es la energía total de este sistema cuando se pone en movimiento armónico simple al desplazarlo una distancia de 0.2 metros? A) 10 J B) 20 J C) 50 J D) 4 000 J E) 100 000 J
  • 21. Un resorte comprimido tiene una energía potencial de 16 J. ¿Cuál es la máxima rapidez que se puede impartir a un bloque de 2.0 kg de masa ? A. 2.8 m/s B. 4.0 m/s C. 5.6 m/s D. 8.0 m/s E. 16 m/s
  • 22. Springs and Simple Harmonic X=0 Motion X=A; v=0; a=-amax X=0; v=-vmax; a=0 X=-A; v=0; a=amax X=0; v=vmax; a=0 X=A; v=0; a=-amax X=-A X=A Physics 101: Lecture 19, Pg 22
  • 23. RELACIÓN ENTRE EL MOVIMIENTO CIRCULAR Y EL MOVIMIENTO ARMÓNICO
  • 24. What does moving in a circle have to do with moving back & forth in a straight line ?? x = R cos θ = R cos (ωt) since θ = ω t Movie x x 1 1 2 8 R 2 8 θ 3 R 3 7 y 0 θ 7 π π 3π 2 2 4 6 -R 4 6 5 5 Physics 101: Lecture 19, Pg 24
  • 25. SHM and Circles Physics 101: Lecture 19, Pg 25
  • 27. La posición (x) en función del tiempo (t) x = A cos θ θ = ωt x = A cos ωt t =0 ⇒x = A x = A cos ωt T t = ⇒x =0 4 T t = ⇒ x = −A 2
  • 28. La velocidad (v) en función del tiempo (t) v =− o senθ V θ =ωt v =− o senω V t Vo =vmax ima = Aω t = 0 ⇒v = 0 v = −ωAsenωt T t = ⇒= Vo v − 4 T t = ⇒= v 0 2 3 t = T ⇒v = Vo 4
  • 29. La aceleración (a) en función del tiempo (t) a = −ac cos θ θ = ωt a = −ac cos ωt ac = amax ima = Aω2 2 t = 0 ⇒ a = −ω A a = −ω A cos ωt 2 T t = ⇒ =0 a 4 T 2 t = ⇒a = ω A 2
  • 30. Gráficas que representan la posición (x), velocidad (v) y aceleración (a) de un objeto en M.A.S. En función del tiempo Observe el desfasamiento entre los valores de la posición, velocidad y aceleración x = A cos ωt v = −ωAsenωt a = −ω 2 A cos ωt
  • 31. Q13.3 To the right is an x-t graph for an object in simple harmonic motion. Which of the graphs below correctly shows the velocity versus time for this object? 1. graph I 2. graph II 3. graph III 4. graph IV
  • 32. Q13.2 This is an x-t graph for an object in simple harmonic motion. At which of the following times does the object have the most negative acceleration ax? 1. t = T/4 2. t = T/2 3. t = 3T/4 4. t = T
  • 33. Q13.4 To the right is an x-t graph for an object in simple harmonic motion. Which of the graphs below correctly shows the acceleration versus time for this object? 1. graph I 2. graph II 3. graph III 4. graph IV
  • 34. Simple Harmonic Motion: x(t) = [A]cos(ωt) x(t) = [A]sin(ωt) v(t) = -[Aω]sin(ωt) OR v(t) = [Aω]cos(ωt) a(t) = -[Aω2]cos(ωt) a(t) = -[Aω2]sin(ωt) xmax = A Period = T (seconds per cycle) Frequency = f = 1/T (cycles per second) vmax = Aω Angular frequency = ω = 2πf = 2π/T amax = Aω 2 For spring: ω2 = k/m Physics 101: Lecture 19, Pg 34
  • 35. Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. Which equation describes the position as a function of time x(t) = A) 5 sin(ωt) B) 5 cos(ωt) C) 24 sin(ωt) D) 24 cos(ωt) E) -24 cos(ωt) We are told at t=0, x = +5 cm. x(t) = 5 cos(ωt) only one that works. Physics 101: Lecture 19, Pg 35
  • 36. Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. What is the total energy of the block spring system? A) 0.03 J B) .05 J C) .08 J E=U+K At t=0, x = 5 cm and v=0: E = ½ k x2 + 0 = ½ (24 N/m) (5 cm)2 = 0.03 J Physics 101: Lecture 19, Pg 36
