SlideShare ist ein Scribd-Unternehmen logo
1 von 40
03/31/15
I dedicate this work to my beloved father Syed WaqarKazmi (Late), siblings
and the ummah...
Engr.Syed Absar Kazmi (Pakistan)
0060-182391572
G1220119 MSEE, IIUM Malaysia
engrabsarkazmi@gmail.com
A Comprehensive Presentation on
" Photo detectors"
Semiconductor Devices (ECE 6317)
Lecturer Dr.Fadzlin Hasbullah
03/31/15
Outline
• Elements Periodic Table
• Classifications of Opto Electronics
• History of Opto Detectors
• Photo detection principle
• Modes of Operation of Optical Detector
• Law of Conservation and Optical Absorption
• Types of Photo Detectors (w.r.t PN junction)
a) Photo Diode
b) PIN photo Diode
c) Avalanche Photo Diode
03/31/15
Semiconductors
Table. 1. Periodic Table [1].
03/31/15
Classification of optoelectronics
semiconductor devices
Figure. 1. Classification of semiconductor devices [2].
03/31/15
• John N. Shive was an American physicist and inventor who made remarkable
contributions in solid state physics and electronic engineering during the early
days of development of transistors at the Bell Telephone Laboratories.
• Graduation in physics and chemistry in the year 1934 and PhD in the year 1939.
• In 1948 the Shive implicated light beam instead of emitter terminal as wire for
transistor, generating holes that flow via collector; latterly this device was
appellated as phototransistor [3].
History
Figure. 2. Phototransistor inventor
Accessed on 27 Mar 15.
03/31/15
What is Photo-detector ?
• Semiconductor devices which can be implicated
to detects the photons presence. Such devices
are known as photo detectors [5].
• They transform optical signals into electrical
signals.
• When excess electrons and holes are generated
in a semi-conductor.
• Response is proportional to the power in the
beam.
Figure.3. Photo detectors [6].
03/31/15
Photodetection principle is based on two types of photoelectric effects which are
as follows [4].
 External photoelectric effect : Electrons become free from the metal
surface by energy absorption obtained by streams of incident photons.
Photomultiplier tube and vacuum photodiode are the implications of
external photoelectric effect.
 Internal photoelectric effect : Free charge carriers are generated by
absorption of incident photons in semiconductor junctions detectors.PIN
photodiode, pn junction photodiode and avalanche photodiode.
• Important detector properties are responsivity, spectral response, and rise
time.
Principles of Photodetection
03/31/15
Operation regimes of an illuminated
junction
Figure.4(a) .(photo detector)
Power is delivered to
the device by the external circuit [7].
Figure 4(b). Photovoltaic
Power is delivered to the load by
the device(solar cell/ energy
harvesting) [7].
03/31/15
Modes of Operation
Photoconductive vs. Photovoltaic
A photodiode can be operated in one of two modes:
Photoconductive (reverse bias)
• The photo detectors are operated in photo conductive mode.
Photovoltaic (zero-bias).
• Solar cells are operated in Photo voltaic mode.
• The photo diodes implicated in electrical energy generation are
optimized to have high efficiency of energy conversion.
• The photo diodes used as photo detectors are optimized to have fast
response times [8, 9].
Figure. 5. Operating Modes [10].
03/31/15
Photoconductive mode
• In photoconductive mode the diode is operated in
reverse biased, which interns dramatically reduce
the response time at the expense of increased noise.
Consequently faster response times can be
achieved by increasing the depletion layer and
decreasing the junction's capacitance [11].
• The photocurrent is linearly proportional to the
luminance for the given spectral distribution.
03/31/15
Photovoltaic Mode
• This mode exploits the photovoltaic effect, which
is the fundamental for solar cells. When used in
zero bias or photovoltaic mode, the flow of
photocurrent out of the device is restricted and a
voltage builds up [11].
03/31/15
Characteristic curve for operating
modes
Figure. 6. Photo detectors operating modes [11].
03/31/15
Current Voltage characteristic
Figure.7. Photodiode Characteristic curves [12].
03/31/15
Light spectrum versus wavelength and
energy.
Figure. 8. Light spectrum vs. wavelength and energy [13].
Figure.9. Momentum conservation law
03/31/15
MOMENTUM CONSERVATION LAW
Momentum conservation ensures that only vertical
transitions are allowed during absorption and
emission.
 Figure.9 Depicts Band-to-band absorption in
semiconductors.
 An electron from the valence-band going to an
acceptor causes a hole to be generated. Reverse
processes can also occur.
The most imperative mechanism for recombination
and generation is light emission and absorption
respectively [14].However my concern is in
absorption.
03/31/15
Optical Absorption in Semiconductors
• Interaction in semiconductors as far as devices are
concerned is the band-to-band transition.
• In the photon absorption process, a photon scatters
an electron in the valence band, causing the
electron to go into the conduction band.
• These two processes are of obvious importance for
light-detection [14].
Figure.10. absorption and recombination [15].
03/31/15
•–
• Most modern photo detectors operate on the basis of the
internal photoelectric effect.
•The photo excited electrons and holes remain within the
material, increasing the electrical conductivity of the material
