SlideShare ist ein Scribd-Unternehmen logo
1 von 86
Downloaden Sie, um offline zu lesen
A NEW ROAD FOR TYPE 1 DIABETES
IS BEING PAVED TODAY
The International Summit on Insulin Independence
Table of Contents
Slide No. Speaker
3 Louis Cocco Jr
4-16 Claresa Levetan MD, FACE
17-24 Susan Pierce, CDE, MPT
25-39 Desmond Schatz, MD
40-52 Paolo Pozzilli, MD
53-65 Donald Bergman, MD, FACE,MACE
66-71 Lois Jovanovic, MD, FACP, FACN,FACE, MACE
72-85 Aaron Vinik, MD, PhD, FCP, MACP,FACE
What I Know About Diabetes
by Louis Cocco, Jr Age 11
 Despite all of the advances, diabetes is the leading cause of
amputations, blindness and kidney disease requiring dialysis.1
 Diabetes killed 284,000 Americans last year.2
 Every 17 seconds another American is diagnosed with diabetes.1
 10-15% have type 1 diabetes, which has risen by 70% among
children under the age of 5 years old.3,4
 In 2012, $245 Billion was spent on care of patients with diabetes1
 More than the $150 billion in damage caused by Hurricane Katrina. 2
 As much the conflicts in Iraq, Afghanistan and the global war on
terrorism combined. 2
 I know that this group of doctors will get me off of insulin before I am
a grownup.
1) http://usatoday30.usatoday.com/news/health/2008-01-23-diabetes-cost_N.html Accessed 4.13.13
2) http://www.diabetes.org/diabetes-basics/diabetes-statistics/ Accessed 4.13.13
3) Christopher C et al., Incidence trends for childhood type 1 diabetes in Europe during 1989—2003 and predicted new cases 2005—20: a
multicenter prospective registration study The Lancet, (373)9689, Pages 2027 - 2033, 13;2009
4) Lipman T, et al., Diabetes. March 2013. Population-based Survey of the Prevalence of Type 1 and Type 2 diabetes in School Children in
Philadelphia . [Epub ahead of print]
3
• Distinctions between Islets of Mice and Men
• Why immune tolerance agents work in mice, but not man
• Why man requires an immune agent and a regeneration
agent to reverse the underlying mechanisms of disease
in type 1 diabetes
• My colleagues will then discuss the therapies we have
now and into the future to reverse type 1 diabetes
Claresa Levetan MD, FACE
4
Islets of Man and Mouse
 Red Cells--Beta cells making insulin and amylin
 Green Cells---Alpha cells making glucagon
 Blue Cells—Delta cells making somatostatin
 Black Holes in human islet are blood vessels
 >70% of Beta Cells in the human islet direct connect with other cell types
 Beta cells are attacked by the immune system in type 1 diabetes resulting in
 complete islet dysfunction and destruction of the entire islet 5
What Is an Islet?
 Islets are small organs within the pancreas that contain 5 different cell
types making 6 different hormones, all necessary for glucose homeostasis
 Alpha cells make glucagon
 Beta cells make insulin and amylin
 Delta cells make somatostatin,
 Gamma cells make pancreatic polypeptide
 Epsilon cells make ghrelin
 In man, 6 islet hormones communicate with one another and all have been
shown necessary for normal glucose metabolism
 Among both type 1 and 2 diabetes, autopsy studies show not only reduced
beta cells, but also reduced islet numbers
 Type 1 diabetes will be reversed when 5-celled new islets are generated in
an immune protected environment
 We have the ability to generate new islets that are protected from immune
attack, NOW 6
Distinctions between Islets
of Mice and Men
 Mice eat continuously and beta cells are constantly turning over during
their 1 year lifespan1
 Islets in man are designed to regulate glucose based upon emotional
stress and long periods of feast or famine
 Islets of mice have predominately beta cells, which are centrally
clustered and man has a smaller percentage of beta cells dispersed
throughout the islet, which are in direct contact with the other 4 cell
types
 The autonomic nervous system in man through innervates islet blood
flow suggesting human islet a have a unique reaction to emotional
stress compared to mice2
 100s of immune studies have reversed diabetes in mice, but not in
man, because man’s islets have a complex infrastructure that cannot
be regenerated simply by blocking the immune attack on the pancreas
 In man, in order to generate new islets containing all 5 cell types,
requires immune therapy and regeneration therapy, both of which are
now available
1) Levetan C and Pierce S .Endocr Pract. 2012 Nov 27:1-36. [Epub ahead of print]
2) Rodriguez-Diaz R et al., Cell Metab. 2011;14:45-54. 7
Type 1 Diabetes is more than an
Autoimmune Disease in Man
 Humans require both immune protection and generation of
new islets to reverse the underlying disease process of type
1 diabetes
 Diabetes in mice can be reversed with only an immune agent
because beta cell turnover is faster in mice than man
 Islet Regeneration in man is possible, even among patients
with type 1 diabetes for 20 years or longer
 Type 1 diabetes is not just an autoimmune disease as it is in
NOD mice, but is a disease of 1) autoimmunity, 2) beta cell
deficiency and 3) lack of beta cell regeneration
 We have human gene peptides and growth factors that
transform pancreatic ductal cells into new islets that we can
use NOW in type 1 patients
8
 One machine pumping both insulin and
glucagon
 Glucose measurements taken and based
upon glucose levels, the correct dosage of both
insulin and glucagon were automatically given
to the patient
 This is same concept as the “new” artificial
pancreas of 2013 now in clinical trials
 Even the bionic pancreas did not normalize
glucose levels, because it only replaced two
missing and malfunctioning hormones
 All five cell types generating 6 different
hormones within a functioning islet are required
for normal glucose homeostasis
 Scientific studies show that all 6 hormones
have a role in glucose metabolism
Treatment vs. Cure
*http://www.thefreeresource.com/insulin-pump-facts-informtion-and-resources
*http://idsa.org/catalyst/LMBVT/case_studies_2010_minimed.pdf
*Kadish AH. A servomechanism for glucose monitoring and control
Trans. Am. Soc. Artificial Internal Organs 9. 363. 1963
*Kadish AH. Automation control of blood sugar. Biomed Sci. Instr. 1, 172, 1963
Available for viewing at the Keck Graduate Institute, Science Heritage Center, Clairemont,
CA
The First Successful Bionic
Pancreas was developed in
1963 by Dr. Arnold Kadish*
9
Regeneration of the Pancreas
 Clamping of the pancreas resulting in new islet
formation has been described for a century
 Based on a paper in 1920, in which patients with
pancreatic stones had new islets, Frederick Banting
clamped the pancreatic ducts of dogs for 10 weeks
and collected the pancreatic secretions that became
known as insulin
 Before insulin was readily available, surgeons tied off
part of the pancreas among type 1 children, which
transiently helped their diabetes, but likely the ongoing
autoimmune destruction of new islets contributed to
why these surgical successes were only temporary
10
 Severely ill diabetic
children underwent
ligation of the
pancreatic duct to
improve their diabetes
between 1910 and
1930*
 Benefits were positive,
but short-lived likely due
to autoimmune
destruction of new
insulin-producing cells*
*Cusi 1911; Bierry and Kollman, 1929; DeTakats, 1930 11
In 1983, Dr. Vinik Rediscovered that Wrapping the Pancreas
with Cellophane turned Pancreatic Ducts into Islets
 New islets were shown by Dr. Vinik by wrapping the pancreatic ducts of
hamsters
 A peptide was specifically isolated in 1992 by Dr. Vinik’s team that has
been shown to transform pancreatic ducts into 5-celled new islets
 In human trials with Dr. Vinik’s, there was a 27% rise in C-peptide within
2 months in type 1 patients with a 20 year history of diabetes and no
baseline C-peptide, but without immune protection, these results were
not sustained. A rise in GAD antibodies were seen reflecting the
immune system was seeing new beta cells3
 As much as a 75% reduction in insulin requirements was seen after 4
weeks of gastrin and epidermal growth factor in type 1 patients2
1) Dungan KM et al., Diabetes Metab Res Rev 2009; 25: 558–565
2) Jamal AM et al., Cell Death and Differentiation (2005) 12, 702–712.
3) Transition Therapeutics, March 5, 2007 http://www.transitiontherapeutics.com/media/archive.php Accessed January 1, 2013
Duct
Islet2
12
Islet Relationship to Ducts
DUCTS
ISLET
13
Not until the Early 1980s Was Diabetes
Considered to be an Autoimmune Disease
 In the 1980s, nearly 100% of patients became insulin-free
when the immune agent Cyclosporine A was begun
immediately after diagnosis, thus protecting the remaining
few beta cells
 By 2 years, almost all patients in remission, required insulin,
demonstrating that an immune tolerance agent alone, does
NOT mean that there will be generation of beta cells in man
 It is only now after 100s of studies using a variety of
immune tolerance agents and immune approaches that we
can look back and see that in man, diabetes is a disease
NOT only of autoimmunity
 We now have both immune tolerance agents and beta
regeneration agents (some are already FDA-approved
therapies) that can address the underlying mechanisms of
disease in type 1 diabetes: 1) autoimmunity 2) beta cell
deficiency and 3) lack of beta cell regeneration 14
Type 1 Diabetes
 “Insulin is not a cure for diabetes; it is a treatment.”
Frederick G. Banting, 1923, Nobel Prize Speech
 Merging immune tolerance agents with beta regeneration
agents; a platform for future insulin independence
 Type 1 Diabetes is a disease of
 Autoimmunity
 Beta Cell Deficiency
 Lack of Beta Cell Regeneration
15
Immune
Tolerance Agent
Protect newly
generated and existing
beta cells
Potential for Insulin Independence
2015
2013
More potent
beta
generation
agents
Insulin
Independence
among existing
and new onset
Regeneration
Agent
Remission
followed by
maintenance
Immune
Tolerance Agent
Protect newly
generated and existing
beta cells
Insulin
Independence
among existing
and new onset
16
• What are normal A1Cs and glucoses?
• Is it patients or the pancreas that are non-compliant?
• Current therapy and technology is not enough
Susan Pierce CDE, MPT
17
What IS the Normal Glucose Range for
Someone without Diabetes?
 Continuous Glucose Monitoring
Shows that out of 288 readings/day
 95% of glucose levels < 120 mg/dL 1
80% of glucose levels 60 - 100 mg/dL 1
1. Christiansen JS. What is normal glucose? – Continuous glucose monitoring data from healthy subjects.
Presented at: 42nd Annual Meeting of the EASD; September 14-17, 2006; Copenhagen, Denmark.
18
In those without diabetes,
95% of daily (24 hour) life
is spent with a glucoses
less than 120 mg/dl
80% of daily (24 hour) life
is spent with glucose levels
of 60-100 mg/dl
http://www.diabetes-symposium.org/index.php?menu=view&id=322
19
*Updated mean sA1C adjusted for age, sex, and
ethnic group.
Stratton I, et al. UKPDS 35. BMJ. 2000;321:405-412.
0
2
0
4
0
6
0
8
0
0 5 6 7 8 9 10 11
Myocardial
infarction
Microvascular
complications
Updated Mean HbA1c (%)*
%Incidenceper
1,000Patient-years
A1Cs Above 5.5% Increase Complication
Risk in Non-Diabetic Individuals as well as those with
Type 1 and Type 2 Diabetes
20
Can a normal A1C be achieved
without too many lows?
 The leading diabetes researchers of the
DCCT believed that insulin alone could
restore a glucose to < 6.05% without
hypoglycemia 1
 An A1C of < 6.05% was attained at least
once during the 10 year study by 44% of
the patients receiving intensive therapy 1
 The intensively managed group
maintained an average A1C throughout
the study of 7.2% 1
1. The DCCT Trial Research Group. N Engl J Med. 1993 Sep 30;329(14):977-86.
21
Is New Technology Helping?
 Sensor-augmented pump studies recently
 Demonstrated a decrease of A1C levels from 8.3% to
7.5% over 12 months (1)
 With further reduction to 7.4% after an additional 6
months on the sensor (2)
 These achievements were made without associated
weight gain or hypoglycemia
 Despite advances in sensors and pumps, sensor-
augmented pumps did not improve the A1C levels
as much as did the DCCT decades ago
1) Bergenstal RM, Tamborlane WV, Ahmann A, et al. N Engl J Med. 2010;363:311-320.
2) Bergenstal RM, Tamborlane WV, Ahmann A, et al. Diabetes Care. 2011;34:2403-2405. 22
I need my human pancreas back!
Even pumping all 6 missing hormones --- insulin,
amylin, glucagon, ghrelin, somatostatin, pancreatic
polypeptide --- would not
There is no computer that can integrate stress and
other factors the way the human islet does.
23
Restoring Normal Glucose
 Restoring 5-celled new islets that generate 6
hormones that all communicate with one
another and the brain to maintain glucose
levels < 120mg/dL 95 % of the time
 In order to maintain new islets immune
protection must be in place
 Drs. Vinik and Bergman will describe how we
now have therapies to transform pancreatic
ducts into 5-celled islets
 Drs. Pozzilli and Schatz will describe how we
can optimally protect the new islets 24
4
The need to change the paradigm of
diabetes simply being an autoimmune
disease.
Desmond Schatz, MD
25
GeneticRisk
“Pre”-Diabetes
New-
Onset
Established Complications
Antibodies
OPPORTUNITIES FOR PREVENTION
AND CURE
PREVENTION
INTERVENTION
CURE
WITHOUT PREVENTION
THERE CAN NEVER BE A
CURE
26
27
• Concept rejected initially…”lacks evidence, not
novel, too presumptive, etc.”
• Based on lessons learned from past
experiences), efficacy in other disorders