  • 37. Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. What is the maximum speed of the block? A) .45 m/s B) .23 m/s C) .14 m/s E=U+K When x = 0, maximum speed: E = ½ m v2 + 0 .03 = ½ 3 kg v2 v = .14 m/s Physics 101: Lecture 19, Pg 37
  • 38. Example A 3 kg mass is attached to a spring (k=24 N/m). It is stretched 5 cm. At time t=0 it is released and oscillates. How long does it take for the block to return to x=+5cm? A) 1.4 s B) 2.2 s C) 3.5 s ω = sqrt(k/m) = sqrt(24/3) = 2.83 radians/sec Returns to original position after 2 π radians T = 2 π / ω = 6.28 / 2.83 = 2.2 seconds Physics 101: Lecture 19, Pg 38
  • 39. Summary Springs F = -kx U = ½ k x2 ω = sqrt(k/m) Simple Harmonic Motion Occurs when have linear restoring force F= -kx x(t) = [A] cos(ωt) or [A] sin(ωt) v(t) = -[Aω] sin(ωt) or [Aω] cos(ωt) a(t) = -[Aω2] cos(ωt) or -[Aω2] sin(ωt) Physics 101: Lecture 19, Pg 39
  • 40. Review Energy in SHM A mass is attached to a spring and set to motion. The maximum displacement is x=A Energy = U + K = constant! = ½ k x 2 + ½ m v2 At maximum displacement x=A, v = 0 PES Energy = ½ k A2 + 0 At zero displacement x = 0 Energy = 0 + ½ mvm2 ½ k A2 = ½ m vm2 x 0 vm = sqrt(k/m) A Analogy w/ marble in bowl m x=0 x Physics 101: Lecture 19, Pg 40
  • 41. Kinetic Energy ACT In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1. In which case is the maximum kinetic energy of the mass the biggest? A. Case 1 B. Case 2 C. Same Physics 101: Lecture 19, Pg 41
  • 42. Potential Energy ACT In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1. In which case is the maximum potential energy of the mass and spring the biggest? A. Case 1 B. Case 2 C. Same Look at time of maximum displacement x = A Energy = ½ k A2 + 0 Same for both! Physics 101: Lecture 19, Pg 42
  • 43. Kinetic Energy ACT PE = 0 PE = /2kx 1 2 same KE = KEMAX KE = 0 for both same for both x=-A x=0 x=+A x=-A x=0 x=+A A) Case 1 B) Case 2 C) Same Physics 101: Lecture 19, Pg 43
  • 44. Q13.6 This is an x-t graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the kinetic energy of the object the greatest? 1. t = T/8 2. t = T/4 3. t = 3T/8 4. t = T/2 5. More than one of the above
  • 45. Velocity ACT In Case 1 a mass on a spring oscillates back and forth. In Case 2, the mass is doubled but the spring and the amplitude of the oscillation is the same as in Case 1. Which case has the largest maximum velocity? 1. Case 1 2. Case 2 3. Same Same maximum Kinetic Energy K = ½ m v2 smaller mass requires larger v Physics 101: Lecture 19, Pg 45
  • 46. Period T of a Spring Simple Harmonic Oscillator ω=2πf =2π/T x(t) = [A] cos(ωt) v(t) = -[Aω] sin(ωt) m a(t) = -[Aω2] cos(ωt) x=0 x For a Spring F = -kx amax = (k/m) A k m ω= T = 2π Aω2 = (k/m) A m k Physics 101: Lecture 19, Pg 46
  • 47. Period ACT If the amplitude of the oscillation (same block and same spring) is doubled, how would the period of the oscillation change? (The period is the time it takes to make one complete oscillation) A. The period of the oscillation would double. B. The period of the oscillation would be halved C. The period of the oscillation would stay the same k m ω= T = 2π m k x +2A t -2A Physics 101: Lecture 19, Pg 47
  • 48. Vertical Mass and Spring If we include gravity, there are two forces acting on mass. With mass, new equilibrium position has spring stretched d ΣF = kd – mg = 0 d = mg/k x +A Let this point be y = 0 ΣF = k(d-y) – mg t -A = -k y Same as horizontal! SHO New equilibrium position y=-d Physics 101: Lecture 19, Pg 48
