SlideShare ist ein Scribd-Unternehmen logo
1 von 135
Learning	to	recreate	our	
visual	world
Jun-Yan	Zhu
UC	Berkeley
4.7	trillion	
photographs
13	billion	images
300	million	images
uploaded	daily
1.5	million	images	
uploaded	daily
300	hours	uploaded	
per	minute
Street
Visual	
Understanding
Scene	understanding
[Zhou	et	al.	2014]
people	
bicycle	
umbrella
Visual	
Understanding
Object	Detection
[Girshick et	al.	2014]
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
[Karpathy and	Fei-Fei	2015]
[Donahue	et	al.	2015]
[Misra et	al.	2015]
Image Captioning
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	Dom’s	father
Man-Computer	Symbiosis
Computers	can	help	us	draw,	even	if	we	can’t.
JCR	Licklider,	1968
Sketchpad
Sutherland,	1960
Image	warping
By	Photoshop
Visual	Synthesis	is	hard!
Why	it	does	not	work
- Is	this	a	handbag?
- What	makes	a	
handbag	look	real?
What	makes	an	image	look	real?
Statistics	of	Natural	Images	and	Models	[Huang	and	Mumford.	2000]
Sample	images	from	the	dataset
(4000	images	in	total)
log	histogram	of	pixels
log	histogram	of	wavelet	pairs
What	makes	an	image	look	fake?
Mismatch	color	statistics
[Lalonde	and	Efros 2007] lack	details	[Johnson	et	al.	2011]
noticeable	boundary
[Perez	et	al.	2003] “Bleeding”	artifacts	[Tao	et	al.	2010]
Deep Generative Models
• Generative	Adversarial	Network	(GAN)
[Goodfellow	et	al.	2014]
• Variational Auto-Encoder	(VAE)		[Kingma and	
Welling	2013]
• DRAW	(Recurrent	Neural	Network)	[Gregor et	
al	2015]
• Pixel	RNN	and	Pixel	CNN	([Oord	et	al	2016])	
• …
Generative	Adversarial	Networks	(GANs)
Discriminato
r	
Real	vs.	Fake
Generator
𝑥	~	𝐺(𝑧)
[Goodfellow et	al.	2014]
Generator
[Goodfellow et	al.	2014]
z G(z)
cat	credit:	aleju/cat-generator
G
real	or	fake?
[Goodfellow et	al.	2014]
Discriminator
z G(z)
D
Generator
G
𝐺:	generate	fake	samples	that	can	fool	𝐷
𝐷:	classify	fake	samples	vs.	real	images
[Goodfellow et	al.	2014]
[Goodfellow et	al.	2014]
fake	0.1
z G(z)
DG
real 0.9
[Goodfellow et	al.	2014]
z G(z)
DG
D
x
fake	0.1
fake	0.3
[Goodfellow et	al.	2014]
z G(z)
DG
D
x
real 0.9
Images	generated	by	GANs
Sample	shoes	images	
from	Zappos.com
[Yu	and	Grauman 2014]
Random	image	samples	
from	Generator	G(z)
[Radford	et	al.	2015]
Explore	the	GANs	latent	space
[Radford	et	al.	2015]
𝐺(𝑧-) 𝐺(𝑧.)Linear	Interpolation	in	z	space:	𝐺(𝑧- + 𝑡 ⋅ (𝑧. − 𝑧-))
Handbag	model	trained	on	137k	Amazon	handbags
Limitations	of	GANs
• produce	images	randomly;	hard	to	control.
• not	photo-realistic	enough;	low	resolution.
Limitations	of	GANs
• produce	images	randomly;	hard	to	control.
• not	photo-realistic	enough;	low	resolution.
Controllable	Image	Generation
[Zhu	et	al.	ECCV	2016]
Trained	on	
Places	Dataset
Generative	Visual	Manipulation	on	the	Natural	Image	Manifold	
Zhu,	Krähenbühl,	Shechtman,	Efros 2016
Manipulating	the	Latent	Vector
Objective:
user	guidance	imageconstraint	violation	loss	𝐿4
Generative	model:	𝐺(𝑧)
z G(z)
G 𝐿4( )
,
𝑣4
Manipulating	the	Latent	Vector
Objective:
user	guidance	imageconstraint	violation	loss	𝐿4
Generative	model:	𝐺(𝑧)
z G(z)
G 𝐿4( )
,
𝑣4
Manipulating	the	Latent	Vector
z G(z)
G 𝐿4( )
,
𝑣4
𝐺(𝑧)
Guidance	
𝑣4
Product	Design
Overview