(cancer, HIV, transplantation), and mechanisms
underlying type 1 pathogenesis
Diabetes Care, 2002
THE CONCEPT FOR COMBINATION
28
DO WE HAVE CLUES AS TO WHAT
IS THE “BEST” COMBINATION?
Difficult question to answer, based on:
 Differences in preclincial studies?
 Potential differences in mouse to man?
29
AAV murine IL-10
AAV rat preproinsulin gene (vLP-1)
Adenovirus expressing mIL-4
Aerosolinsulin
Allogenic thymic macrophages
Alpha Galactosylceramide
Alpha-interferon (rIFN-alpha)
Alpha/beta T cell receptor thymocytes
Aminoguanidine
Androgens
Anesthesia
Antioxidant MDL 29,311
Antisense GAD mRNA
Azathioprine
Anti-B7-1
Bacille Calmette Gue’rin (BCG)
Baclofen
Bee venom
Biolistic-mediated IL-4
Blocking peptide of MHC class II
Bone marrow transplantation
Castration
Anti-CD3
Anti-CD4
CD4+CD25+regulatory T cells
Anti-CD8
Anti-CD28 MAb
Cholera toxin B subunit-insulin protein
Class I derived self-I-A beta(g7) (54-76) peptide
Cold exposure
Anti-complement receptor
Complete Freund’s adjuvant
Anti-CTLA-4
Cyclic nucleotide phosphodiesterases (PDEs)
Cyclosporin
Cyclosporin A
DC deficient in NF-kappaB
DC from pancreatic lymph node
DC with IL-4
Deflazacort
Deoxysperogualin
Dexamethasone/progesterone/growth hormone/estradiol
Diazoxide
1,25 dihydroxy Vitamin D3, KH1060
1,25 dihydroxycholecalciferol
1,25 dihydroxyl Vitamin D3
Elevated temperature
Emotionality
Encephalomyocarditis virus (ECMV)
Essential fatty acid deficient diets
FK506
FTY720 (myriocin)
GAD 65 peptides in utero
Anti-GAD monoclonal antibody
Galactosylceramide
Glucose (neonatal)
Glutamic acid decarboxylase
(intraperitoneal, intrathymic, intravenous, oral)
Glutamic acid decarboxylase 65 Th2 cell clone
Glutamic acid decarboxylase peptides
(intraperitoneal, intrathymic, intravenous, oral)
Gonadectomy
Guanidinoethyldisulphide
Heat shock protein 65
Heat shock protein peptide (p277)
Hematopoietic stem cells encoding proinsulin
Housing alone
Human IGF-1
I-A beta g7(54-76) peptide
Anti-I-A monoclonal antibodies
Anti-ICAM-1
IgG2a antibodies
Immobilization
Inomide
Anti-integrin alpha 4
Insulin (intraperitoneal, oral, subcutaneous, nasal)
Insulin B chain (plasmid)
Insulin B chain/B chain amino acids 9-23 (intraperitoneal, oral, subcutaneous, nasal)
Insulin-like growth factor I (IGF-I)
Anti-intercellular adhesion molecule-1 (ICAM-1)
Interferon-alpha (oral)
Interferon-gamma
Anti-interferon-gamma
Interferon-gamma receptor/IgG1 fusion protein
Interleukin-1
Interleukin-4
Interleukin-4-Ig fusion protein
Interleukin-4-plasmid
Interleukin-10
Interleukin-10-plasmid DNA
Interleukin-10-viral
Interleukin 11-human
Interleukin-12
Intrathymic administration of mycobacterial heat shock protein 65
Intrathymic administration of mycobacterial heat shock peptide p277
Islet cells-intrathymic
L-Selectin (MEL-14)
Lactate dehydogenase virus (LDH)
Large multilamellar liposome
Lazaroid
Anti-leukocyte function associated antigen (LFA-1)
Anti-LFA-1
Linomide (quinoline-3-carboxamide)
Lipopolysaccharide-activated B cells
Lisofylline
Lymphocyte choriomeningitis virus (LCMV)
Anti-lymphocyte serum
Lymphoctyte vaccination
Lymphocytic choriomeningitis virus
Anti-L-selectin
Lymphotoxin
LZ8
MC1288 (20-epi-1,25-dihydroxyvitamin D3)
MDL 29311
Metabolically inactive insulin analog
Anti-MHC class I
Anti-MHC class II
MHC class II derived cyclic peptide
Mixed allogeneic chimerism
Mixed bone marrow chimeras
Monosodium glutamate
Murine hepatitis virus (MHV)
Mycobacterium avium
Mycobacterium leprae
Natural antibodies
Natural polyreactive autoantibodies
Neuropeptide calcitonin gene-related peptide
Nicotinamide
Nicotine
Ninjin-to (Ren-Shen-Tang), a Kampo (Japanese traditional) formulation
NKT cells
NY4.2 cells
OK432
Overcrowding
Pancreatectomy
Pentoxifylline
Pertussigen
Poly [I:C]
Pregestimil diet
Prenatal stress
Preproinsulin DNA
Probucol
Prolactin
Rampamycin
Recombinant vaccinia virus expressing GAD
Reg protein
Reg protein
Rolipram
Saline (repeated injection)
Schistosoma mansoni
Semi-purified diet (e.g., AIN-76)
Short term chronic stress
Silica
Sirolimus/tacrolimus
Sodium fusidate
Soluble interferon-gamma receptor
Somatostatin
Non-specific pathogen free conditions
Streptococcal enterotoxins
Streptozotocin
Sulfatide (3’sulfogalactosylceramide)
Superantigens
Superoxide dismutase-desferrioxamine
Anti-T cell receptor
TGF-beta 1 somatic gene therapy
Th1 clone specific for hsp60 peptide
Anti-thy-1
Thymectomy (neonatal)
Tolbutamide
Tolerogenic dendritic cells induced by vitamin D receptor ligands
Top of the rack
Treatment combined with a 10% w/v sucrose-supplemented drinking water
Tumor necrosis factor-alpha
TX527 (19-nor-14,20-bisepi-23-yne-1,25(OH)(2)D(3))
Vitamin E
Anti-VLA-4
Thymoglobulin
Anti-CD3
ALS + Exendin-4
LSF + Exendin-4
EGF + Gastrin
Regulatory T Cells
Islet Transplantation
Microspheres
FTY720
sICAM-Ig (Adenovirus Vector)
IDS 2004, Cambridge (Atkinson & Roep)
N=193;
Now ~400
THERAPIES PREVENTING DIABETES IN NOD MICE
30
WHAT CONSIDERATIONS NEED TO
GO INTO SELECTIONS FOR
COMBINATION RX?
Selecting combination therapies should occur,
with a combination of thoughts regarding
mechanism of action, synergy, safety, and
potential for efficacy
31
USE COMBINATIONS THAT IMPROVE EFFICACY
0 25 50 75 100 125 150
0
20
40
60
80
100
Control
GCSF
ATG
ATG + GCSF
Days Post Onset
NormalGlycemia(%)
32
USE COMBINATIONS THAT IMPROVE
ALLOW FOR LOWER DOSING OF DRUGS
33
USE COMBINATIONS THAT
IMPROVE SAFETY
p values @ 4 weeks
(n is still increasing)
ATG vs. A+G = .0128
ATG vs. CD3 = .3569
ATG vs. 3+G = .2141
A+G vs. CD3 = .0005
A+G vs. 3+G < .0001
CD3 vs. 3+G = .9135
34
RECENT NEW-ONSET DIABETES STUDIES
Published
- * α-CD3 (x4)
- * α-CD20
- Mycophenolic Mofetil + anti-CD25
- GAD x2
- * CTLA-4
- * DiaPep
- * Autologous non-myeloablative transplantation
- Cord Blood
- IL-2 plus Sirolimus (Phase 1)
- Canakunimab; Anakinra
Completed enrollment
- Mesenchymal Stem Cells
- Cord Blood Phase 2 (+ Vit D + Omega 3 FA)
- Meticulous Metabolic Control
- GCSF
- ATG-GCSF
Enrolling
- T reg - α-1 antitrypsin 35
WHAT HAVE WE LEARNED?
We can do well designed, adequately powered,
and carefully conducted intervention and
prevention studies
Sample sizes require a collaborative,
cooperative, multi-center approach
If a response is seen, it is likely to be evident
soon after therapy begun (3-6 months)
Long term benefit largely unknown
36
WHY LIMITED SUCCESS TO DATE?
BACK TO THE FUTURE…..
RETHINKING MECHANISMS LEADING TO TYPE 1
DIABETES?
1986: Suicide or Homicide of β Cell Bottazzo …..
Is the autoimmune/inflammatory process in humans really
primary or secondary to hitherto unknown β cell defects/killing??
- limited success of immune interventions
- no treatment mediated decrease in islet cell Ab
- what have we really learned from animal models ?
- no markers in humans other than islet Ab
……….of immune dysregulation or β cell killing
- lack of correlation of insulitis with islet Ab (nPOD)
37
OUR FUTURE CHALLENGES
Current treatment quite good – but…insulin not a biological cure
Primum non nocere (safety)
Re-evaluate study design (smaller, shorter
studies in new-onset patients)
Define clinical significance (efficacy)
- superiority or ease over current treatment if
new-onset
- only do if translatable (therapy or prevention)
Better understand triggers (TEDDY)/mechanisms
leading to disease
Use a `cocktail approach’
(Immunoregulatory/regenerative)
38
PUTATIVE
ENVIRONMENTAL
TRIGGER
TIME
FUTURE PREVENTION
OF TYPE 1 DIABETES
BETACELLMASS
M
DIABETES
“PRE”-
DIABETES
GENETIC
PREDISPOSITION
INSULITIS
BETA CELL INJURY
Early Monotherapy
Late Combinations
SAFE
MORE TOXIC ?
39
Prof. Paolo Pozzilli
Università Campus Bio-Medico, Roma, Italy
Barts' and The London Hospital, UK
Outcomes with immune tolerance agents in
Type 1 Diabetes
from Cyclosporine to Current Therapies
40
Roma,1989: First International Meeting
on this topic
President: D Andreani
Vice-President: G Gambassi
Scientific Coordinators: P Pozzilli, H Kolb
Scientific Advisors: JF Back, GD Bompiani, P
Brunetti, JJ Duprè, GS Eisenbarth, G Ghirlanda,
L Harrison, NK Maclaren, J Nerup, G Pozza, CR
Stiller
Scientific Secretariat: A Corcos, E Killick, N
Visalli
“Immunotherapy of Type 1 diabetes”
41
Nearly 100% insulin-free remission if used very early in the course of disease within
2-3 days of insulin therapy and before weight loss (Eisenbarth GS Immunotherapy of
Diabetes and Selected Autoimmune Diseases CRC Press, 1989)
Remissions are not typically sustained more than 2 years
Maintaining trough levels of 75-250 ng/ml did not demonstrate significant insulin-
free remissions (Miami Study and IMDIAB1)
CyA was abandoned because it was not curative and not because of short term
adverse effects. There was fear of long term adverse effect at kidney level
There were no beta cell regenerative agents available at the time to use in
conjunction with CyA to sustain potential regeneration of beta cell mass, nor was it
understood that outcomes in man would be different than mice when using immune
tolerance agents
42
CyA for Type 1 diabetes: history
(n= 692 treated patients)
Bougneres PF et al. Diabetes 199043
Skyler JS et al. Diabetic Medicine 1993
44
Disease State Drug Oral Injectable
Organ Transplant Sandimmune 14-18 mg/kg/day, taper to 5-10
mg/kg/day in 1-2 weeks
5-6
mg/kg/day
Neoral or a bioequivalent generic 7-9 mg/kg/day, taper to 5-10
mg/kg/day in 1-2 weeks
Rheumatoid Arthritis Neoral or a bioequivalent generic 2.5–4 mg/kg/day in two divided
doses
Psoriasis Neoral or a bioequivalent generic 2.5–4 mg/kg/day in two divided
doses
Crohn's Disease Sandimmune 4 mg/kg/day
Ulcerative Colitis Sandimmune 4 mg/kg/day
Nephrotic Syndrome Brand not specified 3.5 mg/kg/day in two divided doses
Multiple sclerosis Brand not specified 7.2 mg/kg/day
Lupus Brand not specified 2.5 mg/kg/day
Alopecia Areata Brand not specified 3-5 mg/kg/day
Atopic Dermatitis Brand not specified 5 mg/kg/day
Dermatomyositis Brand not specified 3-10 mg/kg/day
Lichen Planus Brand not specified 6 mg/kg/day
Myasthenia Gravis Brand not specified 5 mg/kg/day
Polymyositis Brand not specified 2.5 mg/kg/day
Psoriatic Arthritis Brand not specified 3.5 mg/kg/day
Pulmonary Sarcoidosis Brand not specified 5-7 mg/kg/day
Uveitis Brand not specified 2.5-5 mg/kg/day
Today usage and dosages of CyA
45
Minimal renal adverse effects as shown by Assan and others if
trough levels are <300 ng/ml
Among 285 patients on 19.9 months of CyA averaging 6.5
mg/kg/day for 19.9 months and followed for 13 years, no long
term renal effects seen. Trough goal of < 300 ng/ml with
reductions if creatinine more than 30% above baseline (Assan
R, Blanchet F, Feutren G et al., Diabetes Metab Res Rev.
2002;18(6):464-72)
Minimal renal adverse effects if dosage maintained in a range
of 5 mg/kg/day after initial dosage of 7.5 mg/kg/day with
trough goal of 300 ng/ml with reduction of dosage if
creatinine rises above 30% of baseline
A direct toxicity effect of CyA on beta cells function has not
been demonstrated
46
Renal Effects of CyA in patients with T1D
Modify from Reimann M et al. Pharmacology & Therapeutics 2009
GAD65
HSP60
IL-1 receptor antagonist
GAD65
HSP60
Anti CD3 MoAb
CTLA-4
Anti CD20 antibody
Today’s main strategies with immune tolerance
agents to halt progression towards beta cell failure
47
Pozzilli P. Immunotherapy 2012
Results of main trials with immune tolerance agents in T1D
48
 We know the good and the bad about CyA, so we should be
feel confident enough about its use. This is not the case with
all the other immune tolerance agents tested so far for lack
of long term studies.
No long term renal toxicity has been shown with CyA used
at 7.5 mg/kg per day for 1 year
 The concept of combination therapy using an immune
tolerance agent with a beta cell regenerative compound
should be considered, and among the different immune
tolerance agents, CyA still holds a prominent role.
49
Rationale for reconsidering CyA in patients
with recent onset T1D
Leslie RD. Diabetes 2010
The spectrum of autoimmune diabetes extends
across all ages and varies with age at diagnosis
50
Key issues to consider for trials
in type 1 diabetes
51
Future directions:
combination therapy
52
Ability to use proton pump inhibitors to
increase gastrin, which increases beta cell
regeneration.
Donald Bergman, MD, FACE, MACE
53
Gastrin
• Gastrin plays a role in pancreatic growth and development in
fetal life1,2
• Pancreatic gastrin expression is suppressed after birth and then
found as a growth factor in the gastric antrum and duodenum (G
cells) after fetal development1
• Excessive gastrin has been associated with new islet and beta
cell formation since the 1950s3,4
• Gastrin hypersecretion results in the formation of new islets
containing new pools of beta cells5
• Gastrin’s mechanism of action is the transformation of
pancreatic ducts to islets5
1. Tellez N. Endocrinology, 2011, 152(7):2580–2588
2. Larsson LI. et al.,1976 Nature 262:609–610.
3. Zollinger RM and Ellison EH. Ann. Surg., 142:709-728, 1955.
4. Bryant JG, Smith JV. Calif Med. 1965 Jan;102:49-52.
5. Suarez-Pinzon WL, et al., The Journal of Clinical Endocrinology & Metabolism 90(6):3401–3409
54
The Association between
Gastrin and Insulin
• Patients with Zollinger-Ellison Syndrome-- increased gastrin
producing nests of cells found both in the pancreas and GI
tract have new islets and increased beta cell replication2
• Patients infused with gastrin had heightened insulin