  • 49. Vertical Spring ACT If the springs were vertical, and stretched the same distance d from their equilibrium position and then released, which would have the largest maximum kinetic energy? 1) M 2) 2M 3) Same PE = 1/2k y2 Y=0 PE = 1/2k y2 Just before being released, v=0 y=d Etot = 0 + ½ k d2 Same total energy for both When pass through equilibrium all of this energy will Y=0 be kinetic energy again same for both! Physics 101: Lecture 19, Pg 49
  • 50. Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, 1. the oscillation period and the object’s maximum speed both double 2. the oscillation period remains the same and the object’s maximum speed doubles 3. the oscillation period and the object’s maximum speed both remain the same 4. the oscillation period doubles and the object’s maximum speed remains the same 5. the oscillation period remains the same and the object’s maximum speed increases by a factor of 21/2
  • 51. Una masa m; atada a un resorte horizontal de constante k; es puesto en movimiento armónico simple. El máximo desplazamiento desde su posición de equilibrio es A. ¿Cuál es la magnitud de la velocidad de la masa en el momento que pasa por su posición de equilibrio?
  • 52. Un bloque de 1 kg se une a un resorte sobre una superficie sin fricción como se indica en la figura. La posición del bloque en el transcurso del tiempo está dada por la ecuación: x = 0,05 sen 50π t (m). Determine: a) La constante k del resorte b) La rapidez máxima del bloque c) La aceleración máxima del bloque d) La posición del bloque a los dos segundos.
  • 53. Energía potencial elástica del sistema masa resorte
  • 54. Energía del Oscilador Armónico Simple 1 2 Eo = kA 2 1 2 1 2 E (t ) = mv + kx 2 2 1 1 E (t ) = m( A ω sen ωt ) + k ( A2 cos 2 ωt ) 2 2 2 2 2 1 2 k  1 2 E (t ) = mA  ÷ sen ωt + kA cos 2 ωt 2 2 m 2 1 2 E (t ) = kA ( sen 2ωt + cos 2 ωt ) La energía mecánica 2 total del oscilador A.S. 1 2 E(t) = kA se mantiene constante!! 2
  • 55. Q13.5 This is an x-t graph for an object connected to a spring and moving in simple harmonic motion. At which of the following times is the potential energy of the spring the greatest? 1. t = T/8 2. t = T/4 3. t = 3T/8 4. t = T/2 5. More than one of the above
  • 56. EL PÉNDULO SIMPLE (frecuencia natural de oscilación) Fmax ima = Mamax ima Mgsenθ = M ω x 2 gsenθ = ω 2 x Si, θ ≤ 10o gθ = ω x 2 x =θL g ω= Period does not depend on x, or m! L Ver animación Ver animación
  • 57. Pendulum Motion For small angles T = mg Tx = -mg (x/L) Note: F proportional to x! Σ F x = m ax -mg (x/L) = m ax ax = -(g/L) x L Recall for SHO a = -ω2 x T ω = sqrt(g/L) m T = 2 π sqrt(L/g) x Period does not depend on A, or m! mg Physics 101: Lecture 19, Pg 57
  • 58. Preflight 1 Suppose a grandfather clock (a simple pendulum) runs slow. In order to make it run on time you should: 1. Make the pendulum shorter 2. Make the pendulum longer g ω= L 2π L T= = 2π ω g Physics 101: Lecture 19, Pg 58
  • 59. ACT A pendulum is hanging vertically from the ceiling of an elevator. Initially the elevator is at rest and the period of the pendulum is T. Now the pendulum accelerates upward. The period of the pendulum will now be. If you are accelerating upward your weight is the same as if g had 1. increased 2. same 3. decreased “Effective g” is larger when accelerating upward (you feel heavier) Physics 101: Lecture 19, Pg 59
