SlideShare ist ein Scribd-Unternehmen logo
1 von 163
Downloaden Sie, um offline zu lesen
CONSTRUCTION MANAGEMENT
Concept-Develop-Execute-Finish
__________________________________________________________________________________
Seun Sambath, PhD
Concrete Structures
(ACI 318-05)
in Mathcad
Sixth Edition
Phnom Penh 2010
___________________________________________________________________________________
Address: #M41, St.308, Sangkat Tonle Basac, Khan Chamkarmon,
Phnom Penh, Cambodia.
Tel: 012 659 848.
Table of Contents
1. Unit conversion ....................................................................................................... 1
2. Simple calculation ................................................................................................... 4
3. Materials ................................................................................................................ 5
4. Safety provision ....................................................................................................... 10
5. Loads on structures (case of two-way slab) ................................................................ 12
6. Loads on structures (case of one-way slab) ................................................................ 16
7. Loads on staircase .................................................................................................. 20
8. Loads on tile roof ..................................................................................................... 23
9. ASCE wind loads .................................................................................................... 25
10. Design of singly reinforced beams ............................................................................ 28
11. Design of doubly reinforced beams ......................................................................... 39
12. Design of T beams ................................................................................................. 52
13. Shear design ......................................................................................................... 60
14. Column design ...................................................................................................... 68
15. Design of footings .................................................................................................. 99
16. Design of pile caps ............................................................................................... 106
17. Slab design .......................................................................................................... 115
18. Design of staircase ............................................................................................... 142
19. Deflections ........................................................................................................... 148
20. Development lengths ............................................................................................. 158
Reference .................................................................................................................. 162
1. Unit Conversion
Length
in = inch
ft = foot
yd = yard
mi = mile
1in 25.4 mm 1cm 0.394 in
1ft 0.305 m 1m 3.281 ft 1ft 12 in
1yd 0.914 m 1m 1.094 yd 1yd 3 ft
1mi 1.609 km 1km 0.621 mi 1mi 1760 yd
1mi 5280 ft
1m 100mm 1.1m 1mi 200m 1.124 mi
Size of standard concrete cylinder D 6in 15.24 cm
H 12in 30.48 cm
Force
lbf = pound force
kip = kilopound force
1lbf 4.448 N 1lbf 0.454 kgf 1kgf 9.807 N
1N 0.225 lbf 1kgf 2.205 lbf 1N 0.102 kgf
1kip 4.448 kN 1kip 0.454 tonnef 1tonf 0.907 tonnef
1kN 0.225 kip 1tonnef 2.205 kip 1tonnef 1.102 tonf
1tonnef 1000 kgf 1tonf 2000 lbf
Page 1
Stress
psi = pound per square inch 1psi 1
lbf
in
2

ksi = kilopound per square inch 1ksi 1
kip
in
2

psf = pound per square foot 1psf 1
lbf
ft
2

1psi 6.895 kPa 1kPa 0.145 psi 1Pa 1
N
m
2

1ksi 6.895 MPa 1MPa 0.145 ksi 1kPa 1
kN
m
2

1MPa 1
N
mm
2

1psf 0.048
kN
m
2
 1
kN
m
2
20.885 psf
1psf 4.882
kgf
m
2
 1
kgf
m
2
0.205 psf
Concrete compression strength
3000psi 20.7 MPa 20MPa 2900.8 psi
4000psi 27.6 MPa 25MPa 3625.9 psi
5000psi 34.5 MPa 35MPa 5076.3 psi
8000psi 55.2 MPa 55MPa 7977.1 psi
Steel yield strength
60ksi 413.7 MPa 390MPa 56.6 ksi
75ksi 517.1 MPa 490MPa 71.1 ksi
Live loads
40psf 1.915
kN
m
2
 200
kgf
m
2
40.963 psf
100psf 4.788
kN
m
2
 4.80
kN
m
2
100.25 psf
Page 2
Density
1pcf 1
lbf
ft
3

125pcf 19.636
kN
m
3
 145pcf 22.778
kN
m
3

Moments
1ft kip 1.356 kN m
User setting
Riels 1
USD 4165Riels
124USD 516460 Riels
200000Riels 48.019 USD
CostSteel 665
USD
1tonnef

670kgf CostSteel 445.55 USD
Page 3
2. Simple Calculation
1 3
2
3







3
23.472
a 2 b 4 c 1
Δ b
2
4 a c
x1
b Δ
2 a
0.225
x2
b Δ
2 a
2.225
Page 4
3. Materials
1. Concrete
Standard concrete cylinder D 6in 15.24 cm D 150mm
H 12in 30.48 cm H 300mm
Concrete compression strength
f'c 3000psi 20.7 MPa f'c 20MPa 2900.8 psi
f'c 4000psi 27.6 MPa f'c 25MPa 3625.9 psi
f'c 5000psi 34.5 MPa f'c 35MPa 5076.3 psi
Concrete ultimate strain
εu 0.003
Cubic and cylinder compression strength
fcube
f'c
0.85
=
f'c 20MPa fcube
f'c
0.85
23.529 MPa
f'c 25MPa fcube
f'c
0.85
29.412 MPa
f'c 35MPa fcube
f'c
0.85
41.176 MPa
Modulus of rupture (tensile strength)
fr 7.5 f'c= (in psi)
Metric coefficient 7.5psi
f'c
psi
 7.5MPa
psi
MPa

f'c
MPa
MPa
psi
= C MPa
f'c
MPa
=
C 7.5
psi
MPa
MPa
psi
 0.623
fr 0.623 f'c= (in MPa)
Page 5
Modulus of elasticity
Ec 33 wc
1.5
 f'c= (in psi)
wc is a unit weight of concrete (in pcf)
Metric coefficient 33psi
kN
m
3
pcf








1.5

MPa
psi
 44.011 MPa
Ec 44 wc
1.5
 f'c= (in MPa)
wc in kN/m3
Example 3.1
Concrete compression strength f'c 25MPa
Unit weight of concrete wc 24
kN
m
3
 145pcf 22.778
kN
m
3

Modulus of rupture
fr 7.5psi
f'c
psi
 3.114 MPa
fr 0.623MPa
f'c
MPa
 3.115 MPa
Modulus of elasticity
Ec 33psi
wc
pcf






1.5

f'c
psi
 2.587 10
4
 MPa
Ec 44MPa
wc
kN
m
3










1.5

f'c
MPa
 2.587 10
4
 MPa
Page 6
2. Steel Reinforcements
Steel yield strength of deformed bar (DB) fy 390MPa 56.565 ksi
Steel yield strength of round bar (RB) fy 235MPa 34.084 ksi
Modulus of elasticity Es 29000000psi 1.999 10
5
 MPa
Es 2 10
5
MPa
Steel yield strength εy
fy
Es
=
US Steel Reinforcements
Bar No. (#) Bar diameter
no
3
4
5
6
7
8
9
10
11
12
13
14


































 D
no
8
in D
9.5
12.7
15.9
19
22.2
25.4
28.6
31.8
34.9
38.1
41.3
44.4


































mm
Page 7
Steel area
A
π D
2

4
 A
0.71
1.27
1.98
2.85
3.88
5.07
6.41
7.92
9.58
11.4
13.38
15.52


































cm
2

Weight of steel reinforcements
W A 7850
kgf
m
3
 W
0.559
0.994
1.554
2.237
3.045
3.978
5.034
6.215
7.52
8.95
10.503
12.182

































kgf
m

ORIGIN 1
n 1 9 Area
n 
A n
Page 8
1 2 3 4 5 6 7 8 9
3 9.5 0.71 1.43 2.14 2.85 3.56 4.28 4.99 5.70 6.41 0.559
4 12.7 1.27 2.53 3.80 5.07 6.33 7.60 8.87 10.13 11.40 0.994
5 15.9 1.98 3.96 5.94 7.92 9.90 11.88 13.86 15.83 17.81 1.554
6 19.1 2.85 5.70 8.55 11.40 14.25 17.10 19.95 22.80 25.65 2.237
7 22.2 3.88 7.76 11.64 15.52 19.40 23.28 27.16 31.04 34.92 3.045
8 25.4 5.07 10.13 15.20 20.27 25.34 30.40 35.47 40.54 45.60 3.978
9 28.6 6.41 12.83 19.24 25.65 32.07 38.48 44.89 51.30 57.72 5.034
10 31.8 7.92 15.83 23.75 31.67 39.59 47.50 55.42 63.34 71.26 6.215
11 34.9 9.58 19.16 28.74 38.32 47.90 57.48 67.06 76.64 86.22 7.520
12 38.1 11.40 22.80 34.20 45.60 57.00 68.41 79.81 91.21 102.61 8.950
13 41.3 13.38 26.76 40.14 53.52 66.90 80.28 93.66 107.04 120.42 10.503
14 44.5 15.52 31.04 46.55 62.07 77.59 93.11 108.63 124.14 139.66 12.182
Bar #
Diameter
(mm)
Area of cross section (cm
2
) for the number of bars is equal to Weight
(kgf/m)
Metric Steel Reinforcements
D 6 8 10 12 14 16 18 20 22 25 28 32 36 40( )
T
mm
A
π D
2

4
 W A 7850
kgf
m
3

n 1 9 Area
n 
A n
1 2 3 4 5 6 7 8 9
6 0.28 0.57 0.85 1.13 1.41 1.70 1.98 2.26 2.54 0.222
8 0.50 1.01 1.51 2.01 2.51 3.02 3.52 4.02 4.52 0.395
10 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28 7.07 0.617
12 1.13 2.26 3.39 4.52 5.65 6.79 7.92 9.05 10.18 0.888
14 1.54 3.08 4.62 6.16 7.70 9.24 10.78 12.32 13.85 1.208
16 2.01 4.02 6.03 8.04 10.05 12.06 14.07 16.08 18.10 1.578
18 2.54 5.09 7.63 10.18 12.72 15.27 17.81 20.36 22.90 1.998
20 3.14 6.28 9.42 12.57 15.71 18.85 21.99 25.13 28.27 2.466
22 3.80 7.60 11.40 15.21 19.01 22.81 26.61 30.41 34.21 2.984
25 4.91 9.82 14.73 19.63 24.54 29.45 34.36 39.27 44.18 3.853
28 6.16 12.32 18.47 24.63 30.79 36.95 43.10 49.26 55.42 4.834
32 8.04 16.08 24.13 32.17 40.21 48.25 56.30 64.34 72.38 6.313
36 10.18 20.36 30.54 40.72 50.89 61.07 71.25 81.43 91.61 7.990
40 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 9.865
Diameter
(mm)
Area of cross section (cm
2
) for the number of bars is equal to Weight
(kgf/m)
Page 9
4. Safety Provision
Required_Strength Design_Strength
U ϕSn
where
U = required strength (factored loads)
ϕSn = design strength
Sn = nominal strength
ϕ = strength reduction factor
a. Load Combinations
Basic combination U 1.2 D 1.6 L=
Roof combination U 1.2 D 1.6 L 1.0 Lr=
Wind combination U 1.2 D 1.6 W 1.0 L 0.5 Lr=
where
D = dead load
L = live load
Lr = roof live load
W = wind load
Page 10
b. Strength Reduction Factor
Strength Condition Strength reduction factor ϕ
Tension-controlled members (εt 0.005 ) ϕ 0.9=
Compression-controlled (εt 0.002 )
Spirally reinforced ϕ 0.70=
Other ϕ 0.65=
Shear and torsion ϕ 0.75=
where
εt = net tensile strain
For spirally reinforced members
ϕ 0.9 εt 0.005if
0.70 εt 0.002if
1.7 200 εt
3
otherwise
= 0.7
0.9 0.7
0.005 0.002
εt 0.002 
0.7
200
3
εt 0.002 
1.7 200 εt
3
=
For other members
ϕ 0.9 εt 0.005if
0.65 εt 0.002if
1.45 250 εt
3
otherwise
=
Page 11
5. Loads on Structures (Case of Two-Way Slabs)
Slab dimension
Short side La 4m
Long side Lb 6m
A. Preliminary Design
Thickness of two-way slab
Perimeter La Lb  2
tmin
Perimeter
180
111.111 mm
t
1
30
1
50






La 133.333 80( ) mm
t 110mm
Section of beam B1
L 6m
h
1
10
1
15






L 600 400( ) mm h 500mm
b 0.3 0.6( ) h 150 300( ) mm b 250mm
For girders h
1
8
1
10






L=
For two-way slab beams h
1
10
1
15






L=
For floor beams h
1
15
1
20






L=
Section of beam B2
L 4m
h
1
10
1
15






L 400 266.667( ) mm h 300mm
b 0.3 0.6( ) h 90 180( ) mm b 200mm
Page 12
B. Loads on Slab
Floor cover Cover 50mm 22
kN
m
3
1.1
kN
m
2

RC slab Slab t 25
kN
m
3
2.75
kN
m
2

Ceiling Ceiling 0.40
kN
m
2

M & E Mechanical 0.20
kN
m
2

Partition Partition 1.00
kN
m
2

Dead load DL Cover Slab Ceiling Mechanical Partition 5.45
kN
m
2

Live load for Lab LL 60psf 2.873
kN
m
2

Factored load wu 1.2 DL 1.6 LL 11.137
kN
m
2

C. Loads of Wall
Void 30mm 30 mm 190 mm 4
wbrick.hollow 90mm 90 mm 190 mm Void( ) 20
kN
m
3
1.744 kgf
wbrick.solid 45mm 90 mm 190 mm 20
kN
m
3
1.569 kgf
ρbrick.hollow
wbrick.hollow
90mm 90 mm 190 mm
11.111
kN
m
3

Brickhollow.10 120mm Void
55
1m
2






20
kN
m
3
1.648
kN
m
2

Brickhollow.20 220mm Void
110
1m
2






20
kN
m
3
2.895
kN
m
2

Page 13
D. Loads on Beam B1
Self weight SW 25cm 50cm 110mm( ) 25
kN
m
3
2.438
kN
m

Wall wwall Brickhollow.10 3.5m 50cm( ) 4.943
kN
m

Slab α
4m
2
6m
0.333 k 1 2 α
2
 α
3
 0.815
wD.slab DL
4m
2
 2 k 17.763
kN
m

wL.slab LL
4m
2
 2 k 9.363
kN
m

Dead load wD SW wwall wD.slab 25.143
kN
m

Live load wL wL.slab 9.363
kN
m

Factored load wu 1.2 wD 1.6 wL 45.153
kN
m

E. Loads on Beam B2
Self weight SW 20cm 30cm 110mm( ) 25
kN
m
3
0.95
kN
m

Wall wwall Brickhollow.10 3.5m 30cm( ) 5.272
kN
m

Slab α
4m
2
4m
0.5 k 1 2 α
2
 α
3
 0.625
wD.slab DL
4m
2
 2 k 13.625
kN
m

wL.slab LL
4m
2
 2 k 7.182
kN
m

Dead load wD SW wwall wD.slab 19.847
kN
m

Live load wL wL.slab 7.182
kN
m

Factored load wu 1.2 wD 1.6 wL 35.308
kN
m

Page 14
F. Loads on Column
Tributary area B 4m L 6m
Slab loads PD.slab DL B L 130.8 kN
PL.slab LL B L 68.948 kN
Beam loads PB1 25cm 50cm 110mm( ) 25
kN
m
3
L 14.625 kN
PB2 20cm 30cm 110mm( ) 25
kN
m
3
B 3.8 kN
Wall loads Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN
Pwall.2 Brickhollow.10 3.5m 30cm( ) B 21.089 kN
SW of column SW 5% 7%( ) PD=
Total loads for number of floors n 7
PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1469.787 kN
PL PL.slab n 482.633 kN
Pu 1.2 PD 1.6 PL 2535.958 kN
Pu
PD PL
1.299
Control
PD PL
n B L
11.622
kN
m
2
 (Ref. 10
kN
m
2
18
kN
m
2
 )
PL
PD PL
24.72 % (Ref. 15% 35% )
Page 15
06 . Loads on Structures (Case of One-Way Slabs)
A. Preliminary Design
Thickness of one-way slab (both ends continue)
L
6m
2
3 m
tmin
L
28
107.143 mm
t
1
25
1
35






L 120 85.714( ) mm
t 120mm
Page 16
Section of floor beam B1
L 8m
h
1
15
1
20






L 533.333 400( ) mm h 500mm
b 0.3 0.6( ) h 150 300( ) mm b 250mm
Section of girder B2
L 6m
h
1
8
1
10






L 750 600( ) mm h 600mm
b 0.3 0.6( ) h 180 360( ) mm b 300mm
B. Loads on Slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab t 25
kN
m
3
3
kN
m
2

Ceiling 0.40
kN
m
2

Mechanical 0.20
kN
m
2

Partition 1.00
kN
m
2

DL Cover Slab Ceiling Mechanical Partition 5.7
kN
m
2

LL 60psf 2.873
kN
m
2

wu 1.2 DL 1.6 LL 11.437
kN
m
1m

Page 17
C. Loads on Beam B1
Void 30mm 30 mm 190 mm 4
Brickhollow.10 120mm Void
55
1m
2






20
kN
m
3
1.648
kN
m
2

SW 25cm 50cm 120mm( ) 25
kN
m
3
2.375
kN
m

wwall Brickhollow.10 3.5m 50cm( ) 4.943
kN
m

wD.slab DL 3 m 17.1
kN
m

wL.slab LL 3 m 8.618
kN
m

wD SW wwall wD.slab 24.418
kN
m

wL wL.slab 8.618
kN
m

wu 1.2 wD 1.6 wL 43.091
kN
m

D. Loads on Girder B2
SW 30cm 60cm 120mm( ) 25
kN
m
3
3.6
kN
m

wwall Brickhollow.10 3.5m 60cm( ) 4.778
kN
m

PB1 25cm 50cm 120mm( ) 25
kN
m
3
8m 4m
2
 14.25 kN
Pwall Brickhollow.10 3.5m 50cm( )
8m 4m
2
 29.657 kN
PD.slab DL 3 m
8m 4m
2
 102.6 kN
PL.slab LL 3 m
8m 4m
2
 51.711 kN
Page 18
Factored loads
wD SW wwall 8.378
kN
m

wL 0
wu 1.2 wD 1.6 wL 10.054
kN
m

PD PB1 Pwall PD.slab 146.507 kN
PL PL.slab 51.711 kN
Pu 1.2 PD 1.6 PL 258.545 kN
Page 19
7. Loads on Staircase
Run and rise of step G
3.5m
12
291.667 mm
H
3.8m
24
158.333 mm G 2 H 60.833 cm
Slope angle α atan
H
G






28.496 deg
Loads on Waist Slab
Thickness of waist slab t 120mm
Step cover Cover 50mm H G( ) 22
kN
m
3
1m
G 1 m
 1.697
kN
m
2

Page 20
SW of step Step
G H
2
24
kN
m
3
1m
G 1 m
 1.9
kN
m
2

SW of waist slab Slab t 25
kN
m
3
1m
2
1m
2
cos α( )
 3.414
kN
m
2

Renderring Renderring 0.40
kN
m
2
1m
2
1m
2
cos α( )
 0.455
kN
m
2

Handrail Handrail 0.50
kN
m
2

Total dead load DL Cover Step Slab Renderring Handrail
DL 7.966
kN
m
2

Live load for public staircase LL 100psf 4.788
kN
m
2

Factored load wu 1.2 DL 1.6 LL 17.22
kN
m
2

Loads on Landing Slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab 150mm 25
kN
m
3
3.75
kN
m
2

Renderring 0.40
kN
m
2

Handrail 0.50
kN
m
2

DL Cover Slab Renderring Handrail 5.75
kN
m
2

LL 100psf 4.788
kN
m
2

wu 1.2 DL 1.6 LL 14.561
kN
m
2

Page 21
8. Loads on Roof
Slope angle α atan
3m
10m
2














30.964 deg
Srokalinh tile Tile 30mm 20
kN
m
3
0.6
kN
m
2

Purlins w20x20x1.0 20mm 20 mm 18mm 18 mm( ) 7850
kgf
m
3
0.597
kgf
1m

Purlin w20x20x1.0
1m
1m 100 mm cos α( )
 0.068
kN
m
2

Rafters w40x80x1.6 40mm 80 mm 36.8mm 76.8 mm( ) 7850
kgf
m
3

w40x80x1.6 2.934
kgf
1m

Rafter w40x80x1.6
1m
750mm1 m cos α( )
 0.045
kN
m
2

Page 23
Roof beam Beam 20cm 30 cm 25
kN
m
3
1m
1m
10m
4

 0.6
kN
m
2

Roof column Column 20cm 20 cm
3m
2
 25
kN
m
3
1
10m
4
4 m





 0.15
kN
m
2

Total dead load wD Tile Purlin Rafter Beam Column 1.463
kN
m
2

Live load wL 1.00
kN
m
2

Factored load wu 1.2 wD 1.6 wL 3.356
kN
m
2

Page 24
9. ASCE Wind Loads
Basic wind speed V 120
km
hr
 V 33.333
m
s
 V 74.565mph
Exposure category Expoure C=
Importance factor I 1.15
Topograpic factor Kzt 1.0
Gust factor G 0.85
Wind directionality factor Kd 0.85
Static wind pressure qs 0.613
N
m
2
V
m
s








2
 0.681
kN
m
2

Velocity pressure coefficients
zg 274m α 9.5 (For exposure C)
Kz z( ) 2.01
max z 4.6m( )
zg






2
α
 Kz 10m( ) 1.001
Velocity wind pressure
qz z( ) qs Kz z( ) Kzt I Kd qz 10m( ) 0.667
kN
m
2

Design wind pressure
pz z Cp  qz z( ) G Cp
Dimension of building in plan
B 6m 3 18 m
L 4m 5 20 m
λ
L
B
1.111
External pressure coefficients
Cp.windward 0.8
Page 25
Cp.leeward linterp
0
1
2
4
40














0.5
0.5
0.3
0.2
0.2














 λ














0.478
Cp.side 0.7
Floor heights
H
3.5m
3.5m
3.5m
3.5m
3.5m
3.5m
3.5m




















 H reverse H( ) h H
 24.5 m
ORIGIN 1
n rows H( ) 7
Wind forces
i 1 n a
i
1
i
k
H
k

H
i
2

a
n 1
H
 reverse a( )
24.5
22.75
19.25
15.75
12.25
8.75
5.25
1.75






















m
Bwindward 6m Bleeward 6m
Bside 4m
Pwindwardi
ai
ai 1
zpz z Cp.windward 



d Bwindward
Pleewardi
pz h Cp.leeward  a
i 1
a
i
  Bleeward
Psidei
pz h Cp.side  a
i 1
a
i
  Bside
Page 26
reverse augment Pwindward Pleeward Pside  
5.70
11.13
10.71
10.21
9.61
8.81
8.10
3.43
6.86
6.86
6.86
6.86
6.86
6.86
3.35
6.71
6.71
6.71
6.71
6.71
6.71




















kN
Alternative ways
i 1 n
b
i
1
i
k
H
k


Prectanglei
pz b
i
Cp.windward  a
i 1
a
i
  Bwindward
Ptrapeziumi
pz a
i
Cp.windward  pz a
i 1
Cp.windward 
2
a
i 1
a
i
  Bwindward
reverse augment Pwindward Prectangle Ptrapezium  
5.70
11.13
10.71
10.21
9.61
8.81
8.10
5.75
11.13
10.71
10.22
9.62
8.83
8.08
5.70
11.12
10.70
10.20
9.59
8.78
8.20




















kN
Page 27
10. Design of Singly Reinforced Beams
A. Concrete Stress Distribution
In actual distribution
Resultant C α f'c c b=
Location β c
In equivalent distribution
Location β c
a
2
=
Resultant C α f'c c b= γ f'c a b=
Thus, a 2 β c= β1 c= where β1 2 β=
γ α
c
a
=
α
β1
=
f'c 4000psi 5000psi 6000psi 7000psi 8000psi
α 0.72 0.68 0.64 0.60 0.56
β 0.425 0.400 0.375 0.350 0.325
β1 2 β= 0.85 0.80 0.75 0.70 0.65
γ
α
β1
=
0.72
0.85
0.847
0.68
0.80
0.85
0.64
0.75
0.853
0.60
0.70
0.857
0.56
0.65
0.862
Page 28
Conclusion: γ 0.85=
β1 0.85 f'c 4000psiif
0.65 f'c 8000psiif
0.85 0.05
f'c 4000psi
1000psi
 otherwise
= 4000psi 27.6 MPa
8000psi 55.2 MPa
1000psi 6.9 MPa
B. Strength Analysis
Equilibrium in forces
X
 0=
C T=
0.85 f'c a b As fs= (1)
Equilibrium in moments
M
 0=
Mn C d
a
2