in a semiconductor.
•Electron-hole photogenerationin semiconductor
Absorbed photons generate free electron-hole pairs.
Transport of the free electrons and holes upon an electric
field results in a drift current [7].
Electron-hole photo generation
Figure.11. Photo generation process
03/31/15
Absorption coefficient of some direct and
indirect gap semiconductors.
For the direct gap material, the absorption
coefficient is very strong once the photon energy
exceeds the band gap.
For indirect materials the absorption
coefficient is small near the band edge, but once
the photon energy is more than the direct gap, the
absorption coefficient increases rapidly [14].
Figure.12. Absorption coefficient for
semiconductors.
03/31/15
Absorption Coefficient and Photodiode Materials
– –
Photon absorption in a direct and indirect band gap semiconductors [16].
Direct Band gap
E
CB
VB
kk
Eg
EC
EV
Photon
Figure.13(a).direct band gap
k
Indirect Band gap
E
k
VB
CB
Photon
Phonons
EgEC
EV
Figure.13(b).indirect band gap
03/31/15
Responsivity vs. wavelength
Figure.12. . Typical responsivity curves for silicon, InGaAs, and germanium
[29].
03/31/15
Photo detectors Significant parameters
• Some of the imperative parameters of photo detector are as follows [18].
Quantum Efficiency It is the ratio of primary electron-hole pairs created photon to the photon
incident on the diode material.
• Detector Responsivity This is the ratio of output current to input optical power. Hence this is
the efficiency of the device. The unit of responsivity is amperes per watt.
• Spectral Response Range This is the range of wavelengths over which the device will operate.
The spectral response refers to the curve of detector responsivity as a function of wavelength
• Noise Characteristics
• The level of noise produced in the device is critical to it operation at low levels of input light.
• Response Time
• This is a measure of how quickly the detector can respond to variation in the input light
intensity
• Rise time
The rise time is the time for the detector output current to change to change from 10 to 90% of
its final value when the optic input power variation is a step.
• Gain
The APDs have more gain than PIN diode due to the effect of impact ionization as it is
operated at high electric field
03/31/15
Types of photo detector (pn junction)
• Photodiode
• P-I-N Photodiode
• Avalanche Photodiode
Figure.15. Photodiodes [ 19].
03/31/15
Photo diode
• Photo means light and diode means a device pertaining of two
electrodes [20].
• A photo diode is a light sensitive electronic device capable of
converting light into a voltage or current signal.
• It works on the principle of photo generation.
Figure. 16. Photodiode [21]
03/31/15
Photodiode Equivalent Circuit
The simplified photodiode equivalent model represents the key elements.
• The irradiance (light intensity) is proportional current source ID which is in
parallel with diode in figure 17.
• Performance is dependent upon parasitic components RD and CD can plays an
imperative role [22].
Figure. 17. Photodiode Equivalent circuit
03/31/15
Working of photodiode is based on Internal photoelectric effect : Free charge
carriers are generated by absorption of incident photons in semiconductor
junctions detectors [4].
The diode is connected reverse biased under incident photons.
•Free charge carriers are created by photon absorption.
•The pair of electron and hole is generated by every single incident photon.
•These moving charges cause current flow through the external circuit [23].
Photodiode Working
Figure. 18. Photodiode in reverse biased
Figure.18. Photodiode energy band dgm03/31/15
The reverse biased photo diode is under luminance (incident photons) is
represents the energy bandgap diagram in figure. 18(b) and 18(c).
• which absorbed in the junction via window.
• The absorbed energy raises a bound electron across the band gap from the
valence to the conduction band.
• A free hole is left in the valence to the conduction band.
• under electric field the generated free charge
carrieirs produce the drift current.
Photodiode Working...
03/31/15
P-I-N photodiode
• A PIN diode is a diode with a wide, lightly
doped 'near' intrinsic semiconductor region
between a p-type semiconductor and an n-type
semiconductor region.
• The p-type and n-type regions are typically
heavily doped because they are used for ohmic
contacts [11].
Figure. 19. PIN diode
03/31/15
P-I-N photodiode.....
Figure.20 (d). Photodiode Energy Band Dgm [16].
Figure. 20 (a). PIN diode [24]. Figure. 20 (b). PIN diode [24]. Figure. 20 (c). PIN diode [24].
Figure. 20.a shows the biased PIN photodiode vs.
energy band diagram.
Figure. 20.b depicts reversed biased PIN photodiode.
Figure. 20.c represents construction layers of PIN.
Figure. 20.d shows descriptive energy band diagram.
03/31/15
Generic Operating Parameters of an pin
Photodiode InGaAs
Table. 2. PIN Photodiode operating parameters [25].
Avalanche Photodiode
• Avalanche Photodiodes ( APDs ) are high sensitivity, high speed
semi-conductor "light" sensors.
• Compared to regular PIN construction photodiodes, APDs, have
an internal region where electron multiplication occurs, by
application of an external reverse voltage, and the resultant
"gain" in the output signal means that low light levels can be
measured at high speed.