original	photo	
projection	on	manifold
Project
Results	generated	by	GANs
Editing	UI
Overview
original	photo	
projection	on	manifold
Project Edit	Transfer
Results	generated	by	GANs
Final	results
Editing	UI
Edit	Transfer	via	Generalized	Optical	Flow
𝐺(𝑧.)𝐺(𝑧-)
Input
Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation	
Linear	Interpolation	in	𝑧 space
[Brox et	al.	2004]
[Shih	et	al.	2013]
Edit	Transfer	via	Generalized	Optical	Flow
𝐺(𝑧.)𝐺(𝑧-)
Input
Linear	Interpolation	in	𝑧 space
Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation	Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation
Edit	Transfer	via	Generalized	Optical	Flow
Result
𝐺(𝑧.)𝐺(𝑧-)
Input
Motion (u,	v)+	Color (𝑨 𝟑×𝟒):	estimate	per-pixel	geometric	and	color	variation	
Linear	Interpolation	in	𝑧 space
Editing	handbags
Editing	shoes
Generated	
Image
User
Guidance
Scribble→ latent	space	→	Image	[Zhu	et	al. 2016]
G
Scribble ImageLatent	space
Generated	
Image
User
Guidance
Scribble→ latent	space	→	Image	[Zhu	et	al. 2016]
Image-to-Image	Network
[Isola,	Zhu,	Zhou,	Efros.	2017] [Zhu*,	Park*,	Isola,	Efros.	2017]
Image	colorization
Designing	objective	functions
L2	regression
[Johnson et	al.	2016]
Super-resolution
[Zhang et	al.	2016]
L2	regression
slides	credit:	Phillip Isola
Image	colorization
Designing	objective	functions
Cross	entropy	objective,	
with	colorfulness	term
Deep	feature	covariance	
matching	objective
[Johnson et	al.	2016]
Super-resolution
[Zhang et	al.	2016]
Universal	loss?
…
…
…
Generated	vs	
Real
(classifier)
Real	photos
Generated	images
…
…
[Goodfellow et	al.	2014]
Image-to-Image	Translation
Image-to-image	translation	with	conditional	adversarial	nets	[Isola,	Zhu,	Zhou,	Efros.		CVPR	2017]
real	or	fake?
[Goodfellow et	al.	2014]
Discriminator
z G(z)
D
Generator
G
𝐺:	generate	fake	samples	that	can	fool	𝐷
𝐷:	classify	fake	samples	vs.	real	images
real	or	fake?
[Goodfellow et	al.	2014]
Discriminator
x G(x)
D
Generator
G
𝐺:	generate	fake	samples	that	can	fool	𝐷
𝐷:	classify	fake	samples	vs.	real	images
Real!
[Goodfellow et	al.	2014]
Discriminator
x G(x)
D
Generator
G
[Goodfellow et	al.	2014]
Discriminator
x G(x)
D
Generator
G Real	too!
real	or	fake	pair ?
slides	credit:	Many	slides	modified	from	Phillip	Isola’s	talk
x G(x)
G
D
fake pair: 0.1
G
D
x G(x)
real pair:	0.9
𝑦
D
Edges	→	Images
Input Output Input Output Input Output
Edges	from	[Xie &	Tu,	2015]
Sketches →	Images
Input Output Input Output Input Output
Trained	on	Edges	→	Images
Data	from	[Eitz,	Hays,	Alexa,	2012]
#edges2cats [Christopher	Hesse]
Ivy	Tasi @ivymyt
@gods_tail
@matthematician
https://affinelayer.com/pixsrv/
Vitaly Vidmirov @vvid
Input Output Groundtruth
Data	from
[maps.google.com]
Input Output Groundtruth
Data	from	[maps.google.com]
Labels	→ Facades
Input Output Input Output
Data	from	[Tylecek,	2013]
BW	→	Color
Input Output Input Output Input Output
Data	from	[Russakovsky	et	al.	2015]
…
Paired
- Expensive	to	collect	pairs.
- Impossible	in	many	scenarios.
Label	↔ photo:	per-pixel	labeling
…
Paired
Horse ↔ zebra:	how	to	get	zebras?
…
…
…
Paired Unpaired
x G(x)
Generator
G
D
No	input-output	pairs!
Discriminator
x G(x)
D
Generator
G Real!
Discriminator