= T d
a
2






=
Mn 0.85 f'c a b d
a
2






= (2.1)
Mn As fs d
a
2






= (2.2)
Conditions of strain compatibility
εs
εu
d c
c
=
εs εu
d c
c
= or εt εu
dt c
c
= (3.1)
c d
εu
εu εs
= or c dt
εu
εu εt
= (3.2)
Unknowns = 3 a As fs
Equations = 2 X
 0= M
 0=
Additional condition fs fy= (From economic criteria)
Page 29
C. Steel Ratios
ρ
As
b d
=
As fy
b d fy
=
0.85 f'c a b
b d fy
= 0.85 β1
f'c
fy

c
d
= 0.85 β1
f'c
fy

c
dt

dt
d
=
ρ 0.85 β1
f'c
fy

εu
εu εs
= 0.85 β1
f'c
fy

εu
εu εt

dt
d
=
Balanced steel ratio
fc f'c= fs fy= εs εy=
fy
Es
=
ρb 0.85 β1
f'c
fy

εu
εu εy
= 0.85 β1
f'c
fy

600MPa
600MPa fy
=
εu 0.003 Es 2 10
5
MPa εu Es 600 MPa
Maximum steel ratio
ACI 318-99 ρmax 0.75 ρb=
ACI 318-02 and later ρmax 0.85 β1
f'c
fy

εu
εu εt
= with εt 0.004
For fy 390MPa εs
fy
Es
0.002
For εt 0.004
ρmax
ρb
εu εy
εu 0.004
=
5
7
= 0.714=
For εt 0.005
ρmax
ρb
εu εy
εu 0.005
=
5
8
= 0.625=
Minimum steel ratio
ρmin
3 f'c
fy
200
fy
= (in psi)
ρmin
0.249 f'c
fy
1.379
fy
= (in MPa)
Page 30
D. Determination of Flexural Strength
Given: b d As f'c fy
Find: ϕMn
Step 1. Checking for steel ratio
ρ
As
b d
=
ρ ρmin : Steel reinforcement is not enough
ρmin ρ ρmax : the beam is singly reinforced
ρ ρmax : the beam is doubly reinforced
ρ ρmax= As ρ b d=
Step 2. Calculation of flexural strength
a
As fy
0.85 f'c b
= c
a
β1
=
Mn As fy d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
The design flexural strength is ϕ Mn
Example 10.1
Page 31
Concrete dimension b 200mm h 350mm
Steel reinforcements As 5
π 16mm( )
2

4
 10.053 cm
2

d h 30mm 6mm 16mm
40mm
2






 278 mm
dt h 30mm 6mm
16mm
2






 306 mm
Materials f'c 25MPa fy 390MPa
Solution
Checking for steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρ
As
b d
0.018
Steel_Reinforcement "is Enough" ρ ρminif
"is not Enough" otherwise

Steel_Reinforcement "is Enough"
As min ρ ρmax  b d 10.053 cm
2

Calculation of flexural strength
a
As fy
0.85 f'c b
92.252 mm c
a
β1
108.532 mm
Mn As fy d
a
2






 90.911 kN m
Page 32
εt εu
dt c
c
 0.00546
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
The design flexural strength is ϕ Mn 81.82 kN m
E. Determination of Steel Area
Given: Mu b d f'c fy
Find: As
Relative depth of compression concrete
w
a
d
=
0.85 f'c a b
0.85 f'c b d
=
As fy
0.85 f'c b d
=
ρ fy
0.85 f'c
1=
Flexural resistance factor
R
Mn
b d
2

=
As fy d
a
2







b d
2

=
As
b d
fy
d
a
2

d
= ρ fy 1
1
2
w





=
R ρ fy 1
ρ fy
1.7 f'c







= 0.85 f'c w 1
1
2
w





=
Quadratic equation relative w
R
0.85 f'c
w 1
1
2
w





=
w
2
2 w 2
R
0.85 f'c
 0=
w1 1 1 2
R
0.85 f'c
 1= w2 1 1 2
R
0.85 f'c
 1=
w 1 1 2
R
0.85 f'c
=
ρ 0.85
f'c
fy
 w= 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
Page 33
Step 1. Assume ϕ 0.9=
Mn
Mu
ϕ
=
Step 2. Calculation of steel area
R
Mn
b d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
ρ ρmax : the beam is doubly reinforced
(concrete is not enough)
ρ ρmax : the beam is singly reinforced
As max ρ ρmin  b d= (this is a required steel area)
Step 3. Checking for flexural strength
a
As fy
0.85 f'c b
= (As is a provided steel area)
Mn As fy d
a
2






=
c
a
β1
= εt εu
dt c
c
= ϕ ϕ εt =
FS
Mu
ϕ Mn
= (usage percentage)
FS 1 : the beam is safe
FS 1 : the beam is not safe
Example 10.2
Required strength Mu 153kN m
Concrete section b 200mm h 500mm
d h 30mm 8mm 18mm
40mm
2






 424 mm
Page 34
dt h 30mm 8mm
18mm
2






 453 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume ϕ 0.9
Mn
Mu
ϕ
170 kN m
Steel area
R
Mn
b d
2

4.728 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.014
ρmin ρ ρmax 1
As ρ b d 11.783 cm
2

As 6
π 16mm( )
2

4
 12.064 cm
2

Checking for flexural strength
a
As fy
0.85 f'c b
110.702 mm c
a
β1
130.238 mm
Mn As fy d
a
2






 173.444 kN m
Page 35
εt εu
dt c
c
 0.00743
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
FS
Mu
ϕ Mn
0.98
The_beam "is safe" FS 1if
"is not safe" otherwise
 The_beam "is safe"
F. Determination of Concrete Dimension and Steel Area
Given: Mu f'c fy
Find: b d As
Step 1. Determination of concrete dimension
Assume εt 0.004 (Usually εt 0.005 )
ρ 0.85 β1
f'c
fy

εu
εu εt
= R ρ fy 1
ρ fy
1.7 f'c







=
ϕ ϕ εt = Mn
Mu
ϕ
=
bd
2
Mn
R
=
Option 1: b
Mn
R
d
2
=
Option 2: d
Mn
R
b
=
Option 3: k
b
d
= d
3
Mn
R
k
= b k d=
Step 2. Calculation of steel area
R
Mn
b d
2

=
Page 36
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As max ρ ρmin  b d=
Step 3. Checking for flexural strength
a
As fy
0.85 f'c b
= c
a
β1
=
Mn As fy d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
FS
Mu
ϕ Mn
=
Example 10.3
Required strength Mu 700kN m
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume εt 0.007
ρ 0.85 β1
f'c
fy

εu
εu εt
 0.014 R ρ fy 1
ρ fy
1.7 f'c







 4.728 MPa
Page 37
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9 Mn
Mu
ϕ
777.778 kN m
Concrete dimension
k
b
d
= k
400
600
 Cover 30mm 10mm 25mm
40mm
2

Cover 85 mm
d
3
Mn
R
k
627.231 mm b k d 418.154 mm
h Round d Cover 50mm( ) 700 mm b Round b 50mm( ) 400 mm
d h Cover 615 mm
b
h






400
700






mm
Steel area
R
Mn
b d
2

5.141 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.015
As max ρ ρmin  b d 37.741 cm
2

As 8
π 25mm( )
2

4
 39.27 cm
2
 dt h 30mm 10mm
25mm
2







dt 647.5 mm
Checking for flexural strength
a
As fy
0.85 f'c b
180.18 mm c
a
β1
211.976 mm
Mn As fy d
a
2






 803.914 kN m
εt εu
dt c
c
 0.00616
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
FS
Mu
ϕ Mn
96.749 %
Page 38
11. Design of Doubly Reinforced Beams
ρ ρmax : the beam is singly reinforced
(with tensile reinforcements only)
ρ ρmax : the beam is doubly reinforced
(with tensile and compression reinforcements)
A. Strength Analysis
Equilibrium in forces
X
 0=
T C Cs= (1)
T As fs= As fy=
C 0.85 f'c a b=
Cs A's f's=
Equilibrium in moments
M
 0=
Mn Mn1 Mn2= (2)
Mn1 T d d'( )= A's f's d d'( )=
Mn2 C d
a
2






= 0.85 f'c a b d
a
2






=
Mn2 T Cs  d
a
2






= As fy A's f's  d
a
2






=
Page 39
Conditions of strain compatibility
εs
εu
d c
c
= (3.1)
εs εu
d c
c
= or εt εu
dt c
c
=
c d
εu
εu εs
= or c dt
εu
εu εt
=
ε's
εu
c d'
c
= (3.2)
ε's εu
c d'
c
=
c d'
εu
εu ε's
=
B. Steel Ratios
Compression steel ratio
ρ'
A's
b d
=
Tensile steel ratio
ρ
As
b d
=
As fy
b d fy
=
0.85 f'c a b A's f's
b d fy
= 0.85 β1
f'c
fy

c
d
 ρ'
f's
fy
=
Maximum tensile steel ratio
ρt.max ρmax ρ'
f's
fy
=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
Minimum tensile steel ratio
ρ 0.85 β1
f'c
fy

c
d
 ρ'
f's
fy
= 0.85 β1
f'c
fy

εu
εu ε's

d'
d
 ρ'
f's
fy
=
f's fy= ε's εy=
fy
Es
=
Page 40
ρcy 0.85 β1
f'c
fy

εu
εu εy

d'
d
 ρ'=
ρ ρcy : compression steel will yield f's fy=
ρ ρcy : compression steel will not yield f's fy
C. Determination of Flexural Strength
Given: b d dt d' As A's f'c fy
Find: ϕMn
Step 1. Checking for singly reinforced beam
ρ
As
b d
=
ρ ρmax : the beam is singly reinforced
ρ ρmax : the beam is doubly reinforced
ρ'
A's
b d
= ρt.max ρmax ρ'=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
ρ ρt.max= As ρ b d=
Step 2. Determination of compression parameters
2.1. Assume
f's fy=
2.2. Calculate
a
As fy A's f's
0.85 f'c b
= c
a
β1
=
ε's εu
c d'
c
= f's.revised Es ε's fy=
If f's.revised f's then f's f's.revised=
Goto 2.2
Page 41
Direct calculation
Case f's fy=
a
As fy A's fy
0.85 f'c b
=
Case f's fy
As fy 0.85 f'c a b A's f's= 0.85 f'c a b A's Es εu
c d'
c
=
As fy 0.85 f'c a b A's Es εu
β1 c β1 d'
β1 c
= 0.85 f'c a b A's f1
a β1 d'
a
=
where f1 Es εu= 600MPa=
0.85 f'c a
2
 b A's f1 As fy  a A's f1 β1 d' 0=
0.85 f'c a
2
 b A's f1 As fy  a A's f1 β1 d'
0.85 f'c d
2
 b
0=
a
d






2 ρ' f1 ρ fy
0.85 f'c
a
d

ρ' f1 β1
0.85 f'c
d'
d
 0=
w
2
2 p w q 0= p
1
2
ρ' f1 ρ fy
0.85 f'c
= q
ρ' f1 β1
0.85 f'c
d'
d
=
w1 p p
2
q 0= w2 p p
2
q 0=
a d p p
2
q = c
a
β1
=
ε's εu
c d'
c
= f's Es ε's fy=
Step 3. Calculation of flexural strength
Mn1 A's f's d d'( )=
Mn2 As fy A's f's  d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
ϕMn ϕ Mn1 Mn2 =
Page 42
Example 11.1
Concrete dimension b 300mm h 550mm
Steel reinforcements As 8
π 20mm( )
2

4
 25.133 cm
2

d h 30mm 10mm 16mm 20mm
40mm
2







d 454 mm
dt h 30mm 10mm 16mm
20mm
2






 484 mm
A's 4
π 20mm( )
2

4
 12.566 cm
2

d' 30mm 10mm
20mm
2
 50 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.0174
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Checking for singly reinforced beam
ρ
As
b d
0.0185
The_beam "is singly reinforced" ρ ρmaxif
"is doubly reinforced" otherwise

The_beam "is doubly reinforced"
ρ'
A's
b d
9.226 10
3
 ρt.max ρmax ρ' 0.027
Page 43
Concrete "is enough" ρ ρt.maxif
"is not enough" otherwise

Concrete "is enough"
ρ min ρ ρt.max  0.0185
As ρ b d 25.133 cm
2

Determination of compression parameters
Es 2 10
5
MPa f1 Es εu 600 MPa
εy
fy
Es
1.95 10
3

ρcy 0.85 β1
f'c
fy

εu
εu εy

d'
d
 ρ' 0.024
Compression_steel "will yield" ρ ρcyif
"will not yield" otherwise

Compression_steel "will not yield"
a
As fy A's fy
0.85 f'c b
Compression_steel "will yield"=if
p
1
2
ρ' f1 ρ fy
0.85 f'c

q
ρ' f1 β1
0.85 f'c
d'
d

d p p
2
q 
otherwise

a 90.825 mm c
a
β1
106.853 mm
f's fy Compression_steel "will yield"=if
ε's εu
c d'
c

min Es ε's fy 
otherwise

f's 319.24 MPa
Flexural strength
Page 44
Mn1 A's f's d d'( ) 162.072 kN m
Mn2 As fy A's f's  d
a
2






 236.576 kN m
εt εu
dt c
c
 0.011
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
ϕMn ϕ Mn1 Mn2  358.783 kN m
D. Design of Doubly Reinforced Beam
Given: Mu b d dt d' f'c fs
Find: As A's
Step 1. Assume εt
ρ 0.85 β1
f'c
fy

εu
εu εt
=
ϕ ϕ εt =
Step 2. Cheching for singly reinforced beam
As ρ b d=
a
As fy
0.85 f'c b
=
Mn As fy d
a
2






=
Mu ϕMn : the beam is singly reinforced
Mu ϕMn : the beam is doubly reinforced
Step 3. Case of doubly reinforced beam
Mn2 Mn=
Mn1
Mu
ϕ
Mn2=
Page 45
c
a
β1
= f's Es εu
c d'
c
 fy=
A's
Mn1
f's d d'( )
= ρ'
A's
b d
= ρt.max ρmax ρ'=
As
0.85 f'c a b A's f's
fy
= ρ
As
b d
=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
Example 11.2
Required strength Mu 1350kN m
Concrete dimension b 400mm h 800mm
d h 30mm 12mm 25mm 25mm
40mm
2







d 688 mm
dt h 30mm 12mm 25mm
25mm
2






 720.5 mm
d' 30mm 12mm
25mm
2
 54.5 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.0174
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume εt 0.0092
ρ 0.85 β1
f'c
fy

εu
εu εt
 0.011
Page 46
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
Checking for singly reinforced beam
As ρ b d 31.342 cm
2

a
As fy
0.85 f'c b
143.803 mm c
a
β1
169.18 mm
Mn2 As fy d
a
2






 753.074 kN m
The_beam "is singly reinforced" Mu ϕ Mn2if
"is doubly reinforced" otherwise

The_beam "is doubly reinforced"
Case of doubly reinforced beam
Mn1
Mu
ϕ
Mn2 746.926 kN m
f's min Es εu
c d'
c
 fy





390 MPa
A's
Mn1
f's d d'( )
30.232 cm
2

ρ'
A's
b d
0.011 ρt.max ρmax ρ' 0.028
As
0.85 f'c a b A's f's
fy
61.574 cm
2
 ρ
As
b d
0.022
Concrete "is enough" ρ ρt.maxif
"is not enough" otherwise
 Concrete "is enough"
Compression steel A's 30.232 cm
2
 5
π 28mm( )
2

4
 30.788 cm
2

Tensile steel As 61.574 cm
2
 10
π 28mm( )
2

4
 61.575 cm
2

400mm 12mm 30mm( ) 2 28mm 5
4
44 mm
Page 47
E. Determination of Tensile Steel Area
Given: Mu b d dt d' A's f'c fy
Find: As
Step 1. Calculation of compression parameters
1.1. Assume f's fy= ϕ 0.9=
1.2. Calculate
Mn
Mu
ϕ
=
Mn1 A's f's d d'( )=
Mn2 Mn Mn1=
R
Mn2
b d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As ρ b d=
a
As fy
0.85 f'c b
= c
a
β1
=
f's.revised Es εu
c d'
c
 fy=
εt εu
dt c
c
= ϕ ϕ εt =
f's.revised f's : Goto 1.2
Mu ϕ Mn : Goto 1.2
Step 2. Calculation of tensile steel area
As
0.85 f'c a b A's f's
fy
= ρ
As
b d
=
ρ'
A's
b d
= ρt.max ρmax ρ'=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
Page 48
Example 11.3
Required strength Mu 1350kN m
Concrete dimension b 400mm h 800mm
d h 30mm 12mm 25mm 28mm
40mm
2







d 685 mm
dt h 30mm 12mm 25mm
28mm
2






 719 mm
d' 30mm 12mm
28mm
2
 56 mm
Compression reinforcements A's 5
π 28mm( )
2

4
 30.788 cm
2

Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.0174
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Compression parameters
Page 49
Compression ε( ) f's fy
ϕ 0.9
Mn
Mu
ϕ

Mn1 A's f's d d'( )
Mn2 Mn Mn1
R
Mn2
b d
2


ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c








As ρ b d
a
As fy
0.85 f'c b

c
a
β1

f's.revised min Es εu
c d'
c
 fy






Z
i 
f's
fy
ϕ
a
d
f's.revised
fy























εt εu
dt c
c

ϕ 0.65 max
1.45 250 εt
3






min 0.9







break( )
f's.revised f's
f's
ε






Mu ϕ Mn if
f's f's.revised
i 0 99for
reverse Z
T 

Z Compression 0.000001( )
Page 50
a Z
0 2
d 142.792 mm c
a
β1
167.99 mm
f's Z
0 0
fy 390 MPa
Tensile steel area
ρ'
A's
b d
0.011 ρt.max ρmax ρ' 0.029
As
0.85 f'c a b A's f's
fy
61.909 cm
2
 ρ
As
b d
0.023
Concrete "is enough" ρ ρt.maxif
"is not enough" otherwise
 Concrete "is enough"
Tensile steel As 61.909 cm
2
 10
π 28mm( )
2

4
 61.575 cm
2

Page 51
12. Design of T Beams
12.1. Effective Flange Width
For symmetrical T beam:
b
L
4
 b bw 16hf b s
where
L = span length of beam
s = spacing of beam
12.2. Strength Analysis
Design as rectangular section Design as T section
a hf a hf
or Mu ϕMnf or Mu ϕMnf
where Mnf 0.85 f'c hf b d
hf
2







=
Page 52
Equilibrium in forces X
 0=
T C1 C2=
T As fs= As fy=
C1 0.85 f'c hf b bw = Asf fy=
C2 0.85 f'c a bw= T C1= As fy Asf fy=
Equilibrium in moments M
 0=
Mn Mn1 Mn2=
Mn1 C1 d
hf
2







= Asf fy d
hf
2







=
Mn2 C2 d
a
2






= 0.85 f'c a bw d
a
2






=
Mn2 T C1  d
a
2






= As fy Asf fy  d
a
2






=
Condition of strain compatibility
εs
εu
d c
c
= or
εt
εs
dt c
c
=
εs εu
d c
c
= εt εu
dt c
c
=
c d
εu
εu εs
= c dt
εu
εu εt
=
12.3. Steel Ratios
ρw
As
bw d
=
As fy
bw d fy
=
0.85 f'c a bw Asf fy
bw d fy
=
ρw 0.85 β1
f'c
fy

c
d
 ρf= where ρf
Asf
bw d
=
Page 53
Maximum steel ratio
ρw.max ρmax ρf=
ρw ρw.max : concrete is enough
ρw ρw.max : concrete is not enough
12.4. Determination of Moment Capacity
Given: bw d b dt hf As f'c fy
Find: ϕMn
Step 1. Checking for rectangular beam
a
As fy
0.85 f'c b
=
a hf : the beam is rectangular
a hf : the beam is tee
Step 2. Case of T beam
Asf
0.85 f'c hf b bw 
fy
=
Mn1 Asf fy d
hf
2







=
a
As fy Asf fy
0.85 f'c bw
= c
a
β1
=
Mn2 As fy Asf fy  d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
ϕMn ϕ Mn1 Mn2 =
Page 54
Example 12.1
Concrete dimension b 28in 711.2 mm
hf 6in 152.4 mm
bw 10in 254 mm
h 30in 762 mm d 26in 660.4 mm
dt 27.5in 698.5 mm
Steel reinforcements As 6
π
10
8
in





2

4
 As 7.363 in
2

Materials f'c 3000psi 20.684 MPa
fy 60ksi 413.685 MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 4000psi
1000psi







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
3psi
f'c
psi

fy
200psi
fy











0.00333
Checking for rectangular beam
Page 55
a
As fy
0.85 f'c b
157.162 mm
The_beam "is rectangular" a hfif
"is T" otherwise
 The_beam "is T"
Case of T beam
Asf
0.85 f'c hf b bw 
fy
29.613 cm
2

ρf
Asf
bw d
0.018 ρw.max ρmax ρf 0.031
ρw
As
bw d
0.028
Concrete "is enough" ρw ρw.maxif
"is not enough" otherwise
 Concrete "is enough"
As min ρw ρw.max  bw d As 7.363 in
2

Mn1 Asf fy d
hf
2







 715.669 kN m
a
As fy Asf fy
0.85 f'c bw
165.734 mm c
a
β1
194.981 mm
Mn2 As fy Asf fy  d
a
2






 427.446 kN m
εt εu
dt c
c
 0.008
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
ϕMn ϕ Mn1 Mn2  1028.803 kN m
Page 56
12.5. Determination of Steel Area
Given: Mu bw d dt b hf f'c fy
Find: As
Step 1. Checking for rectangular beam
Mnf 0.85 f'c hf b d
hf
2







=
ϕ 0.9=
Mu ϕMn : the beam is rectangular
Mu ϕMn : the beam is tee
Step 2. Case of T beam
Asf
0.85 f'c hf b bw 
fy
= ρf
Asf
bw d
=
Mn1 Asf fy d
hf
2







=
Mn2
Mu
ϕ
Mn1=
R
Mn2
bw d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As2 ρ bw d=
a
As2 fy
0.85 f'c bw
=
As
0.85 f'c a bw Asf fy
fy
= ρw
As
bw d
=
ρw.max ρmax ρf=
ρw ρw.max : concrete is enough
ρw ρw.max : concrete is not enough
Page 57
Example 12.2
Concrete dimension hf 3in 76.2 mm
L 24ft 7.315 m s 47in 1.194 m
bw 11in 279.4 mm d 20in 508 mm
Required strength Mu 6400in kip 723.103 kN m
Materials f'c 3000psi 20.684 MPa fy 60ksi 413.685 MPa
Solution
Effective flange width
b min
L
4
bw 16 hf s





 b 1193.8 mm
Steel ratios
β1 0.65 max 0.85 0.05
f'c 4000psi
1000psi







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
3psi
f'c
psi

fy
200psi
fy











0.00333
Checking for rectangular beam
ϕ 0.9
Mnf 0.85 f'c hf b d
hf
2







 751.538 kN m
The_beam "is rectangular" Mu ϕ Mnfif
"is tee" otherwise
 The_beam "is tee"
Case of T beam
Page 58
Asf
0.85 f'c hf b bw 
fy
29.613 cm
2
 ρf
Asf
bw d
0.021
Mn1 Asf fy d
hf
2