• Incident photons create electron – hole pairs in the depletion
layer of a silicon photodiode structure and these move towards
the respective PN junctions depending on the electric field
strength.
Figure. 21(a). APD construction [27].
03/31/15
Avalanche Photodiode
Figure. 21(c). APD characteristic curve
[26].
Describing Avalanche photo-detecter construction and current voltage
characterstic curve with higlighted circle, depicts avalauche region in
figure.21(a) and 21(b) accordingly.
Operated with much higher reverse bias.
•This allows each photo-generated carrier to be multiplied by avalanche
breakdown.
•The effect is known as impact ionization/avalaunche effect.
•Resulting in internal gain within the photodiode, which increases the effective
responsivity of the device.
Figure. 21(b). Typical parameters for semiconductors [29]
03/31/15
Significance of Photodiodes
• Photodiodes are unique among light detectors in that when illuminated, they
generate an output which is proportional to light level. Their characteristics and
features can be summarized as follows [8]:
Low cost visible and near-IR photo detector
• Excellent linearity in output photocurrent according to light intensity
• Fast response times.
• Available in a wide range of packages
• Low noise
• Mechanically rugged yet compact and light weight
• Available as duals, quads or as linear arrays
• Usable with almost any visible or near infrared light source such as LEDs;
neon, fluorescent, incandescent bulbs; lasers; flame
• sources; sunlight; etc.
Figure.22. Applications of photodiodes [28].
• Spectroscopy.
• Photography.
• Analytical instrumentation.
• Optical position sensors.
• Beam alignment.
Silicon photodiodes are utilized in such
diverse implications as
• Surface characterization.
• Laser range finders.
• Optical communications.
• Medical imaging instruments.
Qur’an about Light
• It is He who made the sun a shining light and the moon a
derived light and determined for it phases - that you may know
the number of years and account [of time]. Allah has not
created this except in truth. He details the signs for a people
who have knowledge [10:5].
• Indeed, in the alternation of the night and the day and [in] what
Allah has created in the heavens and the earth are signs for a
people who fear Allah [10:6].
03/31/15
References
[1].
[2].
[3] www.circuitstoday.com/invention-history-of-phototransistor-and-photodiode,Acessed 27 mar.
[4]
[5]
[6] http://www.roithner-laser.com/pd/pd_ingaas.html
[7] Photo Devices by Jia-Ming ch#14 and Fundamental of Photonics 2nd Edition by Saleh & Teich ch#18.
[8] http://ecetutorials.com/analog-electronics/photo-diode/Accessed on 22 Mar 2015.
[9]
[10] http://sub.allaboutcircuits.com/images/quiz/01031x01.png Accessed on 29 Mar 2015.
[11]
[12]
[13]
www.powershow.com/view4/5accff-Mjk4Z/Single_Photon_Detectors_powerpoint_ppt_presentation
Opto Electronic Device March, 2003 20th Edition Issued by Matsushita Electric Industrial Co., Ltd.
(C) Matsushita Electric Industrial Co., Ltd
www.powershow.com/view1/1b295a-ZDc1Z/Chapter_7_Light_Detectors_powerpoint_ppt_presentation 28 mar
Semiconductor Physics and Devices Basic Principles Fourth Edition Donald A. Neamen University of New Mexi
http://www.thorlabs.com/tutorials.cfm?tabID=31760 Accessed on 28 Mar 2015.
National seminar on Electric Energy : Safety & Conservations Department of Physics, University of Delhi India
http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/photdet.html#c2
BOOK; Semiconductor Physics and Devices Basic Principles Fourth Edition Donald A. Neamen University of
New Mexico ,Ch # 14 ,Pg # 622.
03/31/15
References....
[14].
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
BOOK; Device Physics and Design by UMESH K. MISHRA and JASPRIT SINGH , USA
http://chemwiki.ucdavis.edu/Analytical_Chemistry/Analytical_Chemistry_2.0/10_Spectroscopic_Methods
/10A%3A_Overview_of_Spectroscopy Accessed on 27 Mar 2015.
http://www.powershow.com/view/3d4ae1-MWFhN/Chap_5_Photodetectors_powerpoint_ppt_presentation
http://pongsak.ee.engr.tu.ac.th/le426/doc/OptCommC6.pdf Accessed on 22 Mar 2015.
http://pongsak.ee.engr.tu.ac.th/le426/doc/OptCommC6.pdf Accessed on 21 Mar 2015.
http://www.pro-lite.co.uk/File/germanium_detectors.php Accessed on 29 Mar 2015
http://ecetutorials.com/analog-electronics/photo-diode/Accessd on 21 Mar 2015
http://mcututor.blogspot.com/2012/02/photo-diodes-symbol.html Accessed on 29 Mar 2015
http://e2e.ti.com/blogs_/archives/b/thesignal/archive/2012/08/06/illuminating-photodiodes 29 Mar 2015
http://www.powershow.com/view1/1b295a-ZDc1Z/Chapter_7_Light_Detectors_powerpoint_ppt_
presentation 28 mar
http://educypedia.karadimov.info/library/Photodetectors-leture-12-03-09.pdf Accessed on 29 Mar
2015.
03/31/15
References...
[25]
[26]
[27]
[28]
[29]
http://pongsak.ee.engr.tu.ac.th/le426/doc/OptCommC6.pdfaccessed on 22 Mar 2015
https://www.thorlabs.com/images/TabImages/Single_Photon_Counting_Technique-300.png
Accessed on 29 Mar 2015.
http://www.pacer.co.uk/Assets/Pacer/User/Photodiode%20Typical%20Applications.pdf 27 Mar 2015.
http://www.osioptoelectronics.com/application-notes/AN-Photodiode-Parameters-Characteristics.pdf
http://download.springer.com/static/pdf/788/chp%253A10.1007%252F978-1-4419-0304-4_6.pdf
?auth66=1427799079_3ead44b750ec7155543d1f0d8122825d&ext=.pdf Accessed on 31 Mar 15
03/31/15