responses to glucose compared to those not receiving a
gastrin infusion.1
1) Rehfeld JF, Stadil F. 1973. J Clin Invest 52:1415–1426
2) Zollinger RM and Ellison EH. Ann. Surg., 142:709-728, 1955.
55
Gastrin’s Mechanism of Action
Gastrin has been shown by specialized studies including
BrdU studies to transform ductal (extraislet) tissue into
new islets*
On the left, a single, larger black cell represents the presence of gastrin and the pink cell representing a
progenitor cell within the ductal population. Blue cells indicate beta cells and red cells represent alpha
cells, with delta cells present to a smaller extent in green.
*Telez, et al., Endocrinology, July 2011, 152(7):2580–2588
56
Gastrin Transforms Human Ducts to Islets
• Gastrin alone, has been shown the ability to induce new
human islets from human duct cells without other
growth factors (Suarez-Pinzon, J Clin Endocrinol Metab, June 2005, 90(6):3401–
3409)
• A combination of Gastrin with Epidermal Growth Factor
given to type 1 patients for 4 weeks resulted in
– up to a 75% decrease in insulin requirements when followed
for 3 months post treatment
– an A1C from 6.7% at baseline down to 4.7% at 3 months
post-treatment (Transition Therapeutics, March 5, 2007
http://www.transitiontherapeutics.com/media/archive.php Accessed January 1,
2013)
57
Proton Pump Inhibitors increase Gastrin
• Proton pump inhibitors (PPIs) are used extensively for the treatment of
peptic ulcer and related symptoms and indirectly elevate gastrin levels
• Studies have shown a dose- and duration-dependent relationship between
PPIs and gastrin levels1,2,3
• Gastrin levels rise significantly with typical dosages for GI disease
• PPIs are safe (with some concerns)
• Complete hepatic metabolism with some potential for drug-drug
interactions
• Long-term usage among postmenopausal women associated with an
increased risk for hip fracture, infectious diarrhea, particularly among
hospitalized patients
1) Hu YM. World J Gastroenterol. 12:4750–4753
2) Ligumsky M. 2001. J Clin Gastroenterol 33:32–35
3) Cadiot G,. Gastroenterol Clin Biol 19:811–817
58
PPIs
• Substituted
benzimidazole derivatives
• Block the terminal step in
acid production
• Inhibit the function of
hydrogen-potassium
adenosine triphosphatase
on the luminal surface of
parietal cell membranes
in the stomach.
Madanick. Cleveland Clinic JM
2011;78:39-49
59
Studies Confirm Lower A1C on PPI
• Retrospective review of 347 type 2 diabetes
– Those taking PPI had lower A1Cs (7.0%) compared to patients not on PPIs
(7.6%) (p=0.002) (1)
• Retrospective of 73 type 2 patients
– A1C of patients on insulin with PPI was 7.11% compared to 7.70% of patients
not on PPI (p=0.001)
– Patients on multiple oral diabetic agents and PPI had A1C of 7.26% vs. 7.8%
(p=.002) (2)
• Cross-sectional study of 97 patients type 2 patients
– Those on insulin and PPI had a 0.8% to 1.48% lower A1C than those not on
PPIs (95%, CI: -0.12)
– Those on oral agents and PPI had a 0.6% to 0.83% lower A1C on oral agents
(95%, CI: -0.12) (3)
• Retrospective review of 21 type 2s on esomprazole for 12 months
– 0.7% lower A1C than those not on PPI (4)
1 )Mefford IN, Wade EU. Med Hypotheses. 2009;73:29-32. 3 3) Boj-Carceller D., et al World J Diabetes 2011 December 15;
2(12): 217-220.
2) MA Crouch. J Am Board Fam Med 2012;25:50 –54. 4) Hove KD, et al.,Diabetes Res Clin Pract. 2010;90(3):e72-4.
Randomized Trials Using PPIs
Among Type 2 Diabetes
Pantoprazole/Protonix*
• 12 week trial with 31 patients randomized
• 38% rise in gastrin
• 1.2% drop in A1C from 7.9% to 6.8% in PPI group
• Placebo group A1C from rose from 7.5 to 7.9%
• Improvement in beta cell function by 30% (HOMA)
• The decrease in A1C correlated with an increase in gastrin and insulin
• No adverse side effects in Protonix seen over that in the control group. Nausea,
vomiting , headache and myalgia were the same in control and Protonix group
Esomerprazole/Nexium**
• 12 week trial with 41 patients
• Patient further randomized to yogurt or placebo taken with Esomerprazole
• There was a 2 kg greater weight gain in those on Esomerprazole and yogurt
• Area under the curve for insulin was significantly decreased in the control group
compared to no change in the intervention group (p=0.002)
*Singh PK et al, J Clin Endocrinol Metab 97: E2105–E2108, 2012
**Hove KD et al, Diabetologia 56;22-30, 2013
61
Current Trial with Lansoprazole in Type 1
Patients to Assess Beta Cell Function*
• Current Trial with Lansoprazole (Prevacid) in type 1 patients
– ages 11-45
– for 12 months being used with Sitigliptin (Januvia) to assess beta cell function
(no immune tolerance agent being used)
– Subjects age 11-17 years will take 30 mg capsule once daily of lansoprazole
with 50 mg of Sitigliptin once daily
– Subjects age 18-45 years will take 60 mg of lansoprazole once daily with 100 mg
of sitigliptin once daily
• Primary Outcome Measures: 2 hour C-peptide AUC in response to mixed meal
tolerance at 12 months
• Secondary Outcomes Measures:
– 2 hour C-peptide AUC in response to MMTT [ Time Frame: months 6, 18, and
24 ]
– A1C levels
– Insulin use in units per kilogram body weight per day
– Safety (adverse events frequency, severity)
*http://www.clinicaltrials.gov/ct2/show/NCT01155284?term=lansoprazole+type+1+diabetes&rank=3
62
PPI side effects: clopidogrel
• PPIs inhibit a P450
enzyme which is required
for activation of
clopidogrel
• Contradictory data in
literature
• One retrospective study
found no adverse effect
and found decreased GI
bleeding in combined use
• FDA warning
Ray et al. Ann Int Med 2010;
152:337-345 63
PPI side effects: fracture, pneumonia,
enteric infection
• Fracture risk: conflicting
reports. Risk greater in
those with other risk
factors for fracture.
FDA: possible
association
• Pneumonia risk: 4.5
times higher in PPI
users but only 18% had
documented
pneumonia
• Enteric infection risk: C.
Diff. 127000 patients
odds ratio 2.05.
• Enteric infection:
bacterial overgrowth
and SBP (small studies)
Madanick. Cleveland Clinic JM
2011;78:39-49 65
PPI side effects: nephritis, iron, B12
deficiences
nephritis
• 64 cases documented in the
world literature in PPI users
• Not enough evidence to
support a causal
relationship
Iron, B12 deficiency
• Iron: acid needed to
dissociate iron salts from
food
• B12: acid needed to
separate B12 from food
proteins
• No convincing evidence in
the literature
Madanick. Cleveland Clinic JM
2011;78:39-49
65
Ability for women with decades of type 1
diabetes to become insulin independent within
weeks of pregnancy.
Lois Jovanovic MD, FACP, FACN, FACE,
MACE
66
Normal Pregnancy
 Associated with a 2-4 fold rise in insulin
 Among those without diabetes, normal glucose levels are
considerably lower during pregnancy than in the non-
pregnant state
 Goals Glucose During Pregnancy
 The American College of Obstetricians and Gynecologists
recommends the following goals when self-monitoring blood glucose
levels during pregnancy:
 Fasting glucose concentrations ≤95 mg/dL
 Premeal glucose concentrations no higher than 100 mg/dL
 One-hour postmeal glucose concentrations no higher than 140 mg/dL
 Two-hour postmeal glucose concentrations no higher than 120 mg/dL
 The American Diabetes Association recommends the following
glucose goals:
 Premeal, bedtime, and overnight glucose concentrations 60 to 99 mg/dL
 Peak postmeal glucose concentrations 100 to 129 mg/dL (5.6 to 7.2 mmol/L)
one to two hours after the beginning of the meal
67
Each Pregnancy is Unique
 Among pregnant type 1 women, there is often a
decline in the need for insulin
 Often see hypoglycemia among type 1 patients in
pregnancy with a peak incidence in the first
trimester due to new insulin production by the
mother
 Some women have been insulin-free throughout
their pregnancy, only to return to insulin
requirements after delivery
 New insulin production has been seen among type
1 patients with a history of diabetes for more than
20 years
68
Am J Obsetet Gynecol 1976, 15;125(2):264-5.
1976
Known Insulin Remissions Among Pregnant Type 1
Patients Date Back Decades
69
Patients with No Detectable Insulin
Before and Significant Rises During Pregnancy*
C-peptide/Endogenous insulin concentration before pregnancy
and at 10 weeks of gestation
0
0.05
0.1
0.15
0.2
0.25
0.3
1 2 3 4 5 6 7 8 9 10
Patients with Type 1 Diabetes
C-peptide(nmol/l)
Pre-Pregnancy
10 weeks of gestation
 Patients had a mean duration of diabetes 21.2 years
 By 10 weeks of gestation, endogenous insulin levels were
not only detectable, but into the normal range
 Some women have been insulin-free not only during this
time, but throughout pregnancy
*Jovanovic L, et all.,Diabetologia. 2000 Oct;43(10):1329-30. 70
New Insulin Production Occurs
Quickly
 Islet Neogenesis Proceeds Beta Cell Regeneration in pregnancy*
 Pregnancy is one of the few times postnatally when new islets form
 Once new islets form, there are new pools of beta cells for
replication
 Most islets are formed by the time of birth
 Only in rare instances do islets regenerate. These times include
acute pancreatic injury, pancreatitis, pancreatic stones and
pregnancy
 By 10 weeks of pregnancy, new endogenous levels of insulin are
seen
 This is the time similar to the original study by Banting and Best
when they collected secretions from clamped pancreatic ducts at
10 weeks
*Johansson M., et al., Endocrinology 2006. 147(5):2315–2324
Combination Therapies Enhance
Prospects of “Curing” Diabetes
Aaron Vinik MD, PhD, FCP, MACP, FACE
Murray Waitzer Chair of Diabetes
Research
Eastern Virginia Medical School Strelitz
Diabetes Center and
Neuroendocrine Unit
Norfolk Virginia.
72
Background (Sarandipity)
Saran wrapping reverses streptozotocin-
induced (STZ) diabetes in hamsters
• Ilotropin, a crude pancreatic extract from
CW, induces new islet formation from ductal
epithelium.
• Ilotropin reverses streptozotocin-induced
diabetes in hamsters.
• mRNA differential display led to
• THE DISCOVERY OF INGAP
Rafaeloff, Quin, Barlow, Rosenberg and Vinik
Febs Letters378, 219-223, 1996
Rafaeloff, Pittenger, Barlow, Qin, Yan, Rosenberg, Duguid, Vinik
J Clin Invest 99: 2100-2109, 1997 73
Production of a Biologically Active INGAP
Peptide by Biochemical Techniques and
Effects on Islet Neogenesis and STZ Diabetes
5’UTR Signal peptide Mature peptide 3’UTR
1 7835
540 646
3’UTR
766
C C C
35 46 68
C C C
146 163 171
C= cysteine
AA= amino acid
N= potential N glycosylation
IGLHDPSHGTLPNGS
AA 104 AA 118
NN
N
74
Restoration of Normal Blood Glucose in INGAP-
treated C57BL/6J STZ Diabetic Mice
INGAP/SALINE
Rosenberg, Vinik et al. Ann Surg. 2004 Nov;240(5):875-84.
75
76
INGAP and Human Health and Disease
Is INGAP present in the human pancreas?
Does INGAP affect human pancreatic tissue in
vivo and in vitro? Will it reverse diabetes?
77
Transdifferentiation of Human Islets-The
Effects of INGAP Peptide
Human islets after isolation
CK19 –tive and following
induction of reverse trans-
differentiation to a duct-like
epithelial structure CK19 +
Effects of INGAP peptide
on transdifferentiation
of ductal cells (CK19 +)
to islet (CK19-)
INGAP Peptide induced
transition from ductal cells
to insulin producing cells
and fully formed
islet with expression of
insulin (brown)
78
Accelerating Factors
“THE INGAP INDUCERS”
AP-1-activators
STAT-activators
PAN-activators
NEOGENESISINGAP
NEW
ISLETS
Taylor Fishwick, Vinik et al J Endocrinol. 2006 Mar;188(3):611-21
Hamblet et al Pancrease 36, 17671772, 2008
Pittenger, Taylor Fishwick, Vinik Diabetologia 52:735-7382009.
Taylor Fishwick, Hughes, Vinik Pancreas 39(1):64-70, 2009.
Chang et al Molecular and Cellular Endocrinol, 335:104-109, 2011
79
INGAP is Overexpressed in
Human Islet Neogenesis
Insulin Red
INGAP Green
Semakula C, Pambucian S, Gruessner R, Kendall D, Pittenger G, Vinik A, Seaquist E JCEM 2003
Recapitulation of Fetal Development of
Islets in NIPHS Syndrome
•a) insulin blue/ Ki
67 red
•B)Proinsulin
•C) amylin
•D) PDX
•E) NKX 6.1
•F) Insulin / Ki 67
Won Pittenger, Vinik et al Clinical Endocrinology 2006:65, 566-578
HBA1c Response to INGAP in T1 DM per Protocol
Trial
0 28 56 84 112 140
-0.5
0
+0.5
-1.0
Days
MeanChangefromBaseline(AUC)
Placebo
300 mg
600 mg
INGAP Treatment
Duncan, Buse and Ratner Diabetes Metab Research and Reviews, 25, 558-565.,2009
82
Quiescent
Duct Cells Initiation
Differentiation
Proliferation
Apoptosis
Pro-apoptotic
New islets
Anti-apoptotic
Islet Neogenesis
Glitazone
GLP analogs
Anti inflammatory, Lysophylline,
Immunomodulatory,Ustekinumab
INGAP
EGF/gastrin
83
84
0%
10%
20%
30%
40%
50%
60%
70%
80%
Saline
LSF
IN
G
AP
IN
G
AP/LSF
PreTxD
elayed
PreTX
RateofRemission(<200mg/dl)
All Mice
Low Starters (<350mg/dl)
High Starters
(>350mg/dl)
Hyperglycemia remission rates in INGAP +
Lisofylline (LSF) treated NOD Mice
Tersey et al J of Diabetes 2: 251-257, 2012
84
Conclusion
• It is not beyond the realms of reason to anticipate that
regenerating agents such as INGAP, alone, or in
combination with other factors, anti-apoptotic and anti-
inflammatory agents, e.g. lisophylline, anti-apoptic agents
e.g. GLP-1 or an analog, DPP IV inhibitors or Glitazones,
small surrogate molecules that activate the receptor, or
gene manipulation will provide a cure for certain forms of
diabetes in humans
Thank you for your attention! 85
For Questions, please write us at
InsulinIndependence@gmail.com
www.InsulinIndependence.com
THANK YOU!
86