 575.646 kN m
Mn2
Mu
ϕ
Mn1 227.801 kN m
R
Mn2
bw d
2

3.159 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 8.484 10
3

As2 ρ bw d 12.042 cm
2

a
As2 fy
0.85 f'c bw
101.408 mm c
a
β1
119.304 mm
As
0.85 f'c a bw Asf fy
fy
41.655 cm
2
 ρw
As
bw d
0.029
ρw.max ρmax ρf 0.034
Concrete "is enough" ρw ρw.maxif
"is not enough" otherwise
 Concrete "is enough"
As.min ρmin bw d
As max As As.min  41.655 cm
2
 6
π 32mm( )
2

4
 48.255 cm
2

Page 59
13. Shear Design
Safety provision
Vu ϕVn
where Vu = required shear strength
Vn = nominal shear strength
ϕ 0.75= is a strength reduction factor for shear
ϕVn = design shear strength
Required shear strength
Page 60
Nominal shear strength
Vn Vc Vs=
where
Vc = concrete shear strength
Vs = steel shear strength
Concrete shear strength
Vc 2 f'c bw d= (in psi)
Vc 0.166 f'c bw d= (in MPa)
Steel shear strength
Vs
Av fy d
s
=
where
Av = area of stirrup
fy = yield strength of stirrup
s = spacing of stirrup
No required stirrups
Vu
ϕVc
2
 : no stirrup is required
ϕVc
2
Vu ϕVc : stirrup is minimum
Vu ϕVc : stirrup is required
Minimum stirrups
Av.min 0.75 f'c
bw s
fy
 50
bw s
fy
= (in psi)
Av.min 0.062 f'c
bw s
fy
 0.345
bw s
fy
= (in MPa)
Page 61
Maximum spacing of stirrup
smax
Av fy
0.75 f'c bw
Av fy
50 bw
= (in psi)
smax
Av fy
0.062 f'c bw
Av fy
0.345 bw
= (in MPa)
Case Vs 2 Vc
smax
d
2
24in= 600mm=
Case 2 Vc Vs 4 Vc
smax
d
4
12in= 300mm=
Case Vs 4 Vc
Concrete is not enough
Example 13.1
Materials f'c 25MPa fy 390MPa
Page 62
Live load for garage LL 6.00
kN
m
2

Loads on slab
Hardener 8mm 24
kN
m
3
0.192
kN
m
2

Slab 200mm 25
kN
m
3
5
kN
m
2

Mechanical 0.30
kN
m
2

DL Hardener Slab Mechanical 5.492
kN
m
2

LL 6
kN
m
2

Loads on beam
wbeam 30cm 60cm 200mm( ) 25
kN
m
3
3
kN
m

wD.slab DL 3.5 m 19.222
kN
m

wL.slab LL 3.5 m 21
kN
m

wD wbeam wD.slab 22.222
kN
m

wL wL.slab 21
kN
m

wu 1.2 wD 1.6 wL 60.266
kN
m

Shear
L 8m
V0
wu L
2
241.066 kN
V x( ) V0 wu x
Concrete shear strength
bw 300mm d 600mm 40mm 10mm
20mm
2






 540 mm
Vc 0.166MPa
f'c
MPa
 bw d 134.46 kN
ϕ 0.75
Page 63
Location of no stirrup zone
V0 wu x
ϕVc
2
= x
V0
ϕ Vc
2

wu
3.163 m
Minimum stirrup
Av 2
π 10mm( )
2

4
 1.571 cm
2
 fy 390MPa
smax min
Av fy
0.062MPa
f'c
MPa
 bw
Av fy
0.345MPa bw











591.894 mm
smax Floor smax 50mm  550 mm
Vs.min
Av fy d
smax
60.147 kN
Location of minimum stirrup zone
V0 wu x ϕ Vc Vs.min = x
V0 ϕ Vc Vs.min 
wu
1.578 m
Required spacing of stirrup
Vu V0 wu
400mm
2






 229.012 kN
Vs
Vu
ϕ
Vc 170.89 kN
Concrete "is enough" Vs 4 Vcif
"is not enough" otherwise
 Concrete "is enough"
s
Av fy d
Vs
193.581 mm
smax.1 smax 550 mm
smax.2 min
d
2
600mm





Vs 2 Vcif
min
d
4
300mm





otherwise
 smax.2 270 mm
s Floor min s smax.1 smax.2  50mm  s 150 mm
Page 64
Example 13.2
Design of shear in support and midspan zones.
Stirrups in Support Zone
Required shear strength Vu V0 wu
400mm
2
 229.012 kN
Concrete shear strength
Vc 0.166MPa
f'c
MPa
 bw d 134.46 kN
ϕ 0.75
Stirrup "is minimum" Vu ϕ Vcif
"is required" otherwise
 Stirrup "is required"
Required steel shear strength
Vs
Vu
ϕ
Vc 170.89 kN
Concrete "is enough" Vs 4 Vcif
"is not enough" otherwise
 Concrete "is enough"
Spacing of stirrup
Av 2
π 10mm( )
2

4
 1.571 cm
2
 fy 390MPa
s
Av fy d
Vs
193.581 mm
smax.1 min
Av fy
0.062MPa
f'c
MPa
 bw
Av fy
0.345MPa bw











591.894 mm
Page 65
smax.2 min
d
2
600mm





Vs 2 Vcif
min
d
4
300mm





otherwise
 smax.2 270 mm
s Floor min s smax.1 smax.2  50mm  150 mm
Stirrups in Midspan Zone
Required shear strength Vu V0 wu
L
4
 120.533 kN
Stirrup "is minimum" Vu ϕ Vcif
"is required" otherwise
 Stirrup "is required"
Required steel shear strength
Vs
Vu
ϕ
Vc 26.25 kN
Concrete "is enough" Vs 4 Vcif
"is not enough" otherwise
 Concrete "is enough"
Spacing of stirrup
Av 2
π 10mm( )
2

4
 1.571 cm
2
 fy 390MPa
s
Av fy d
Vs
1260.208 mm
smax.1 min
Av fy
0.062MPa
f'c
MPa
 bw
Av fy
0.345MPa bw











591.894 mm
smax.2 min
d
2
600mm





Vs 2 Vcif
min
d
4
300mm





otherwise
 smax.2 270 mm
s Floor min s smax.1 smax.2  50mm  250 mm
Page 66
Page 67
14. Column Design
Type of columns (by design method)
1. Axially loaded columns
e
M
P
= 0=
2. Eccentric columns
e
M
P
= 0
2.1. Short columns (without buckling)
Pu Mu
2.2. Long (slender) columns (with buckling)
Pu Mu δns
1. Axially Loaded Columns
Safety provision
Pu ϕPn.max
where Pu = axial load on column
ϕPn.max = design axial strength
For tied columns
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast =
with ϕ 0.65=
For spirally reinforced columns
ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast =
with ϕ 0.70=
where Ag = area of gross section
Ast = area of steel reinforcements
Ag Ast Ac= is an area of concrete section
Page 68
For tied columns
Diameter of tie
Dv 10mm= for D 32mm
Dv 12mm= for D 32mm
Spacing of tie
s 48Dv s 16D s b
For spirally reinforced columns
Diameter of spiral Dv 10mm
Clear spacing 25mm s 75mm
Column steel ratio
ρg
Ast
Ag
= 1%= 8%
Page 69
Determination of Concrete Section
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
=
Determination of Steel Area
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
=
Example 14.1
Tributary area B 4m L 6m
Thickness of slab t 120mm
Section of beam B1 b 250mm h 500mm
Section of beam B2 b 200mm h 350mm
Live load for lab LL 3.00
kN
m
2

Materials f'c 25MPa fy 390MPa
Solution
Loads on slab
Cover 50mm 22
kN
m
3

Slab 120mm 25
kN
m
3

Ceiling 0.40
kN
m
2

Mechanical 0.20
kN
m
2

Partition 1.00
kN
m
2

DL Cover Slab Ceiling Mechanical Partition 5.7
kN
m
2

LL 3
kN
m
2

Page 70
Reduction of live load
Tributary area AT B L 24 m
2

For interior column KLL 4
Influence area AI KLL AT 96 m
2

Live load reduction factor αLL 0.25
4.572
AI
m
2
 0.717
Reduced live load LL0 LL αLL 2.15
kN
m
2

Loads of wall
Void 30mm 30 mm 190 mm 4
Brickhollow.10 120mm Void
55
1m
2






20
kN
m
3
1.648
kN
m
2

Brickhollow.20 220mm Void
110
1m
2






20
kN
m
3
2.895
kN
m
2

Loads on column
PD.slab DL B L 136.8 kN
PL.slab LL B L 72 kN
PB1 25cm 50cm 120mm( ) 25
kN
m
3
L 14.25 kN
PB2 20cm 35cm 120mm( ) 25
kN
m
3
B 4.6 kN
Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN
Pwall.2 Brickhollow.10 3.5m 35cm( ) B 20.76 kN
Number of floors n 6
PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1298.219 kN
PL PL.slab n 432 kN SW 5% 7%( ) PD=
PD PL
B L n
12.015
kN
m
2

PL
PD PL
24.968 %
Page 71
Pu 1.2 PD 1.6 PL 2249.063 kN
Determination of column section
Assume ρg 0.03 k
b
h
= k
300
500

ϕ 0.65
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
 Ag 1338.529 cm
2

h
Ag
k
472.322 mm b k h 283.393 mm
h Ceil h 50mm( ) 500 mm b Ceil b 50mm( ) 300 mm
b
h






300
500






mm Ag b h 1500 cm
2

Determination of steel area
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
 Ast 30.851 cm
2

6
π 20mm( )
2

4
 6
π 16mm( )
2

4
 30.913 cm
2

Stirrups
Main bars D 20mm
Stirrup dia. Dv 10mm
Spacing of tie s min 16 D 48 Dv b  300 mm
Page 72
2. Short Columns
Safety provision
Pu ϕPn
Mu ϕMn
Equilibrium in forces X
 0=
Pn C Cs T=
Pn 0.85 f'c a b A's f's As fs=
Equilibrium in moments M
 0=
Mn Pn e= C
h
2
a
2






 Cs
h
2
d'





 T d
h
2






=
Mn Pn e= 0.85 f'c a b
h
2
a
2






 A's f's
h
2
d'





 As fs d
h
2






=
Conditions of strain compatibility
εs
εu
d c
c
= εs εu
d c
c
=
fs Es εs= Es εu
d c
c
=
ε's
εu
c d'
c
= ε's εu
c d'
c
=
f's Es ε's= Es εu
c d'
c
=
Page 73
Unknowns = 5 : a As A's fs f's
Equations = 4 : X
 0= M
 0= 2 conditions of strain compatibility
Case of symmetrical columns: As A's=
Case of unsymmetrical columns: fs fy=
A. Interaction Diagram for Column Strength
Interaction diagram is a graph of parametric function, where
Abscissa : Mn a( )
Ordinate: Pn a( )
B. Determination of Steel Area
Given: Mu Pu b h f'c fy
Find: As A's=
Answer: As AsN a( )= AsM a( )=
AsN a( )
Pu
ϕ
0.85 f'c a b
f's fs
=
AsM a( )
Mu
ϕ
0.85 f'c a b
h
2
a
2







f's
h
2
d'





 fs d
h
2







=
f's a( ) Es εu
c d'
c
 fy=
fs a( ) Es εu
d c
c
 fy=
Page 74
Example 14.2
Construction of interaction diagram for column strength.
Concrete dimension b 500mm h 200mm
Steel reinforcements As 5
π 16mm( )
2

4
 10.053 cm
2

A's As 10.053 cm
2

d' 30mm 6mm
16mm
2
 44 mm
d h d' 156 mm
Materials f'c 25MPa
fy 390MPa
Solution
Case of axially loaded column
Ag b h
Ast As A's
ϕ 0.65
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  1490.536 kN
Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
c a( )
a
β1

Es 2 10
5
MPa εu 0.003 dt d
fs a( ) min Es εu
d c a( )
c a( )
 fy






f's a( ) min Es εu
c a( ) d'
c a( )
 fy






ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.90








Page 75
ϕPn a( ) min ϕ a( ) 0.85 f'c a b A's f's a( ) As fs a( )  ϕPn.max 
ϕMn a( ) ϕ a( ) 0.85 f'c a b
h
2
a
2






 A's f's a( )
h
2
d'





 As fs a( ) d
h
2













a 0
h
100
 h
0 20 40 60
0
250
500
750
1000
1250
1500
Interaction diagram for column strength
ϕPn a( )
kN
ϕMn a( )
kN m
Example 14.3
Determination of steel area.
Required strength Pu 1152.27kN
Mu 42.64kN m
Concrete dimension b 500mm h 200mm
Materials f'c 25MPa
fy 390MPa
Concrete cover to main bars cc 30mm 6mm
16mm
2

Page 76
Solution
Location of steel re-bars
d' cc 44 mm
d h cc 156 mm
Case of axially loaded column
Ag b h ϕ 0.65
ϕ 0.65
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
2.465 cm
2

Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
c a( )
a
β1

Es 2 10
5
MPa εu 0.003 dt d
fs a( ) min Es εu
d c a( )
c a( )
 fy






f's a( ) min Es εu
c a( ) d'
c a( )
 fy






ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.90








Graphical solution
AsN a( )
Pu
ϕ a( )
0.85 f'c a b
f's a( ) fs a( )

AsM a( )
Mu
ϕ a( )
0.85 f'c a b
h
2
a
2







f's a( )
h
2
d'





 fs a( ) d
h
2








a1 134.2mm a2 134.25mm
a a1 a1
a2 a1
50
 a2
Page 77
0.13418 0.1342 0.13422 0.13424 0.13426
8.715 10
4

8.72 10
4

8.725 10
4

8.73 10
4

8.735 10
4

AsN a( )
AsM a( )
a
a 134.23mm
AsN a( ) 8.722 cm
2

AsM a( ) 8.725 cm
2

As
AsN a( ) AsM a( )
2
8.724 cm
2
 5
π 16mm( )
2

4
 10.053 cm
2

Page 78
Analytical solution
ORIGIN 1
Asteel No( ) k 1
f f's a( ) fs a( )
continue( ) f 0=if
AsN
Pu
ϕ a( )
0.85 f'c a b
f

continue( ) AsN 0if
fd f's a( )
h
2
d'





 fs a( ) d
h
2







continue( ) fd 0=if
AsM
Mu
ϕ a( )
0.85 f'c a b
h
2
a
2







fd

continue( ) AsM 0if
Z
k 
a
h
AsN
Ag
AsM
Ag
AsN AsM
Ag

























k k 1
a cc cc
h
No
 hfor
csort Z
T
4 

Z Asteel 5000( ) rows Z( ) 2046
a Z
1 1
h 134.24 mm
AsN Z
1 2
Ag 8.719 cm
2
 AsM Z
1 3
Ag 8.728 cm
2

As
AsN AsM
2
8.723 cm
2

Page 79
C. Case of Distributed Reinforcements
rUb 3>1> ssrcakp©it EdlmanEdkBRgayeRcInCYr
CMuvijmuxkat;ebtug
b
dn
d1
Pne
Tn T1
C
h
a
cf 85.0
c
u
s,1
s,n
dn
Equilibrium in forces X
 0=
Pn C
1
n
i
T
i

= 0.85 f'c a b
1
n
i
A
s i
f
s i
 

=
Equilibrium in moments M
 0=
Mn Pn e= C
h
2
a
2







1
n
i
T
i
d
i
h
2













=
Mn 0.85 f'c a b
h
2
a
2







1
n
i
A
s i
f
s i
 d
i
h
2













=
Page 80
Conditions of strain compatibility
ε
s i
εu
d
i
c
c
=
ε
s i
εu
d
i
c
c
=
f
s i
Es ε
s i
= Es εu
d
i
c
c
=
Example 14.4
Checking for column strength.
Required strength Pu 13994.6kN
Mu 57.53kN m
Materials f'c 35MPa
fy 390MPa
Solution
Determination of Concrete Section
Case of axially loaded column
ϕ 0.65
Assume ρg 0.04
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
6094.36 cm
2

Aspect ratio of column section λ
b
h
= λ 1
h
Ag
λ
780.664 mm b λ h 780.664 mm
h Ceil h 50mm( ) b Ceil b 50mm( )
b
h






800
800






mm Ag b h 6400 cm
2

Page 81
Steel area
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
 Ast 218.534 cm
2

4 7 4( )
π 25mm( )
2

4
 4 5 4( )
π 20mm( )
2

4
 232.478 cm
2

Spacing
800mm 50mm 2
8
87.5 mm
Interaction Diagram for Column Strength
Distribution of reinforcements
Bars
25
25
25
25
25
25
25
25
25
25
20
20
20
20
20
20
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
20
20
20
20
20
20
25
25
25
25
25
25
25
25
25
25
























mm
Number of reinforcement rows n cols Bars( ) 9
Steel area
As0
π Bars
2

4


i 1 n Asi
As0
i 

Ast As Ast 232.478 cm
2

Location of reinforcement rows
Concrete cover Cover 30mm 10mm 40 mm
d
1
Cover
Bars
1 n
2
 52.5 mm ΔS
h d
1
2
n 1
86.875 mm
i 2 n d
i
d
i 1
ΔS
reverse d( )
T
747.5 660.63 573.75 486.88 400 313.13 226.25 139.38 52.5( ) mm
Case of axially loaded column
Page 82
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast 
ϕPn.max 14255.808 kN
Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.796
c a( )
a
β1

fs i a( ) εs εu
d
i
c a( )
c a( )

sign εs  min Es εs fy 

dt max d( ) 747.5 mm
ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.9








ϕPn a( ) min ϕ a( ) 0.85 f'c a b
1
n
i
Asi
fs i a( )













 ϕPn.max









ϕMn a( ) ϕ a( ) 0.85 f'c a b
h
2
a
2







1
n
i
Asi
fs i a( ) d
i
h
2























a 0
h
100
 h
Page 83
0 1000 2000 3000
0
5000
10000
ϕPn a( )
kN
Pu
kN
ϕMn a( )
kN m
Mu
kN m

Page 84
D. Design of Circular Columns
Symbols
ns = number of re-bars
Dc = column diameter
Ds = diameter of re-bar circle
Location of steel re-bar
d
i
rc rs cos α
s i = rc
Dc
2
= rs
Ds
2
=
α
s i
2 π
ns
i 1( )=
Page 85
Depth of compression concrete
α acos
rc a
rc






=
Area and centroid of compression concrete
Asector
1
2
Radius Arch=
1
2
rc rc 2 α = rc
2
α=
x1
2
3
rc
sin α( )
α
=
Atriangle
1
2
Base Height=
1
2
2 rc sin α( ) rc cos α( )= rc
2
sin α( ) cos α( )=
x2
2
3
rc cos α( )=
Ac Asegment= Asector Atringle= rc
2
α sin α( ) cos α( )( )=
xc
Asector x1 Atrinagle x2
Ac
=
2
3
rc
sin α( ) sin α( ) cos α( )
2

α sin α( ) cos α( )
=
xc
2 rc
3
sin α( )
3
α sin α( ) cos α( )
=
Equilibrium in forces X
 0=
Pn C
1
ns
i
T
i

= 0.85 f'c Ac
1
ns
i
A
s i
f
s i
 

=
Equilibrium in moments M
 0=
Mn Pn e= C xc
1
ns
i
T
i
d
i
Dc
2















=
Mn Pn e= 0.85 f'c Ac xc
1
ns
i
A
s i
f
s i
 d
i
rc  

=
Conditions of strain compatibility
ε
s i
εu
d
i
c
c
=
f
s i
Es ε
s i
= Es ε
u

d
i
c
c
= with f
s i
fy
Page 86
Example 14.5
Required strength Pu 3437.31kN
Mu 42.53kN m
Materials f'c 20MPa
fy 390MPa
Solution
Determination of concrete dimension
ϕ 0.70
Assume ρg 0.02
Ag
Pu
0.85 ϕ
0.85 f'c 1 ρg  fy ρg
2361.812 cm
2

Dc Ceil
Ag
π
4
50mm








550 mm
Ag
π Dc
2

4
2375.829 cm
2

Determination of steel area
Ast
Pu
0.85 ϕ
0.85 f'c Ag
0.85 f'c fy
46.597 cm
2

Ds Dc 30mm 10mm
20mm
2






2 450 mm
ns ceil
π Ds
100mm






15 As0
π 20mm( )
2

4
3.142 cm
2

Ast ns As0 47.124 cm
2
 s
π Ds
ns
94.248 mm
Interaction diagram for column strength
ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast  3448.996 kN
Page 87
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
Es 2 10
5
MPa εu 0.003
c a( )
a
β1

i 1 ns αsi
2 π
ns
i 1( ) d
i
Dc
2
Ds
2
cos αsi





dt max d( ) 495.083 mm
ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.70 max
1.7 200 εt
3






min 0.9








fs i a( ) εs εu
d
i
c a( )
c a( )

sign εs  min Es εs fy 

rc
Dc
2

α a( ) acos
rc a
rc







xc a( )
2 rc
3
sin α a( )( )
3
α a( ) sin α a( )( ) cos α a( )( )

Ac a( ) rc
2
α a( ) sin α a( )( ) cos α a( )( )( )
ϕPn a( ) min ϕ a( ) 0.85 f'c Ac a( )
1
ns
i
As0 fs i a( ) 










 ϕPn.max









ϕMn a( ) ϕ a( ) 0.85 f'c Ac a( ) xc a( )
1
ns
i
As0 fs i a( ) d
i
rc  











a 0
Dc
100
 Dc
Page 88
0 100 200 300
0
1000
2000
3000
Interaction diagram for column strength
ϕPn a( )
kN
Pu
kN
ϕMn a( )
kN m
Mu
kN m

3. Long (Slender) Columns
Stability index
Q
ΣPu Δ0
Vu Lc
=
where
ΣPu Vu = total vertical force and story shear
Δ0 = relative deflection between column ends
Lc = center-to-center length of column
Q 0.05 : Frame is nonsway (braced)
Q 0.05 : Frame is sway (unbraced)
Page 89
Unbraced Frame Braced Frame
ShearWall
Braced Frame
Brick Wall
Ties
Slenderness of column
The column is short, if
In nonsway frame:
k Lu
r
min 34 12
M1
M2
 40







In sway frame:
k Lu
r
22
where
M1 min MA MB = M2 max MA MB =
= minimum and maximum moments at the ends of column
Lu = unsuppported length of column
r = radius of gyration
r
I
A
=
I A = moment of inertia and area of column section
k = effective length factor
k k ψA ψB =
ψA ψB = degree of end restraint (release)
Page 90
ψ
EIc
Lc







EIb
Lb







=
ψ 0= : column is fixed
ψ ∞= : column is pinned
Moments of inertia
For column Ic 0.70Ig=
For beam Ib 0.35Ig=
Ig = moment of inertia of gross section
Determination of effective length factor
Way 1. Using graph
Way 2. Using equations
For braced frames:
ψA ψB
4
π
k






2

ψA ψB
2
1
π
k
tan
π
k


















2 tan
π
2 k







π
k
 1=
Page 91
For unbraced frames:
ψA ψB
π
k






2
 36
6 ψA ψB 
π
k
tan
π
k






=
Way 3. Using approximate relations
In nonsway frames:
k 0.7 0.05 ψA ψB  1.0=
k 0.85 0.05 ψmin 1.0=
ψmin min ψA ψB =
In sway frames:
Case ψm 2
k
20 ψm
20
1 ψm=
Case ψm 2
k 0.9 1 ψm=
ψm
ψA ψB
2
=
Case of column is hinged at one end
k 2.0 0.3 ψ=
ψ is the value in the restrained end.
Moment on column
Mc M2 δns M2.min δns=
where
M2.min Pu 15mm 0.03h( )=
Moment magnification factor
Page 92
δns
Cm
1
Pu
0.75 Pc

1=
Euler's critical load
Pc
π
2
EI
k Lu 
2
=
EI
0.4 Ec Ig
1 βd
=
βd
1.2 PD
1.2 PD 1.6 PL
=
Coefficient
Cm 0.6 0.4
M1
M2
 0.4=
Example 14.6
Required strength Pu 6402.35kN
PD
PL






