SlideShare ist ein Scribd-Unternehmen logo
1 von 22
Downloaden Sie, um offline zu lesen
Ing. Edward Ropero
Magister en Gestión,
Aplicación y Desarrollo de
Software
Definición Geométrica: El
conjunto de todos los segmentos
de recta dirigidos equivalentes a
un segmento de recta dirigido
dado se llama vector. Cualquier
segmento de recta en ese
conjunto se denomina una
representación del vector.
Definición Algebraica: Un vector
v en el plano xy es un par
ordenado de números reales (a,
b). Los números a y b se
denominan elementos o
componentes del vector v. El
vector cero es el vector (0, 0).
Para muchos propósitos, dos vectores y se definen como iguales si
tienen la misma magnitud y si apuntan en la misma dirección.
Esto es, = sólo si A = B y si y apuntan en la misma dirección a
lo largo de líneas paralelas.
Para sumar el vector B al vector , primero dibuje el vector A con su
magnitud representada mediante una escala de longitud conveniente, y
luego dibuje el vector B a la misma escala, con su origen iniciando
desde la punta de A . El vector resultante R = A + B es el vector que se
dibuja desde el origen de A a la punta de B
Ley conmutativa de la suma: Cuando
se suman dos vectores, la suma es
independiente del orden de la adición.
Ley asociativa de la suma: Cuando se suman tres o mas
vectores, su suma es independiente de la forma en la cual
se agrupan los vectores individuales
El negativo del vector A se define como el vector que, cuando se suma
con A , da cero para la suma vectorial. Esto es: A + ( - A) = 0. Los
vectores A y – A tienen la misma magnitud pero apuntan en
direcciones opuestas.
La operación de resta vectorial utiliza la definición del negativo de un
vector. Se define la operación A – B como el vector – B que se suma al
vector A :
Si el vector A se multiplica por una cantidad escalar positiva c, el
producto c es un vector que tiene la misma dirección que
y magnitud c
α 0 π6 π4 π3 π2 π 3π2 2π
tg α 0 √33 1 √3 ∞ 0 ∞ 0
Una recta está determinada por dos puntos. Una recta también queda
determinada por un punto y una dirección, por consiguiente por un
punto de la recta y un vector paralelo a la recta.
Consideremos una recta l en el espacio, sea un A punto de l y un
vector paralelo a l.
l
P
A
Un punto P ≠ A estará en la recta l si y solo si AP es paralelo a , es
decir, AP = ʎ para cualquier ʎ ≠ 0. Observe que si ʎ = 0,
entonces A = P, si colocamos un sistema coordenado de tal forma que
el origen O, coincida con el punto inicial del vector .
Empleando vectores coordenados, la ecuación puede escribirse como
P = ʎV + A
P-A = ʎV
La segunda ecuación se conoce con el nombre de ecuación vectorial de la
recta l que pasa por el punto A y es paralela al vector .
Si P = (x, y, z), A = (a1, a2, a3) y V = (v1, v2, v3), entonces
(x, y, z) = (a1, a2, a3) + ʎ (v1, v2, v3)
(x, y, z) = (a1 + ʎv1, a2 + ʎv2, a3 + ʎv3)
de la igualdad anterior se tiene que
x = a1 + ʎv1
y = a2 + ʎv2
z = a3 + ʎv3
Las ecuaciones anteriores se llaman ecuaciones paramétricas para la recta l que
pasa por el punto A y es paralela al vector . Al darle valores a ʎ obtenemos un