Weitere ähnliche Inhalte

Was ist angesagt?

The new lifestyle diseases
The new lifestyle diseasesThe new lifestyle diseases
The new lifestyle diseasesfathi neana
 
The Microbiota in Mental Health
The Microbiota in Mental HealthThe Microbiota in Mental Health
The Microbiota in Mental HealthEde Frecska
 
Recover from cancer diagnosis
Recover from cancer diagnosisRecover from cancer diagnosis
Recover from cancer diagnosisJohn Bergman
 
Auto immune disease 2015
Auto immune disease 2015Auto immune disease 2015
Auto immune disease 2015John Bergman
 
Microbiota Dysbiosis
Microbiota DysbiosisMicrobiota Dysbiosis
Microbiota Dysbiosisfathi neana
 
Antidiabetic solution found with propolis extract.
Antidiabetic solution found with propolis extract.Antidiabetic solution found with propolis extract.
Antidiabetic solution found with propolis extract.Bee Healthy Farms
 
The leaky gut syndrome
The leaky gut syndromeThe leaky gut syndrome
The leaky gut syndromefathi neana
 
Depression bipolar disorder cause and cure
Depression bipolar disorder cause and cureDepression bipolar disorder cause and cure
Depression bipolar disorder cause and cureJohn Bergman
 
gut microbes and diabetes
gut microbes and diabetesgut microbes and diabetes
gut microbes and diabetesGautam Banerjee
 
Breathing and lung disorders
Breathing and lung disordersBreathing and lung disorders
Breathing and lung disordersJohn Bergman
 
Heal your brain from depression
Heal your brain from depressionHeal your brain from depression
Heal your brain from depressionJohn Bergman
 
Oxidation and Inflammation
Oxidation and InflammationOxidation and Inflammation
Oxidation and InflammationJohn Bergman
 

Was ist angesagt? (20)

The new lifestyle diseases
The new lifestyle diseasesThe new lifestyle diseases
The new lifestyle diseases
 
The Microbiota in Mental Health
The Microbiota in Mental HealthThe Microbiota in Mental Health
The Microbiota in Mental Health
 
Recover from cancer diagnosis
Recover from cancer diagnosisRecover from cancer diagnosis
Recover from cancer diagnosis
 
Auto immune disease 2015
Auto immune disease 2015Auto immune disease 2015
Auto immune disease 2015
 
Microbiota Dysbiosis
Microbiota DysbiosisMicrobiota Dysbiosis
Microbiota Dysbiosis
 
Forks Over Knives
Forks Over KnivesForks Over Knives
Forks Over Knives
 
Kidney health
Kidney healthKidney health
Kidney health
 
Max cady-4152010
Max cady-4152010Max cady-4152010
Max cady-4152010
 
Antidiabetic solution found with propolis extract.
Antidiabetic solution found with propolis extract.Antidiabetic solution found with propolis extract.
Antidiabetic solution found with propolis extract.
 
Autism
AutismAutism
Autism
 
Cancer Truth
Cancer TruthCancer Truth
Cancer Truth
 
The leaky gut syndrome
The leaky gut syndromeThe leaky gut syndrome
The leaky gut syndrome
 
Depression bipolar disorder cause and cure
Depression bipolar disorder cause and cureDepression bipolar disorder cause and cure
Depression bipolar disorder cause and cure
 
gut microbes and diabetes
gut microbes and diabetesgut microbes and diabetes
gut microbes and diabetes
 
Neuropathy
NeuropathyNeuropathy
Neuropathy
 
Breathing and lung disorders
Breathing and lung disordersBreathing and lung disorders
Breathing and lung disorders
 
Heal your brain from depression
Heal your brain from depressionHeal your brain from depression
Heal your brain from depression
 
Bengmark.s. san antonio 2013.10.25
Bengmark.s. san antonio 2013.10.25Bengmark.s. san antonio 2013.10.25
Bengmark.s. san antonio 2013.10.25
 
Oxidation and Inflammation
Oxidation and InflammationOxidation and Inflammation
Oxidation and Inflammation
 
Diabetes
DiabetesDiabetes
Diabetes
 

Andere mochten auch

Indications of proton pump inhibitors
Indications of proton pump inhibitorsIndications of proton pump inhibitors
Indications of proton pump inhibitorsSamir Haffar
 
Proton pump inhibitors
Proton pump inhibitorsProton pump inhibitors
Proton pump inhibitorsVishal Ramteke
 
Immunopharmacology
ImmunopharmacologyImmunopharmacology
Immunopharmacologyalaa essa
 
Proton pump inhibitors- ome, esome, lanso, pant
Proton pump  inhibitors- ome, esome, lanso, pantProton pump  inhibitors- ome, esome, lanso, pant
Proton pump inhibitors- ome, esome, lanso, pantSudha Tallapaneni
 
Proton pump inhibitor
Proton pump inhibitorProton pump inhibitor
Proton pump inhibitorAsiful alam
 
Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...
Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...
Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...PAWAN V. KULKARNI
 
Allergy and Hypersensitivity
Allergy and HypersensitivityAllergy and Hypersensitivity
Allergy and HypersensitivityMedicineAndHealth
 

Andere mochten auch (10)

Immunotherapy in type 1 Diabetes
Immunotherapy in type 1 DiabetesImmunotherapy in type 1 Diabetes
Immunotherapy in type 1 Diabetes
 
Indications of proton pump inhibitors
Indications of proton pump inhibitorsIndications of proton pump inhibitors
Indications of proton pump inhibitors
 
Proton pump inhibitors
Proton pump inhibitorsProton pump inhibitors
Proton pump inhibitors
 
Immunopharmacology
ImmunopharmacologyImmunopharmacology
Immunopharmacology
 
Proton pump inhibitors- ome, esome, lanso, pant
Proton pump  inhibitors- ome, esome, lanso, pantProton pump  inhibitors- ome, esome, lanso, pant
Proton pump inhibitors- ome, esome, lanso, pant
 
Proton Pump Inhibitors
Proton Pump InhibitorsProton Pump Inhibitors
Proton Pump Inhibitors
 
Cancer immunotherapy
Cancer immunotherapyCancer immunotherapy
Cancer immunotherapy
 
Proton pump inhibitor
Proton pump inhibitorProton pump inhibitor
Proton pump inhibitor
 
Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...
Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...
Review of new alerts on PROTON PUMP INHIBITORS (PPI) adverse effects 2016 UPD...
 