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (20)

Chapter 4b
Chapter 4bChapter 4b
Chapter 4b
 
Optoelectronics
OptoelectronicsOptoelectronics
Optoelectronics
 
Pin photodiode.pptx ashvani
Pin photodiode.pptx ashvaniPin photodiode.pptx ashvani
Pin photodiode.pptx ashvani
 
PHOTONIC CRYSTALS
PHOTONIC CRYSTALSPHOTONIC CRYSTALS
PHOTONIC CRYSTALS
 
applications of photodetectors
applications of photodetectorsapplications of photodetectors
applications of photodetectors
 
Photoconductivity.pptx
Photoconductivity.pptxPhotoconductivity.pptx
Photoconductivity.pptx
 
Semiconductor lasers
Semiconductor lasersSemiconductor lasers
Semiconductor lasers
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devices
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Electro-optic modulators
Electro-optic modulatorsElectro-optic modulators
Electro-optic modulators
 
Non linear optics and SHG
Non linear optics and SHGNon linear optics and SHG
Non linear optics and SHG
 
Fabrication of fibers
Fabrication of fibers Fabrication of fibers
Fabrication of fibers
 
ppt on dispersion
ppt on dispersionppt on dispersion
ppt on dispersion
 
Photodiode and Photodetectors.pptx
Photodiode and Photodetectors.pptxPhotodiode and Photodetectors.pptx
Photodiode and Photodetectors.pptx
 
Band theory of solids
Band theory of solidsBand theory of solids
Band theory of solids
 
Photonics devices
Photonics devicesPhotonics devices
Photonics devices
 
Photodiodes
PhotodiodesPhotodiodes
Photodiodes
 
Semiconductor optoelectronic materials
Semiconductor optoelectronic materialsSemiconductor optoelectronic materials
Semiconductor optoelectronic materials
 
Optical Detector PIN photodiode
Optical Detector PIN photodiodeOptical Detector PIN photodiode
Optical Detector PIN photodiode
 
Photoluminescence
PhotoluminescencePhotoluminescence
Photoluminescence
 

Ähnlich wie Photodetectors

Photoelectric transducers and its classification
Photoelectric transducers and its classificationPhotoelectric transducers and its classification
Photoelectric transducers and its classificationkaroline Enoch
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxInsaneInsane4
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxInsaneInsane4
 
The science behind photosensor - Mohit Saini
The science behind photosensor - Mohit SainiThe science behind photosensor - Mohit Saini
The science behind photosensor - Mohit SainiMohit Saini
 
Applications of Nanomaterials.pdf
Applications of Nanomaterials.pdfApplications of Nanomaterials.pdf
Applications of Nanomaterials.pdfFikaduTakele1
 
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effectDiploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effectRai University
 
Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...
Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...
Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...ijtsrd
 
Detectors used in array spectrophotometer
Detectors used in  array spectrophotometerDetectors used in  array spectrophotometer
Detectors used in array spectrophotometersuriyapriya kamaraj
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Performance study of photovoltaic solar cell
Performance study of photovoltaic solar cellPerformance study of photovoltaic solar cell
Performance study of photovoltaic solar celleSAT Journals
 
solarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptxsolarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptxAditya Bhardwaj
 
IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...
IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...
IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...IRJET Journal
 