4273.41kN
796.25kN







MA 77.75kN m MB 122.68 kN m
Length of column Lc 7.8m
Upper and lower columns
ba
ha
La










60cm
60cm
3.6m









bb
hb
Lb










65cm
65cm
1.5m









Upper and lower beams ba1
ha1
La1










30cm
50cm
6m









ba2
ha2
La2










30cm
50cm
6m









bb1
hb1
Lb1










30cm
50cm
6m









bb2
hb2
Lb2










30cm
50cm
6m









Materials f'c 30MPa
fy 390MPa
Page 93
Solution
Determination of concrete dimension
ϕ 0.65
Assume ρg 0.03
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
3379.226 cm
2

Proportion of column section k
b
h
= k
60
60

h
Ag
k
581.311 mm b k h 581.311 mm
h Ceil h 50mm( ) 600 mm
b Ceil b 50mm( ) 600 mm
b
h






600
600






mm
Determination of steel area
Ag b h 3.6 10
3
 cm
2

Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
85.932 cm
2
 20
π 25mm( )
2

4
 98.175 cm
2

Bars
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
1
















25 mm As0
π Bars
2

4


i 1 cols As0  As1i
As0
i 
 As As1
Ast As Ast 98.175 cm
2

Ast
Ag
0.027
ns rows As  ns 6
Cover 40mm 10mm
25mm
2
 62.5 mm
Page 94
d1
1
Cover Δs
h Cover 2
ns 1
95 mm
i 2 ns d1
i
d1
i 1
Δs
d d1 d
62.5
157.5
252.5
347.5
442.5
537.5
















mm
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  6634.405 kN
Slenderness of column
Stability index Q 0
Radius of gyration r
h
12
0.173 m
Modulus of elasticity
wc 24
kN
m
3

Ec 44MPa
wc
kN
m
3










1.5

f'c
MPa
 2.834 10
4
 MPa
Degree of end restraint
Ia1 0.35
ba1 ha1
3

12
 Ia2 0.35
ba2 ha2
3

12

Ib1 0.35
bb1 hb1
3

12
 Ib2 0.35
bb2 hb2
3

12

Ica 0.70
ba ha
3

12
 Icb 0.70
bb hb
3

12

Ic 0.70
b h
3

12

Σica
Ec Ica
La
Ec Ic
Lc
 Σicb
Ec Icb
Lb
Ec Ic
Lc

Σiba
Ec Ia1
La1
Ec Ia2
La2
 Σibb
Ec Ib1
Lb1
Ec Ib2
Lb2

ψA
Σica
Σiba
8.418 ψB
Σicb
Σibb
21.699
Page 95
Effective length factor
k 0.6
Given
ψA ψB
4
π
k






2

ψA ψB
2
1
π
k
tan
π
k


















2 tan
π
2 k







π
k
 1=
k 0.5 k 1.0
k Find k( ) k 0.969
Checking for long column
M1 MA MA MBif
MB otherwise
 M2 MB MA MBif
MA otherwise

M1 77.75 kN m M2 122.68 kN m
Lu Lc
max ha1 ha2  max hb1 hb2 
2
 7.3m
k Lu
r
40.834 min 34 12
M1
M2
 40






40
The_column "is short"
k Lu
r
min 34 12
M1
M2
 40






if
"is long" otherwise

The_column "is long"
Case of long column
βd
1.2 PD
1.2 PD 1.6 PL
0.801
Ig
b h
3

12
 EI
0.4 Ec Ig
1 βd

Pc
π
2
EI
k Lu 
2
13409.955 kN
Cm max 0.6 0.4
M1
M2
 0.4






0.4
Page 96
δns max
Cm
1
Pu
0.75 Pc

1










1.101
M2.min Pu 15mm 0.03 h( ) 211.278 kN m
Mc δns max M2 M2.min  The_column "is long"=if
max M2 M2.min  otherwise

Interaction diagram for column strength
c a( )
a
β1

dt max d( ) 537.5 mm
ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.90








fs i a( ) εs εu
d
i
c a( )
c a( )

sign εs  min Es εs fy 

ϕPn a( ) min ϕ a( ) 0.85 f'c a b
1
ns
i
Asi
fs i a( )













 ϕPn.max









ϕMn a( ) ϕ a( ) 0.85 f'c a b
h
2
a
2







1
ns
i
Asi
fs i a( ) d
i
h
2























a 0
h
100
 h
Page 97
0 200 400 600 800 1000 1200
0
1000
2000
3000
4000
5000
6000
7000
Interaction diagram for column strength
ϕPn a( )
kN
Pu
kN
ϕMn a( )
kN m
Mc
kN m

Page 98
15. Footing Design
A. Determination of Footing Dimension
Required area of footing
Areq
PD PL
qe
=
where
PD PL = dead and live loads on footing
qe = effective bearing capacity of soil
qe qa 20
kN
m
3
H=
qa = allowable bearing capacity of soil with FS 2.5= 3
20
kN
m
3
= average density of soil and concrete
H = depth of foundation
Checking for maximum stress of soil under footing
qmax qu
qmax
P
B L
1
6 e
L






 e
L
6
if
4P
3 B L 2 e( )
e
L
6
if
=
where
qu = design bearing capacity of soil
qu qa
1.2PD 1.6 PL
PD PL
=
P = axial load on footing
P 1.2 PD P0  1.6 PL=
P0 20
kN
m
3
H B L=
e = eccentricity of load
Page 99
e
M
P
=
L B = long and width of footing
B. Determination of Depth of Footing
Checking for Punching
Vu ϕVc
where
Vu = punching shear
Vc = punching shear strength
ϕ 0.75= is a strength reduction factor for shear
Punching shear
Vu qu A A0 =
A B L=
A0 bc d  hc d =
Punching shear strength
Vc 4 f'c b0 d= (in psi)
Page 100
Vc 0.332 f'c b0 d= (in MPa)
b0 bc d  hc d   2=
Checking for Beam Shear
Vu1 ϕVc1
Vu2 ϕVc2
where
Vu1 Vu2 = beam shears
Vc1 Vc2 = beam shear strength
Beam shears
Vu1 qu B
L
2
hc
2
 d






=
Vu2 qu L
B
2
bc
2
 d






=
Beam shear strength
Vc1 0.166 f'c B d=
Vc2 0.166 f'c L d=
C. Determination of Steel Area
Page 101
Steel re-bars in long direction
Required strength
q1 qu B= L1
L
2
hc
2
=
Mu1
q1 L1
2

2
=
Design section: rectangular singly reinforced beam of B d
Steel re-bars in short direction
Required strength
q2 qu L= L2
B
2
bc
2
=
Mu2
q2 L2
2

2
=
Design section: rectangular singly reinforced beam of L d
Example 15.1
Required strength PD 484.71kN
PL 228.56kN
PL
PD PL
0.32
Mu 5.03kN m
Dimension of column stub bc 350mm hc 350mm
Depth of foundation H 2.0m
Allowable bearing capacity of soil qa 178.33
kN
m
2
3
2.5
 213.996
kN
m
2

Materials f'c 25MPa
fy 390MPa
Page 102
Solution
Determination of Dimension of Footing
Effective bearing capacity of soil
qe qa 20
kN
m
3
H 173.996
kN
m
2

Required area of footing
Areq
PD PL
qe
4.099 m
2

Footing proportion k
B
L
= k
2
2.1

L
Areq
k
2.075 m B k L 1.976 m
L Ceil L 50mm( ) 2.1m B Ceil B 50mm( ) 2 m
B
L






2
2.1






m
Design bearing capacity of soil
qu qa
1.2 PD 1.6 PL
PD PL
 284.224
kN
m
2

Checking for maximum stress of soil
Pu 1.2 PD B L H 20
kN
m
3






 1.6 PL 1148.948 kN
e
Mu
Pu
4.378 mm
qmax
Pu
B L
1
6 e
L






 e
L
6
if
4Pu
3 B L 2 e( )
otherwise
 qmax 276.981
kN
m
2

qmax
qu
0.975
Soil "is safe" qmax quif
"is not safe" otherwise
 Soil "is safe"
Page 103
Determination of depth of footing
Punching shear
A0 d( ) bc d  hc d  A B L
Vu d( ) qu A A0 d( )  Vu 320mm( ) 1066.154 kN
Punching shear strength
b0 d( ) bc d  hc d   2
ϕ 0.75
ϕVc d( ) ϕ 0.332 MPa
f'c
MPa
 b0 d( ) d ϕVc 320mm( ) 1067.712 kN
Beam shears
Vu1 d( ) qu B
L
2
hc
2
 d






 Vu1 300mm( ) 326.858 kN
Vu2 d( ) qu L
B
2
bc
2
 d






 Vu2 300mm( ) 313.357 kN
Beam shear strength
ϕVc1 d( ) ϕ 0.166 MPa
f'c
MPa
 B d ϕVc1 300mm( ) 373.5 kN
ϕVc2 d( ) ϕ 0.166 MPa
f'c
MPa
 L d ϕVc2 300mm( ) 392.175 kN
c 50mm 20mm
20mm
2
 80 mm
dmin 150mm c 70 mm
d d dmin
d d 50mm
Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while
d

d 320 mm h d c 400 mm
Page 104
Steel reinforcements
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

ρshrinkage 0.0018
Re-bars in long direction
b B Ln
L
2
hc
2
 0.875 m wu qu b
Mu
wu Ln
2

2
217.609 kN m Mn
Mu
0.9

Mu
b
108.805
kN m
1m

R
Mn
b d
2

1.181 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00312
As max ρ b d ρshrinkage b h  19.944 cm
2

s 150mm D 14mm n floor
b 75mm 2 D
s






1 13
n
π D
2

4
 20.012 cm
2

Re-bars in short direction
b L Ln
B
2
bc
2
 0.825 m wu qu b
Mu
wu Ln
2

2
203.123 kN m Mn
Mu
0.9

Mu
b
96.725
kN m
1m

R
Mn
b d
2

1.05 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00276
As max ρ b d ρshrinkage b h  18.554 cm
2

s 160mm D 14mm n floor
b 75mm 2 D
s






1 13
n
π D
2

4
 20.012 cm
2

Page 105
16. Design of Pile Caps
1. Determination of Pile Cap
Number of required piles
n
PD PL
Qe
=
where
PD PL = dead and live loads on pile cap
Qe = effective bearing capacity of pile
Qe Qa 20
kN
m
3
3 D( )
2
 H=
20
kN
m
3
= average density of soil and concrete
D = pile size
H = depth of foundation
Distance between piles = 2 D 4 D
Distance from face of pile to face of pile cap =
D
2
200mm
Checking for pile reaction
R
i
P
n
M
y
x
i

1
n
k
x
k 
2



M
x
y
i

1
n
k
y
k 
2


 Qu=
where
P = load on pile cap
Mx My = moments on pile cap
Qu = design bearing capacity of pile
Qu Qa
1.2 PD 1.6 PL
PD PL
=
Page 106
2. Depth of Pile Cap
Case of punching
Vu ϕ Vc
where
Vu = punching shear
Vu Routside= Qu noutside=
Vc = punching shear strength
Vc 0.332 f'c b0 d=
b0 bc d  hc d   2=
Case of beam shear
Vu1 ϕVc1
Vu2 ϕVc2
where
Vu1 Vu2 = beam shears
Vc1 Vc2 = beam shear strength
Vu1 max Rleft Rright





=
Vu2 max Rbottom Rtop





=
Vc1 0.166 f'c B d=
Vc2 0.166 f'c L d=
Page 107
3. Determination of Steel Reinforcements
In long direction
Required moment: Mu1 max Rleft xleft
hc
2







 Rright xright
hc
2














=
Design section: Rectangular singly reinforced of B d
In short direction
Required moment: Mu2 max Rbottom xbottom
bc
2







 Rtop xtop
bc
2














=
Design section: Rectangular singly reinforced of L d
Example 16.1
Pile size D 300mm Lp 9m
Allowable bearing capacity of pile Qa 351.5kN
Loads on pile cap PD 1769.88kN PL 417.11kN
My 33.92kN m Mx 56.82kN m
Depth of foundation H 1.5m
Column stub bc 350mm hc 500mm
Materials f'c 25MPa
fy 390MPa
Diameters of main bar
D1
D2






16mm
16mm







Concrete cover c 75mm
Depth of concrete crack hshrinkage 200mm
Diameter of shrinkage rebar Dshrinkage 12mm
Solution
Design of pile
Required strength of pile concrete
Page 108
Ag D D
f'c.pile
Qa
1
4
Ag
15.622 MPa Use f'c.pile 20MPa
Steel re-bars
Ast 0.005 Ag 4.5 cm
2
 4
π 16mm( )
2

4
 8.042 cm
2

Dimension of pile cap
Effective bearing capacity of pile
Qe Qa 20
kN
m
3
3 D( )
2
 H 327.2 kN
Number of piles
n
PD PL
Qe
6.684
Required number of piles ceil n( ) 7
Location of pile
X
1 m
0
1m
0.5 m
0.5m
1 m
0
1m






















 Y
0.8m
0.8m
0.8m
0
0
0.8 m
0.8 m
0.8 m























Number of piles n rows X( ) n 8
Dimension of pile cap
B max Y( ) min Y( ) min
D
2
200mm





D
2






2 B 2.2m
L max X( ) min X( ) min
D
2
200mm





D
2






2 L 2.6m
Checking for pile reactions
Page 109
Qu Qa
1.2 PD 1.6 PL
PD PL
 448.616 kN
P0 20
kN
m
3
H B L 171.6 kN
Pu 1.2 PD P0  1.6 PL 2997.152 kN
i 1 n ORIGIN 1
Rui
Pu
n
My X
i

1
n
k
X
k 
2



Mx Y
i

1
n
k
Y
k 
2



Ru
Qu
0.845
0.861
0.878
0.827
0.844
0.792
0.809
0.826























Xcap
1
1
1
1
1














L
2
 Ycap
1
1
1
1
1














B
2

i 1 n
Xpile
i 
X
i
1
1
1
1
1














D
2
 Ypile
i 
Y
i
1
1
1
1
1














D
2

2 1 0 1 2
2
1
1
2
Ycap
Ypile
Y
Xcap Xpile X
Page 110
Determination of Depth of Pile Cap
Punching shear
Outside d( ) X
hc
2
d
2







Y
bc
2
d
2
















Vu d( ) Ru Outside d( ) Vu 700mm( ) 2247.864 kN
Punching shear strength
ϕ 0.75
b0 d( ) hc d  bc d   2
ϕVc d( ) ϕ 0.332 MPa
f'c
MPa
 b0 d( ) d ϕVc 700mm( ) 3921.75 kN
Beam shears
Left d( ) X
hc
2
d














 Right d( ) X
hc
2
d















Bottom d( ) Y
bc
2
d














 Top d( ) Y
bc
2
d















Vu1 d( ) max Ru Left d( ) Ru Right d( )  Vu1 700mm( ) 764.364 kN
Vu2 d( ) max Ru Bottom d( ) Ru Top d( )  Vu2 700mm( ) 0 N
Beam shear strength
ϕVc1 d( ) ϕ 0.166 MPa
f'c
MPa
 B d ϕVc1 700mm( ) 958.65 kN
ϕVc2 d( ) ϕ 0.166 MPa
f'c
MPa
 L d ϕVc2 700mm( ) 1132.95 kN
Depth of pile cap
Cover c D1
D2
2
 99 mm
d d 300mm Cover
d d 50mm
Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while
d

d 651 mm h d Cover 750 mm
Page 111
Steel Reinforcements
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

In long direction
b B
Mu1 Left 0( ) Ru
hc
2
X














 643.378 kN m
Mu2 Right 0( ) Ru X
hc
2















 667.876 kN m
Mu max Mu1 Mu2  667.876 kN m Mn
Mu
0.9

R
Mn
b d
2

0.796 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00208
As max ρ b d ρshrinkage b h  As 29.797 cm
2

As1
π D1
2

4
 n1 ceil
As
As1






15
s1 Floor
b c
D1
2







2
n1 1
5mm










145 mm
In short direction
b L
Mu1 Bottom 0( ) Ru
bc
2
Y














 680.262 kN m
Mu2 Top 0( ) Ru Y
bc
2















 724.653 kN m
Mu max Mu1 Mu2  724.653 kN m Mn
Mu
0.9

Page 112
R
Mn
b d
2

0.731 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00191
As max ρ b d ρshrinkage b h  As 35.1 cm
2

As2
π D2
2

4
 n2 ceil
As
As2






18
s2 Floor
b c
D2
2







2
n2 1
5mm










140 mm
Shrinkage reinforcement
b 1m hshrinkage h hshrinkage 0=if
hshrinkage otherwise

As ρshrinkage b hshrinkage 3.6 cm
2

As0
π Dshrinkage
2

4
 n
As
As0

sshrinkage Floor
b
n
5mm





310 mm
Table
L c
D1
2







2
m
B c
D2
2







2
m
"N/A"
D1
mm
D2
mm
Dshrinkage
mm
n1
n2
"N/A"
s1
mm
s2
mm
sshrinkage
mm























Page 113
Dimension of pile cap B= 2.20 m
L= 2.60 m
Depth of pile cap h= 750 mm
Direction Length (mm) Dia. (mm) NOS Spacing (mm)
Long 2.43 16 15 145
Short 2.03 16 18 140
Top N/A 12 N/A 310
Page 114
17. Slab Design
A. Design of One-Way Slabs
La = length of short side
Lb = length of long side
La
Lb
0.5 : the slab in one-way
La
Lb
0.5 : the slab is two-way
Thickness of one-way slab
Simply supported
Ln
20
One end continuous
Ln
24
Both ends continuous
Ln
28
Cantilever
Ln
10
Analysis of one-way slab
Design scheme: continuous beam
Determination of bending moments: using ACI moment coefficients
Design of one-way slab
Design section: rectangular section of 1m x h
Type section: singly reinforced beam
Page 115
Example 17.1
Span of slab Ln 2m 20cm 1.8m
Live load LL 12
kN
m
2

Materials f'c 20MPa
fy 390MPa
Solution
Thickness of one-way slab
tmin
Ln
28
64.286 mm
Use t 100mm
Loads on slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab t 25
kN
m
3
2.5
kN
m
2

Ceiling 0.40
kN
m
2

Mechanical 0.20
kN
m
2

Partition 1.00
kN
m
2

DL Cover Slab Ceiling Mechanical Partition 5.2
kN
m
2

wu 1.2 DL 1.6 LL 25.44
kN
m
2

Bending moments
Msupport
1
11
wu Ln
2
 7.493
kN m
1m

Mmidspan
1
16
wu Ln
2
 5.152
kN m
1m

Steel reinforcements
Page 116
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

ρshrinkage 0.0018
Top rebars
b 1m d t 20mm
10mm
2






 75 mm
Mu Msupport b 7.493 kN m
Mn
Mu
0.9
8.326 kN m
R
Mn
b d
2

1.48 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.004 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.982 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 3 t 450mm( )
s min Floor
b
n
10mm





smax





260 mm
Bottom rebars
Mu Mmidspan b 5.152 kN m
Mn
Mu
0.9
5.724 kN m
Page 117
R
Mn
b d
2

1.018 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.019 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 3 t 450mm( )
s min Floor
b
n
10mm





smax





300 mm
Link rebars
As ρshrinkage b t 1.8 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 5 t 450mm( )
s min Floor
b
n
10mm





smax





430 mm
B. Design of Two-Way Slabs
Design methods:
- Load distribution method
- Moment coefficient method
- Direct design method (DDM)
- Equivalent frame method
- Strip method
- Yield line method
Page 118
(1) Load Distribution Method
Principle: Equality of deflection in short and long directions
fa fb=
αa
wa La
4

EI
 αb
wb Lb
4

EI
=
Case αa αb=
wa
wb
Lb
4
La
4
=
1
λ
4
= λ
La
Lb
=
wa wb wu=
From which, wa wu
1
1 λ
4

=
wb wu
λ
4
1 λ
4

=
For λ 1
1
1 λ
4

0.5
λ
4
1 λ
4

0.5
For λ 0.8
1
1 λ
4

0.709
λ
4
1 λ
4

0.291
For λ 0.6
1
1 λ
4

0.885
λ
4
1 λ
4

0.115
For λ 0.5
1
1 λ
4

0.941
λ
4
1 λ
4

0.059
For λ 0.4
1
1 λ
4

0.975
λ
4
1 λ
4

0.025
Page 119
Example 17.2
Slab dimension La 4.3m
Lb 5.5m
Live load LL 2.00
kN
m
2

Materials f'c 20MPa
fy 390MPa
Solution
Thickness of two-way slab
Perimeter La Lb  2
tmin
Perimeter
180
108.889 mm
t
1
30
1
50






La 143.333 86( ) mm
Use t 120mm
Loads on slab
SDL 50mm 22
kN
m
3
0.40
kN
m
2
 1.00
kN
m
2
 2.5
kN
m
2

DL SDL t 25
kN
m
3
 5.5
kN
m
2

LL 2
kN
m
2

wu 1.2 DL 1.6 LL 9.8
kN
m
2

Load distribution
λ
La
Lb
0.782
wa
1
1 λ
4

wu 7.134
kN
m
2

wb
λ
4
1 λ
4

wu 2.666
kN
m
2

Page 120
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)
Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)

Weitere ähnliche Inhalte

Was ist angesagt?

19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforcedSelvakumar Palanisamy
 
Is 4000 high strength bolts in steel structures
Is 4000 high strength bolts in steel structuresIs 4000 high strength bolts in steel structures
Is 4000 high strength bolts in steel structuresVishal Mistry
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office andMasroor Alam
 
Approximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfApproximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfAshrafZaman33
 
AASHTO LRFD Bridge Design Specifications (9th Edition).pdf
AASHTO LRFD Bridge Design Specifications (9th Edition).pdfAASHTO LRFD Bridge Design Specifications (9th Edition).pdf
AASHTO LRFD Bridge Design Specifications (9th Edition).pdfKarin Faust
 
Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram constructionPritesh Parmar
 
many projects shoring
many projects shoringmany projects shoring
many projects shoringSamir Salman
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...Hossam Shafiq II
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...Hossam Shafiq II
 
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...physicsbook
 
I Beam Standard Specifications _Details
I Beam Standard Specifications _DetailsI Beam Standard Specifications _Details
I Beam Standard Specifications _DetailsAl-Amin PB
 

Was ist angesagt? (20)

19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforced
 
Is 4000 high strength bolts in steel structures
Is 4000 high strength bolts in steel structuresIs 4000 high strength bolts in steel structures
Is 4000 high strength bolts in steel structures
 
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
13-Effective Length of Columns (Steel Structural Design & Prof. Shehab Mourad)
 
Flanged beams design for t beam
Flanged beams   design for t beamFlanged beams   design for t beam
Flanged beams design for t beam
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Approximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdfApproximate Analysis of Statically Indeteminate Structures.pdf
Approximate Analysis of Statically Indeteminate Structures.pdf
 
AASHTO LRFD Bridge Design Specifications (9th Edition).pdf
AASHTO LRFD Bridge Design Specifications (9th Edition).pdfAASHTO LRFD Bridge Design Specifications (9th Edition).pdf
AASHTO LRFD Bridge Design Specifications (9th Edition).pdf
 
Etabs modeling - Design of slab according to EC2
Etabs modeling  - Design of slab according to EC2Etabs modeling  - Design of slab according to EC2
Etabs modeling - Design of slab according to EC2
 
Concrete bridge-design-to-bs5400
Concrete bridge-design-to-bs5400Concrete bridge-design-to-bs5400
Concrete bridge-design-to-bs5400
 
Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram construction
 
many projects shoring
many projects shoringmany projects shoring
many projects shoring
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
 
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
 
Design of a circular raft for a cylindrical core
Design of a circular raft for a cylindrical coreDesign of a circular raft for a cylindrical core
Design of a circular raft for a cylindrical core
 
Steel warehouse design report
Steel warehouse design reportSteel warehouse design report
Steel warehouse design report
 
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
 
I Beam Standard Specifications _Details
I Beam Standard Specifications _DetailsI Beam Standard Specifications _Details
I Beam Standard Specifications _Details
 
psad 1.pdf
psad 1.pdfpsad 1.pdf
psad 1.pdf
 

Andere mochten auch

En steel catalogue
En steel catalogueEn steel catalogue
En steel catalogueSam Ang KEO
 
Slide Design Project
Slide Design ProjectSlide Design Project
Slide Design ProjectEllie Arave
 
Aplicacion de la Norma Covenin 3.049-93
Aplicacion de la Norma Covenin 3.049-93Aplicacion de la Norma Covenin 3.049-93
Aplicacion de la Norma Covenin 3.049-93Jorge Mendoza
 
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)mastaneh zohri
 
CV-Tanveer-Geologist
CV-Tanveer-GeologistCV-Tanveer-Geologist
CV-Tanveer-GeologistTanveer Ali
 
PP LF Steering Committee Meeting.062416
PP LF Steering Committee Meeting.062416PP LF Steering Committee Meeting.062416
PP LF Steering Committee Meeting.062416David Whitaker, AICP
 
II Guerra Mundial
II Guerra MundialII Guerra Mundial
II Guerra Mundialheroldd
 
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...Pedro Martinez-Clark, M.D.
 