punto P = (x, y, z) específico.
Si en las ecuaciones anteriores despejamos el parámetro tenemos que
Por consiguiente
Las ecuaciones anteriores se conocen como ecuaciones simétricas de la recta
que pasa por el punto A y es paralela al vector .
ʎ =
𝑥 −𝑎1
𝑣1
, 𝑣1 ≠ 0
ʎ =
𝑦 −𝑎2
𝑣2
, 𝑣2 ≠ 0
ʎ =
𝑧 −𝑎3
𝑣3
, 𝑣3 ≠ 0
𝑥 − 𝑎1
𝑣1
=
𝑦 − 𝑎2
𝑣2
=
𝑧 − 𝑎3
𝑣3
Teorema 1. Sean u = (a1, b1) y v = (a2, b2), entonces el producto
interno de u y v es:
u•v = a1a2 + b1b2
Al producto interno también se le llama producto punto.
Recordemos que el producto interno es un número real al igual que la
magnitud de un vector.
Teorema 2. Sea v un vector de R2, entonces ||v||2 = v•v
Ejemplo: Consideremos el vector v = (3,–5), entonces:
usando el teorema anterior tenemos que
Teorema 3. Sean u y v dos vectores diferentes de cero. El ángulo θ
entre u y v es el ángulo no negativo más pequeño ( 0 ≤θ ≤π ) que
hay entre ellos.
Si v = αu, entonces θ = 0 si α > 0 y θ = π si α< 0
Teorema 4. Si u y v son dos vectores diferentes de cero y ϕ es el
ángulo entre ellos, entonces cos ϕ =
𝒖 .𝒗
𝒖 .| 𝒗 |
Ejemplo:
Sean u = (2,3) y v = (–7,1), el producto interno es
u•v = (2)(–7) + (3)(1) = –14 + 3 = –11
las magnitudes son
por lo tanto:
Teorema 5. Dos vectores diferentes de cero, u y v son:
a) paralelos si el ángulo entre ellos es cero o π (180°)
b) ortogonales (perpendiculares) si el ángulo entre ellos es
π/2 (90°) o 3π/2 (270°).
Teorema 6. Dos vectores u y v , diferentes de cero, son ortogonales,
si y sólo si, su producto interno es cero, es decir u•v = 0.
Teorema 1. Sea V un espacio vectorial con producto interno definido
y u en V.
La norma de u, que se denota ||u|| está dada por ||u|| = (u.u)
Ejemplo:
Hallar la Norma del vector A = (6, -3, 1)
||A|| = 36 + 9 + 1 = 46
Teorema 2. Sea V un espacio vectorial con producto interno y sea u
un vector de V.
Decimos que u es vector unitario si ||u|| = 1
Teorema 3. Sea V un espacio vectorial con producto interno y una
norma definida.
Sea u un vector en V, entonces el vector v =
𝒖
| 𝒖 |
es un vector unitario
Ejemplo: Sea A = (3, 2, -1) hallar su norma y vector unitario
||A|| = 9 + 4 + 1 = 14
Hallando el vector unitario:
B =
𝑨
| 𝑨 |
=
𝟏
14
(3, 2, -1) = (3/ 14, 2/ 14, -1/ 14)
Hallando la norma B:
||B|| = B.B = (3/ 14)2 + (2/ 14)2 +(-1/ 14)2
= 9/14 + 4/14 + 1/14 = 𝟏𝟒/14 = 1
Sea V un espacio vectorial con producto interno. Sean u
y v elementos de V.
La distancia entre u y v se define como la norma de la diferencia de
los vectores u y v.
d (u, v) = ||u − v||
Ejemplo:
Determine la distancia entre los puntos A= (1,2) y B=(4,3)
d (A, B) = ||A − B||
A − B = (1−4 , 𝟐 − 𝟑) = (-3, -1)
||A − B|| = (-3)2 + −𝟏 𝟐 = 𝟗 + 𝟏 = 𝟏𝟎
Sean u y v dos vectores diferentes de cero en un espacio vectorial V
con producto interno. Entonces la proyección de u sobre v es un
vector denotado por proyv u que se define como proyv u =
(𝒖.𝒗)
| 𝒗 | 𝟐 v
Ejemplo:
Encontrar la proyección del vector u = (2,3) sobre el vector v = (4,–1)
(u, v) = 8–3 = 5
v2 = 16 +1 = 17 entonces
proyv u =
(𝐮.𝐯)
| 𝐯 | 𝟐 v =
𝟓
𝟏𝟕
(4, -1)
= (20/17, -5/17)