Advanced optical communication By Er. Swapnl Kaware
Advanced optical communication By Er. Swapnl KawareAdvanced optical communication By Er. Swapnl Kaware
Advanced optical communication By Er. Swapnl KawareProf. Swapnil V. Kaware
 

Ähnlich wie Photodetectors (20)

Photoelectric transducers and its classification
Photoelectric transducers and its classificationPhotoelectric transducers and its classification
Photoelectric transducers and its classification
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
 
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptxPhotoelectric Ppt. by- Kshitij Dhabarde.pptx
Photoelectric Ppt. by- Kshitij Dhabarde.pptx
 
OC_Part (7).pdf
OC_Part (7).pdfOC_Part (7).pdf
OC_Part (7).pdf
 
Solar Photovoltaic.ppt
Solar Photovoltaic.pptSolar Photovoltaic.ppt
Solar Photovoltaic.ppt
 
The science behind photosensor - Mohit Saini
The science behind photosensor - Mohit SainiThe science behind photosensor - Mohit Saini
The science behind photosensor - Mohit Saini
 
Unit5 power devices and display devices class9
Unit5 power devices and display devices class9Unit5 power devices and display devices class9
Unit5 power devices and display devices class9
 
Applications of Nanomaterials.pdf
Applications of Nanomaterials.pdfApplications of Nanomaterials.pdf
Applications of Nanomaterials.pdf
 
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effectDiploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
Diploma sem 2 applied science physics-unit 5-chap-2 photoelectric effect
 
Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...
Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...
Technical Report Comparative Analysis of Photodetectors for Appropriate Usage...
 
Detectors used in array spectrophotometer
Detectors used in  array spectrophotometerDetectors used in  array spectrophotometer
Detectors used in array spectrophotometer
 
Solar pv cell
Solar pv cellSolar pv cell
Solar pv cell
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
3. solar cell
3. solar cell3. solar cell
3. solar cell
 
Performance study of photovoltaic solar cell
Performance study of photovoltaic solar cellPerformance study of photovoltaic solar cell
Performance study of photovoltaic solar cell
 
Photo diode
Photo diodePhoto diode
Photo diode
 
UV-VIS SPECTROSCOPY
UV-VIS SPECTROSCOPYUV-VIS SPECTROSCOPY
UV-VIS SPECTROSCOPY
 
solarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptxsolarcell-piezoandthermoelectricity.pptx
solarcell-piezoandthermoelectricity.pptx
 
IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...
IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...
IRJET- Reducing Harmonics in Micro Grid Distrubution System using APF with PI...
 
Advanced optical communication By Er. Swapnl Kaware
Advanced optical communication By Er. Swapnl KawareAdvanced optical communication By Er. Swapnl Kaware
Advanced optical communication By Er. Swapnl Kaware
 

Mehr von Engr Syed Absar Kazmi

Mehr von Engr Syed Absar Kazmi (8)

Paper Evaluation research methodology
Paper Evaluation research methodologyPaper Evaluation research methodology
Paper Evaluation research methodology
 
Mems capacitor
Mems capacitorMems capacitor
Mems capacitor
 
Biosignal (ppg ) biometric
Biosignal (ppg ) biometric Biosignal (ppg ) biometric
Biosignal (ppg ) biometric
 
Satellite communication
Satellite communicationSatellite communication
Satellite communication
 
Design of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applicationsDesign of band notched antenna for ultra wide band applications
Design of band notched antenna for ultra wide band applications
 
Microwave radio link design
Microwave radio link designMicrowave radio link design
Microwave radio link design
 