x G(x)
D
Generator
G Real	too!
GANs	doesn’t force	output	to	
correspond	to	input
mode	collapse!
…CycleGAN,	or	there	and	back	aGAN
[Zhu*,	Park*,	Isola,	Efros.	ICCV	2017]
……
Discriminator	D>:	𝐿?@A 𝐺 𝑥 , 𝑦
Real	zebras	vs.	fake	zebras
Discriminator	DB:	𝐿?@A 𝐹 𝑦 , 𝑥
Real	horses	vs.	fake	horses
Discriminator	D>:	𝐿?@A 𝐺 𝑥 , 𝑦
Real	zebras	vs.	fake	zebras
…
…CycleGAN,	or	there	and	back	aGAN
Cycle-consistency	Loss
Forward	cycle	loss:	 F G x − x .
G(x) F(G x )x
Cycle-consistency	Loss
Large cycle	loss
Forward	cycle	loss:	 F G x − x .
G(x) F(G x )x
Small cycle	loss
Cycle-consistency	Loss
Backward	cycle	loss:	 𝐺 𝐹 𝑦 − 𝑦 .
Forward	cycle	loss:	 F G x − x .
G(x) F(G x )x F(y) G(F x )𝑦
See	also	[Yi	et	al.	2017]	[Kim	et	al.	2017]
Results
Collection Style Transfer
Photograph
@	Alexei	Efros
MonetVan	Gogh
CezanneUkiyo-e
Cezanne Ukiyo-eMonetInput Van	Gogh
Monet’s paintings → photos
Monet’s paintings → photos
Neural	Style	Transfer	[Gatys et	al.	2015]
Input Style	Image	I CycleGANStyle	image	II Entire	collection
Photo	→ Van	Gogh	
horse		→ zebra
Input Style	image	I CycleGANStyle	image	II Entire	collection
CG2Real:	GTA5	→ real	streetview
Inspired	by	[Johnson	et	al.	2011]GTA5	CG	Input Output
Real2CG:	real	streetview → GTA
Cityscape	Input Output
[Richter*,	Vineet*	et	al.	2016]
GTA5	images Segmentation	labels
Use	CG	data	to	train	recognition	systems
Per-class	accuracy Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	‘free’	synthetic	data	(GTA5) Test	on	real	images
meanIOU (per-class) Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	CG,	test	on	Real 17.9 54.0
Domain	Adaption	with	CycleGAN
[Tzeng et	al.	]	In	submission
meanIOU (per-class) Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	CG,	test	on	Real 17.9 54.0
FCN	in	the	wild	[Hoffman	et	al.] 27.1	(+6.0) -
Train	on	CycleGAN,	test	on	Real 34.8	(+16.9) 82.8
Train	on	CycleGAN data Test	on	real	images
Failure	cases
ImageNet	
“Wild	horse”
Conclusion
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	Dom’s	father
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	iGAN
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	Pix2pix
A	city	street	filled	with	
lots	of	people	walking	in	
the	rain.
Visual	
Understanding
Visual	
Synthesis
by	CycleGAN
Visual	
Synthesis
A	few	things	I	have	learned
• Visual	Synthesis	is	a	learning	problem.	
• We	can	learn	to	do	it	with	trillions	of	photos.	
• Build	general-purpose	tools	and	find	cool	problems.	
• Open-source	the	code	and	data.
Phillip	Isola	and	Jun-Yan	Zhu
Community-driven	research:	#pix2pix
Bertrand	Gondouin	@bgondouinBrannon	Dorsey	@brannondorsey	
Kaihu	Chen	@kaihuchen Mario	Klingemann	@quasimondo
Jun-Yan	Zhu	and	Taesung Park
Pix2pix:		144	lines
CycleGAN:		220	lines
Jun-Yan	Zhu	and	Taesung Park
20+	Implementations	by	others
• [Tensorflow] (by	Harry	Yang)
• [Tensorflow] (by	Archit Rathore)
• [Tensorflow] (by	Van	Huy)
• [Tensorflow] (by	Xiaowei Hu)
• [Tensorflow-simple] (by	Zhenliang He)
• [Chainer] (by	Yanghua Jin)
• [Minimal	PyTorch] (by	yunjey)
• [Mxnet] (by	Ldpe2G)
• [lasagne/keras] (by	tjwei)	
	⋯
Birds	@Matt	Powell
Bear	→ Panda	@Matt	Powell
#CycleGAN
Monet	→ Thomas	Kinkade @David	Fouhey