Weitere ähnliche Inhalte

Was ist angesagt?

Base y dimension de los espacios vectoriales
Base y dimension de los espacios vectorialesBase y dimension de los espacios vectoriales
Base y dimension de los espacios vectorialesManuel Alejandro Garza
 
Ecuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt markEcuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt markjmedinah666
 
Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)Francisco Rivas
 
Aplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesAplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesWilson Quinatoa
 
4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedadesbreerico
 
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.Brayan Méndez
 
Aplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triplesAplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y tripleswalterabel03
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalalgebra
 
TEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESTEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESelisancar
 
PRODUCTO INTERNO Vectores Ortogonales
PRODUCTO INTERNO  Vectores OrtogonalesPRODUCTO INTERNO  Vectores Ortogonales
PRODUCTO INTERNO Vectores Ortogonalesalgebra
 
geometría plana calvache
geometría plana calvachegeometría plana calvache
geometría plana calvacheKevin Veloz
 
Ejercicios resueltos sección 4.6
Ejercicios resueltos sección 4.6Ejercicios resueltos sección 4.6
Ejercicios resueltos sección 4.6venecye
 
Ejercicios Cinemática
Ejercicios CinemáticaEjercicios Cinemática
Ejercicios CinemáticaKike Prieto
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)ratix
 
Vectores Problemas Nivel 0B
Vectores   Problemas Nivel 0BVectores   Problemas Nivel 0B
Vectores Problemas Nivel 0BESPOL
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.Luis Vargas
 

Was ist angesagt? (20)

Índices de Miller
Índices de MillerÍndices de Miller
Índices de Miller
 
Base y dimension de los espacios vectoriales
Base y dimension de los espacios vectorialesBase y dimension de los espacios vectoriales
Base y dimension de los espacios vectoriales
 
Ecuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt markEcuacion de la recta ppt.ppt mark
Ecuacion de la recta ppt.ppt mark
 
Formulario de calculo vectorial
Formulario de calculo vectorialFormulario de calculo vectorial
Formulario de calculo vectorial
 
Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)Capacitancia. ing. carlos moreno (ESPOL)
Capacitancia. ing. carlos moreno (ESPOL)
 
Aplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesAplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectoriales
 
Vectores en r2 y r3 por tony
Vectores en r2 y r3 por tony Vectores en r2 y r3 por tony
Vectores en r2 y r3 por tony
 
4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades4.1 definición del espacio vectorial y sus propiedades
4.1 definición del espacio vectorial y sus propiedades
 
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
 
Aplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triplesAplicaciones de calculo de integrales dobles y triples
Aplicaciones de calculo de integrales dobles y triples
 
Ejercicios resueltos base ortonormal
Ejercicios resueltos base ortonormalEjercicios resueltos base ortonormal
Ejercicios resueltos base ortonormal
 
TEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICESTEMA 1: MATRICES. OPERACIONES CON MATRICES
TEMA 1: MATRICES. OPERACIONES CON MATRICES
 
PRODUCTO INTERNO Vectores Ortogonales
PRODUCTO INTERNO  Vectores OrtogonalesPRODUCTO INTERNO  Vectores Ortogonales
PRODUCTO INTERNO Vectores Ortogonales
 
geometría plana calvache
geometría plana calvachegeometría plana calvache
geometría plana calvache
 
Ejercicios resueltos sección 4.6
Ejercicios resueltos sección 4.6Ejercicios resueltos sección 4.6
Ejercicios resueltos sección 4.6
 
Ejercicios Cinemática
Ejercicios CinemáticaEjercicios Cinemática
Ejercicios Cinemática
 
Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)Ejercicios resueltos(f.vectoriales)(1)
Ejercicios resueltos(f.vectoriales)(1)
 
Ecuaciones Parametricas
Ecuaciones ParametricasEcuaciones Parametricas
Ecuaciones Parametricas
 
Vectores Problemas Nivel 0B
Vectores   Problemas Nivel 0BVectores   Problemas Nivel 0B
Vectores Problemas Nivel 0B
 
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
ECUACION PARAMETRICAS Y VECTORIALES PARAMETRICAS.
 

Ähnlich wie Algebra lineal 2. Espacios vectoriales

Ähnlich wie Algebra lineal 2. Espacios vectoriales (20)

02 Vectoresa
02 Vectoresa02 Vectoresa
02 Vectoresa
 
Vectores
VectoresVectores
Vectores
 
Vectores
VectoresVectores
Vectores
 
Fisicavectores
FisicavectoresFisicavectores
Fisicavectores
 
Cálculo vectorial en el plano
Cálculo vectorial en el planoCálculo vectorial en el plano
Cálculo vectorial en el plano
 
Vectores
VectoresVectores
Vectores
 
Puntos, rectas y planos en espacio
Puntos, rectas y planos en espacioPuntos, rectas y planos en espacio
Puntos, rectas y planos en espacio
 
Vectores
VectoresVectores
Vectores
 
Vectores
VectoresVectores
Vectores
 
Fisica preuniversitaria
Fisica preuniversitariaFisica preuniversitaria
Fisica preuniversitaria
 
Física Univ..
Física Univ..Física Univ..
Física Univ..
 