Book review
Book reviewBook review
Book reviewFa Saif
 
Componentes de un cursos
Componentes de un cursosComponentes de un cursos
Componentes de un cursosAngel Cuá
 
Ellie Arave Final Project
Ellie Arave Final ProjectEllie Arave Final Project
Ellie Arave Final ProjectEllie Arave
 
Saquilá cuá, angel. actividad no. 4
Saquilá cuá, angel.  actividad no. 4Saquilá cuá, angel.  actividad no. 4
Saquilá cuá, angel. actividad no. 4Angel Cuá
 

Andere mochten auch (20)

En steel catalogue
En steel catalogueEn steel catalogue
En steel catalogue
 
Carnaval en perú f
Carnaval en perú fCarnaval en perú f
Carnaval en perú f
 
Slide Design Project
Slide Design ProjectSlide Design Project
Slide Design Project
 
ACS-NANO-2011
ACS-NANO-2011ACS-NANO-2011
ACS-NANO-2011
 
Aplicacion de la Norma Covenin 3.049-93
Aplicacion de la Norma Covenin 3.049-93Aplicacion de la Norma Covenin 3.049-93
Aplicacion de la Norma Covenin 3.049-93
 
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
 
Science
ScienceScience
Science
 
Estados financieros
Estados financierosEstados financieros
Estados financieros
 
'Training Certs-1
'Training Certs-1'Training Certs-1
'Training Certs-1
 
CV-Tanveer-Geologist
CV-Tanveer-GeologistCV-Tanveer-Geologist
CV-Tanveer-Geologist
 
PP LF Steering Committee Meeting.062416
PP LF Steering Committee Meeting.062416PP LF Steering Committee Meeting.062416
PP LF Steering Committee Meeting.062416
 
II Guerra Mundial
II Guerra MundialII Guerra Mundial
II Guerra Mundial
 
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
 
Book review
Book reviewBook review
Book review
 
POT
POTPOT
POT
 
Componentes de un cursos
Componentes de un cursosComponentes de un cursos
Componentes de un cursos
 
Pedro Martinez-Clark_01-16 CV
Pedro Martinez-Clark_01-16 CVPedro Martinez-Clark_01-16 CV
Pedro Martinez-Clark_01-16 CV
 
Ellie Arave Final Project
Ellie Arave Final ProjectEllie Arave Final Project
Ellie Arave Final Project
 
Saquilá cuá, angel. actividad no. 4
Saquilá cuá, angel.  actividad no. 4Saquilá cuá, angel.  actividad no. 4
Saquilá cuá, angel. actividad no. 4
 
Final Portfolio
Final PortfolioFinal Portfolio
Final Portfolio
 

Ähnlich wie Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)

Torque-Tension Reference Guide (1).pdf
Torque-Tension Reference Guide (1).pdfTorque-Tension Reference Guide (1).pdf
Torque-Tension Reference Guide (1).pdfNidhin Venkatesh
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
Shawcor_CPS_GPL Brochure_English_December 2015
Shawcor_CPS_GPL Brochure_English_December 2015Shawcor_CPS_GPL Brochure_English_December 2015
Shawcor_CPS_GPL Brochure_English_December 2015DJ Mulholland
 
V3 astm-a1085 dimensions-section-properties
V3 astm-a1085 dimensions-section-propertiesV3 astm-a1085 dimensions-section-properties
V3 astm-a1085 dimensions-section-propertiestecnidibujos
 
Costo referencial de posecion y operacion
Costo referencial de posecion y operacionCosto referencial de posecion y operacion
Costo referencial de posecion y operacionDeyvis Ubaldo
 
AIS Torque Cal, Torque Chart and Bolting Pattern.pdf
AIS Torque Cal, Torque Chart and Bolting Pattern.pdfAIS Torque Cal, Torque Chart and Bolting Pattern.pdf
AIS Torque Cal, Torque Chart and Bolting Pattern.pdfWorawitBoonnaeb
 
A_MukherjeePresn for engineers good file
A_MukherjeePresn for engineers good fileA_MukherjeePresn for engineers good file
A_MukherjeePresn for engineers good fileZiad Salem
 
47643562 indian-rolled-sections-756
47643562 indian-rolled-sections-75647643562 indian-rolled-sections-756
47643562 indian-rolled-sections-756prathamesh p parkar
 
Ready rackner for qs
Ready rackner for qsReady rackner for qs
Ready rackner for qsHiren Thakkar
 
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...Thorne & Derrick International
 
232365141 1-qs-techinical-data
232365141 1-qs-techinical-data232365141 1-qs-techinical-data
232365141 1-qs-techinical-datahlksd
 
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueFerrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueArnoud Sulkers
 
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueFerrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CataloguePieter Blom
 
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueFerrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueRobert van Dijk
 

Ähnlich wie Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010) (20)

Tablice beton
Tablice betonTablice beton
Tablice beton
 
Mojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in RotorMojtaba Hasanlu's Portfolios in Rotor
Mojtaba Hasanlu's Portfolios in Rotor
 
Torque-Tension Reference Guide (1).pdf
Torque-Tension Reference Guide (1).pdfTorque-Tension Reference Guide (1).pdf
Torque-Tension Reference Guide (1).pdf
 
Catalogo codiacero
Catalogo codiaceroCatalogo codiacero
Catalogo codiacero
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
Shawcor_CPS_GPL Brochure_English_December 2015
Shawcor_CPS_GPL Brochure_English_December 2015Shawcor_CPS_GPL Brochure_English_December 2015
Shawcor_CPS_GPL Brochure_English_December 2015
 
V3 astm-a1085 dimensions-section-properties
V3 astm-a1085 dimensions-section-propertiesV3 astm-a1085 dimensions-section-properties
V3 astm-a1085 dimensions-section-properties
 
Costo referencial de posecion y operacion
Costo referencial de posecion y operacionCosto referencial de posecion y operacion
Costo referencial de posecion y operacion
 
Depositiondata
DepositiondataDepositiondata
Depositiondata
 
AIS Torque Cal, Torque Chart and Bolting Pattern.pdf
AIS Torque Cal, Torque Chart and Bolting Pattern.pdfAIS Torque Cal, Torque Chart and Bolting Pattern.pdf
AIS Torque Cal, Torque Chart and Bolting Pattern.pdf
 
Tabel baja standard
Tabel baja standardTabel baja standard
Tabel baja standard
 
A_MukherjeePresn for engineers good file
A_MukherjeePresn for engineers good fileA_MukherjeePresn for engineers good file
A_MukherjeePresn for engineers good file
 
47643562 indian-rolled-sections-756
47643562 indian-rolled-sections-75647643562 indian-rolled-sections-756
47643562 indian-rolled-sections-756
 
Ready rackner for qs
Ready rackner for qsReady rackner for qs
Ready rackner for qs
 
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
 
2011 Test Plot Book
2011 Test Plot Book2011 Test Plot Book
2011 Test Plot Book
 
232365141 1-qs-techinical-data
232365141 1-qs-techinical-data232365141 1-qs-techinical-data
232365141 1-qs-techinical-data
 
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueFerrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - Catalogue
 
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueFerrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - Catalogue
 
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - CatalogueFerrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - Catalogue
 

Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)