Tot in muslim world
Tot in muslim worldTot in muslim world
Tot in muslim world
 
Twta and sspa
Twta and sspaTwta and sspa
Twta and sspa
 

Photodetectors

  • 2. I dedicate this work to my beloved father Syed WaqarKazmi (Late), siblings and the ummah... Engr.Syed Absar Kazmi (Pakistan) 0060-182391572 G1220119 MSEE, IIUM Malaysia engrabsarkazmi@gmail.com
  • 3. A Comprehensive Presentation on " Photo detectors" Semiconductor Devices (ECE 6317) Lecturer Dr.Fadzlin Hasbullah
  • 4. 03/31/15 Outline • Elements Periodic Table • Classifications of Opto Electronics • History of Opto Detectors • Photo detection principle • Modes of Operation of Optical Detector • Law of Conservation and Optical Absorption • Types of Photo Detectors (w.r.t PN junction) a) Photo Diode b) PIN photo Diode c) Avalanche Photo Diode
  • 6. 03/31/15 Classification of optoelectronics semiconductor devices Figure. 1. Classification of semiconductor devices [2].
  • 7. 03/31/15 • John N. Shive was an American physicist and inventor who made remarkable contributions in solid state physics and electronic engineering during the early days of development of transistors at the Bell Telephone Laboratories. • Graduation in physics and chemistry in the year 1934 and PhD in the year 1939. • In 1948 the Shive implicated light beam instead of emitter terminal as wire for transistor, generating holes that flow via collector; latterly this device was appellated as phototransistor [3]. History Figure. 2. Phototransistor inventor Accessed on 27 Mar 15.
  • 8. 03/31/15 What is Photo-detector ? • Semiconductor devices which can be implicated to detects the photons presence. Such devices are known as photo detectors [5]. • They transform optical signals into electrical signals. • When excess electrons and holes are generated in a semi-conductor. • Response is proportional to the power in the beam. Figure.3. Photo detectors [6].
  • 9. 03/31/15 Photodetection principle is based on two types of photoelectric effects which are as follows [4].  External photoelectric effect : Electrons become free from the metal surface by energy absorption obtained by streams of incident photons. Photomultiplier tube and vacuum photodiode are the implications of external photoelectric effect.  Internal photoelectric effect : Free charge carriers are generated by absorption of incident photons in semiconductor junctions detectors.PIN photodiode, pn junction photodiode and avalanche photodiode. • Important detector properties are responsivity, spectral response, and rise time. Principles of Photodetection
  • 10. 03/31/15 Operation regimes of an illuminated junction Figure.4(a) .(photo detector) Power is delivered to the device by the external circuit [7]. Figure 4(b). Photovoltaic Power is delivered to the load by the device(solar cell/ energy harvesting) [7].
  • 11. 03/31/15 Modes of Operation Photoconductive vs. Photovoltaic A photodiode can be operated in one of two modes: Photoconductive (reverse bias) • The photo detectors are operated in photo conductive mode. Photovoltaic (zero-bias). • Solar cells are operated in Photo voltaic mode. • The photo diodes implicated in electrical energy generation are optimized to have high efficiency of energy conversion. • The photo diodes used as photo detectors are optimized to have fast response times [8, 9]. Figure. 5. Operating Modes [10].
  • 12. 03/31/15 Photoconductive mode • In photoconductive mode the diode is operated in reverse biased, which interns dramatically reduce the response time at the expense of increased noise. Consequently faster response times can be achieved by increasing the depletion layer and decreasing the junction's capacitance [11]. • The photocurrent is linearly proportional to the luminance for the given spectral distribution.
  • 13. 03/31/15 Photovoltaic Mode • This mode exploits the photovoltaic effect, which is the fundamental for solar cells. When used in zero bias or photovoltaic mode, the flow of photocurrent out of the device is restricted and a voltage builds up [11].
  • 14. 03/31/15 Characteristic curve for operating modes Figure. 6. Photo detectors operating modes [11].
  • 15. 03/31/15 Current Voltage characteristic Figure.7. Photodiode Characteristic curves [12].
  • 16. 03/31/15 Light spectrum versus wavelength and energy. Figure. 8. Light spectrum vs. wavelength and energy [13].
  • 17. Figure.9. Momentum conservation law 03/31/15 MOMENTUM CONSERVATION LAW Momentum conservation ensures that only vertical transitions are allowed during absorption and emission.  Figure.9 Depicts Band-to-band absorption in semiconductors.  An electron from the valence-band going to an acceptor causes a hole to be generated. Reverse processes can also occur. The most imperative mechanism for recombination and generation is light emission and absorption respectively [14].However my concern is in absorption.
  • 18. 03/31/15 Optical Absorption in Semiconductors • Interaction in semiconductors as far as devices are concerned is the band-to-band transition. • In the photon absorption process, a photon scatters an electron in the valence band, causing the electron to go into the conduction band. • These two processes are of obvious importance for light-detection [14]. Figure.10. absorption and recombination [15].