CÁLCULO II vectores y geometria completo_6081ac90d6b137a11260c4ca81ad47c0.pdf
CÁLCULO II vectores y geometria completo_6081ac90d6b137a11260c4ca81ad47c0.pdfCÁLCULO II vectores y geometria completo_6081ac90d6b137a11260c4ca81ad47c0.pdf
CÁLCULO II vectores y geometria completo_6081ac90d6b137a11260c4ca81ad47c0.pdf
 
Actividad 1-lara-garcía
Actividad 1-lara-garcíaActividad 1-lara-garcía
Actividad 1-lara-garcía
 
U1 s1 magnitudes escalares y vectoriales
U1 s1 magnitudes escalares y vectorialesU1 s1 magnitudes escalares y vectoriales
U1 s1 magnitudes escalares y vectoriales
 
Vectores
VectoresVectores
Vectores
 
Vectores
VectoresVectores
Vectores
 
Capitulo2 vectores
Capitulo2   vectoresCapitulo2   vectores
Capitulo2 vectores
 
Algebra
AlgebraAlgebra
Algebra
 
Cap 1 Vectores Rectas Enel Plano Vers 1
Cap 1  Vectores Rectas Enel Plano  Vers 1Cap 1  Vectores Rectas Enel Plano  Vers 1
Cap 1 Vectores Rectas Enel Plano Vers 1
 
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
Cap 1 Vectores Rectas Enel Plano Vers 1.0.0
 

Mehr von Edward Ropero

Taller 2-Estadística
Taller 2-EstadísticaTaller 2-Estadística
Taller 2-EstadísticaEdward Ropero
 
Taller 3 - Mecánica
Taller 3 - MecánicaTaller 3 - Mecánica
Taller 3 - MecánicaEdward Ropero
 
Mecánica 4. potencia, trabajo y energía
Mecánica 4. potencia, trabajo y energíaMecánica 4. potencia, trabajo y energía
Mecánica 4. potencia, trabajo y energíaEdward Ropero
 
Algebra lineal 3. Transformaciones lineales
Algebra lineal 3. Transformaciones linealesAlgebra lineal 3. Transformaciones lineales
Algebra lineal 3. Transformaciones linealesEdward Ropero
 
Estadistica 5. Probabilidades
Estadistica   5. ProbabilidadesEstadistica   5. Probabilidades
Estadistica 5. ProbabilidadesEdward Ropero
 
Mecánica 3. Dinámica
Mecánica 3. DinámicaMecánica 3. Dinámica
Mecánica 3. DinámicaEdward Ropero
 
Taller 1. Algebra Lineal
Taller 1. Algebra LinealTaller 1. Algebra Lineal
Taller 1. Algebra LinealEdward Ropero
 
Mecánica 2. cinemática
Mecánica 2. cinemáticaMecánica 2. cinemática
Mecánica 2. cinemáticaEdward Ropero
 
Mecánica 1. análisis vectorial
Mecánica 1. análisis vectorialMecánica 1. análisis vectorial
Mecánica 1. análisis vectorialEdward Ropero
 
Algebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones linealesAlgebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones linealesEdward Ropero
 
Estadistica 4. Medidas de Dispersion, deformacion y apuntamiento
Estadistica   4. Medidas de Dispersion, deformacion y apuntamientoEstadistica   4. Medidas de Dispersion, deformacion y apuntamiento
Estadistica 4. Medidas de Dispersion, deformacion y apuntamientoEdward Ropero
 
Estadistica 3. Medidas de Tendencia Central
Estadistica   3. Medidas de Tendencia CentralEstadistica   3. Medidas de Tendencia Central
Estadistica 3. Medidas de Tendencia CentralEdward Ropero
 