  • 1. CONSTRUCTION MANAGEMENT Concept-Develop-Execute-Finish __________________________________________________________________________________ Seun Sambath, PhD Concrete Structures (ACI 318-05) in Mathcad Sixth Edition Phnom Penh 2010 ___________________________________________________________________________________ Address: #M41, St.308, Sangkat Tonle Basac, Khan Chamkarmon, Phnom Penh, Cambodia. Tel: 012 659 848.
  • 2. Table of Contents 1. Unit conversion ....................................................................................................... 1 2. Simple calculation ................................................................................................... 4 3. Materials ................................................................................................................ 5 4. Safety provision ....................................................................................................... 10 5. Loads on structures (case of two-way slab) ................................................................ 12 6. Loads on structures (case of one-way slab) ................................................................ 16 7. Loads on staircase .................................................................................................. 20 8. Loads on tile roof ..................................................................................................... 23 9. ASCE wind loads .................................................................................................... 25 10. Design of singly reinforced beams ............................................................................ 28 11. Design of doubly reinforced beams ......................................................................... 39 12. Design of T beams ................................................................................................. 52 13. Shear design ......................................................................................................... 60 14. Column design ...................................................................................................... 68 15. Design of footings .................................................................................................. 99 16. Design of pile caps ............................................................................................... 106 17. Slab design .......................................................................................................... 115 18. Design of staircase ............................................................................................... 142 19. Deflections ........................................................................................................... 148 20. Development lengths ............................................................................................. 158 Reference .................................................................................................................. 162
  • 3. 1. Unit Conversion Length in = inch ft = foot yd = yard mi = mile 1in 25.4 mm 1cm 0.394 in 1ft 0.305 m 1m 3.281 ft 1ft 12 in 1yd 0.914 m 1m 1.094 yd 1yd 3 ft 1mi 1.609 km 1km 0.621 mi 1mi 1760 yd 1mi 5280 ft 1m 100mm 1.1m 1mi 200m 1.124 mi Size of standard concrete cylinder D 6in 15.24 cm H 12in 30.48 cm Force lbf = pound force kip = kilopound force 1lbf 4.448 N 1lbf 0.454 kgf 1kgf 9.807 N 1N 0.225 lbf 1kgf 2.205 lbf 1N 0.102 kgf 1kip 4.448 kN 1kip 0.454 tonnef 1tonf 0.907 tonnef 1kN 0.225 kip 1tonnef 2.205 kip 1tonnef 1.102 tonf 1tonnef 1000 kgf 1tonf 2000 lbf Page 1
  • 4. Stress psi = pound per square inch 1psi 1 lbf in 2  ksi = kilopound per square inch 1ksi 1 kip in 2  psf = pound per square foot 1psf 1 lbf ft 2  1psi 6.895 kPa 1kPa 0.145 psi 1Pa 1 N m 2  1ksi 6.895 MPa 1MPa 0.145 ksi 1kPa 1 kN m 2  1MPa 1 N mm 2  1psf 0.048 kN m 2  1 kN m 2 20.885 psf 1psf 4.882 kgf m 2  1 kgf m 2 0.205 psf Concrete compression strength 3000psi 20.7 MPa 20MPa 2900.8 psi 4000psi 27.6 MPa 25MPa 3625.9 psi 5000psi 34.5 MPa 35MPa 5076.3 psi 8000psi 55.2 MPa 55MPa 7977.1 psi Steel yield strength 60ksi 413.7 MPa 390MPa 56.6 ksi 75ksi 517.1 MPa 490MPa 71.1 ksi Live loads 40psf 1.915 kN m 2  200 kgf m 2 40.963 psf 100psf 4.788 kN m 2  4.80 kN m 2 100.25 psf Page 2
  • 5. Density 1pcf 1 lbf ft 3  125pcf 19.636 kN m 3  145pcf 22.778 kN m 3  Moments 1ft kip 1.356 kN m User setting Riels 1 USD 4165Riels 124USD 516460 Riels 200000Riels 48.019 USD CostSteel 665 USD 1tonnef  670kgf CostSteel 445.55 USD Page 3
  • 6. 2. Simple Calculation 1 3 2 3        3 23.472 a 2 b 4 c 1 Δ b 2 4 a c x1 b Δ 2 a 0.225 x2 b Δ 2 a 2.225 Page 4
  • 7. 3. Materials 1. Concrete Standard concrete cylinder D 6in 15.24 cm D 150mm H 12in 30.48 cm H 300mm Concrete compression strength f'c 3000psi 20.7 MPa f'c 20MPa 2900.8 psi f'c 4000psi 27.6 MPa f'c 25MPa 3625.9 psi f'c 5000psi 34.5 MPa f'c 35MPa 5076.3 psi Concrete ultimate strain εu 0.003 Cubic and cylinder compression strength fcube f'c 0.85 = f'c 20MPa fcube f'c 0.85 23.529 MPa f'c 25MPa fcube f'c 0.85 29.412 MPa f'c 35MPa fcube f'c 0.85 41.176 MPa Modulus of rupture (tensile strength) fr 7.5 f'c= (in psi) Metric coefficient 7.5psi f'c psi  7.5MPa psi MPa  f'c MPa MPa psi = C MPa f'c MPa = C 7.5 psi MPa MPa psi  0.623 fr 0.623 f'c= (in MPa) Page 5
  • 8. Modulus of elasticity Ec 33 wc 1.5  f'c= (in psi) wc is a unit weight of concrete (in pcf) Metric coefficient 33psi kN m 3 pcf         1.5  MPa psi  44.011 MPa Ec 44 wc 1.5  f'c= (in MPa) wc in kN/m3 Example 3.1 Concrete compression strength f'c 25MPa Unit weight of concrete wc 24 kN m 3  145pcf 22.778 kN m 3  Modulus of rupture fr 7.5psi f'c psi  3.114 MPa fr 0.623MPa f'c MPa  3.115 MPa Modulus of elasticity Ec 33psi wc pcf       1.5  f'c psi  2.587 10 4  MPa Ec 44MPa wc kN m 3           1.5  f'c MPa  2.587 10 4  MPa Page 6
  • 9. 2. Steel Reinforcements Steel yield strength of deformed bar (DB) fy 390MPa 56.565 ksi Steel yield strength of round bar (RB) fy 235MPa 34.084 ksi Modulus of elasticity Es 29000000psi 1.999 10 5  MPa Es 2 10 5 MPa Steel yield strength εy fy Es = US Steel Reinforcements Bar No. (#) Bar diameter no 3 4 5 6 7 8 9 10 11 12 13 14                                    D no 8 in D 9.5 12.7 15.9 19 22.2 25.4 28.6 31.8 34.9 38.1 41.3 44.4                                   mm Page 7
  • 10. Steel area A π D 2  4  A 0.71 1.27 1.98 2.85 3.88 5.07 6.41 7.92 9.58 11.4 13.38 15.52                                   cm 2  Weight of steel reinforcements W A 7850 kgf m 3  W 0.559 0.994 1.554 2.237 3.045 3.978 5.034 6.215 7.52 8.95 10.503 12.182                                  kgf m  ORIGIN 1 n 1 9 Area n  A n Page 8
  • 11. 1 2 3 4 5 6 7 8 9 3 9.5 0.71 1.43 2.14 2.85 3.56 4.28 4.99 5.70 6.41 0.559 4 12.7 1.27 2.53 3.80 5.07 6.33 7.60 8.87 10.13 11.40 0.994 5 15.9 1.98 3.96 5.94 7.92 9.90 11.88 13.86 15.83 17.81 1.554 6 19.1 2.85 5.70 8.55 11.40 14.25 17.10 19.95 22.80 25.65 2.237 7 22.2 3.88 7.76 11.64 15.52 19.40 23.28 27.16 31.04 34.92 3.045 8 25.4 5.07 10.13 15.20 20.27 25.34 30.40 35.47 40.54 45.60 3.978 9 28.6 6.41 12.83 19.24 25.65 32.07 38.48 44.89 51.30 57.72 5.034 10 31.8 7.92 15.83 23.75 31.67 39.59 47.50 55.42 63.34 71.26 6.215 11 34.9 9.58 19.16 28.74 38.32 47.90 57.48 67.06 76.64 86.22 7.520 12 38.1 11.40 22.80 34.20 45.60 57.00 68.41 79.81 91.21 102.61 8.950 13 41.3 13.38 26.76 40.14 53.52 66.90 80.28 93.66 107.04 120.42 10.503 14 44.5 15.52 31.04 46.55 62.07 77.59 93.11 108.63 124.14 139.66 12.182 Bar # Diameter (mm) Area of cross section (cm 2 ) for the number of bars is equal to Weight (kgf/m) Metric Steel Reinforcements D 6 8 10 12 14 16 18 20 22 25 28 32 36 40( ) T mm A π D 2  4  W A 7850 kgf m 3  n 1 9 Area n  A n 1 2 3 4 5 6 7 8 9 6 0.28 0.57 0.85 1.13 1.41 1.70 1.98 2.26 2.54 0.222 8 0.50 1.01 1.51 2.01 2.51 3.02 3.52 4.02 4.52 0.395 10 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28 7.07 0.617 12 1.13 2.26 3.39 4.52 5.65 6.79 7.92 9.05 10.18 0.888 14 1.54 3.08 4.62 6.16 7.70 9.24 10.78 12.32 13.85 1.208 16 2.01 4.02 6.03 8.04 10.05 12.06 14.07 16.08 18.10 1.578 18 2.54 5.09 7.63 10.18 12.72 15.27 17.81 20.36 22.90 1.998 20 3.14 6.28 9.42 12.57 15.71 18.85 21.99 25.13 28.27 2.466 22 3.80 7.60 11.40 15.21 19.01 22.81 26.61 30.41 34.21 2.984 25 4.91 9.82 14.73 19.63 24.54 29.45 34.36 39.27 44.18 3.853 28 6.16 12.32 18.47 24.63 30.79 36.95 43.10 49.26 55.42 4.834 32 8.04 16.08 24.13 32.17 40.21 48.25 56.30 64.34 72.38 6.313 36 10.18 20.36 30.54 40.72 50.89 61.07 71.25 81.43 91.61 7.990 40 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 9.865 Diameter (mm) Area of cross section (cm 2 ) for the number of bars is equal to Weight (kgf/m) Page 9
  • 12. 4. Safety Provision Required_Strength Design_Strength U ϕSn where U = required strength (factored loads) ϕSn = design strength Sn = nominal strength ϕ = strength reduction factor a. Load Combinations Basic combination U 1.2 D 1.6 L= Roof combination U 1.2 D 1.6 L 1.0 Lr= Wind combination U 1.2 D 1.6 W 1.0 L 0.5 Lr= where D = dead load L = live load Lr = roof live load W = wind load Page 10
  • 13. b. Strength Reduction Factor Strength Condition Strength reduction factor ϕ Tension-controlled members (εt 0.005 ) ϕ 0.9= Compression-controlled (εt 0.002 ) Spirally reinforced ϕ 0.70= Other ϕ 0.65= Shear and torsion ϕ 0.75= where εt = net tensile strain For spirally reinforced members ϕ 0.9 εt 0.005if 0.70 εt 0.002if 1.7 200 εt 3 otherwise = 0.7 0.9 0.7 0.005 0.002 εt 0.002  0.7 200 3 εt 0.002  1.7 200 εt 3 = For other members ϕ 0.9 εt 0.005if 0.65 εt 0.002if 1.45 250 εt 3 otherwise = Page 11
  • 14. 5. Loads on Structures (Case of Two-Way Slabs) Slab dimension Short side La 4m Long side Lb 6m A. Preliminary Design Thickness of two-way slab Perimeter La Lb  2 tmin Perimeter 180 111.111 mm t 1 30 1 50       La 133.333 80( ) mm t 110mm Section of beam B1 L 6m h 1 10 1 15       L 600 400( ) mm h 500mm b 0.3 0.6( ) h 150 300( ) mm b 250mm For girders h 1 8 1 10       L= For two-way slab beams h 1 10 1 15       L= For floor beams h 1 15 1 20       L= Section of beam B2 L 4m h 1 10 1 15       L 400 266.667( ) mm h 300mm b 0.3 0.6( ) h 90 180( ) mm b 200mm Page 12
  • 15. B. Loads on Slab Floor cover Cover 50mm 22 kN m 3 1.1 kN m 2  RC slab Slab t 25 kN m 3 2.75 kN m 2  Ceiling Ceiling 0.40 kN m 2  M & E Mechanical 0.20 kN m 2  Partition Partition 1.00 kN m 2  Dead load DL Cover Slab Ceiling Mechanical Partition 5.45 kN m 2  Live load for Lab LL 60psf 2.873 kN m 2  Factored load wu 1.2 DL 1.6 LL 11.137 kN m 2  C. Loads of Wall Void 30mm 30 mm 190 mm 4 wbrick.hollow 90mm 90 mm 190 mm Void( ) 20 kN m 3 1.744 kgf wbrick.solid 45mm 90 mm 190 mm 20 kN m 3 1.569 kgf ρbrick.hollow wbrick.hollow 90mm 90 mm 190 mm 11.111 kN m 3  Brickhollow.10 120mm Void 55 1m 2       20 kN m 3 1.648 kN m 2  Brickhollow.20 220mm Void 110 1m 2       20 kN m 3 2.895 kN m 2  Page 13
  • 16. D. Loads on Beam B1 Self weight SW 25cm 50cm 110mm( ) 25 kN m 3 2.438 kN m  Wall wwall Brickhollow.10 3.5m 50cm( ) 4.943 kN m  Slab α 4m 2 6m 0.333 k 1 2 α 2  α 3  0.815 wD.slab DL 4m 2  2 k 17.763 kN m  wL.slab LL 4m 2  2 k 9.363 kN m  Dead load wD SW wwall wD.slab 25.143 kN m  Live load wL wL.slab 9.363 kN m  Factored load wu 1.2 wD 1.6 wL 45.153 kN m  E. Loads on Beam B2 Self weight SW 20cm 30cm 110mm( ) 25 kN m 3 0.95 kN m  Wall wwall Brickhollow.10 3.5m 30cm( ) 5.272 kN m  Slab α 4m 2 4m 0.5 k 1 2 α 2  α 3  0.625 wD.slab DL 4m 2  2 k 13.625 kN m  wL.slab LL 4m 2  2 k 7.182 kN m  Dead load wD SW wwall wD.slab 19.847 kN m  Live load wL wL.slab 7.182 kN m  Factored load wu 1.2 wD 1.6 wL 35.308 kN m  Page 14
  • 17. F. Loads on Column Tributary area B 4m L 6m Slab loads PD.slab DL B L 130.8 kN PL.slab LL B L 68.948 kN Beam loads PB1 25cm 50cm 110mm( ) 25 kN m 3 L 14.625 kN PB2 20cm 30cm 110mm( ) 25 kN m 3 B 3.8 kN Wall loads Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN Pwall.2 Brickhollow.10 3.5m 30cm( ) B 21.089 kN SW of column SW 5% 7%( ) PD= Total loads for number of floors n 7 PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1469.787 kN PL PL.slab n 482.633 kN Pu 1.2 PD 1.6 PL 2535.958 kN Pu PD PL 1.299 Control PD PL n B L 11.622 kN m 2  (Ref. 10 kN m 2 18 kN m 2  ) PL PD PL 24.72 % (Ref. 15% 35% ) Page 15
  • 18. 06 . Loads on Structures (Case of One-Way Slabs) A. Preliminary Design Thickness of one-way slab (both ends continue) L 6m 2 3 m tmin L 28 107.143 mm t 1 25 1 35       L 120 85.714( ) mm t 120mm Page 16
  • 19. Section of floor beam B1 L 8m h 1 15 1 20       L 533.333 400( ) mm h 500mm b 0.3 0.6( ) h 150 300( ) mm b 250mm Section of girder B2 L 6m h 1 8 1 10       L 750 600( ) mm h 600mm b 0.3 0.6( ) h 180 360( ) mm b 300mm B. Loads on Slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab t 25 kN m 3 3 kN m 2  Ceiling 0.40 kN m 2  Mechanical 0.20 kN m 2  Partition 1.00 kN m 2  DL Cover Slab Ceiling Mechanical Partition 5.7 kN m 2  LL 60psf 2.873 kN m 2  wu 1.2 DL 1.6 LL 11.437 kN m 1m  Page 17
  • 20. C. Loads on Beam B1 Void 30mm 30 mm 190 mm 4 Brickhollow.10 120mm Void 55 1m 2       20 kN m 3 1.648 kN m 2  SW 25cm 50cm 120mm( ) 25 kN m 3 2.375 kN m  wwall Brickhollow.10 3.5m 50cm( ) 4.943 kN m  wD.slab DL 3 m 17.1 kN m  wL.slab LL 3 m 8.618 kN m  wD SW wwall wD.slab 24.418 kN m  wL wL.slab 8.618 kN m  wu 1.2 wD 1.6 wL 43.091 kN m  D. Loads on Girder B2 SW 30cm 60cm 120mm( ) 25 kN m 3 3.6 kN m  wwall Brickhollow.10 3.5m 60cm( ) 4.778 kN m  PB1 25cm 50cm 120mm( ) 25 kN m 3 8m 4m 2  14.25 kN Pwall Brickhollow.10 3.5m 50cm( ) 8m 4m 2  29.657 kN PD.slab DL 3 m 8m 4m 2  102.6 kN PL.slab LL 3 m 8m 4m 2  51.711 kN Page 18
  • 21. Factored loads wD SW wwall 8.378 kN m  wL 0 wu 1.2 wD 1.6 wL 10.054 kN m  PD PB1 Pwall PD.slab 146.507 kN PL PL.slab 51.711 kN Pu 1.2 PD 1.6 PL 258.545 kN Page 19
  • 22. 7. Loads on Staircase Run and rise of step G 3.5m 12 291.667 mm H 3.8m 24 158.333 mm G 2 H 60.833 cm Slope angle α atan H G       28.496 deg Loads on Waist Slab Thickness of waist slab t 120mm Step cover Cover 50mm H G( ) 22 kN m 3 1m G 1 m  1.697 kN m 2  Page 20
  • 23. SW of step Step G H 2 24 kN m 3 1m G 1 m  1.9 kN m 2  SW of waist slab Slab t 25 kN m 3 1m 2 1m 2 cos α( )  3.414 kN m 2  Renderring Renderring 0.40 kN m 2 1m 2 1m 2 cos α( )  0.455 kN m 2  Handrail Handrail 0.50 kN m 2  Total dead load DL Cover Step Slab Renderring Handrail DL 7.966 kN m 2  Live load for public staircase LL 100psf 4.788 kN m 2  Factored load wu 1.2 DL 1.6 LL 17.22 kN m 2  Loads on Landing Slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab 150mm 25 kN m 3 3.75 kN m 2  Renderring 0.40 kN m 2  Handrail 0.50 kN m 2  DL Cover Slab Renderring Handrail 5.75 kN m 2  LL 100psf 4.788 kN m 2  wu 1.2 DL 1.6 LL 14.561 kN m 2  Page 21
  • 24. 8. Loads on Roof Slope angle α atan 3m 10m 2               30.964 deg Srokalinh tile Tile 30mm 20 kN m 3 0.6 kN m 2  Purlins w20x20x1.0 20mm 20 mm 18mm 18 mm( ) 7850 kgf m 3 0.597 kgf 1m  Purlin w20x20x1.0 1m 1m 100 mm cos α( )  0.068 kN m 2  Rafters w40x80x1.6 40mm 80 mm 36.8mm 76.8 mm( ) 7850 kgf m 3  w40x80x1.6 2.934 kgf 1m  Rafter w40x80x1.6 1m 750mm1 m cos α( )  0.045 kN m 2  Page 23
  • 25. Roof beam Beam 20cm 30 cm 25 kN m 3 1m 1m 10m 4   0.6 kN m 2  Roof column Column 20cm 20 cm 3m 2  25 kN m 3 1 10m 4 4 m       0.15 kN m 2  Total dead load wD Tile Purlin Rafter Beam Column 1.463 kN m 2  Live load wL 1.00 kN m 2  Factored load wu 1.2 wD 1.6 wL 3.356 kN m 2  Page 24
  • 26. 9. ASCE Wind Loads Basic wind speed V 120 km hr  V 33.333 m s  V 74.565mph Exposure category Expoure C= Importance factor I 1.15 Topograpic factor Kzt 1.0 Gust factor G 0.85 Wind directionality factor Kd 0.85 Static wind pressure qs 0.613 N m 2 V m s         2  0.681 kN m 2  Velocity pressure coefficients zg 274m α 9.5 (For exposure C) Kz z( ) 2.01 max z 4.6m( ) zg       2 α  Kz 10m( ) 1.001 Velocity wind pressure qz z( ) qs Kz z( ) Kzt I Kd qz 10m( ) 0.667 kN m 2  Design wind pressure pz z Cp  qz z( ) G Cp Dimension of building in plan B 6m 3 18 m L 4m 5 20 m λ L B 1.111 External pressure coefficients Cp.windward 0.8 Page 25
  • 27. Cp.leeward linterp 0 1 2 4 40               0.5 0.5 0.3 0.2 0.2                λ               0.478 Cp.side 0.7 Floor heights H 3.5m 3.5m 3.5m 3.5m 3.5m 3.5m 3.5m                      H reverse H( ) h H  24.5 m ORIGIN 1 n rows H( ) 7 Wind forces i 1 n a i 1 i k H k  H i 2  a n 1 H  reverse a( ) 24.5 22.75 19.25 15.75 12.25 8.75 5.25 1.75                       m Bwindward 6m Bleeward 6m Bside 4m Pwindwardi ai ai 1 zpz z Cp.windward     d Bwindward Pleewardi pz h Cp.leeward  a i 1 a i   Bleeward Psidei pz h Cp.side  a i 1 a i   Bside Page 26
  • 28. reverse augment Pwindward Pleeward Pside   5.70 11.13 10.71 10.21 9.61 8.81 8.10 3.43 6.86 6.86 6.86 6.86 6.86 6.86 3.35 6.71 6.71 6.71 6.71 6.71 6.71                     kN Alternative ways i 1 n b i 1 i k H k   Prectanglei pz b i Cp.windward  a i 1 a i   Bwindward Ptrapeziumi pz a i Cp.windward  pz a i 1 Cp.windward  2 a i 1 a i   Bwindward reverse augment Pwindward Prectangle Ptrapezium   5.70 11.13 10.71 10.21 9.61 8.81 8.10 5.75 11.13 10.71 10.22 9.62 8.83 8.08 5.70 11.12 10.70 10.20 9.59 8.78 8.20                     kN Page 27
  • 29. 10. Design of Singly Reinforced Beams A. Concrete Stress Distribution In actual distribution Resultant C α f'c c b= Location β c In equivalent distribution Location β c a 2 = Resultant C α f'c c b= γ f'c a b= Thus, a 2 β c= β1 c= where β1 2 β= γ α c a = α β1 = f'c 4000psi 5000psi 6000psi 7000psi 8000psi α 0.72 0.68 0.64 0.60 0.56 β 0.425 0.400 0.375 0.350 0.325 β1 2 β= 0.85 0.80 0.75 0.70 0.65 γ α β1 = 0.72 0.85 0.847 0.68 0.80 0.85 0.64 0.75 0.853 0.60 0.70 0.857 0.56 0.65 0.862 Page 28
  • 30. Conclusion: γ 0.85= β1 0.85 f'c 4000psiif 0.65 f'c 8000psiif 0.85 0.05 f'c 4000psi 1000psi  otherwise = 4000psi 27.6 MPa 8000psi 55.2 MPa 1000psi 6.9 MPa B. Strength Analysis Equilibrium in forces X  0= C T= 0.85 f'c a b As fs= (1) Equilibrium in moments M  0= Mn C d a 2       = T d a 2       = Mn 0.85 f'c a b d a 2       = (2.1) Mn As fs d a 2       = (2.2) Conditions of strain compatibility εs εu d c c = εs εu d c c = or εt εu dt c c = (3.1) c d εu εu εs = or c dt εu εu εt = (3.2) Unknowns = 3 a As fs Equations = 2 X  0= M  0= Additional condition fs fy= (From economic criteria) Page 29
  • 31. C. Steel Ratios ρ As b d = As fy b d fy = 0.85 f'c a b b d fy = 0.85 β1 f'c fy  c d = 0.85 β1 f'c fy  c dt  dt d = ρ 0.85 β1 f'c fy  εu εu εs = 0.85 β1 f'c fy  εu εu εt  dt d = Balanced steel ratio fc f'c= fs fy= εs εy= fy Es = ρb 0.85 β1 f'c fy  εu εu εy = 0.85 β1 f'c fy  600MPa 600MPa fy = εu 0.003 Es 2 10 5 MPa εu Es 600 MPa Maximum steel ratio ACI 318-99 ρmax 0.75 ρb= ACI 318-02 and later ρmax 0.85 β1 f'c fy  εu εu εt = with εt 0.004 For fy 390MPa εs fy Es 0.002 For εt 0.004 ρmax ρb εu εy εu 0.004 = 5 7 = 0.714= For εt 0.005 ρmax ρb εu εy εu 0.005 = 5 8 = 0.625= Minimum steel ratio ρmin 3 f'c fy 200 fy = (in psi) ρmin 0.249 f'c fy 1.379 fy = (in MPa) Page 30
  • 32. D. Determination of Flexural Strength Given: b d As f'c fy Find: ϕMn Step 1. Checking for steel ratio ρ As b d = ρ ρmin : Steel reinforcement is not enough ρmin ρ ρmax : the beam is singly reinforced ρ ρmax : the beam is doubly reinforced ρ ρmax= As ρ b d= Step 2. Calculation of flexural strength a As fy 0.85 f'c b = c a β1 = Mn As fy d a 2       = εt εu dt c c = ϕ ϕ εt = The design flexural strength is ϕ Mn Example 10.1 Page 31
  • 33. Concrete dimension b 200mm h 350mm Steel reinforcements As 5 π 16mm( ) 2  4  10.053 cm 2  d h 30mm 6mm 16mm 40mm 2        278 mm dt h 30mm 6mm 16mm 2        306 mm Materials f'c 25MPa fy 390MPa Solution Checking for steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρ As b d 0.018 Steel_Reinforcement "is Enough" ρ ρminif "is not Enough" otherwise  Steel_Reinforcement "is Enough" As min ρ ρmax  b d 10.053 cm 2  Calculation of flexural strength a As fy 0.85 f'c b 92.252 mm c a β1 108.532 mm Mn As fy d a 2        90.911 kN m Page 32
  • 34. εt εu dt c c  0.00546 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 The design flexural strength is ϕ Mn 81.82 kN m E. Determination of Steel Area Given: Mu b d f'c fy Find: As Relative depth of compression concrete w a d = 0.85 f'c a b 0.85 f'c b d = As fy 0.85 f'c b d = ρ fy 0.85 f'c 1= Flexural resistance factor R Mn b d 2  = As fy d a 2        b d 2  = As b d fy d a 2  d = ρ fy 1 1 2 w      = R ρ fy 1 ρ fy 1.7 f'c        = 0.85 f'c w 1 1 2 w      = Quadratic equation relative w R 0.85 f'c w 1 1 2 w      = w 2 2 w 2 R 0.85 f'c  0= w1 1 1 2 R 0.85 f'c  1= w2 1 1 2 R 0.85 f'c  1= w 1 1 2 R 0.85 f'c = ρ 0.85 f'c fy  w= 0.85 f'c fy  1 1 2 R 0.85 f'c        = Page 33
  • 35. Step 1. Assume ϕ 0.9= Mn Mu ϕ = Step 2. Calculation of steel area R Mn b d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = ρ ρmax : the beam is doubly reinforced (concrete is not enough) ρ ρmax : the beam is singly reinforced As max ρ ρmin  b d= (this is a required steel area) Step 3. Checking for flexural strength a As fy 0.85 f'c b = (As is a provided steel area) Mn As fy d a 2       = c a β1 = εt εu dt c c = ϕ ϕ εt = FS Mu ϕ Mn = (usage percentage) FS 1 : the beam is safe FS 1 : the beam is not safe Example 10.2 Required strength Mu 153kN m Concrete section b 200mm h 500mm d h 30mm 8mm 18mm 40mm 2        424 mm Page 34
  • 36. dt h 30mm 8mm 18mm 2        453 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume ϕ 0.9 Mn Mu ϕ 170 kN m Steel area R Mn b d 2  4.728 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.014 ρmin ρ ρmax 1 As ρ b d 11.783 cm 2  As 6 π 16mm( ) 2  4  12.064 cm 2  Checking for flexural strength a As fy 0.85 f'c b 110.702 mm c a β1 130.238 mm Mn As fy d a 2        173.444 kN m Page 35
  • 37. εt εu dt c c  0.00743 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 FS Mu ϕ Mn 0.98 The_beam "is safe" FS 1if "is not safe" otherwise  The_beam "is safe" F. Determination of Concrete Dimension and Steel Area Given: Mu f'c fy Find: b d As Step 1. Determination of concrete dimension Assume εt 0.004 (Usually εt 0.005 ) ρ 0.85 β1 f'c fy  εu εu εt = R ρ fy 1 ρ fy 1.7 f'c        = ϕ ϕ εt = Mn Mu ϕ = bd 2 Mn R = Option 1: b Mn R d 2 = Option 2: d Mn R b = Option 3: k b d = d 3 Mn R k = b k d= Step 2. Calculation of steel area R Mn b d 2  = Page 36