Allergy and Hypersensitivity
Allergy and HypersensitivityAllergy and Hypersensitivity
Allergy and Hypersensitivity
 

Ähnlich wie Here are the key points from the speaker:- Normal A1Cs are below 5.7% and fasting glucoses are below 100 mg/dL. - It is not patients who are non-compliant, but rather the pancreas is non-compliant in type 1 diabetes since it does not produce enough insulin on its own. Current insulin therapy requires patients to take multiple daily injections or use an insulin pump to regulate their blood sugar.- The current standard of care therapy for type 1 diabetes is insulin replacement via multiple daily injections or continuous subcutaneous insulin infusion via an insulin pump. However, this does not cure the disease or restore normal glucose regulation, as the pancreas is still not producing its own insulin

Diabetes presentation 1 complete one
Diabetes presentation 1 complete oneDiabetes presentation 1 complete one
Diabetes presentation 1 complete oneLee-Ann Kara
 
lifestyle disorders:diabetes
lifestyle disorders:diabeteslifestyle disorders:diabetes
lifestyle disorders:diabetesLee-Ann Kara
 
Stem cell therapy first successful in treatment of type 1 diabetes
Stem cell therapy first successful in treatment of type 1 diabetesStem cell therapy first successful in treatment of type 1 diabetes
Stem cell therapy first successful in treatment of type 1 diabetesDoriaFang
 
DIABETES MELLITUS GNUR 401 2023 GROUP.ppt
DIABETES MELLITUS GNUR 401 2023 GROUP.pptDIABETES MELLITUS GNUR 401 2023 GROUP.ppt
DIABETES MELLITUS GNUR 401 2023 GROUP.pptSEIDUAlhassan1
 
6 non infectiousdiseases&geneticengineering
6 non infectiousdiseases&geneticengineering6 non infectiousdiseases&geneticengineering
6 non infectiousdiseases&geneticengineeringNELO TRAVER
 
Type 1 Diabetes Mellitus
Type 1 Diabetes MellitusType 1 Diabetes Mellitus
Type 1 Diabetes MellitusJulie May
 
Propuesta de rise completa
Propuesta de rise completaPropuesta de rise completa
Propuesta de rise completajuancarlosrise
 
Diabetes mellitus and periodontitis
Diabetes mellitus and periodontitisDiabetes mellitus and periodontitis
Diabetes mellitus and periodontitisDr. Shweta Sarate
 
Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...
Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...
Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...Apollo Hospitals
 
Anti-Diabetic Effect of Snake Venoms
Anti-Diabetic Effect of Snake VenomsAnti-Diabetic Effect of Snake Venoms
Anti-Diabetic Effect of Snake VenomsOmar Nawar
 
Alterations of Hepcidin and Interleukin in Diabetics
Alterations of Hepcidin and Interleukin in DiabeticsAlterations of Hepcidin and Interleukin in Diabetics
Alterations of Hepcidin and Interleukin in Diabeticsasclepiuspdfs
 
Endocrine disorder Diabetes Mellitus (DM)
Endocrine disorder   Diabetes Mellitus (DM) Endocrine disorder   Diabetes Mellitus (DM)
Endocrine disorder Diabetes Mellitus (DM) TheRoyAshish
 
Diabetes tech program_final
Diabetes tech program_finalDiabetes tech program_final
Diabetes tech program_finalKrystin Fields
 

Ähnlich wie Here are the key points from the speaker:- Normal A1Cs are below 5.7% and fasting glucoses are below 100 mg/dL. - It is not patients who are non-compliant, but rather the pancreas is non-compliant in type 1 diabetes since it does not produce enough insulin on its own. Current insulin therapy requires patients to take multiple daily injections or use an insulin pump to regulate their blood sugar.- The current standard of care therapy for type 1 diabetes is insulin replacement via multiple daily injections or continuous subcutaneous insulin infusion via an insulin pump. However, this does not cure the disease or restore normal glucose regulation, as the pancreas is still not producing its own insulin (20)

Diabetes presentation 1 complete one
Diabetes presentation 1 complete oneDiabetes presentation 1 complete one
Diabetes presentation 1 complete one
 
lifestyle disorders:diabetes
lifestyle disorders:diabeteslifestyle disorders:diabetes
lifestyle disorders:diabetes
 
Stem cell therapy first successful in treatment of type 1 diabetes
Stem cell therapy first successful in treatment of type 1 diabetesStem cell therapy first successful in treatment of type 1 diabetes
Stem cell therapy first successful in treatment of type 1 diabetes
 
DIABETES MELLITUS GNUR 401 2023 GROUP.ppt
DIABETES MELLITUS GNUR 401 2023 GROUP.pptDIABETES MELLITUS GNUR 401 2023 GROUP.ppt
DIABETES MELLITUS GNUR 401 2023 GROUP.ppt
 
Oral hypogycemic agents
Oral hypogycemic agentsOral hypogycemic agents
Oral hypogycemic agents
 
Diabetes mellitus
Diabetes mellitusDiabetes mellitus
Diabetes mellitus
 
6 non infectiousdiseases&geneticengineering
6 non infectiousdiseases&geneticengineering6 non infectiousdiseases&geneticengineering
6 non infectiousdiseases&geneticengineering
 
Type 1 Diabetes Mellitus
Type 1 Diabetes MellitusType 1 Diabetes Mellitus
Type 1 Diabetes Mellitus
 
Propuesta de rise completa
Propuesta de rise completaPropuesta de rise completa
Propuesta de rise completa
 
Diabetes
DiabetesDiabetes
Diabetes
 
2. diabetes mellitus
2. diabetes mellitus2. diabetes mellitus
2. diabetes mellitus
 
Diabetes mellitus and periodontitis
Diabetes mellitus and periodontitisDiabetes mellitus and periodontitis
Diabetes mellitus and periodontitis
 
endocrine.pptx
endocrine.pptxendocrine.pptx
endocrine.pptx
 
Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...
Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...
Immunology of Type I Diabetes: The Journey from Animal Models to Human Therap...
 
Anti-Diabetic Effect of Snake Venoms
Anti-Diabetic Effect of Snake VenomsAnti-Diabetic Effect of Snake Venoms
Anti-Diabetic Effect of Snake Venoms
 
Alterations of Hepcidin and Interleukin in Diabetics
Alterations of Hepcidin and Interleukin in DiabeticsAlterations of Hepcidin and Interleukin in Diabetics
Alterations of Hepcidin and Interleukin in Diabetics
 
Endocrine disorder Diabetes Mellitus (DM)
Endocrine disorder   Diabetes Mellitus (DM) Endocrine disorder   Diabetes Mellitus (DM)
Endocrine disorder Diabetes Mellitus (DM)
 
Blue team
Blue teamBlue team
Blue team
 
Nutrition and metabolic disease
Nutrition and metabolic diseaseNutrition and metabolic disease
Nutrition and metabolic disease
 
Diabetes tech program_final
Diabetes tech program_finalDiabetes tech program_final
Diabetes tech program_final
 

Kürzlich hochgeladen

Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiAlinaDevecerski
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomdiscovermytutordmt
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...vidya singh
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Dipal Arora
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...astropune
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Genuine Call Girls
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...narwatsonia7
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...chandars293
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 

Kürzlich hochgeladen (20)

Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 

Here are the key points from the speaker:- Normal A1Cs are below 5.7% and fasting glucoses are below 100 mg/dL. - It is not patients who are non-compliant, but rather the pancreas is non-compliant in type 1 diabetes since it does not produce enough insulin on its own. Current insulin therapy requires patients to take multiple daily injections or use an insulin pump to regulate their blood sugar.- The current standard of care therapy for type 1 diabetes is insulin replacement via multiple daily injections or continuous subcutaneous insulin infusion via an insulin pump. However, this does not cure the disease or restore normal glucose regulation, as the pancreas is still not producing its own insulin