Análisis numérico Interpolación de Newton
Análisis numérico   Interpolación de NewtonAnálisis numérico   Interpolación de Newton
Análisis numérico Interpolación de NewtonEdward Ropero
 
Taller 1 - Estadística
Taller 1 - EstadísticaTaller 1 - Estadística
Taller 1 - EstadísticaEdward Ropero
 
Estadistica 2. distribucion de frecuencias
Estadistica   2. distribucion de frecuenciasEstadistica   2. distribucion de frecuencias
Estadistica 2. distribucion de frecuenciasEdward Ropero
 
Análisis numérico 1. errores y aritmética de punto flotante
Análisis numérico 1. errores y aritmética de punto flotanteAnálisis numérico 1. errores y aritmética de punto flotante
Análisis numérico 1. errores y aritmética de punto flotanteEdward Ropero
 
Estadistica introduccion
Estadistica   introduccionEstadistica   introduccion
Estadistica introduccionEdward Ropero
 
Programación I 2. Arquitectura de Capas
Programación I 2. Arquitectura de CapasProgramación I 2. Arquitectura de Capas
Programación I 2. Arquitectura de CapasEdward Ropero
 
Taller 2.1 industrial
Taller 2.1 industrialTaller 2.1 industrial
Taller 2.1 industrialEdward Ropero
 

Mehr von Edward Ropero (20)

Taller 2-Estadística
Taller 2-EstadísticaTaller 2-Estadística
Taller 2-Estadística
 
Taller 3 - Mecánica
Taller 3 - MecánicaTaller 3 - Mecánica
Taller 3 - Mecánica
 
Mecánica 4. potencia, trabajo y energía
Mecánica 4. potencia, trabajo y energíaMecánica 4. potencia, trabajo y energía
Mecánica 4. potencia, trabajo y energía
 
Algebra lineal 3. Transformaciones lineales
Algebra lineal 3. Transformaciones linealesAlgebra lineal 3. Transformaciones lineales
Algebra lineal 3. Transformaciones lineales
 
Estadistica 5. Probabilidades
Estadistica   5. ProbabilidadesEstadistica   5. Probabilidades
Estadistica 5. Probabilidades
 
Taller 2 Mecánica
Taller 2 MecánicaTaller 2 Mecánica
Taller 2 Mecánica
 
Mecánica 3. Dinámica
Mecánica 3. DinámicaMecánica 3. Dinámica
Mecánica 3. Dinámica
 
Taller 1. Algebra Lineal
Taller 1. Algebra LinealTaller 1. Algebra Lineal
Taller 1. Algebra Lineal
 
Mecánica 2. cinemática
Mecánica 2. cinemáticaMecánica 2. cinemática
Mecánica 2. cinemática
 
Mecánica 1. análisis vectorial
Mecánica 1. análisis vectorialMecánica 1. análisis vectorial
Mecánica 1. análisis vectorial
 
Algebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones linealesAlgebra lineal 1. sistemas de ecuaciones lineales
Algebra lineal 1. sistemas de ecuaciones lineales
 
Estadistica 4. Medidas de Dispersion, deformacion y apuntamiento
Estadistica   4. Medidas de Dispersion, deformacion y apuntamientoEstadistica   4. Medidas de Dispersion, deformacion y apuntamiento
Estadistica 4. Medidas de Dispersion, deformacion y apuntamiento
 
Estadistica 3. Medidas de Tendencia Central
Estadistica   3. Medidas de Tendencia CentralEstadistica   3. Medidas de Tendencia Central
Estadistica 3. Medidas de Tendencia Central
 
Análisis numérico Interpolación de Newton
Análisis numérico   Interpolación de NewtonAnálisis numérico   Interpolación de Newton
Análisis numérico Interpolación de Newton
 
Taller 1 - Estadística
Taller 1 - EstadísticaTaller 1 - Estadística
Taller 1 - Estadística
 
Estadistica 2. distribucion de frecuencias
Estadistica   2. distribucion de frecuenciasEstadistica   2. distribucion de frecuencias
Estadistica 2. distribucion de frecuencias
 
Análisis numérico 1. errores y aritmética de punto flotante
Análisis numérico 1. errores y aritmética de punto flotanteAnálisis numérico 1. errores y aritmética de punto flotante
Análisis numérico 1. errores y aritmética de punto flotante
 