  • 38. ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As max ρ ρmin  b d= Step 3. Checking for flexural strength a As fy 0.85 f'c b = c a β1 = Mn As fy d a 2       = εt εu dt c c = ϕ ϕ εt = FS Mu ϕ Mn = Example 10.3 Required strength Mu 700kN m Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume εt 0.007 ρ 0.85 β1 f'c fy  εu εu εt  0.014 R ρ fy 1 ρ fy 1.7 f'c         4.728 MPa Page 37
  • 39. ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 Mn Mu ϕ 777.778 kN m Concrete dimension k b d = k 400 600  Cover 30mm 10mm 25mm 40mm 2  Cover 85 mm d 3 Mn R k 627.231 mm b k d 418.154 mm h Round d Cover 50mm( ) 700 mm b Round b 50mm( ) 400 mm d h Cover 615 mm b h       400 700       mm Steel area R Mn b d 2  5.141 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.015 As max ρ ρmin  b d 37.741 cm 2  As 8 π 25mm( ) 2  4  39.27 cm 2  dt h 30mm 10mm 25mm 2        dt 647.5 mm Checking for flexural strength a As fy 0.85 f'c b 180.18 mm c a β1 211.976 mm Mn As fy d a 2        803.914 kN m εt εu dt c c  0.00616 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 FS Mu ϕ Mn 96.749 % Page 38
  • 40. 11. Design of Doubly Reinforced Beams ρ ρmax : the beam is singly reinforced (with tensile reinforcements only) ρ ρmax : the beam is doubly reinforced (with tensile and compression reinforcements) A. Strength Analysis Equilibrium in forces X  0= T C Cs= (1) T As fs= As fy= C 0.85 f'c a b= Cs A's f's= Equilibrium in moments M  0= Mn Mn1 Mn2= (2) Mn1 T d d'( )= A's f's d d'( )= Mn2 C d a 2       = 0.85 f'c a b d a 2       = Mn2 T Cs  d a 2       = As fy A's f's  d a 2       = Page 39
  • 41. Conditions of strain compatibility εs εu d c c = (3.1) εs εu d c c = or εt εu dt c c = c d εu εu εs = or c dt εu εu εt = ε's εu c d' c = (3.2) ε's εu c d' c = c d' εu εu ε's = B. Steel Ratios Compression steel ratio ρ' A's b d = Tensile steel ratio ρ As b d = As fy b d fy = 0.85 f'c a b A's f's b d fy = 0.85 β1 f'c fy  c d  ρ' f's fy = Maximum tensile steel ratio ρt.max ρmax ρ' f's fy = ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough Minimum tensile steel ratio ρ 0.85 β1 f'c fy  c d  ρ' f's fy = 0.85 β1 f'c fy  εu εu ε's  d' d  ρ' f's fy = f's fy= ε's εy= fy Es = Page 40
  • 42. ρcy 0.85 β1 f'c fy  εu εu εy  d' d  ρ'= ρ ρcy : compression steel will yield f's fy= ρ ρcy : compression steel will not yield f's fy C. Determination of Flexural Strength Given: b d dt d' As A's f'c fy Find: ϕMn Step 1. Checking for singly reinforced beam ρ As b d = ρ ρmax : the beam is singly reinforced ρ ρmax : the beam is doubly reinforced ρ' A's b d = ρt.max ρmax ρ'= ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough ρ ρt.max= As ρ b d= Step 2. Determination of compression parameters 2.1. Assume f's fy= 2.2. Calculate a As fy A's f's 0.85 f'c b = c a β1 = ε's εu c d' c = f's.revised Es ε's fy= If f's.revised f's then f's f's.revised= Goto 2.2 Page 41
  • 43. Direct calculation Case f's fy= a As fy A's fy 0.85 f'c b = Case f's fy As fy 0.85 f'c a b A's f's= 0.85 f'c a b A's Es εu c d' c = As fy 0.85 f'c a b A's Es εu β1 c β1 d' β1 c = 0.85 f'c a b A's f1 a β1 d' a = where f1 Es εu= 600MPa= 0.85 f'c a 2  b A's f1 As fy  a A's f1 β1 d' 0= 0.85 f'c a 2  b A's f1 As fy  a A's f1 β1 d' 0.85 f'c d 2  b 0= a d       2 ρ' f1 ρ fy 0.85 f'c a d  ρ' f1 β1 0.85 f'c d' d  0= w 2 2 p w q 0= p 1 2 ρ' f1 ρ fy 0.85 f'c = q ρ' f1 β1 0.85 f'c d' d = w1 p p 2 q 0= w2 p p 2 q 0= a d p p 2 q = c a β1 = ε's εu c d' c = f's Es ε's fy= Step 3. Calculation of flexural strength Mn1 A's f's d d'( )= Mn2 As fy A's f's  d a 2       = εt εu dt c c = ϕ ϕ εt = ϕMn ϕ Mn1 Mn2 = Page 42
  • 44. Example 11.1 Concrete dimension b 300mm h 550mm Steel reinforcements As 8 π 20mm( ) 2  4  25.133 cm 2  d h 30mm 10mm 16mm 20mm 40mm 2        d 454 mm dt h 30mm 10mm 16mm 20mm 2        484 mm A's 4 π 20mm( ) 2  4  12.566 cm 2  d' 30mm 10mm 20mm 2  50 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.0174 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Checking for singly reinforced beam ρ As b d 0.0185 The_beam "is singly reinforced" ρ ρmaxif "is doubly reinforced" otherwise  The_beam "is doubly reinforced" ρ' A's b d 9.226 10 3  ρt.max ρmax ρ' 0.027 Page 43
  • 45. Concrete "is enough" ρ ρt.maxif "is not enough" otherwise  Concrete "is enough" ρ min ρ ρt.max  0.0185 As ρ b d 25.133 cm 2  Determination of compression parameters Es 2 10 5 MPa f1 Es εu 600 MPa εy fy Es 1.95 10 3  ρcy 0.85 β1 f'c fy  εu εu εy  d' d  ρ' 0.024 Compression_steel "will yield" ρ ρcyif "will not yield" otherwise  Compression_steel "will not yield" a As fy A's fy 0.85 f'c b Compression_steel "will yield"=if p 1 2 ρ' f1 ρ fy 0.85 f'c  q ρ' f1 β1 0.85 f'c d' d  d p p 2 q  otherwise  a 90.825 mm c a β1 106.853 mm f's fy Compression_steel "will yield"=if ε's εu c d' c  min Es ε's fy  otherwise  f's 319.24 MPa Flexural strength Page 44
  • 46. Mn1 A's f's d d'( ) 162.072 kN m Mn2 As fy A's f's  d a 2        236.576 kN m εt εu dt c c  0.011 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 ϕMn ϕ Mn1 Mn2  358.783 kN m D. Design of Doubly Reinforced Beam Given: Mu b d dt d' f'c fs Find: As A's Step 1. Assume εt ρ 0.85 β1 f'c fy  εu εu εt = ϕ ϕ εt = Step 2. Cheching for singly reinforced beam As ρ b d= a As fy 0.85 f'c b = Mn As fy d a 2       = Mu ϕMn : the beam is singly reinforced Mu ϕMn : the beam is doubly reinforced Step 3. Case of doubly reinforced beam Mn2 Mn= Mn1 Mu ϕ Mn2= Page 45
  • 47. c a β1 = f's Es εu c d' c  fy= A's Mn1 f's d d'( ) = ρ' A's b d = ρt.max ρmax ρ'= As 0.85 f'c a b A's f's fy = ρ As b d = ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough Example 11.2 Required strength Mu 1350kN m Concrete dimension b 400mm h 800mm d h 30mm 12mm 25mm 25mm 40mm 2        d 688 mm dt h 30mm 12mm 25mm 25mm 2        720.5 mm d' 30mm 12mm 25mm 2  54.5 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.0174 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume εt 0.0092 ρ 0.85 β1 f'c fy  εu εu εt  0.011 Page 46
  • 48. ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 Checking for singly reinforced beam As ρ b d 31.342 cm 2  a As fy 0.85 f'c b 143.803 mm c a β1 169.18 mm Mn2 As fy d a 2        753.074 kN m The_beam "is singly reinforced" Mu ϕ Mn2if "is doubly reinforced" otherwise  The_beam "is doubly reinforced" Case of doubly reinforced beam Mn1 Mu ϕ Mn2 746.926 kN m f's min Es εu c d' c  fy      390 MPa A's Mn1 f's d d'( ) 30.232 cm 2  ρ' A's b d 0.011 ρt.max ρmax ρ' 0.028 As 0.85 f'c a b A's f's fy 61.574 cm 2  ρ As b d 0.022 Concrete "is enough" ρ ρt.maxif "is not enough" otherwise  Concrete "is enough" Compression steel A's 30.232 cm 2  5 π 28mm( ) 2  4  30.788 cm 2  Tensile steel As 61.574 cm 2  10 π 28mm( ) 2  4  61.575 cm 2  400mm 12mm 30mm( ) 2 28mm 5 4 44 mm Page 47
  • 49. E. Determination of Tensile Steel Area Given: Mu b d dt d' A's f'c fy Find: As Step 1. Calculation of compression parameters 1.1. Assume f's fy= ϕ 0.9= 1.2. Calculate Mn Mu ϕ = Mn1 A's f's d d'( )= Mn2 Mn Mn1= R Mn2 b d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As ρ b d= a As fy 0.85 f'c b = c a β1 = f's.revised Es εu c d' c  fy= εt εu dt c c = ϕ ϕ εt = f's.revised f's : Goto 1.2 Mu ϕ Mn : Goto 1.2 Step 2. Calculation of tensile steel area As 0.85 f'c a b A's f's fy = ρ As b d = ρ' A's b d = ρt.max ρmax ρ'= ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough Page 48
  • 50. Example 11.3 Required strength Mu 1350kN m Concrete dimension b 400mm h 800mm d h 30mm 12mm 25mm 28mm 40mm 2        d 685 mm dt h 30mm 12mm 25mm 28mm 2        719 mm d' 30mm 12mm 28mm 2  56 mm Compression reinforcements A's 5 π 28mm( ) 2  4  30.788 cm 2  Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.0174 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Compression parameters Page 49
  • 51. Compression ε( ) f's fy ϕ 0.9 Mn Mu ϕ  Mn1 A's f's d d'( ) Mn2 Mn Mn1 R Mn2 b d 2   ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         As ρ b d a As fy 0.85 f'c b  c a β1  f's.revised min Es εu c d' c  fy       Z i  f's fy ϕ a d f's.revised fy                        εt εu dt c c  ϕ 0.65 max 1.45 250 εt 3       min 0.9        break( ) f's.revised f's f's ε       Mu ϕ Mn if f's f's.revised i 0 99for reverse Z T   Z Compression 0.000001( ) Page 50
  • 52. a Z 0 2 d 142.792 mm c a β1 167.99 mm f's Z 0 0 fy 390 MPa Tensile steel area ρ' A's b d 0.011 ρt.max ρmax ρ' 0.029 As 0.85 f'c a b A's f's fy 61.909 cm 2  ρ As b d 0.023 Concrete "is enough" ρ ρt.maxif "is not enough" otherwise  Concrete "is enough" Tensile steel As 61.909 cm 2  10 π 28mm( ) 2  4  61.575 cm 2  Page 51
  • 53. 12. Design of T Beams 12.1. Effective Flange Width For symmetrical T beam: b L 4  b bw 16hf b s where L = span length of beam s = spacing of beam 12.2. Strength Analysis Design as rectangular section Design as T section a hf a hf or Mu ϕMnf or Mu ϕMnf where Mnf 0.85 f'c hf b d hf 2        = Page 52
  • 54. Equilibrium in forces X  0= T C1 C2= T As fs= As fy= C1 0.85 f'c hf b bw = Asf fy= C2 0.85 f'c a bw= T C1= As fy Asf fy= Equilibrium in moments M  0= Mn Mn1 Mn2= Mn1 C1 d hf 2        = Asf fy d hf 2        = Mn2 C2 d a 2       = 0.85 f'c a bw d a 2       = Mn2 T C1  d a 2       = As fy Asf fy  d a 2       = Condition of strain compatibility εs εu d c c = or εt εs dt c c = εs εu d c c = εt εu dt c c = c d εu εu εs = c dt εu εu εt = 12.3. Steel Ratios ρw As bw d = As fy bw d fy = 0.85 f'c a bw Asf fy bw d fy = ρw 0.85 β1 f'c fy  c d  ρf= where ρf Asf bw d = Page 53
  • 55. Maximum steel ratio ρw.max ρmax ρf= ρw ρw.max : concrete is enough ρw ρw.max : concrete is not enough 12.4. Determination of Moment Capacity Given: bw d b dt hf As f'c fy Find: ϕMn Step 1. Checking for rectangular beam a As fy 0.85 f'c b = a hf : the beam is rectangular a hf : the beam is tee Step 2. Case of T beam Asf 0.85 f'c hf b bw  fy = Mn1 Asf fy d hf 2        = a As fy Asf fy 0.85 f'c bw = c a β1 = Mn2 As fy Asf fy  d a 2       = εt εu dt c c = ϕ ϕ εt = ϕMn ϕ Mn1 Mn2 = Page 54
  • 56. Example 12.1 Concrete dimension b 28in 711.2 mm hf 6in 152.4 mm bw 10in 254 mm h 30in 762 mm d 26in 660.4 mm dt 27.5in 698.5 mm Steel reinforcements As 6 π 10 8 in      2  4  As 7.363 in 2  Materials f'c 3000psi 20.684 MPa fy 60ksi 413.685 MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 4000psi 1000psi        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 3psi f'c psi  fy 200psi fy            0.00333 Checking for rectangular beam Page 55
  • 57. a As fy 0.85 f'c b 157.162 mm The_beam "is rectangular" a hfif "is T" otherwise  The_beam "is T" Case of T beam Asf 0.85 f'c hf b bw  fy 29.613 cm 2  ρf Asf bw d 0.018 ρw.max ρmax ρf 0.031 ρw As bw d 0.028 Concrete "is enough" ρw ρw.maxif "is not enough" otherwise  Concrete "is enough" As min ρw ρw.max  bw d As 7.363 in 2  Mn1 Asf fy d hf 2         715.669 kN m a As fy Asf fy 0.85 f'c bw 165.734 mm c a β1 194.981 mm Mn2 As fy Asf fy  d a 2        427.446 kN m εt εu dt c c  0.008 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 ϕMn ϕ Mn1 Mn2  1028.803 kN m Page 56
  • 58. 12.5. Determination of Steel Area Given: Mu bw d dt b hf f'c fy Find: As Step 1. Checking for rectangular beam Mnf 0.85 f'c hf b d hf 2        = ϕ 0.9= Mu ϕMn : the beam is rectangular Mu ϕMn : the beam is tee Step 2. Case of T beam Asf 0.85 f'c hf b bw  fy = ρf Asf bw d = Mn1 Asf fy d hf 2        = Mn2 Mu ϕ Mn1= R Mn2 bw d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As2 ρ bw d= a As2 fy 0.85 f'c bw = As 0.85 f'c a bw Asf fy fy = ρw As bw d = ρw.max ρmax ρf= ρw ρw.max : concrete is enough ρw ρw.max : concrete is not enough Page 57
  • 59. Example 12.2 Concrete dimension hf 3in 76.2 mm L 24ft 7.315 m s 47in 1.194 m bw 11in 279.4 mm d 20in 508 mm Required strength Mu 6400in kip 723.103 kN m Materials f'c 3000psi 20.684 MPa fy 60ksi 413.685 MPa Solution Effective flange width b min L 4 bw 16 hf s       b 1193.8 mm Steel ratios β1 0.65 max 0.85 0.05 f'c 4000psi 1000psi        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 3psi f'c psi  fy 200psi fy            0.00333 Checking for rectangular beam ϕ 0.9 Mnf 0.85 f'c hf b d hf 2         751.538 kN m The_beam "is rectangular" Mu ϕ Mnfif "is tee" otherwise  The_beam "is tee" Case of T beam Page 58
  • 60. Asf 0.85 f'c hf b bw  fy 29.613 cm 2  ρf Asf bw d 0.021 Mn1 Asf fy d hf 2         575.646 kN m Mn2 Mu ϕ Mn1 227.801 kN m R Mn2 bw d 2  3.159 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         8.484 10 3  As2 ρ bw d 12.042 cm 2  a As2 fy 0.85 f'c bw 101.408 mm c a β1 119.304 mm As 0.85 f'c a bw Asf fy fy 41.655 cm 2  ρw As bw d 0.029 ρw.max ρmax ρf 0.034 Concrete "is enough" ρw ρw.maxif "is not enough" otherwise  Concrete "is enough" As.min ρmin bw d As max As As.min  41.655 cm 2  6 π 32mm( ) 2  4  48.255 cm 2  Page 59
  • 61. 13. Shear Design Safety provision Vu ϕVn where Vu = required shear strength Vn = nominal shear strength ϕ 0.75= is a strength reduction factor for shear ϕVn = design shear strength Required shear strength Page 60
  • 62. Nominal shear strength Vn Vc Vs= where Vc = concrete shear strength Vs = steel shear strength Concrete shear strength Vc 2 f'c bw d= (in psi) Vc 0.166 f'c bw d= (in MPa) Steel shear strength Vs Av fy d s = where Av = area of stirrup fy = yield strength of stirrup s = spacing of stirrup No required stirrups Vu ϕVc 2  : no stirrup is required ϕVc 2 Vu ϕVc : stirrup is minimum Vu ϕVc : stirrup is required Minimum stirrups Av.min 0.75 f'c bw s fy  50 bw s fy = (in psi) Av.min 0.062 f'c bw s fy  0.345 bw s fy = (in MPa) Page 61
  • 63. Maximum spacing of stirrup smax Av fy 0.75 f'c bw Av fy 50 bw = (in psi) smax Av fy 0.062 f'c bw Av fy 0.345 bw = (in MPa) Case Vs 2 Vc smax d 2 24in= 600mm= Case 2 Vc Vs 4 Vc smax d 4 12in= 300mm= Case Vs 4 Vc Concrete is not enough Example 13.1 Materials f'c 25MPa fy 390MPa Page 62
  • 64. Live load for garage LL 6.00 kN m 2  Loads on slab Hardener 8mm 24 kN m 3 0.192 kN m 2  Slab 200mm 25 kN m 3 5 kN m 2  Mechanical 0.30 kN m 2  DL Hardener Slab Mechanical 5.492 kN m 2  LL 6 kN m 2  Loads on beam wbeam 30cm 60cm 200mm( ) 25 kN m 3 3 kN m  wD.slab DL 3.5 m 19.222 kN m  wL.slab LL 3.5 m 21 kN m  wD wbeam wD.slab 22.222 kN m  wL wL.slab 21 kN m  wu 1.2 wD 1.6 wL 60.266 kN m  Shear L 8m V0 wu L 2 241.066 kN V x( ) V0 wu x Concrete shear strength bw 300mm d 600mm 40mm 10mm 20mm 2        540 mm Vc 0.166MPa f'c MPa  bw d 134.46 kN ϕ 0.75 Page 63
  • 65. Location of no stirrup zone V0 wu x ϕVc 2 = x V0 ϕ Vc 2  wu 3.163 m Minimum stirrup Av 2 π 10mm( ) 2  4  1.571 cm 2  fy 390MPa smax min Av fy 0.062MPa f'c MPa  bw Av fy 0.345MPa bw            591.894 mm smax Floor smax 50mm  550 mm Vs.min Av fy d smax 60.147 kN Location of minimum stirrup zone V0 wu x ϕ Vc Vs.min = x V0 ϕ Vc Vs.min  wu 1.578 m Required spacing of stirrup Vu V0 wu 400mm 2        229.012 kN Vs Vu ϕ Vc 170.89 kN Concrete "is enough" Vs 4 Vcif "is not enough" otherwise  Concrete "is enough" s Av fy d Vs 193.581 mm smax.1 smax 550 mm smax.2 min d 2 600mm      Vs 2 Vcif min d 4 300mm      otherwise  smax.2 270 mm s Floor min s smax.1 smax.2  50mm  s 150 mm Page 64
  • 66. Example 13.2 Design of shear in support and midspan zones. Stirrups in Support Zone Required shear strength Vu V0 wu 400mm 2  229.012 kN Concrete shear strength Vc 0.166MPa f'c MPa  bw d 134.46 kN ϕ 0.75 Stirrup "is minimum" Vu ϕ Vcif "is required" otherwise  Stirrup "is required" Required steel shear strength Vs Vu ϕ Vc 170.89 kN Concrete "is enough" Vs 4 Vcif "is not enough" otherwise  Concrete "is enough" Spacing of stirrup Av 2 π 10mm( ) 2  4  1.571 cm 2  fy 390MPa s Av fy d Vs 193.581 mm smax.1 min Av fy 0.062MPa f'c MPa  bw Av fy 0.345MPa bw            591.894 mm Page 65
  • 67. smax.2 min d 2 600mm      Vs 2 Vcif min d 4 300mm      otherwise  smax.2 270 mm s Floor min s smax.1 smax.2  50mm  150 mm Stirrups in Midspan Zone Required shear strength Vu V0 wu L 4  120.533 kN Stirrup "is minimum" Vu ϕ Vcif "is required" otherwise  Stirrup "is required" Required steel shear strength Vs Vu ϕ Vc 26.25 kN Concrete "is enough" Vs 4 Vcif "is not enough" otherwise  Concrete "is enough" Spacing of stirrup Av 2 π 10mm( ) 2  4  1.571 cm 2  fy 390MPa s Av fy d Vs 1260.208 mm smax.1 min Av fy 0.062MPa f'c MPa  bw Av fy 0.345MPa bw            591.894 mm smax.2 min d 2 600mm      Vs 2 Vcif min d 4 300mm      otherwise  smax.2 270 mm s Floor min s smax.1 smax.2  50mm  250 mm Page 66
  • 69. 14. Column Design Type of columns (by design method) 1. Axially loaded columns e M P = 0= 2. Eccentric columns e M P = 0 2.1. Short columns (without buckling) Pu Mu 2.2. Long (slender) columns (with buckling) Pu Mu δns 1. Axially Loaded Columns Safety provision Pu ϕPn.max where Pu = axial load on column ϕPn.max = design axial strength For tied columns ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast = with ϕ 0.65= For spirally reinforced columns ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast = with ϕ 0.70= where Ag = area of gross section Ast = area of steel reinforcements Ag Ast Ac= is an area of concrete section Page 68
  • 70. For tied columns Diameter of tie Dv 10mm= for D 32mm Dv 12mm= for D 32mm Spacing of tie s 48Dv s 16D s b For spirally reinforced columns Diameter of spiral Dv 10mm Clear spacing 25mm s 75mm Column steel ratio ρg Ast Ag = 1%= 8% Page 69
  • 71. Determination of Concrete Section Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg = Determination of Steel Area Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy = Example 14.1 Tributary area B 4m L 6m Thickness of slab t 120mm Section of beam B1 b 250mm h 500mm Section of beam B2 b 200mm h 350mm Live load for lab LL 3.00 kN m 2  Materials f'c 25MPa fy 390MPa Solution Loads on slab Cover 50mm 22 kN m 3  Slab 120mm 25 kN m 3  Ceiling 0.40 kN m 2  Mechanical 0.20 kN m 2  Partition 1.00 kN m 2  DL Cover Slab Ceiling Mechanical Partition 5.7 kN m 2  LL 3 kN m 2  Page 70
  • 72. Reduction of live load Tributary area AT B L 24 m 2  For interior column KLL 4 Influence area AI KLL AT 96 m 2  Live load reduction factor αLL 0.25 4.572 AI m 2  0.717 Reduced live load LL0 LL αLL 2.15 kN m 2  Loads of wall Void 30mm 30 mm 190 mm 4 Brickhollow.10 120mm Void 55 1m 2       20 kN m 3 1.648 kN m 2  Brickhollow.20 220mm Void 110 1m 2       20 kN m 3 2.895 kN m 2  Loads on column PD.slab DL B L 136.8 kN PL.slab LL B L 72 kN PB1 25cm 50cm 120mm( ) 25 kN m 3 L 14.25 kN PB2 20cm 35cm 120mm( ) 25 kN m 3 B 4.6 kN Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN Pwall.2 Brickhollow.10 3.5m 35cm( ) B 20.76 kN Number of floors n 6 PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1298.219 kN PL PL.slab n 432 kN SW 5% 7%( ) PD= PD PL B L n 12.015 kN m 2  PL PD PL 24.968 % Page 71
  • 73. Pu 1.2 PD 1.6 PL 2249.063 kN Determination of column section Assume ρg 0.03 k b h = k 300 500  ϕ 0.65 Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg  Ag 1338.529 cm 2  h Ag k 472.322 mm b k h 283.393 mm h Ceil h 50mm( ) 500 mm b Ceil b 50mm( ) 300 mm b h       300 500       mm Ag b h 1500 cm 2  Determination of steel area Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy  Ast 30.851 cm 2  6 π 20mm( ) 2  4  6 π 16mm( ) 2  4  30.913 cm 2  Stirrups Main bars D 20mm Stirrup dia. Dv 10mm Spacing of tie s min 16 D 48 Dv b  300 mm Page 72
  • 74. 2. Short Columns Safety provision Pu ϕPn Mu ϕMn Equilibrium in forces X  0= Pn C Cs T= Pn 0.85 f'c a b A's f's As fs= Equilibrium in moments M  0= Mn Pn e= C h 2 a 2        Cs h 2 d'       T d h 2       = Mn Pn e= 0.85 f'c a b h 2 a 2        A's f's h 2 d'       As fs d h 2       = Conditions of strain compatibility εs εu d c c = εs εu d c c = fs Es εs= Es εu d c c = ε's εu c d' c = ε's εu c d' c = f's Es ε's= Es εu c d' c = Page 73
  • 75. Unknowns = 5 : a As A's fs f's Equations = 4 : X  0= M  0= 2 conditions of strain compatibility Case of symmetrical columns: As A's= Case of unsymmetrical columns: fs fy= A. Interaction Diagram for Column Strength Interaction diagram is a graph of parametric function, where Abscissa : Mn a( ) Ordinate: Pn a( ) B. Determination of Steel Area Given: Mu Pu b h f'c fy Find: As A's= Answer: As AsN a( )= AsM a( )= AsN a( ) Pu ϕ 0.85 f'c a b f's fs = AsM a( ) Mu ϕ 0.85 f'c a b h 2 a 2        f's h 2 d'       fs d h 2        = f's a( ) Es εu c d' c  fy= fs a( ) Es εu d c c  fy= Page 74
  • 76. Example 14.2 Construction of interaction diagram for column strength. Concrete dimension b 500mm h 200mm Steel reinforcements As 5 π 16mm( ) 2  4  10.053 cm 2  A's As 10.053 cm 2  d' 30mm 6mm 16mm 2  44 mm d h d' 156 mm Materials f'c 25MPa fy 390MPa Solution Case of axially loaded column Ag b h Ast As A's ϕ 0.65 ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  1490.536 kN Case of eccentric column β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 c a( ) a β1  Es 2 10 5 MPa εu 0.003 dt d fs a( ) min Es εu d c a( ) c a( )  fy       f's a( ) min Es εu c a( ) d' c a( )  fy       ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.90         Page 75
  • 77. ϕPn a( ) min ϕ a( ) 0.85 f'c a b A's f's a( ) As fs a( )  ϕPn.max  ϕMn a( ) ϕ a( ) 0.85 f'c a b h 2 a 2        A's f's a( ) h 2 d'       As fs a( ) d h 2              a 0 h 100  h 0 20 40 60 0 250 500 750 1000 1250 1500 Interaction diagram for column strength ϕPn a( ) kN ϕMn a( ) kN m Example 14.3 Determination of steel area. Required strength Pu 1152.27kN Mu 42.64kN m Concrete dimension b 500mm h 200mm Materials f'c 25MPa fy 390MPa Concrete cover to main bars cc 30mm 6mm 16mm 2  Page 76
  • 78. Solution Location of steel re-bars d' cc 44 mm d h cc 156 mm Case of axially loaded column Ag b h ϕ 0.65 ϕ 0.65 Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy 2.465 cm 2  Case of eccentric column β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 c a( ) a β1  Es 2 10 5 MPa εu 0.003 dt d fs a( ) min Es εu d c a( ) c a( )  fy       f's a( ) min Es εu c a( ) d' c a( )  fy       ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.90         Graphical solution AsN a( ) Pu ϕ a( ) 0.85 f'c a b f's a( ) fs a( )  AsM a( ) Mu ϕ a( ) 0.85 f'c a b h 2 a 2        f's a( ) h 2 d'       fs a( ) d h 2         a1 134.2mm a2 134.25mm a a1 a1 a2 a1 50  a2 Page 77
  • 79. 0.13418 0.1342 0.13422 0.13424 0.13426 8.715 10 4  8.72 10 4  8.725 10 4  8.73 10 4  8.735 10 4  AsN a( ) AsM a( ) a a 134.23mm AsN a( ) 8.722 cm 2  AsM a( ) 8.725 cm 2  As AsN a( ) AsM a( ) 2 8.724 cm 2  5 π 16mm( ) 2  4  10.053 cm 2  Page 78