  • 1. A NEW ROAD FOR TYPE 1 DIABETES IS BEING PAVED TODAY The International Summit on Insulin Independence
  • 2. Table of Contents Slide No. Speaker 3 Louis Cocco Jr 4-16 Claresa Levetan MD, FACE 17-24 Susan Pierce, CDE, MPT 25-39 Desmond Schatz, MD 40-52 Paolo Pozzilli, MD 53-65 Donald Bergman, MD, FACE,MACE 66-71 Lois Jovanovic, MD, FACP, FACN,FACE, MACE 72-85 Aaron Vinik, MD, PhD, FCP, MACP,FACE
  • 3. What I Know About Diabetes by Louis Cocco, Jr Age 11  Despite all of the advances, diabetes is the leading cause of amputations, blindness and kidney disease requiring dialysis.1  Diabetes killed 284,000 Americans last year.2  Every 17 seconds another American is diagnosed with diabetes.1  10-15% have type 1 diabetes, which has risen by 70% among children under the age of 5 years old.3,4  In 2012, $245 Billion was spent on care of patients with diabetes1  More than the $150 billion in damage caused by Hurricane Katrina. 2  As much the conflicts in Iraq, Afghanistan and the global war on terrorism combined. 2  I know that this group of doctors will get me off of insulin before I am a grownup. 1) http://usatoday30.usatoday.com/news/health/2008-01-23-diabetes-cost_N.html Accessed 4.13.13 2) http://www.diabetes.org/diabetes-basics/diabetes-statistics/ Accessed 4.13.13 3) Christopher C et al., Incidence trends for childhood type 1 diabetes in Europe during 1989—2003 and predicted new cases 2005—20: a multicenter prospective registration study The Lancet, (373)9689, Pages 2027 - 2033, 13;2009 4) Lipman T, et al., Diabetes. March 2013. Population-based Survey of the Prevalence of Type 1 and Type 2 diabetes in School Children in Philadelphia . [Epub ahead of print] 3
  • 4. • Distinctions between Islets of Mice and Men • Why immune tolerance agents work in mice, but not man • Why man requires an immune agent and a regeneration agent to reverse the underlying mechanisms of disease in type 1 diabetes • My colleagues will then discuss the therapies we have now and into the future to reverse type 1 diabetes Claresa Levetan MD, FACE 4
  • 5. Islets of Man and Mouse  Red Cells--Beta cells making insulin and amylin  Green Cells---Alpha cells making glucagon  Blue Cells—Delta cells making somatostatin  Black Holes in human islet are blood vessels  >70% of Beta Cells in the human islet direct connect with other cell types  Beta cells are attacked by the immune system in type 1 diabetes resulting in  complete islet dysfunction and destruction of the entire islet 5
  • 6. What Is an Islet?  Islets are small organs within the pancreas that contain 5 different cell types making 6 different hormones, all necessary for glucose homeostasis  Alpha cells make glucagon  Beta cells make insulin and amylin  Delta cells make somatostatin,  Gamma cells make pancreatic polypeptide  Epsilon cells make ghrelin  In man, 6 islet hormones communicate with one another and all have been shown necessary for normal glucose metabolism  Among both type 1 and 2 diabetes, autopsy studies show not only reduced beta cells, but also reduced islet numbers  Type 1 diabetes will be reversed when 5-celled new islets are generated in an immune protected environment  We have the ability to generate new islets that are protected from immune attack, NOW 6
  • 7. Distinctions between Islets of Mice and Men  Mice eat continuously and beta cells are constantly turning over during their 1 year lifespan1  Islets in man are designed to regulate glucose based upon emotional stress and long periods of feast or famine  Islets of mice have predominately beta cells, which are centrally clustered and man has a smaller percentage of beta cells dispersed throughout the islet, which are in direct contact with the other 4 cell types  The autonomic nervous system in man through innervates islet blood flow suggesting human islet a have a unique reaction to emotional stress compared to mice2  100s of immune studies have reversed diabetes in mice, but not in man, because man’s islets have a complex infrastructure that cannot be regenerated simply by blocking the immune attack on the pancreas  In man, in order to generate new islets containing all 5 cell types, requires immune therapy and regeneration therapy, both of which are now available 1) Levetan C and Pierce S .Endocr Pract. 2012 Nov 27:1-36. [Epub ahead of print] 2) Rodriguez-Diaz R et al., Cell Metab. 2011;14:45-54. 7
  • 8. Type 1 Diabetes is more than an Autoimmune Disease in Man  Humans require both immune protection and generation of new islets to reverse the underlying disease process of type 1 diabetes  Diabetes in mice can be reversed with only an immune agent because beta cell turnover is faster in mice than man  Islet Regeneration in man is possible, even among patients with type 1 diabetes for 20 years or longer  Type 1 diabetes is not just an autoimmune disease as it is in NOD mice, but is a disease of 1) autoimmunity, 2) beta cell deficiency and 3) lack of beta cell regeneration  We have human gene peptides and growth factors that transform pancreatic ductal cells into new islets that we can use NOW in type 1 patients 8
  • 9.  One machine pumping both insulin and glucagon  Glucose measurements taken and based upon glucose levels, the correct dosage of both insulin and glucagon were automatically given to the patient  This is same concept as the “new” artificial pancreas of 2013 now in clinical trials  Even the bionic pancreas did not normalize glucose levels, because it only replaced two missing and malfunctioning hormones  All five cell types generating 6 different hormones within a functioning islet are required for normal glucose homeostasis  Scientific studies show that all 6 hormones have a role in glucose metabolism Treatment vs. Cure *http://www.thefreeresource.com/insulin-pump-facts-informtion-and-resources *http://idsa.org/catalyst/LMBVT/case_studies_2010_minimed.pdf *Kadish AH. A servomechanism for glucose monitoring and control Trans. Am. Soc. Artificial Internal Organs 9. 363. 1963 *Kadish AH. Automation control of blood sugar. Biomed Sci. Instr. 1, 172, 1963 Available for viewing at the Keck Graduate Institute, Science Heritage Center, Clairemont, CA The First Successful Bionic Pancreas was developed in 1963 by Dr. Arnold Kadish* 9
  • 10. Regeneration of the Pancreas  Clamping of the pancreas resulting in new islet formation has been described for a century  Based on a paper in 1920, in which patients with pancreatic stones had new islets, Frederick Banting clamped the pancreatic ducts of dogs for 10 weeks and collected the pancreatic secretions that became known as insulin  Before insulin was readily available, surgeons tied off part of the pancreas among type 1 children, which transiently helped their diabetes, but likely the ongoing autoimmune destruction of new islets contributed to why these surgical successes were only temporary 10
  • 11.  Severely ill diabetic children underwent ligation of the pancreatic duct to improve their diabetes between 1910 and 1930*  Benefits were positive, but short-lived likely due to autoimmune destruction of new insulin-producing cells* *Cusi 1911; Bierry and Kollman, 1929; DeTakats, 1930 11
  • 12. In 1983, Dr. Vinik Rediscovered that Wrapping the Pancreas with Cellophane turned Pancreatic Ducts into Islets  New islets were shown by Dr. Vinik by wrapping the pancreatic ducts of hamsters  A peptide was specifically isolated in 1992 by Dr. Vinik’s team that has been shown to transform pancreatic ducts into 5-celled new islets  In human trials with Dr. Vinik’s, there was a 27% rise in C-peptide within 2 months in type 1 patients with a 20 year history of diabetes and no baseline C-peptide, but without immune protection, these results were not sustained. A rise in GAD antibodies were seen reflecting the immune system was seeing new beta cells3  As much as a 75% reduction in insulin requirements was seen after 4 weeks of gastrin and epidermal growth factor in type 1 patients2 1) Dungan KM et al., Diabetes Metab Res Rev 2009; 25: 558–565 2) Jamal AM et al., Cell Death and Differentiation (2005) 12, 702–712. 3) Transition Therapeutics, March 5, 2007 http://www.transitiontherapeutics.com/media/archive.php Accessed January 1, 2013 Duct Islet2 12
  • 13. Islet Relationship to Ducts DUCTS ISLET 13
  • 14. Not until the Early 1980s Was Diabetes Considered to be an Autoimmune Disease  In the 1980s, nearly 100% of patients became insulin-free when the immune agent Cyclosporine A was begun immediately after diagnosis, thus protecting the remaining few beta cells  By 2 years, almost all patients in remission, required insulin, demonstrating that an immune tolerance agent alone, does NOT mean that there will be generation of beta cells in man  It is only now after 100s of studies using a variety of immune tolerance agents and immune approaches that we can look back and see that in man, diabetes is a disease NOT only of autoimmunity  We now have both immune tolerance agents and beta regeneration agents (some are already FDA-approved therapies) that can address the underlying mechanisms of disease in type 1 diabetes: 1) autoimmunity 2) beta cell deficiency and 3) lack of beta cell regeneration 14
  • 15. Type 1 Diabetes  “Insulin is not a cure for diabetes; it is a treatment.” Frederick G. Banting, 1923, Nobel Prize Speech  Merging immune tolerance agents with beta regeneration agents; a platform for future insulin independence  Type 1 Diabetes is a disease of  Autoimmunity  Beta Cell Deficiency  Lack of Beta Cell Regeneration 15
  • 16. Immune Tolerance Agent Protect newly generated and existing beta cells Potential for Insulin Independence 2015 2013 More potent beta generation agents Insulin Independence among existing and new onset Regeneration Agent Remission followed by maintenance Immune Tolerance Agent Protect newly generated and existing beta cells Insulin Independence among existing and new onset 16
  • 17. • What are normal A1Cs and glucoses? • Is it patients or the pancreas that are non-compliant? • Current therapy and technology is not enough Susan Pierce CDE, MPT 17
  • 18. What IS the Normal Glucose Range for Someone without Diabetes?  Continuous Glucose Monitoring Shows that out of 288 readings/day  95% of glucose levels < 120 mg/dL 1 80% of glucose levels 60 - 100 mg/dL 1 1. Christiansen JS. What is normal glucose? – Continuous glucose monitoring data from healthy subjects. Presented at: 42nd Annual Meeting of the EASD; September 14-17, 2006; Copenhagen, Denmark. 18
  • 19. In those without diabetes, 95% of daily (24 hour) life is spent with a glucoses less than 120 mg/dl 80% of daily (24 hour) life is spent with glucose levels of 60-100 mg/dl http://www.diabetes-symposium.org/index.php?menu=view&id=322 19
  • 20. *Updated mean sA1C adjusted for age, sex, and ethnic group. Stratton I, et al. UKPDS 35. BMJ. 2000;321:405-412. 0 2 0 4 0 6 0 8 0 0 5 6 7 8 9 10 11 Myocardial infarction Microvascular complications Updated Mean HbA1c (%)* %Incidenceper 1,000Patient-years A1Cs Above 5.5% Increase Complication Risk in Non-Diabetic Individuals as well as those with Type 1 and Type 2 Diabetes 20
  • 21. Can a normal A1C be achieved without too many lows?  The leading diabetes researchers of the DCCT believed that insulin alone could restore a glucose to < 6.05% without hypoglycemia 1  An A1C of < 6.05% was attained at least once during the 10 year study by 44% of the patients receiving intensive therapy 1  The intensively managed group maintained an average A1C throughout the study of 7.2% 1 1. The DCCT Trial Research Group. N Engl J Med. 1993 Sep 30;329(14):977-86. 21
  • 22. Is New Technology Helping?  Sensor-augmented pump studies recently  Demonstrated a decrease of A1C levels from 8.3% to 7.5% over 12 months (1)  With further reduction to 7.4% after an additional 6 months on the sensor (2)  These achievements were made without associated weight gain or hypoglycemia  Despite advances in sensors and pumps, sensor- augmented pumps did not improve the A1C levels as much as did the DCCT decades ago 1) Bergenstal RM, Tamborlane WV, Ahmann A, et al. N Engl J Med. 2010;363:311-320. 2) Bergenstal RM, Tamborlane WV, Ahmann A, et al. Diabetes Care. 2011;34:2403-2405. 22
  • 23. I need my human pancreas back! Even pumping all 6 missing hormones --- insulin, amylin, glucagon, ghrelin, somatostatin, pancreatic polypeptide --- would not There is no computer that can integrate stress and other factors the way the human islet does. 23
  • 24. Restoring Normal Glucose  Restoring 5-celled new islets that generate 6 hormones that all communicate with one another and the brain to maintain glucose levels < 120mg/dL 95 % of the time  In order to maintain new islets immune protection must be in place  Drs. Vinik and Bergman will describe how we now have therapies to transform pancreatic ducts into 5-celled islets  Drs. Pozzilli and Schatz will describe how we can optimally protect the new islets 24 4
  • 25. The need to change the paradigm of diabetes simply being an autoimmune disease. Desmond Schatz, MD 25
  • 26. GeneticRisk “Pre”-Diabetes New- Onset Established Complications Antibodies OPPORTUNITIES FOR PREVENTION AND CURE PREVENTION INTERVENTION CURE WITHOUT PREVENTION THERE CAN NEVER BE A CURE 26
  • 27. 27
  • 28. • Concept rejected initially…”lacks evidence, not novel, too presumptive, etc.” • Based on lessons learned from past experiences), efficacy in other disorders (cancer, HIV, transplantation), and mechanisms underlying type 1 pathogenesis Diabetes Care, 2002 THE CONCEPT FOR COMBINATION 28