Resurrecting	Ancient	Cities	@	Jack	Clark
Portrait	to	Dollface
@Mario	Klingemann
Colorizing	legacy	photographs
@Mario	Klingemann
#CycleGAN
Face	Swapping	with	#CycleGAN
Input
Face	Swapping	with	#CycleGAN
Input
Generated
Face	Swapping	with	#CycleGAN
Input
Generated
Reconstruction
#CycleGAN:	Face	↔ Ramen
@	Takuya	Kato
@itok_msi
+	Smaller	cycle	loss		+	Global	image	discriminator
Medical imaging appilcations
• Segmentation [Xue et al.], etc.
• CT	denoising [Yi and Babyn]
• MR <-> CT [Wolterink et al. ]
• MRI	Reconstruction [Quan et al. ]
		⋯
MR <-> CT
MRI Reconstruction
Three views of GANs
• generative models
G 𝑧 unsupervised learning
• Trainable regression loss.
• Domain matching loss.
“What should	I	do”
Thank	You!
Eli	ShechtmanPhilipp	Krähenbühl
Alyosha	Efros
Yong	Jae	LeePhillip	Isola
Taesung Park Richard	Zhang Tinghui ZhouTing-Chun	Wang Deepak	Pathak
Trevor	DarrellRavi	
Ramamoorthi
Nima K.	Kalantari
Jue WangOliver	Wang Aseem Agarwala
Eric	Tzeng
Ce	Liu Miki	Rubinstein
Judy	Hoffman
Manmohan	
Chandraker
Young	GengAngela	Lin
Aquarius
Questions?
@LynnHo
Domain	adaption:	train	on	source,	adapt	to	target
• A	recent	survey:	~300	papers
• Minimizing	distribution	distance
– Borgwardt 06,	Mansour	09,	Pan	09,	Fernando	13
• Deep	model	adaption
– Chopra	13,	Tzeng 14,	Long	15,	Ganin 15,	Hoffman	17.
Slides	credit:	Judy	Hoffman
State-of-the-art	domain	adaption	method
Per-class	accuracy Per-pixel	accuracy
Oracle	(Train	and	test	on	Real) 60.3 93.1
Train	on	CG,	test	on	Real 17.9 54.0
FCN	in	the	wild	[Hoffman	et	al.] 27.1	(+6.0) -
VGG-FCN:	17.9	[Long	et	al.	2015];			Dilated-VGG-FCN:	21.1	[Fisher	and	Koltun 2015’]
Train	on	‘free’	synthetic	data	(GTA5) Test	on	real	images
adapt
Cats	are	as	popular	as	GANs
• GitHub:	github.com/junyanz/CatPapers
• 90%	data	is	visual;	most	of	visual	data	are	about	Cats.
• 70+	vision,	learning	and	graphics	papers.
Most	influential	cat	paper
• Fred	Attneave.	“Some	informational	aspects	of	visual	
perception”.	Psychological	Review	(1954).
Questions?
User-Guided	Colorization
[Zhang*,	Zhu*	et	al.	SIGGRAPH	17]
Grayscale	image
Output	colorization
User	colors,	mask
Raw	Data
Training	Details:	Objective	function
• Conditional	GAN
Training	Details:	Objective	function
• Conditional	GAN	+	L1	
𝑦
,
{ }
• Stable	training	+	fast	convergence.
Training	Details:	Discriminator	𝐷
[Radford et	al.,	2015]
ImageGAN
Slide	from	Victor	Garcia
• Faster,	fewer	parameters;	Arbitrarily	large	images
• Equal	or	better	results
Our	discriminator
PatchGAN
Effects	of	discriminator	𝐷
Training	Details:	Generator	𝐺
Encoder-decoder
U-Net
[Ronneberger et	al.]
Shallower	depth	of	field
iPhone DSLR iPhone DSLR
Summer ↔ Winter
Ablation	study	on	paired	dataset
the	same	output
mode	collapse!
Ablation	study	on	paired	dataset
the	same	output
mode	collapse!
Ablation	Study	on	Cityscapes	dataset
Training	Details:	Objective
• GANs	with	cross-entropy	loss
• Least	square	GANs	[Mao	et	al.	2016]
Stable	training	+	better	results
Vanishing	gradients
Training	Details:	Generator	𝐺
Encoder-decoderU-Net
[Ronneberger et	al.]
ResNet [He	et	al.]	[Johnson	et	al.]
• Both	have	skip	connections	
• ResNet:	fewer	parameters
better	for	ill-posed	problems