  • 80. Analytical solution ORIGIN 1 Asteel No( ) k 1 f f's a( ) fs a( ) continue( ) f 0=if AsN Pu ϕ a( ) 0.85 f'c a b f  continue( ) AsN 0if fd f's a( ) h 2 d'       fs a( ) d h 2        continue( ) fd 0=if AsM Mu ϕ a( ) 0.85 f'c a b h 2 a 2        fd  continue( ) AsM 0if Z k  a h AsN Ag AsM Ag AsN AsM Ag                          k k 1 a cc cc h No  hfor csort Z T 4   Z Asteel 5000( ) rows Z( ) 2046 a Z 1 1 h 134.24 mm AsN Z 1 2 Ag 8.719 cm 2  AsM Z 1 3 Ag 8.728 cm 2  As AsN AsM 2 8.723 cm 2  Page 79
  • 81. C. Case of Distributed Reinforcements rUb 3>1> ssrcakp©it EdlmanEdkBRgayeRcInCYr CMuvijmuxkat;ebtug b dn d1 Pne Tn T1 C h a cf 85.0 c u s,1 s,n dn Equilibrium in forces X  0= Pn C 1 n i T i  = 0.85 f'c a b 1 n i A s i f s i    = Equilibrium in moments M  0= Mn Pn e= C h 2 a 2        1 n i T i d i h 2              = Mn 0.85 f'c a b h 2 a 2        1 n i A s i f s i  d i h 2              = Page 80
  • 82. Conditions of strain compatibility ε s i εu d i c c = ε s i εu d i c c = f s i Es ε s i = Es εu d i c c = Example 14.4 Checking for column strength. Required strength Pu 13994.6kN Mu 57.53kN m Materials f'c 35MPa fy 390MPa Solution Determination of Concrete Section Case of axially loaded column ϕ 0.65 Assume ρg 0.04 Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg 6094.36 cm 2  Aspect ratio of column section λ b h = λ 1 h Ag λ 780.664 mm b λ h 780.664 mm h Ceil h 50mm( ) b Ceil b 50mm( ) b h       800 800       mm Ag b h 6400 cm 2  Page 81
  • 83. Steel area Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy  Ast 218.534 cm 2  4 7 4( ) π 25mm( ) 2  4  4 5 4( ) π 20mm( ) 2  4  232.478 cm 2  Spacing 800mm 50mm 2 8 87.5 mm Interaction Diagram for Column Strength Distribution of reinforcements Bars 25 25 25 25 25 25 25 25 25 25 20 20 20 20 20 20 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 20 20 20 20 20 20 25 25 25 25 25 25 25 25 25 25                         mm Number of reinforcement rows n cols Bars( ) 9 Steel area As0 π Bars 2  4   i 1 n Asi As0 i   Ast As Ast 232.478 cm 2  Location of reinforcement rows Concrete cover Cover 30mm 10mm 40 mm d 1 Cover Bars 1 n 2  52.5 mm ΔS h d 1 2 n 1 86.875 mm i 2 n d i d i 1 ΔS reverse d( ) T 747.5 660.63 573.75 486.88 400 313.13 226.25 139.38 52.5( ) mm Case of axially loaded column Page 82
  • 84. ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  ϕPn.max 14255.808 kN Case of eccentric column β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.796 c a( ) a β1  fs i a( ) εs εu d i c a( ) c a( )  sign εs  min Es εs fy   dt max d( ) 747.5 mm ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.9         ϕPn a( ) min ϕ a( ) 0.85 f'c a b 1 n i Asi fs i a( )               ϕPn.max          ϕMn a( ) ϕ a( ) 0.85 f'c a b h 2 a 2        1 n i Asi fs i a( ) d i h 2                        a 0 h 100  h Page 83
  • 85. 0 1000 2000 3000 0 5000 10000 ϕPn a( ) kN Pu kN ϕMn a( ) kN m Mu kN m  Page 84
  • 86. D. Design of Circular Columns Symbols ns = number of re-bars Dc = column diameter Ds = diameter of re-bar circle Location of steel re-bar d i rc rs cos α s i = rc Dc 2 = rs Ds 2 = α s i 2 π ns i 1( )= Page 85
  • 87. Depth of compression concrete α acos rc a rc       = Area and centroid of compression concrete Asector 1 2 Radius Arch= 1 2 rc rc 2 α = rc 2 α= x1 2 3 rc sin α( ) α = Atriangle 1 2 Base Height= 1 2 2 rc sin α( ) rc cos α( )= rc 2 sin α( ) cos α( )= x2 2 3 rc cos α( )= Ac Asegment= Asector Atringle= rc 2 α sin α( ) cos α( )( )= xc Asector x1 Atrinagle x2 Ac = 2 3 rc sin α( ) sin α( ) cos α( ) 2  α sin α( ) cos α( ) = xc 2 rc 3 sin α( ) 3 α sin α( ) cos α( ) = Equilibrium in forces X  0= Pn C 1 ns i T i  = 0.85 f'c Ac 1 ns i A s i f s i    = Equilibrium in moments M  0= Mn Pn e= C xc 1 ns i T i d i Dc 2                = Mn Pn e= 0.85 f'c Ac xc 1 ns i A s i f s i  d i rc    = Conditions of strain compatibility ε s i εu d i c c = f s i Es ε s i = Es ε u  d i c c = with f s i fy Page 86
  • 88. Example 14.5 Required strength Pu 3437.31kN Mu 42.53kN m Materials f'c 20MPa fy 390MPa Solution Determination of concrete dimension ϕ 0.70 Assume ρg 0.02 Ag Pu 0.85 ϕ 0.85 f'c 1 ρg  fy ρg 2361.812 cm 2  Dc Ceil Ag π 4 50mm         550 mm Ag π Dc 2  4 2375.829 cm 2  Determination of steel area Ast Pu 0.85 ϕ 0.85 f'c Ag 0.85 f'c fy 46.597 cm 2  Ds Dc 30mm 10mm 20mm 2       2 450 mm ns ceil π Ds 100mm       15 As0 π 20mm( ) 2  4 3.142 cm 2  Ast ns As0 47.124 cm 2  s π Ds ns 94.248 mm Interaction diagram for column strength ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast  3448.996 kN Page 87
  • 89. β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 Es 2 10 5 MPa εu 0.003 c a( ) a β1  i 1 ns αsi 2 π ns i 1( ) d i Dc 2 Ds 2 cos αsi      dt max d( ) 495.083 mm ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.70 max 1.7 200 εt 3       min 0.9         fs i a( ) εs εu d i c a( ) c a( )  sign εs  min Es εs fy   rc Dc 2  α a( ) acos rc a rc        xc a( ) 2 rc 3 sin α a( )( ) 3 α a( ) sin α a( )( ) cos α a( )( )  Ac a( ) rc 2 α a( ) sin α a( )( ) cos α a( )( )( ) ϕPn a( ) min ϕ a( ) 0.85 f'c Ac a( ) 1 ns i As0 fs i a( )             ϕPn.max          ϕMn a( ) ϕ a( ) 0.85 f'c Ac a( ) xc a( ) 1 ns i As0 fs i a( ) d i rc              a 0 Dc 100  Dc Page 88
  • 90. 0 100 200 300 0 1000 2000 3000 Interaction diagram for column strength ϕPn a( ) kN Pu kN ϕMn a( ) kN m Mu kN m  3. Long (Slender) Columns Stability index Q ΣPu Δ0 Vu Lc = where ΣPu Vu = total vertical force and story shear Δ0 = relative deflection between column ends Lc = center-to-center length of column Q 0.05 : Frame is nonsway (braced) Q 0.05 : Frame is sway (unbraced) Page 89
  • 91. Unbraced Frame Braced Frame ShearWall Braced Frame Brick Wall Ties Slenderness of column The column is short, if In nonsway frame: k Lu r min 34 12 M1 M2  40        In sway frame: k Lu r 22 where M1 min MA MB = M2 max MA MB = = minimum and maximum moments at the ends of column Lu = unsuppported length of column r = radius of gyration r I A = I A = moment of inertia and area of column section k = effective length factor k k ψA ψB = ψA ψB = degree of end restraint (release) Page 90
  • 92. ψ EIc Lc        EIb Lb        = ψ 0= : column is fixed ψ ∞= : column is pinned Moments of inertia For column Ic 0.70Ig= For beam Ib 0.35Ig= Ig = moment of inertia of gross section Determination of effective length factor Way 1. Using graph Way 2. Using equations For braced frames: ψA ψB 4 π k       2  ψA ψB 2 1 π k tan π k                   2 tan π 2 k        π k  1= Page 91
  • 93. For unbraced frames: ψA ψB π k       2  36 6 ψA ψB  π k tan π k       = Way 3. Using approximate relations In nonsway frames: k 0.7 0.05 ψA ψB  1.0= k 0.85 0.05 ψmin 1.0= ψmin min ψA ψB = In sway frames: Case ψm 2 k 20 ψm 20 1 ψm= Case ψm 2 k 0.9 1 ψm= ψm ψA ψB 2 = Case of column is hinged at one end k 2.0 0.3 ψ= ψ is the value in the restrained end. Moment on column Mc M2 δns M2.min δns= where M2.min Pu 15mm 0.03h( )= Moment magnification factor Page 92
  • 94. δns Cm 1 Pu 0.75 Pc  1= Euler's critical load Pc π 2 EI k Lu  2 = EI 0.4 Ec Ig 1 βd = βd 1.2 PD 1.2 PD 1.6 PL = Coefficient Cm 0.6 0.4 M1 M2  0.4= Example 14.6 Required strength Pu 6402.35kN PD PL       4273.41kN 796.25kN        MA 77.75kN m MB 122.68 kN m Length of column Lc 7.8m Upper and lower columns ba ha La           60cm 60cm 3.6m          bb hb Lb           65cm 65cm 1.5m          Upper and lower beams ba1 ha1 La1           30cm 50cm 6m          ba2 ha2 La2           30cm 50cm 6m          bb1 hb1 Lb1           30cm 50cm 6m          bb2 hb2 Lb2           30cm 50cm 6m          Materials f'c 30MPa fy 390MPa Page 93
  • 95. Solution Determination of concrete dimension ϕ 0.65 Assume ρg 0.03 Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg 3379.226 cm 2  Proportion of column section k b h = k 60 60  h Ag k 581.311 mm b k h 581.311 mm h Ceil h 50mm( ) 600 mm b Ceil b 50mm( ) 600 mm b h       600 600       mm Determination of steel area Ag b h 3.6 10 3  cm 2  Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy 85.932 cm 2  20 π 25mm( ) 2  4  98.175 cm 2  Bars 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1                 25 mm As0 π Bars 2  4   i 1 cols As0  As1i As0 i   As As1 Ast As Ast 98.175 cm 2  Ast Ag 0.027 ns rows As  ns 6 Cover 40mm 10mm 25mm 2  62.5 mm Page 94
  • 96. d1 1 Cover Δs h Cover 2 ns 1 95 mm i 2 ns d1 i d1 i 1 Δs d d1 d 62.5 157.5 252.5 347.5 442.5 537.5                 mm ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  6634.405 kN Slenderness of column Stability index Q 0 Radius of gyration r h 12 0.173 m Modulus of elasticity wc 24 kN m 3  Ec 44MPa wc kN m 3           1.5  f'c MPa  2.834 10 4  MPa Degree of end restraint Ia1 0.35 ba1 ha1 3  12  Ia2 0.35 ba2 ha2 3  12  Ib1 0.35 bb1 hb1 3  12  Ib2 0.35 bb2 hb2 3  12  Ica 0.70 ba ha 3  12  Icb 0.70 bb hb 3  12  Ic 0.70 b h 3  12  Σica Ec Ica La Ec Ic Lc  Σicb Ec Icb Lb Ec Ic Lc  Σiba Ec Ia1 La1 Ec Ia2 La2  Σibb Ec Ib1 Lb1 Ec Ib2 Lb2  ψA Σica Σiba 8.418 ψB Σicb Σibb 21.699 Page 95
  • 97. Effective length factor k 0.6 Given ψA ψB 4 π k       2  ψA ψB 2 1 π k tan π k                   2 tan π 2 k        π k  1= k 0.5 k 1.0 k Find k( ) k 0.969 Checking for long column M1 MA MA MBif MB otherwise  M2 MB MA MBif MA otherwise  M1 77.75 kN m M2 122.68 kN m Lu Lc max ha1 ha2  max hb1 hb2  2  7.3m k Lu r 40.834 min 34 12 M1 M2  40       40 The_column "is short" k Lu r min 34 12 M1 M2  40       if "is long" otherwise  The_column "is long" Case of long column βd 1.2 PD 1.2 PD 1.6 PL 0.801 Ig b h 3  12  EI 0.4 Ec Ig 1 βd  Pc π 2 EI k Lu  2 13409.955 kN Cm max 0.6 0.4 M1 M2  0.4       0.4 Page 96
  • 98. δns max Cm 1 Pu 0.75 Pc  1           1.101 M2.min Pu 15mm 0.03 h( ) 211.278 kN m Mc δns max M2 M2.min  The_column "is long"=if max M2 M2.min  otherwise  Interaction diagram for column strength c a( ) a β1  dt max d( ) 537.5 mm ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.90         fs i a( ) εs εu d i c a( ) c a( )  sign εs  min Es εs fy   ϕPn a( ) min ϕ a( ) 0.85 f'c a b 1 ns i Asi fs i a( )               ϕPn.max          ϕMn a( ) ϕ a( ) 0.85 f'c a b h 2 a 2        1 ns i Asi fs i a( ) d i h 2                        a 0 h 100  h Page 97
  • 99. 0 200 400 600 800 1000 1200 0 1000 2000 3000 4000 5000 6000 7000 Interaction diagram for column strength ϕPn a( ) kN Pu kN ϕMn a( ) kN m Mc kN m  Page 98
  • 100. 15. Footing Design A. Determination of Footing Dimension Required area of footing Areq PD PL qe = where PD PL = dead and live loads on footing qe = effective bearing capacity of soil qe qa 20 kN m 3 H= qa = allowable bearing capacity of soil with FS 2.5= 3 20 kN m 3 = average density of soil and concrete H = depth of foundation Checking for maximum stress of soil under footing qmax qu qmax P B L 1 6 e L        e L 6 if 4P 3 B L 2 e( ) e L 6 if = where qu = design bearing capacity of soil qu qa 1.2PD 1.6 PL PD PL = P = axial load on footing P 1.2 PD P0  1.6 PL= P0 20 kN m 3 H B L= e = eccentricity of load Page 99
  • 101. e M P = L B = long and width of footing B. Determination of Depth of Footing Checking for Punching Vu ϕVc where Vu = punching shear Vc = punching shear strength ϕ 0.75= is a strength reduction factor for shear Punching shear Vu qu A A0 = A B L= A0 bc d  hc d = Punching shear strength Vc 4 f'c b0 d= (in psi) Page 100
  • 102. Vc 0.332 f'c b0 d= (in MPa) b0 bc d  hc d   2= Checking for Beam Shear Vu1 ϕVc1 Vu2 ϕVc2 where Vu1 Vu2 = beam shears Vc1 Vc2 = beam shear strength Beam shears Vu1 qu B L 2 hc 2  d       = Vu2 qu L B 2 bc 2  d       = Beam shear strength Vc1 0.166 f'c B d= Vc2 0.166 f'c L d= C. Determination of Steel Area Page 101
  • 103. Steel re-bars in long direction Required strength q1 qu B= L1 L 2 hc 2 = Mu1 q1 L1 2  2 = Design section: rectangular singly reinforced beam of B d Steel re-bars in short direction Required strength q2 qu L= L2 B 2 bc 2 = Mu2 q2 L2 2  2 = Design section: rectangular singly reinforced beam of L d Example 15.1 Required strength PD 484.71kN PL 228.56kN PL PD PL 0.32 Mu 5.03kN m Dimension of column stub bc 350mm hc 350mm Depth of foundation H 2.0m Allowable bearing capacity of soil qa 178.33 kN m 2 3 2.5  213.996 kN m 2  Materials f'c 25MPa fy 390MPa Page 102
  • 104. Solution Determination of Dimension of Footing Effective bearing capacity of soil qe qa 20 kN m 3 H 173.996 kN m 2  Required area of footing Areq PD PL qe 4.099 m 2  Footing proportion k B L = k 2 2.1  L Areq k 2.075 m B k L 1.976 m L Ceil L 50mm( ) 2.1m B Ceil B 50mm( ) 2 m B L       2 2.1       m Design bearing capacity of soil qu qa 1.2 PD 1.6 PL PD PL  284.224 kN m 2  Checking for maximum stress of soil Pu 1.2 PD B L H 20 kN m 3        1.6 PL 1148.948 kN e Mu Pu 4.378 mm qmax Pu B L 1 6 e L        e L 6 if 4Pu 3 B L 2 e( ) otherwise  qmax 276.981 kN m 2  qmax qu 0.975 Soil "is safe" qmax quif "is not safe" otherwise  Soil "is safe" Page 103
  • 105. Determination of depth of footing Punching shear A0 d( ) bc d  hc d  A B L Vu d( ) qu A A0 d( )  Vu 320mm( ) 1066.154 kN Punching shear strength b0 d( ) bc d  hc d   2 ϕ 0.75 ϕVc d( ) ϕ 0.332 MPa f'c MPa  b0 d( ) d ϕVc 320mm( ) 1067.712 kN Beam shears Vu1 d( ) qu B L 2 hc 2  d        Vu1 300mm( ) 326.858 kN Vu2 d( ) qu L B 2 bc 2  d        Vu2 300mm( ) 313.357 kN Beam shear strength ϕVc1 d( ) ϕ 0.166 MPa f'c MPa  B d ϕVc1 300mm( ) 373.5 kN ϕVc2 d( ) ϕ 0.166 MPa f'c MPa  L d ϕVc2 300mm( ) 392.175 kN c 50mm 20mm 20mm 2  80 mm dmin 150mm c 70 mm d d dmin d d 50mm Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while d  d 320 mm h d c 400 mm Page 104
  • 106. Steel reinforcements ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  ρshrinkage 0.0018 Re-bars in long direction b B Ln L 2 hc 2  0.875 m wu qu b Mu wu Ln 2  2 217.609 kN m Mn Mu 0.9  Mu b 108.805 kN m 1m  R Mn b d 2  1.181 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00312 As max ρ b d ρshrinkage b h  19.944 cm 2  s 150mm D 14mm n floor b 75mm 2 D s       1 13 n π D 2  4  20.012 cm 2  Re-bars in short direction b L Ln B 2 bc 2  0.825 m wu qu b Mu wu Ln 2  2 203.123 kN m Mn Mu 0.9  Mu b 96.725 kN m 1m  R Mn b d 2  1.05 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00276 As max ρ b d ρshrinkage b h  18.554 cm 2  s 160mm D 14mm n floor b 75mm 2 D s       1 13 n π D 2  4  20.012 cm 2  Page 105
  • 107. 16. Design of Pile Caps 1. Determination of Pile Cap Number of required piles n PD PL Qe = where PD PL = dead and live loads on pile cap Qe = effective bearing capacity of pile Qe Qa 20 kN m 3 3 D( ) 2  H= 20 kN m 3 = average density of soil and concrete D = pile size H = depth of foundation Distance between piles = 2 D 4 D Distance from face of pile to face of pile cap = D 2 200mm Checking for pile reaction R i P n M y x i  1 n k x k  2    M x y i  1 n k y k  2    Qu= where P = load on pile cap Mx My = moments on pile cap Qu = design bearing capacity of pile Qu Qa 1.2 PD 1.6 PL PD PL = Page 106
  • 108. 2. Depth of Pile Cap Case of punching Vu ϕ Vc where Vu = punching shear Vu Routside= Qu noutside= Vc = punching shear strength Vc 0.332 f'c b0 d= b0 bc d  hc d   2= Case of beam shear Vu1 ϕVc1 Vu2 ϕVc2 where Vu1 Vu2 = beam shears Vc1 Vc2 = beam shear strength Vu1 max Rleft Rright      = Vu2 max Rbottom Rtop      = Vc1 0.166 f'c B d= Vc2 0.166 f'c L d= Page 107
  • 109. 3. Determination of Steel Reinforcements In long direction Required moment: Mu1 max Rleft xleft hc 2         Rright xright hc 2               = Design section: Rectangular singly reinforced of B d In short direction Required moment: Mu2 max Rbottom xbottom bc 2         Rtop xtop bc 2               = Design section: Rectangular singly reinforced of L d Example 16.1 Pile size D 300mm Lp 9m Allowable bearing capacity of pile Qa 351.5kN Loads on pile cap PD 1769.88kN PL 417.11kN My 33.92kN m Mx 56.82kN m Depth of foundation H 1.5m Column stub bc 350mm hc 500mm Materials f'c 25MPa fy 390MPa Diameters of main bar D1 D2       16mm 16mm        Concrete cover c 75mm Depth of concrete crack hshrinkage 200mm Diameter of shrinkage rebar Dshrinkage 12mm Solution Design of pile Required strength of pile concrete Page 108
  • 110. Ag D D f'c.pile Qa 1 4 Ag 15.622 MPa Use f'c.pile 20MPa Steel re-bars Ast 0.005 Ag 4.5 cm 2  4 π 16mm( ) 2  4  8.042 cm 2  Dimension of pile cap Effective bearing capacity of pile Qe Qa 20 kN m 3 3 D( ) 2  H 327.2 kN Number of piles n PD PL Qe 6.684 Required number of piles ceil n( ) 7 Location of pile X 1 m 0 1m 0.5 m 0.5m 1 m 0 1m                        Y 0.8m 0.8m 0.8m 0 0 0.8 m 0.8 m 0.8 m                        Number of piles n rows X( ) n 8 Dimension of pile cap B max Y( ) min Y( ) min D 2 200mm      D 2       2 B 2.2m L max X( ) min X( ) min D 2 200mm      D 2       2 L 2.6m Checking for pile reactions Page 109
  • 111. Qu Qa 1.2 PD 1.6 PL PD PL  448.616 kN P0 20 kN m 3 H B L 171.6 kN Pu 1.2 PD P0  1.6 PL 2997.152 kN i 1 n ORIGIN 1 Rui Pu n My X i  1 n k X k  2    Mx Y i  1 n k Y k  2    Ru Qu 0.845 0.861 0.878 0.827 0.844 0.792 0.809 0.826                        Xcap 1 1 1 1 1               L 2  Ycap 1 1 1 1 1               B 2  i 1 n Xpile i  X i 1 1 1 1 1               D 2  Ypile i  Y i 1 1 1 1 1               D 2  2 1 0 1 2 2 1 1 2 Ycap Ypile Y Xcap Xpile X Page 110
  • 112. Determination of Depth of Pile Cap Punching shear Outside d( ) X hc 2 d 2        Y bc 2 d 2                 Vu d( ) Ru Outside d( ) Vu 700mm( ) 2247.864 kN Punching shear strength ϕ 0.75 b0 d( ) hc d  bc d   2 ϕVc d( ) ϕ 0.332 MPa f'c MPa  b0 d( ) d ϕVc 700mm( ) 3921.75 kN Beam shears Left d( ) X hc 2 d                Right d( ) X hc 2 d                Bottom d( ) Y bc 2 d                Top d( ) Y bc 2 d                Vu1 d( ) max Ru Left d( ) Ru Right d( )  Vu1 700mm( ) 764.364 kN Vu2 d( ) max Ru Bottom d( ) Ru Top d( )  Vu2 700mm( ) 0 N Beam shear strength ϕVc1 d( ) ϕ 0.166 MPa f'c MPa  B d ϕVc1 700mm( ) 958.65 kN ϕVc2 d( ) ϕ 0.166 MPa f'c MPa  L d ϕVc2 700mm( ) 1132.95 kN Depth of pile cap Cover c D1 D2 2  99 mm d d 300mm Cover d d 50mm Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while d  d 651 mm h d Cover 750 mm Page 111
  • 113. Steel Reinforcements ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  In long direction b B Mu1 Left 0( ) Ru hc 2 X                643.378 kN m Mu2 Right 0( ) Ru X hc 2                 667.876 kN m Mu max Mu1 Mu2  667.876 kN m Mn Mu 0.9  R Mn b d 2  0.796 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00208 As max ρ b d ρshrinkage b h  As 29.797 cm 2  As1 π D1 2  4  n1 ceil As As1       15 s1 Floor b c D1 2        2 n1 1 5mm           145 mm In short direction b L Mu1 Bottom 0( ) Ru bc 2 Y                680.262 kN m Mu2 Top 0( ) Ru Y bc 2                 724.653 kN m Mu max Mu1 Mu2  724.653 kN m Mn Mu 0.9  Page 112
  • 114. R Mn b d 2  0.731 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00191 As max ρ b d ρshrinkage b h  As 35.1 cm 2  As2 π D2 2  4  n2 ceil As As2       18 s2 Floor b c D2 2        2 n2 1 5mm           140 mm Shrinkage reinforcement b 1m hshrinkage h hshrinkage 0=if hshrinkage otherwise  As ρshrinkage b hshrinkage 3.6 cm 2  As0 π Dshrinkage 2  4  n As As0  sshrinkage Floor b n 5mm      310 mm Table L c D1 2        2 m B c D2 2        2 m "N/A" D1 mm D2 mm Dshrinkage mm n1 n2 "N/A" s1 mm s2 mm sshrinkage mm                        Page 113
  • 115. Dimension of pile cap B= 2.20 m L= 2.60 m Depth of pile cap h= 750 mm Direction Length (mm) Dia. (mm) NOS Spacing (mm) Long 2.43 16 15 145 Short 2.03 16 18 140 Top N/A 12 N/A 310 Page 114
  • 116. 17. Slab Design A. Design of One-Way Slabs La = length of short side Lb = length of long side La Lb 0.5 : the slab in one-way La Lb 0.5 : the slab is two-way Thickness of one-way slab Simply supported Ln 20 One end continuous Ln 24 Both ends continuous Ln 28 Cantilever Ln 10 Analysis of one-way slab Design scheme: continuous beam Determination of bending moments: using ACI moment coefficients Design of one-way slab Design section: rectangular section of 1m x h Type section: singly reinforced beam Page 115
  • 117. Example 17.1 Span of slab Ln 2m 20cm 1.8m Live load LL 12 kN m 2  Materials f'c 20MPa fy 390MPa Solution Thickness of one-way slab tmin Ln 28 64.286 mm Use t 100mm Loads on slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab t 25 kN m 3 2.5 kN m 2  Ceiling 0.40 kN m 2  Mechanical 0.20 kN m 2  Partition 1.00 kN m 2  DL Cover Slab Ceiling Mechanical Partition 5.2 kN m 2  wu 1.2 DL 1.6 LL 25.44 kN m 2  Bending moments Msupport 1 11 wu Ln 2  7.493 kN m 1m  Mmidspan 1 16 wu Ln 2  5.152 kN m 1m  Steel reinforcements Page 116
  • 118. β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  ρshrinkage 0.0018 Top rebars b 1m d t 20mm 10mm 2        75 mm Mu Msupport b 7.493 kN m Mn Mu 0.9 8.326 kN m R Mn b d 2  1.48 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.004 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.982 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 3 t 450mm( ) s min Floor b n 10mm      smax      260 mm Bottom rebars Mu Mmidspan b 5.152 kN m Mn Mu 0.9 5.724 kN m Page 117
  • 119. R Mn b d 2  1.018 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.019 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 3 t 450mm( ) s min Floor b n 10mm      smax      300 mm Link rebars As ρshrinkage b t 1.8 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 5 t 450mm( ) s min Floor b n 10mm      smax      430 mm B. Design of Two-Way Slabs Design methods: - Load distribution method - Moment coefficient method - Direct design method (DDM) - Equivalent frame method - Strip method - Yield line method Page 118
  • 120. (1) Load Distribution Method Principle: Equality of deflection in short and long directions fa fb= αa wa La 4  EI  αb wb Lb 4  EI = Case αa αb= wa wb Lb 4 La 4 = 1 λ 4 = λ La Lb = wa wb wu= From which, wa wu 1 1 λ 4  = wb wu λ 4 1 λ 4  = For λ 1 1 1 λ 4  0.5 λ 4 1 λ 4  0.5 For λ 0.8 1 1 λ 4  0.709 λ 4 1 λ 4  0.291 For λ 0.6 1 1 λ 4  0.885 λ 4 1 λ 4  0.115 For λ 0.5 1 1 λ 4  0.941 λ 4 1 λ 4  0.059 For λ 0.4 1 1 λ 4  0.975 λ 4 1 λ 4  0.025 Page 119
  • 121. Example 17.2 Slab dimension La 4.3m Lb 5.5m Live load LL 2.00 kN m 2  Materials f'c 20MPa fy 390MPa Solution Thickness of two-way slab Perimeter La Lb  2 tmin Perimeter 180 108.889 mm t 1 30 1 50       La 143.333 86( ) mm Use t 120mm Loads on slab SDL 50mm 22 kN m 3 0.40 kN m 2  1.00 kN m 2  2.5 kN m 2  DL SDL t 25 kN m 3  5.5 kN m 2  LL 2 kN m 2  wu 1.2 DL 1.6 LL 9.8 kN m 2  Load distribution λ La Lb 0.782 wa 1 1 λ 4  wu 7.134 kN m 2  wb λ 4 1 λ 4  wu 2.666 kN m 2  Page 120