  • 29. DO WE HAVE CLUES AS TO WHAT IS THE “BEST” COMBINATION? Difficult question to answer, based on:  Differences in preclincial studies?  Potential differences in mouse to man? 29
  • 30. AAV murine IL-10 AAV rat preproinsulin gene (vLP-1) Adenovirus expressing mIL-4 Aerosolinsulin Allogenic thymic macrophages Alpha Galactosylceramide Alpha-interferon (rIFN-alpha) Alpha/beta T cell receptor thymocytes Aminoguanidine Androgens Anesthesia Antioxidant MDL 29,311 Antisense GAD mRNA Azathioprine Anti-B7-1 Bacille Calmette Gue’rin (BCG) Baclofen Bee venom Biolistic-mediated IL-4 Blocking peptide of MHC class II Bone marrow transplantation Castration Anti-CD3 Anti-CD4 CD4+CD25+regulatory T cells Anti-CD8 Anti-CD28 MAb Cholera toxin B subunit-insulin protein Class I derived self-I-A beta(g7) (54-76) peptide Cold exposure Anti-complement receptor Complete Freund’s adjuvant Anti-CTLA-4 Cyclic nucleotide phosphodiesterases (PDEs) Cyclosporin Cyclosporin A DC deficient in NF-kappaB DC from pancreatic lymph node DC with IL-4 Deflazacort Deoxysperogualin Dexamethasone/progesterone/growth hormone/estradiol Diazoxide 1,25 dihydroxy Vitamin D3, KH1060 1,25 dihydroxycholecalciferol 1,25 dihydroxyl Vitamin D3 Elevated temperature Emotionality Encephalomyocarditis virus (ECMV) Essential fatty acid deficient diets FK506 FTY720 (myriocin) GAD 65 peptides in utero Anti-GAD monoclonal antibody Galactosylceramide Glucose (neonatal) Glutamic acid decarboxylase (intraperitoneal, intrathymic, intravenous, oral) Glutamic acid decarboxylase 65 Th2 cell clone Glutamic acid decarboxylase peptides (intraperitoneal, intrathymic, intravenous, oral) Gonadectomy Guanidinoethyldisulphide Heat shock protein 65 Heat shock protein peptide (p277) Hematopoietic stem cells encoding proinsulin Housing alone Human IGF-1 I-A beta g7(54-76) peptide Anti-I-A monoclonal antibodies Anti-ICAM-1 IgG2a antibodies Immobilization Inomide Anti-integrin alpha 4 Insulin (intraperitoneal, oral, subcutaneous, nasal) Insulin B chain (plasmid) Insulin B chain/B chain amino acids 9-23 (intraperitoneal, oral, subcutaneous, nasal) Insulin-like growth factor I (IGF-I) Anti-intercellular adhesion molecule-1 (ICAM-1) Interferon-alpha (oral) Interferon-gamma Anti-interferon-gamma Interferon-gamma receptor/IgG1 fusion protein Interleukin-1 Interleukin-4 Interleukin-4-Ig fusion protein Interleukin-4-plasmid Interleukin-10 Interleukin-10-plasmid DNA Interleukin-10-viral Interleukin 11-human Interleukin-12 Intrathymic administration of mycobacterial heat shock protein 65 Intrathymic administration of mycobacterial heat shock peptide p277 Islet cells-intrathymic L-Selectin (MEL-14) Lactate dehydogenase virus (LDH) Large multilamellar liposome Lazaroid Anti-leukocyte function associated antigen (LFA-1) Anti-LFA-1 Linomide (quinoline-3-carboxamide) Lipopolysaccharide-activated B cells Lisofylline Lymphocyte choriomeningitis virus (LCMV) Anti-lymphocyte serum Lymphoctyte vaccination Lymphocytic choriomeningitis virus Anti-L-selectin Lymphotoxin LZ8 MC1288 (20-epi-1,25-dihydroxyvitamin D3) MDL 29311 Metabolically inactive insulin analog Anti-MHC class I Anti-MHC class II MHC class II derived cyclic peptide Mixed allogeneic chimerism Mixed bone marrow chimeras Monosodium glutamate Murine hepatitis virus (MHV) Mycobacterium avium Mycobacterium leprae Natural antibodies Natural polyreactive autoantibodies Neuropeptide calcitonin gene-related peptide Nicotinamide Nicotine Ninjin-to (Ren-Shen-Tang), a Kampo (Japanese traditional) formulation NKT cells NY4.2 cells OK432 Overcrowding Pancreatectomy Pentoxifylline Pertussigen Poly [I:C] Pregestimil diet Prenatal stress Preproinsulin DNA Probucol Prolactin Rampamycin Recombinant vaccinia virus expressing GAD Reg protein Reg protein Rolipram Saline (repeated injection) Schistosoma mansoni Semi-purified diet (e.g., AIN-76) Short term chronic stress Silica Sirolimus/tacrolimus Sodium fusidate Soluble interferon-gamma receptor Somatostatin Non-specific pathogen free conditions Streptococcal enterotoxins Streptozotocin Sulfatide (3’sulfogalactosylceramide) Superantigens Superoxide dismutase-desferrioxamine Anti-T cell receptor TGF-beta 1 somatic gene therapy Th1 clone specific for hsp60 peptide Anti-thy-1 Thymectomy (neonatal) Tolbutamide Tolerogenic dendritic cells induced by vitamin D receptor ligands Top of the rack Treatment combined with a 10% w/v sucrose-supplemented drinking water Tumor necrosis factor-alpha TX527 (19-nor-14,20-bisepi-23-yne-1,25(OH)(2)D(3)) Vitamin E Anti-VLA-4 Thymoglobulin Anti-CD3 ALS + Exendin-4 LSF + Exendin-4 EGF + Gastrin Regulatory T Cells Islet Transplantation Microspheres FTY720 sICAM-Ig (Adenovirus Vector) IDS 2004, Cambridge (Atkinson & Roep) N=193; Now ~400 THERAPIES PREVENTING DIABETES IN NOD MICE 30
  • 31. WHAT CONSIDERATIONS NEED TO GO INTO SELECTIONS FOR COMBINATION RX? Selecting combination therapies should occur, with a combination of thoughts regarding mechanism of action, synergy, safety, and potential for efficacy 31
  • 32. USE COMBINATIONS THAT IMPROVE EFFICACY 0 25 50 75 100 125 150 0 20 40 60 80 100 Control GCSF ATG ATG + GCSF Days Post Onset NormalGlycemia(%) 32
  • 33. USE COMBINATIONS THAT IMPROVE ALLOW FOR LOWER DOSING OF DRUGS 33
  • 34. USE COMBINATIONS THAT IMPROVE SAFETY p values @ 4 weeks (n is still increasing) ATG vs. A+G = .0128 ATG vs. CD3 = .3569 ATG vs. 3+G = .2141 A+G vs. CD3 = .0005 A+G vs. 3+G < .0001 CD3 vs. 3+G = .9135 34
  • 35. RECENT NEW-ONSET DIABETES STUDIES Published - * α-CD3 (x4) - * α-CD20 - Mycophenolic Mofetil + anti-CD25 - GAD x2 - * CTLA-4 - * DiaPep - * Autologous non-myeloablative transplantation - Cord Blood - IL-2 plus Sirolimus (Phase 1) - Canakunimab; Anakinra Completed enrollment - Mesenchymal Stem Cells - Cord Blood Phase 2 (+ Vit D + Omega 3 FA) - Meticulous Metabolic Control - GCSF - ATG-GCSF Enrolling - T reg - α-1 antitrypsin 35
  • 36. WHAT HAVE WE LEARNED? We can do well designed, adequately powered, and carefully conducted intervention and prevention studies Sample sizes require a collaborative, cooperative, multi-center approach If a response is seen, it is likely to be evident soon after therapy begun (3-6 months) Long term benefit largely unknown 36
  • 37. WHY LIMITED SUCCESS TO DATE? BACK TO THE FUTURE….. RETHINKING MECHANISMS LEADING TO TYPE 1 DIABETES? 1986: Suicide or Homicide of β Cell Bottazzo ….. Is the autoimmune/inflammatory process in humans really primary or secondary to hitherto unknown β cell defects/killing?? - limited success of immune interventions - no treatment mediated decrease in islet cell Ab - what have we really learned from animal models ? - no markers in humans other than islet Ab ……….of immune dysregulation or β cell killing - lack of correlation of insulitis with islet Ab (nPOD) 37
  • 38. OUR FUTURE CHALLENGES Current treatment quite good – but…insulin not a biological cure Primum non nocere (safety) Re-evaluate study design (smaller, shorter studies in new-onset patients) Define clinical significance (efficacy) - superiority or ease over current treatment if new-onset - only do if translatable (therapy or prevention) Better understand triggers (TEDDY)/mechanisms leading to disease Use a `cocktail approach’ (Immunoregulatory/regenerative) 38
  • 39. PUTATIVE ENVIRONMENTAL TRIGGER TIME FUTURE PREVENTION OF TYPE 1 DIABETES BETACELLMASS M DIABETES “PRE”- DIABETES GENETIC PREDISPOSITION INSULITIS BETA CELL INJURY Early Monotherapy Late Combinations SAFE MORE TOXIC ? 39
  • 40. Prof. Paolo Pozzilli Università Campus Bio-Medico, Roma, Italy Barts' and The London Hospital, UK Outcomes with immune tolerance agents in Type 1 Diabetes from Cyclosporine to Current Therapies 40
  • 41. Roma,1989: First International Meeting on this topic President: D Andreani Vice-President: G Gambassi Scientific Coordinators: P Pozzilli, H Kolb Scientific Advisors: JF Back, GD Bompiani, P Brunetti, JJ Duprè, GS Eisenbarth, G Ghirlanda, L Harrison, NK Maclaren, J Nerup, G Pozza, CR Stiller Scientific Secretariat: A Corcos, E Killick, N Visalli “Immunotherapy of Type 1 diabetes” 41
  • 42. Nearly 100% insulin-free remission if used very early in the course of disease within 2-3 days of insulin therapy and before weight loss (Eisenbarth GS Immunotherapy of Diabetes and Selected Autoimmune Diseases CRC Press, 1989) Remissions are not typically sustained more than 2 years Maintaining trough levels of 75-250 ng/ml did not demonstrate significant insulin- free remissions (Miami Study and IMDIAB1) CyA was abandoned because it was not curative and not because of short term adverse effects. There was fear of long term adverse effect at kidney level There were no beta cell regenerative agents available at the time to use in conjunction with CyA to sustain potential regeneration of beta cell mass, nor was it understood that outcomes in man would be different than mice when using immune tolerance agents 42 CyA for Type 1 diabetes: history (n= 692 treated patients)
  • 43. Bougneres PF et al. Diabetes 199043
  • 44. Skyler JS et al. Diabetic Medicine 1993 44
  • 45. Disease State Drug Oral Injectable Organ Transplant Sandimmune 14-18 mg/kg/day, taper to 5-10 mg/kg/day in 1-2 weeks 5-6 mg/kg/day Neoral or a bioequivalent generic 7-9 mg/kg/day, taper to 5-10 mg/kg/day in 1-2 weeks Rheumatoid Arthritis Neoral or a bioequivalent generic 2.5–4 mg/kg/day in two divided doses Psoriasis Neoral or a bioequivalent generic 2.5–4 mg/kg/day in two divided doses Crohn's Disease Sandimmune 4 mg/kg/day Ulcerative Colitis Sandimmune 4 mg/kg/day Nephrotic Syndrome Brand not specified 3.5 mg/kg/day in two divided doses Multiple sclerosis Brand not specified 7.2 mg/kg/day Lupus Brand not specified 2.5 mg/kg/day Alopecia Areata Brand not specified 3-5 mg/kg/day Atopic Dermatitis Brand not specified 5 mg/kg/day Dermatomyositis Brand not specified 3-10 mg/kg/day Lichen Planus Brand not specified 6 mg/kg/day Myasthenia Gravis Brand not specified 5 mg/kg/day Polymyositis Brand not specified 2.5 mg/kg/day Psoriatic Arthritis Brand not specified 3.5 mg/kg/day Pulmonary Sarcoidosis Brand not specified 5-7 mg/kg/day Uveitis Brand not specified 2.5-5 mg/kg/day Today usage and dosages of CyA 45
  • 46. Minimal renal adverse effects as shown by Assan and others if trough levels are <300 ng/ml Among 285 patients on 19.9 months of CyA averaging 6.5 mg/kg/day for 19.9 months and followed for 13 years, no long term renal effects seen. Trough goal of < 300 ng/ml with reductions if creatinine more than 30% above baseline (Assan R, Blanchet F, Feutren G et al., Diabetes Metab Res Rev. 2002;18(6):464-72) Minimal renal adverse effects if dosage maintained in a range of 5 mg/kg/day after initial dosage of 7.5 mg/kg/day with trough goal of 300 ng/ml with reduction of dosage if creatinine rises above 30% of baseline A direct toxicity effect of CyA on beta cells function has not been demonstrated 46 Renal Effects of CyA in patients with T1D
  • 47. Modify from Reimann M et al. Pharmacology & Therapeutics 2009 GAD65 HSP60 IL-1 receptor antagonist GAD65 HSP60 Anti CD3 MoAb CTLA-4 Anti CD20 antibody Today’s main strategies with immune tolerance agents to halt progression towards beta cell failure 47
  • 48. Pozzilli P. Immunotherapy 2012 Results of main trials with immune tolerance agents in T1D 48
  • 49.  We know the good and the bad about CyA, so we should be feel confident enough about its use. This is not the case with all the other immune tolerance agents tested so far for lack of long term studies. No long term renal toxicity has been shown with CyA used at 7.5 mg/kg per day for 1 year  The concept of combination therapy using an immune tolerance agent with a beta cell regenerative compound should be considered, and among the different immune tolerance agents, CyA still holds a prominent role. 49 Rationale for reconsidering CyA in patients with recent onset T1D
  • 50. Leslie RD. Diabetes 2010 The spectrum of autoimmune diabetes extends across all ages and varies with age at diagnosis 50
  • 51. Key issues to consider for trials in type 1 diabetes 51
  • 53. Ability to use proton pump inhibitors to increase gastrin, which increases beta cell regeneration. Donald Bergman, MD, FACE, MACE 53
  • 54. Gastrin • Gastrin plays a role in pancreatic growth and development in fetal life1,2 • Pancreatic gastrin expression is suppressed after birth and then found as a growth factor in the gastric antrum and duodenum (G cells) after fetal development1 • Excessive gastrin has been associated with new islet and beta cell formation since the 1950s3,4 • Gastrin hypersecretion results in the formation of new islets containing new pools of beta cells5 • Gastrin’s mechanism of action is the transformation of pancreatic ducts to islets5 1. Tellez N. Endocrinology, 2011, 152(7):2580–2588 2. Larsson LI. et al.,1976 Nature 262:609–610. 3. Zollinger RM and Ellison EH. Ann. Surg., 142:709-728, 1955. 4. Bryant JG, Smith JV. Calif Med. 1965 Jan;102:49-52. 5. Suarez-Pinzon WL, et al., The Journal of Clinical Endocrinology & Metabolism 90(6):3401–3409 54
  • 55. The Association between Gastrin and Insulin • Patients with Zollinger-Ellison Syndrome-- increased gastrin producing nests of cells found both in the pancreas and GI tract have new islets and increased beta cell replication2 • Patients infused with gastrin had heightened insulin responses to glucose compared to those not receiving a gastrin infusion.1 1) Rehfeld JF, Stadil F. 1973. J Clin Invest 52:1415–1426 2) Zollinger RM and Ellison EH. Ann. Surg., 142:709-728, 1955. 55