Estadistica introduccion
Estadistica   introduccionEstadistica   introduccion
Estadistica introduccion
 
Programación I 2. Arquitectura de Capas
Programación I 2. Arquitectura de CapasProgramación I 2. Arquitectura de Capas
Programación I 2. Arquitectura de Capas
 
Taller 2.1 industrial
Taller 2.1 industrialTaller 2.1 industrial
Taller 2.1 industrial
 

Kürzlich hochgeladen

Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 

Kürzlich hochgeladen (20)

Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 

Algebra lineal 2. Espacios vectoriales

  • 1. Ing. Edward Ropero Magister en Gestión, Aplicación y Desarrollo de Software
  • 2. Definición Geométrica: El conjunto de todos los segmentos de recta dirigidos equivalentes a un segmento de recta dirigido dado se llama vector. Cualquier segmento de recta en ese conjunto se denomina una representación del vector. Definición Algebraica: Un vector v en el plano xy es un par ordenado de números reales (a, b). Los números a y b se denominan elementos o componentes del vector v. El vector cero es el vector (0, 0).
  • 3. Para muchos propósitos, dos vectores y se definen como iguales si tienen la misma magnitud y si apuntan en la misma dirección. Esto es, = sólo si A = B y si y apuntan en la misma dirección a lo largo de líneas paralelas.
  • 4. Para sumar el vector B al vector , primero dibuje el vector A con su magnitud representada mediante una escala de longitud conveniente, y luego dibuje el vector B a la misma escala, con su origen iniciando desde la punta de A . El vector resultante R = A + B es el vector que se dibuja desde el origen de A a la punta de B
  • 5. Ley conmutativa de la suma: Cuando se suman dos vectores, la suma es independiente del orden de la adición. Ley asociativa de la suma: Cuando se suman tres o mas vectores, su suma es independiente de la forma en la cual se agrupan los vectores individuales
  • 6. El negativo del vector A se define como el vector que, cuando se suma con A , da cero para la suma vectorial. Esto es: A + ( - A) = 0. Los vectores A y – A tienen la misma magnitud pero apuntan en direcciones opuestas.
  • 7. La operación de resta vectorial utiliza la definición del negativo de un vector. Se define la operación A – B como el vector – B que se suma al vector A :
  • 8. Si el vector A se multiplica por una cantidad escalar positiva c, el producto c es un vector que tiene la misma dirección que y magnitud c
  • 9. α 0 π6 π4 π3 π2 π 3π2 2π tg α 0 √33 1 √3 ∞ 0 ∞ 0
  • 10. Una recta está determinada por dos puntos. Una recta también queda determinada por un punto y una dirección, por consiguiente por un punto de la recta y un vector paralelo a la recta. Consideremos una recta l en el espacio, sea un A punto de l y un vector paralelo a l. l P A
  • 11. Un punto P ≠ A estará en la recta l si y solo si AP es paralelo a , es decir, AP = ʎ para cualquier ʎ ≠ 0. Observe que si ʎ = 0, entonces A = P, si colocamos un sistema coordenado de tal forma que el origen O, coincida con el punto inicial del vector .
  • 12. Empleando vectores coordenados, la ecuación puede escribirse como P = ʎV + A P-A = ʎV La segunda ecuación se conoce con el nombre de ecuación vectorial de la recta l que pasa por el punto A y es paralela al vector .