  • 19. 03/31/15 •– • Most modern photo detectors operate on the basis of the internal photoelectric effect. •The photo excited electrons and holes remain within the material, increasing the electrical conductivity of the material in a semiconductor. •Electron-hole photogenerationin semiconductor Absorbed photons generate free electron-hole pairs. Transport of the free electrons and holes upon an electric field results in a drift current [7]. Electron-hole photo generation Figure.11. Photo generation process
  • 20. 03/31/15 Absorption coefficient of some direct and indirect gap semiconductors. For the direct gap material, the absorption coefficient is very strong once the photon energy exceeds the band gap. For indirect materials the absorption coefficient is small near the band edge, but once the photon energy is more than the direct gap, the absorption coefficient increases rapidly [14]. Figure.12. Absorption coefficient for semiconductors.
  • 21. 03/31/15 Absorption Coefficient and Photodiode Materials – – Photon absorption in a direct and indirect band gap semiconductors [16]. Direct Band gap E CB VB kk Eg EC EV Photon Figure.13(a).direct band gap k Indirect Band gap E k VB CB Photon Phonons EgEC EV Figure.13(b).indirect band gap
  • 22. 03/31/15 Responsivity vs. wavelength Figure.12. . Typical responsivity curves for silicon, InGaAs, and germanium [29].
  • 23. 03/31/15 Photo detectors Significant parameters • Some of the imperative parameters of photo detector are as follows [18]. Quantum Efficiency It is the ratio of primary electron-hole pairs created photon to the photon incident on the diode material. • Detector Responsivity This is the ratio of output current to input optical power. Hence this is the efficiency of the device. The unit of responsivity is amperes per watt. • Spectral Response Range This is the range of wavelengths over which the device will operate. The spectral response refers to the curve of detector responsivity as a function of wavelength • Noise Characteristics • The level of noise produced in the device is critical to it operation at low levels of input light. • Response Time • This is a measure of how quickly the detector can respond to variation in the input light intensity • Rise time The rise time is the time for the detector output current to change to change from 10 to 90% of its final value when the optic input power variation is a step. • Gain The APDs have more gain than PIN diode due to the effect of impact ionization as it is operated at high electric field
  • 24. 03/31/15 Types of photo detector (pn junction) • Photodiode • P-I-N Photodiode • Avalanche Photodiode Figure.15. Photodiodes [ 19].
  • 25. 03/31/15 Photo diode • Photo means light and diode means a device pertaining of two electrodes [20]. • A photo diode is a light sensitive electronic device capable of converting light into a voltage or current signal. • It works on the principle of photo generation. Figure. 16. Photodiode [21]
  • 26. 03/31/15 Photodiode Equivalent Circuit The simplified photodiode equivalent model represents the key elements. • The irradiance (light intensity) is proportional current source ID which is in parallel with diode in figure 17. • Performance is dependent upon parasitic components RD and CD can plays an imperative role [22]. Figure. 17. Photodiode Equivalent circuit
  • 27. 03/31/15 Working of photodiode is based on Internal photoelectric effect : Free charge carriers are generated by absorption of incident photons in semiconductor junctions detectors [4]. The diode is connected reverse biased under incident photons. •Free charge carriers are created by photon absorption. •The pair of electron and hole is generated by every single incident photon. •These moving charges cause current flow through the external circuit [23]. Photodiode Working Figure. 18. Photodiode in reverse biased
  • 28. Figure.18. Photodiode energy band dgm03/31/15 The reverse biased photo diode is under luminance (incident photons) is represents the energy bandgap diagram in figure. 18(b) and 18(c). • which absorbed in the junction via window. • The absorbed energy raises a bound electron across the band gap from the valence to the conduction band. • A free hole is left in the valence to the conduction band. • under electric field the generated free charge carrieirs produce the drift current. Photodiode Working...
  • 29. 03/31/15 P-I-N photodiode • A PIN diode is a diode with a wide, lightly doped 'near' intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region. • The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts [11]. Figure. 19. PIN diode
  • 30. 03/31/15 P-I-N photodiode..... Figure.20 (d). Photodiode Energy Band Dgm [16]. Figure. 20 (a). PIN diode [24]. Figure. 20 (b). PIN diode [24]. Figure. 20 (c). PIN diode [24]. Figure. 20.a shows the biased PIN photodiode vs. energy band diagram. Figure. 20.b depicts reversed biased PIN photodiode. Figure. 20.c represents construction layers of PIN. Figure. 20.d shows descriptive energy band diagram.
  • 31. 03/31/15 Generic Operating Parameters of an pin Photodiode InGaAs Table. 2. PIN Photodiode operating parameters [25].
  • 32. Avalanche Photodiode • Avalanche Photodiodes ( APDs ) are high sensitivity, high speed semi-conductor "light" sensors. • Compared to regular PIN construction photodiodes, APDs, have an internal region where electron multiplication occurs, by application of an external reverse voltage, and the resultant "gain" in the output signal means that low light levels can be measured at high speed. • Incident photons create electron – hole pairs in the depletion layer of a silicon photodiode structure and these move towards the respective PN junctions depending on the electric field strength. Figure. 21(a). APD construction [27].