  • 56. Gastrin’s Mechanism of Action Gastrin has been shown by specialized studies including BrdU studies to transform ductal (extraislet) tissue into new islets* On the left, a single, larger black cell represents the presence of gastrin and the pink cell representing a progenitor cell within the ductal population. Blue cells indicate beta cells and red cells represent alpha cells, with delta cells present to a smaller extent in green. *Telez, et al., Endocrinology, July 2011, 152(7):2580–2588 56
  • 57. Gastrin Transforms Human Ducts to Islets • Gastrin alone, has been shown the ability to induce new human islets from human duct cells without other growth factors (Suarez-Pinzon, J Clin Endocrinol Metab, June 2005, 90(6):3401– 3409) • A combination of Gastrin with Epidermal Growth Factor given to type 1 patients for 4 weeks resulted in – up to a 75% decrease in insulin requirements when followed for 3 months post treatment – an A1C from 6.7% at baseline down to 4.7% at 3 months post-treatment (Transition Therapeutics, March 5, 2007 http://www.transitiontherapeutics.com/media/archive.php Accessed January 1, 2013) 57
  • 58. Proton Pump Inhibitors increase Gastrin • Proton pump inhibitors (PPIs) are used extensively for the treatment of peptic ulcer and related symptoms and indirectly elevate gastrin levels • Studies have shown a dose- and duration-dependent relationship between PPIs and gastrin levels1,2,3 • Gastrin levels rise significantly with typical dosages for GI disease • PPIs are safe (with some concerns) • Complete hepatic metabolism with some potential for drug-drug interactions • Long-term usage among postmenopausal women associated with an increased risk for hip fracture, infectious diarrhea, particularly among hospitalized patients 1) Hu YM. World J Gastroenterol. 12:4750–4753 2) Ligumsky M. 2001. J Clin Gastroenterol 33:32–35 3) Cadiot G,. Gastroenterol Clin Biol 19:811–817 58
  • 59. PPIs • Substituted benzimidazole derivatives • Block the terminal step in acid production • Inhibit the function of hydrogen-potassium adenosine triphosphatase on the luminal surface of parietal cell membranes in the stomach. Madanick. Cleveland Clinic JM 2011;78:39-49 59
  • 60. Studies Confirm Lower A1C on PPI • Retrospective review of 347 type 2 diabetes – Those taking PPI had lower A1Cs (7.0%) compared to patients not on PPIs (7.6%) (p=0.002) (1) • Retrospective of 73 type 2 patients – A1C of patients on insulin with PPI was 7.11% compared to 7.70% of patients not on PPI (p=0.001) – Patients on multiple oral diabetic agents and PPI had A1C of 7.26% vs. 7.8% (p=.002) (2) • Cross-sectional study of 97 patients type 2 patients – Those on insulin and PPI had a 0.8% to 1.48% lower A1C than those not on PPIs (95%, CI: -0.12) – Those on oral agents and PPI had a 0.6% to 0.83% lower A1C on oral agents (95%, CI: -0.12) (3) • Retrospective review of 21 type 2s on esomprazole for 12 months – 0.7% lower A1C than those not on PPI (4) 1 )Mefford IN, Wade EU. Med Hypotheses. 2009;73:29-32. 3 3) Boj-Carceller D., et al World J Diabetes 2011 December 15; 2(12): 217-220. 2) MA Crouch. J Am Board Fam Med 2012;25:50 –54. 4) Hove KD, et al.,Diabetes Res Clin Pract. 2010;90(3):e72-4.
  • 61. Randomized Trials Using PPIs Among Type 2 Diabetes Pantoprazole/Protonix* • 12 week trial with 31 patients randomized • 38% rise in gastrin • 1.2% drop in A1C from 7.9% to 6.8% in PPI group • Placebo group A1C from rose from 7.5 to 7.9% • Improvement in beta cell function by 30% (HOMA) • The decrease in A1C correlated with an increase in gastrin and insulin • No adverse side effects in Protonix seen over that in the control group. Nausea, vomiting , headache and myalgia were the same in control and Protonix group Esomerprazole/Nexium** • 12 week trial with 41 patients • Patient further randomized to yogurt or placebo taken with Esomerprazole • There was a 2 kg greater weight gain in those on Esomerprazole and yogurt • Area under the curve for insulin was significantly decreased in the control group compared to no change in the intervention group (p=0.002) *Singh PK et al, J Clin Endocrinol Metab 97: E2105–E2108, 2012 **Hove KD et al, Diabetologia 56;22-30, 2013 61
  • 62. Current Trial with Lansoprazole in Type 1 Patients to Assess Beta Cell Function* • Current Trial with Lansoprazole (Prevacid) in type 1 patients – ages 11-45 – for 12 months being used with Sitigliptin (Januvia) to assess beta cell function (no immune tolerance agent being used) – Subjects age 11-17 years will take 30 mg capsule once daily of lansoprazole with 50 mg of Sitigliptin once daily – Subjects age 18-45 years will take 60 mg of lansoprazole once daily with 100 mg of sitigliptin once daily • Primary Outcome Measures: 2 hour C-peptide AUC in response to mixed meal tolerance at 12 months • Secondary Outcomes Measures: – 2 hour C-peptide AUC in response to MMTT [ Time Frame: months 6, 18, and 24 ] – A1C levels – Insulin use in units per kilogram body weight per day – Safety (adverse events frequency, severity) *http://www.clinicaltrials.gov/ct2/show/NCT01155284?term=lansoprazole+type+1+diabetes&rank=3 62
  • 63. PPI side effects: clopidogrel • PPIs inhibit a P450 enzyme which is required for activation of clopidogrel • Contradictory data in literature • One retrospective study found no adverse effect and found decreased GI bleeding in combined use • FDA warning Ray et al. Ann Int Med 2010; 152:337-345 63
  • 64. PPI side effects: fracture, pneumonia, enteric infection • Fracture risk: conflicting reports. Risk greater in those with other risk factors for fracture. FDA: possible association • Pneumonia risk: 4.5 times higher in PPI users but only 18% had documented pneumonia • Enteric infection risk: C. Diff. 127000 patients odds ratio 2.05. • Enteric infection: bacterial overgrowth and SBP (small studies) Madanick. Cleveland Clinic JM 2011;78:39-49 65
  • 65. PPI side effects: nephritis, iron, B12 deficiences nephritis • 64 cases documented in the world literature in PPI users • Not enough evidence to support a causal relationship Iron, B12 deficiency • Iron: acid needed to dissociate iron salts from food • B12: acid needed to separate B12 from food proteins • No convincing evidence in the literature Madanick. Cleveland Clinic JM 2011;78:39-49 65
  • 66. Ability for women with decades of type 1 diabetes to become insulin independent within weeks of pregnancy. Lois Jovanovic MD, FACP, FACN, FACE, MACE 66
  • 67. Normal Pregnancy  Associated with a 2-4 fold rise in insulin  Among those without diabetes, normal glucose levels are considerably lower during pregnancy than in the non- pregnant state  Goals Glucose During Pregnancy  The American College of Obstetricians and Gynecologists recommends the following goals when self-monitoring blood glucose levels during pregnancy:  Fasting glucose concentrations ≤95 mg/dL  Premeal glucose concentrations no higher than 100 mg/dL  One-hour postmeal glucose concentrations no higher than 140 mg/dL  Two-hour postmeal glucose concentrations no higher than 120 mg/dL  The American Diabetes Association recommends the following glucose goals:  Premeal, bedtime, and overnight glucose concentrations 60 to 99 mg/dL  Peak postmeal glucose concentrations 100 to 129 mg/dL (5.6 to 7.2 mmol/L) one to two hours after the beginning of the meal 67
  • 68. Each Pregnancy is Unique  Among pregnant type 1 women, there is often a decline in the need for insulin  Often see hypoglycemia among type 1 patients in pregnancy with a peak incidence in the first trimester due to new insulin production by the mother  Some women have been insulin-free throughout their pregnancy, only to return to insulin requirements after delivery  New insulin production has been seen among type 1 patients with a history of diabetes for more than 20 years 68
  • 69. Am J Obsetet Gynecol 1976, 15;125(2):264-5. 1976 Known Insulin Remissions Among Pregnant Type 1 Patients Date Back Decades 69
  • 70. Patients with No Detectable Insulin Before and Significant Rises During Pregnancy* C-peptide/Endogenous insulin concentration before pregnancy and at 10 weeks of gestation 0 0.05 0.1 0.15 0.2 0.25 0.3 1 2 3 4 5 6 7 8 9 10 Patients with Type 1 Diabetes C-peptide(nmol/l) Pre-Pregnancy 10 weeks of gestation  Patients had a mean duration of diabetes 21.2 years  By 10 weeks of gestation, endogenous insulin levels were not only detectable, but into the normal range  Some women have been insulin-free not only during this time, but throughout pregnancy *Jovanovic L, et all.,Diabetologia. 2000 Oct;43(10):1329-30. 70
  • 71. New Insulin Production Occurs Quickly  Islet Neogenesis Proceeds Beta Cell Regeneration in pregnancy*  Pregnancy is one of the few times postnatally when new islets form  Once new islets form, there are new pools of beta cells for replication  Most islets are formed by the time of birth  Only in rare instances do islets regenerate. These times include acute pancreatic injury, pancreatitis, pancreatic stones and pregnancy  By 10 weeks of pregnancy, new endogenous levels of insulin are seen  This is the time similar to the original study by Banting and Best when they collected secretions from clamped pancreatic ducts at 10 weeks *Johansson M., et al., Endocrinology 2006. 147(5):2315–2324
  • 72. Combination Therapies Enhance Prospects of “Curing” Diabetes Aaron Vinik MD, PhD, FCP, MACP, FACE Murray Waitzer Chair of Diabetes Research Eastern Virginia Medical School Strelitz Diabetes Center and Neuroendocrine Unit Norfolk Virginia. 72
  • 73. Background (Sarandipity) Saran wrapping reverses streptozotocin- induced (STZ) diabetes in hamsters • Ilotropin, a crude pancreatic extract from CW, induces new islet formation from ductal epithelium. • Ilotropin reverses streptozotocin-induced diabetes in hamsters. • mRNA differential display led to • THE DISCOVERY OF INGAP Rafaeloff, Quin, Barlow, Rosenberg and Vinik Febs Letters378, 219-223, 1996 Rafaeloff, Pittenger, Barlow, Qin, Yan, Rosenberg, Duguid, Vinik J Clin Invest 99: 2100-2109, 1997 73
  • 74. Production of a Biologically Active INGAP Peptide by Biochemical Techniques and Effects on Islet Neogenesis and STZ Diabetes 5’UTR Signal peptide Mature peptide 3’UTR 1 7835 540 646 3’UTR 766 C C C 35 46 68 C C C 146 163 171 C= cysteine AA= amino acid N= potential N glycosylation IGLHDPSHGTLPNGS AA 104 AA 118 NN N 74
  • 75. Restoration of Normal Blood Glucose in INGAP- treated C57BL/6J STZ Diabetic Mice INGAP/SALINE Rosenberg, Vinik et al. Ann Surg. 2004 Nov;240(5):875-84. 75
  • 76. 76
  • 77. INGAP and Human Health and Disease Is INGAP present in the human pancreas? Does INGAP affect human pancreatic tissue in vivo and in vitro? Will it reverse diabetes? 77
  • 78. Transdifferentiation of Human Islets-The Effects of INGAP Peptide Human islets after isolation CK19 –tive and following induction of reverse trans- differentiation to a duct-like epithelial structure CK19 + Effects of INGAP peptide on transdifferentiation of ductal cells (CK19 +) to islet (CK19-) INGAP Peptide induced transition from ductal cells to insulin producing cells and fully formed islet with expression of insulin (brown) 78
  • 79. Accelerating Factors “THE INGAP INDUCERS” AP-1-activators STAT-activators PAN-activators NEOGENESISINGAP NEW ISLETS Taylor Fishwick, Vinik et al J Endocrinol. 2006 Mar;188(3):611-21 Hamblet et al Pancrease 36, 17671772, 2008 Pittenger, Taylor Fishwick, Vinik Diabetologia 52:735-7382009. Taylor Fishwick, Hughes, Vinik Pancreas 39(1):64-70, 2009. Chang et al Molecular and Cellular Endocrinol, 335:104-109, 2011 79
  • 80. INGAP is Overexpressed in Human Islet Neogenesis Insulin Red INGAP Green Semakula C, Pambucian S, Gruessner R, Kendall D, Pittenger G, Vinik A, Seaquist E JCEM 2003
  • 81. Recapitulation of Fetal Development of Islets in NIPHS Syndrome •a) insulin blue/ Ki 67 red •B)Proinsulin •C) amylin •D) PDX •E) NKX 6.1 •F) Insulin / Ki 67 Won Pittenger, Vinik et al Clinical Endocrinology 2006:65, 566-578
  • 82. HBA1c Response to INGAP in T1 DM per Protocol Trial 0 28 56 84 112 140 -0.5 0 +0.5 -1.0 Days MeanChangefromBaseline(AUC) Placebo 300 mg 600 mg INGAP Treatment Duncan, Buse and Ratner Diabetes Metab Research and Reviews, 25, 558-565.,2009 82
  • 83. Quiescent Duct Cells Initiation Differentiation Proliferation Apoptosis Pro-apoptotic New islets Anti-apoptotic Islet Neogenesis Glitazone GLP analogs Anti inflammatory, Lysophylline, Immunomodulatory,Ustekinumab INGAP EGF/gastrin 83
  • 84. 84 0% 10% 20% 30% 40% 50% 60% 70% 80% Saline LSF IN G AP IN G AP/LSF PreTxD elayed PreTX RateofRemission(<200mg/dl) All Mice Low Starters (<350mg/dl) High Starters (>350mg/dl) Hyperglycemia remission rates in INGAP + Lisofylline (LSF) treated NOD Mice Tersey et al J of Diabetes 2: 251-257, 2012 84
  • 85. Conclusion • It is not beyond the realms of reason to anticipate that regenerating agents such as INGAP, alone, or in combination with other factors, anti-apoptotic and anti- inflammatory agents, e.g. lisophylline, anti-apoptic agents e.g. GLP-1 or an analog, DPP IV inhibitors or Glitazones, small surrogate molecules that activate the receptor, or gene manipulation will provide a cure for certain forms of diabetes in humans Thank you for your attention! 85
  • 86. For Questions, please write us at InsulinIndependence@gmail.com www.InsulinIndependence.com THANK YOU! 86