  • 60. Elevator ACT A pendulum is hanging vertically from the ceiling of an elevator. Initially the elevator is at rest and the period of the pendulum is T. Now the pendulum accelerates upward. The period of the pendulum will now be 1. greater than T 2. equal to T g 3. less than T ω= L 2π L T= = 2π ω g “Effective g” is larger when accelerating upward (you feel heavier) Physics 101: Lecture 19, Pg 60
  • 61. Preflight Imagine you have been kidnapped by space invaders and are being held prisoner in a room with no windows. All you have is a cheap digital wristwatch and a pair of shoes (including shoelaces of known length). Explain how you might figure out whether this room is on the earth or on the moon g ω= L 2π L T= = 2π ω g L g = ( 2π ) 2 2 T Physics 101: Lecture 19, Pg 61
  • 62. Q13.7 A simple pendulum consists of a point mass suspended by a massless, unstretchable string. If the mass is doubled while the length of the string remains the same, the period of the pendulum 1. becomes 4 times greater 2. becomes twice as great 3. becomes 21/2 times greater 4. remains unchanged 5. decreases
  • 63. Un péndulo simple de masa m y longitud L tiene un periodo de oscilación T a una amplitud angular de θ = 5o medida desde su posición de equilibrio. Si la amplitud es cambiada a 10o y todos los demás parámetros permanecen constantes, el nuevo valor del periodo sería aproximadamente:
  • 64. La energía de un péndulo simple de longitud L y masa M que oscila con una amplitud A es a) independiente de M b) independiente de L c) independiente de A d) independiente de A, L, M
  • 65. EN LAS SIGUIENTES 3 PREGUNTAS EL PÉNDULO A TIENE UNA MASA MA Y LONGITUD LA. EL PÉNDULO B TIENE UNA MASA MB Y UNA LONGITUD LB Si LA = LB y MA = 2MB, y las amplitudes de vibración son iguales, entonces. a) TA = TB y son iguales las energías de los péndulos. b) TA = ½ TB y las energías de los péndulos son iguales. c) TA = TB y A tiene mayor energía que B. d) TA = TB y A tiene menor energía que B.
  • 66. SI LA = 2LB, Y MA = MB,Y A DEMÁS LOS DOS PÉNDULOS TIENEN IGUAL ENERGÍA DE VIBRACIÓN, ENTONCES a) sus amplitudes de movimiento angular son iguales b) sus periodos de movimiento son iguales c) B tiene mayor amplitud angular que A d) ninguna de las afirmaciones anteriores es correcta
  • 67. SI EL PÉNDULO A TIENE EL DOBLE DE PERIODO QUE EL PÉNDULO B, ENTONCES a) LA = 2LB y MA = 2 MB b) LA = 2 LB, y las masas no cuentan c) LA = 2 LB y MA = MB/2 d) Ninguna de las afirmaciones anteriores es correcta
  • 68. PROBLEMA: La aceleración de la gravedad varía ligeramente sobre la superficie de nuestro planeta. Si un péndulo tiene un periodo de 3.000 s en un lugar donde g = 9.803 m/s2 y un periodo de 3.0024 s en otro lugar, ¿cuál es el valor de g en este último lugar?
  • 69. PROBLEMA Un péndulo simple que oscila con un periodo de 0.60 s en la Tierra es lleva a la Luna. ¿Cuál será allí su periodo?
  • 70. Un péndulo simple tiene una masa de 0.25 kg y una longitud de 1.00 m. Se desplaza por un ángulo de 15o con la vertical y luego se suelta. Determine: a) La rapidez máxima b) La aceleración angular máxima c) La fuerza restauradora máxima