Weitere ähnliche Inhalte

Andere mochten auch

백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
NAVER D2
 

Andere mochten auch (20)

[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music[221]똑똑한 인공지능 dj 비서 clova music
[221]똑똑한 인공지능 dj 비서 clova music
 
[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...
 
[246]reasoning, attention and memory toward differentiable reasoning machines
[246]reasoning, attention and memory   toward differentiable reasoning machines[246]reasoning, attention and memory   toward differentiable reasoning machines
[246]reasoning, attention and memory toward differentiable reasoning machines
 
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
 
[232]mist 고성능 iot 스트림 처리 시스템
[232]mist 고성능 iot 스트림 처리 시스템[232]mist 고성능 iot 스트림 처리 시스템
[232]mist 고성능 iot 스트림 처리 시스템
 
인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템
 
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
 
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
 
유연하고 확장성 있는 빅데이터 처리
유연하고 확장성 있는 빅데이터 처리유연하고 확장성 있는 빅데이터 처리
유연하고 확장성 있는 빅데이터 처리
 
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
[216]네이버 검색 사용자를 만족시켜라!   의도파악과 의미검색[216]네이버 검색 사용자를 만족시켜라!   의도파악과 의미검색
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
 
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
 
[141]네이버랩스의 로보틱스 연구 소개
[141]네이버랩스의 로보틱스 연구 소개[141]네이버랩스의 로보틱스 연구 소개
[141]네이버랩스의 로보틱스 연구 소개
 
웨일브라우저 성능 및 메모리 최적화
웨일브라우저 성능 및 메모리 최적화웨일브라우저 성능 및 메모리 최적화
웨일브라우저 성능 및 메모리 최적화
 
밑바닥부터시작하는360뷰어
밑바닥부터시작하는360뷰어밑바닥부터시작하는360뷰어
밑바닥부터시작하는360뷰어
 
[131]chromium binging 기술을 node.js에 적용해보자
[131]chromium binging 기술을 node.js에 적용해보자[131]chromium binging 기술을 node.js에 적용해보자
[131]chromium binging 기술을 node.js에 적용해보자
 
[124]자율주행과 기계학습
[124]자율주행과 기계학습[124]자율주행과 기계학습
[124]자율주행과 기계학습
 
[111]open, share, enjoy 네이버의 오픈소스 활동
[111]open, share, enjoy 네이버의 오픈소스 활동[111]open, share, enjoy 네이버의 오픈소스 활동
[111]open, share, enjoy 네이버의 오픈소스 활동
 
[112]clova platform 인공지능을 엮는 기술
[112]clova platform 인공지능을 엮는 기술[112]clova platform 인공지능을 엮는 기술
[112]clova platform 인공지능을 엮는 기술
 
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
[142] 생체 이해에 기반한 로봇 – 고성능 로봇에게 인간의 유연함과 안전성 부여하기
 

Mehr von NAVER D2

Mehr von NAVER D2 (20)

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual Search
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
 
[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?
 

Kürzlich hochgeladen

Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Kürzlich hochgeladen (20)

AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..Understanding the FAA Part 107 License ..
Understanding the FAA Part 107 License ..
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 

[213]building ai to recreate our visual world