  • 13. Si P = (x, y, z), A = (a1, a2, a3) y V = (v1, v2, v3), entonces (x, y, z) = (a1, a2, a3) + ʎ (v1, v2, v3) (x, y, z) = (a1 + ʎv1, a2 + ʎv2, a3 + ʎv3) de la igualdad anterior se tiene que x = a1 + ʎv1 y = a2 + ʎv2 z = a3 + ʎv3 Las ecuaciones anteriores se llaman ecuaciones paramétricas para la recta l que pasa por el punto A y es paralela al vector . Al darle valores a ʎ obtenemos un punto P = (x, y, z) específico.
  • 14. Si en las ecuaciones anteriores despejamos el parámetro tenemos que Por consiguiente Las ecuaciones anteriores se conocen como ecuaciones simétricas de la recta que pasa por el punto A y es paralela al vector . ʎ = 𝑥 −𝑎1 𝑣1 , 𝑣1 ≠ 0 ʎ = 𝑦 −𝑎2 𝑣2 , 𝑣2 ≠ 0 ʎ = 𝑧 −𝑎3 𝑣3 , 𝑣3 ≠ 0 𝑥 − 𝑎1 𝑣1 = 𝑦 − 𝑎2 𝑣2 = 𝑧 − 𝑎3 𝑣3
  • 15. Teorema 1. Sean u = (a1, b1) y v = (a2, b2), entonces el producto interno de u y v es: u•v = a1a2 + b1b2 Al producto interno también se le llama producto punto. Recordemos que el producto interno es un número real al igual que la magnitud de un vector. Teorema 2. Sea v un vector de R2, entonces ||v||2 = v•v Ejemplo: Consideremos el vector v = (3,–5), entonces: usando el teorema anterior tenemos que
  • 16. Teorema 3. Sean u y v dos vectores diferentes de cero. El ángulo θ entre u y v es el ángulo no negativo más pequeño ( 0 ≤θ ≤π ) que hay entre ellos. Si v = αu, entonces θ = 0 si α > 0 y θ = π si α< 0
  • 17. Teorema 4. Si u y v son dos vectores diferentes de cero y ϕ es el ángulo entre ellos, entonces cos ϕ = 𝒖 .𝒗 𝒖 .| 𝒗 | Ejemplo: Sean u = (2,3) y v = (–7,1), el producto interno es u•v = (2)(–7) + (3)(1) = –14 + 3 = –11 las magnitudes son por lo tanto:
  • 18. Teorema 5. Dos vectores diferentes de cero, u y v son: a) paralelos si el ángulo entre ellos es cero o π (180°) b) ortogonales (perpendiculares) si el ángulo entre ellos es π/2 (90°) o 3π/2 (270°). Teorema 6. Dos vectores u y v , diferentes de cero, son ortogonales, si y sólo si, su producto interno es cero, es decir u•v = 0.
  • 19. Teorema 1. Sea V un espacio vectorial con producto interno definido y u en V. La norma de u, que se denota ||u|| está dada por ||u|| = (u.u) Ejemplo: Hallar la Norma del vector A = (6, -3, 1) ||A|| = 36 + 9 + 1 = 46
  • 20. Teorema 2. Sea V un espacio vectorial con producto interno y sea u un vector de V. Decimos que u es vector unitario si ||u|| = 1 Teorema 3. Sea V un espacio vectorial con producto interno y una norma definida. Sea u un vector en V, entonces el vector v = 𝒖 | 𝒖 | es un vector unitario Ejemplo: Sea A = (3, 2, -1) hallar su norma y vector unitario ||A|| = 9 + 4 + 1 = 14 Hallando el vector unitario: B = 𝑨 | 𝑨 | = 𝟏 14 (3, 2, -1) = (3/ 14, 2/ 14, -1/ 14) Hallando la norma B: ||B|| = B.B = (3/ 14)2 + (2/ 14)2 +(-1/ 14)2 = 9/14 + 4/14 + 1/14 = 𝟏𝟒/14 = 1
  • 21. Sea V un espacio vectorial con producto interno. Sean u y v elementos de V. La distancia entre u y v se define como la norma de la diferencia de los vectores u y v. d (u, v) = ||u − v|| Ejemplo: Determine la distancia entre los puntos A= (1,2) y B=(4,3) d (A, B) = ||A − B|| A − B = (1−4 , 𝟐 − 𝟑) = (-3, -1) ||A − B|| = (-3)2 + −𝟏 𝟐 = 𝟗 + 𝟏 = 𝟏𝟎
  • 22. Sean u y v dos vectores diferentes de cero en un espacio vectorial V con producto interno. Entonces la proyección de u sobre v es un vector denotado por proyv u que se define como proyv u = (𝒖.𝒗) | 𝒗 | 𝟐 v Ejemplo: Encontrar la proyección del vector u = (2,3) sobre el vector v = (4,–1) (u, v) = 8–3 = 5 v2 = 16 +1 = 17 entonces proyv u = (𝐮.𝐯) | 𝐯 | 𝟐 v = 𝟓 𝟏𝟕 (4, -1) = (20/17, -5/17)