  • 33. 03/31/15 Avalanche Photodiode Figure. 21(c). APD characteristic curve [26]. Describing Avalanche photo-detecter construction and current voltage characterstic curve with higlighted circle, depicts avalauche region in figure.21(a) and 21(b) accordingly. Operated with much higher reverse bias. •This allows each photo-generated carrier to be multiplied by avalanche breakdown. •The effect is known as impact ionization/avalaunche effect. •Resulting in internal gain within the photodiode, which increases the effective responsivity of the device. Figure. 21(b). Typical parameters for semiconductors [29]
  • 34. 03/31/15 Significance of Photodiodes • Photodiodes are unique among light detectors in that when illuminated, they generate an output which is proportional to light level. Their characteristics and features can be summarized as follows [8]: Low cost visible and near-IR photo detector • Excellent linearity in output photocurrent according to light intensity • Fast response times. • Available in a wide range of packages • Low noise • Mechanically rugged yet compact and light weight • Available as duals, quads or as linear arrays • Usable with almost any visible or near infrared light source such as LEDs; neon, fluorescent, incandescent bulbs; lasers; flame • sources; sunlight; etc.
  • 35. Figure.22. Applications of photodiodes [28]. • Spectroscopy. • Photography. • Analytical instrumentation. • Optical position sensors. • Beam alignment. Silicon photodiodes are utilized in such diverse implications as • Surface characterization. • Laser range finders. • Optical communications. • Medical imaging instruments.
  • 36. Qur’an about Light • It is He who made the sun a shining light and the moon a derived light and determined for it phases - that you may know the number of years and account [of time]. Allah has not created this except in truth. He details the signs for a people who have knowledge [10:5]. • Indeed, in the alternation of the night and the day and [in] what Allah has created in the heavens and the earth are signs for a people who fear Allah [10:6].
  • 37. 03/31/15 References [1]. [2]. [3] www.circuitstoday.com/invention-history-of-phototransistor-and-photodiode,Acessed 27 mar. [4] [5] [6] http://www.roithner-laser.com/pd/pd_ingaas.html [7] Photo Devices by Jia-Ming ch#14 and Fundamental of Photonics 2nd Edition by Saleh & Teich ch#18. [8] http://ecetutorials.com/analog-electronics/photo-diode/Accessed on 22 Mar 2015. [9] [10] http://sub.allaboutcircuits.com/images/quiz/01031x01.png Accessed on 29 Mar 2015. [11] [12] [13] www.powershow.com/view4/5accff-Mjk4Z/Single_Photon_Detectors_powerpoint_ppt_presentation Opto Electronic Device March, 2003 20th Edition Issued by Matsushita Electric Industrial Co., Ltd. (C) Matsushita Electric Industrial Co., Ltd www.powershow.com/view1/1b295a-ZDc1Z/Chapter_7_Light_Detectors_powerpoint_ppt_presentation 28 mar Semiconductor Physics and Devices Basic Principles Fourth Edition Donald A. Neamen University of New Mexi http://www.thorlabs.com/tutorials.cfm?tabID=31760 Accessed on 28 Mar 2015. National seminar on Electric Energy : Safety & Conservations Department of Physics, University of Delhi India http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/photdet.html#c2 BOOK; Semiconductor Physics and Devices Basic Principles Fourth Edition Donald A. Neamen University of New Mexico ,Ch # 14 ,Pg # 622.
  • 38. 03/31/15 References.... [14]. [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] BOOK; Device Physics and Design by UMESH K. MISHRA and JASPRIT SINGH , USA http://chemwiki.ucdavis.edu/Analytical_Chemistry/Analytical_Chemistry_2.0/10_Spectroscopic_Methods /10A%3A_Overview_of_Spectroscopy Accessed on 27 Mar 2015. http://www.powershow.com/view/3d4ae1-MWFhN/Chap_5_Photodetectors_powerpoint_ppt_presentation http://pongsak.ee.engr.tu.ac.th/le426/doc/OptCommC6.pdf Accessed on 22 Mar 2015. http://pongsak.ee.engr.tu.ac.th/le426/doc/OptCommC6.pdf Accessed on 21 Mar 2015. http://www.pro-lite.co.uk/File/germanium_detectors.php Accessed on 29 Mar 2015 http://ecetutorials.com/analog-electronics/photo-diode/Accessd on 21 Mar 2015 http://mcututor.blogspot.com/2012/02/photo-diodes-symbol.html Accessed on 29 Mar 2015 http://e2e.ti.com/blogs_/archives/b/thesignal/archive/2012/08/06/illuminating-photodiodes 29 Mar 2015 http://www.powershow.com/view1/1b295a-ZDc1Z/Chapter_7_Light_Detectors_powerpoint_ppt_ presentation 28 mar http://educypedia.karadimov.info/library/Photodetectors-leture-12-03-09.pdf Accessed on 29 Mar 2015.
  • 39. 03/31/15 References... [25] [26] [27] [28] [29] http://pongsak.ee.engr.tu.ac.th/le426/doc/OptCommC6.pdfaccessed on 22 Mar 2015 https://www.thorlabs.com/images/TabImages/Single_Photon_Counting_Technique-300.png Accessed on 29 Mar 2015. http://www.pacer.co.uk/Assets/Pacer/User/Photodiode%20Typical%20Applications.pdf 27 Mar 2015. http://www.osioptoelectronics.com/application-notes/AN-Photodiode-Parameters-Characteristics.pdf http://download.springer.com/static/pdf/788/chp%253A10.1007%252F978-1-4419-0304-4_6.pdf ?auth66=1427799079_3ead44b750ec7155543d1f0d8122825d&ext=.pdf Accessed on 31 Mar 15