SlideShare ist ein Scribd-Unternehmen logo
1 von 39
Unidad I – Análisis enUnidad I – Análisis en
Corriente DirectaCorriente Directa
Presentación PowerPoint dePresentación PowerPoint de
Ing. David Vasquez,Ing. David Vasquez,
Universidad Autónoma Gabriel RenéUniversidad Autónoma Gabriel René
MorenoMoreno
© 2015
Objetivos:Objetivos: Después de completarDespués de completar
esta unidad deberá:esta unidad deberá:
• Identificar en un circuito eléctrico losIdentificar en un circuito eléctrico los
componentes que lo conforman.componentes que lo conforman.
• Relacionar los componentesRelacionar los componentes
eléctricos pasivos con laseléctricos pasivos con las
magnitudes eléctricas.magnitudes eléctricas.
• Analizar e interpretar circuitos deAnalizar e interpretar circuitos de
corriente Directa y Alterna a travéscorriente Directa y Alterna a través
de las Leyes de Ohm y Kirchoof.de las Leyes de Ohm y Kirchoof.
Símbolos de circuito eléctricoSímbolos de circuito eléctrico
Con frecuencia, losCon frecuencia, los circuitos eléctricoscircuitos eléctricos contienencontienen
uno o más resistores agrupados y unidos a unauno o más resistores agrupados y unidos a una
fuente de energía, como una batería.fuente de energía, como una batería.
Los siguientes símbolos se usan conLos siguientes símbolos se usan con
frecuencia:frecuencia:
+ - + -
- + - + -
Tierra Batería
-+
Resistor
Resistencias en serieResistencias en serie
Se dice que los resistores están conectados enSe dice que los resistores están conectados en
serieserie cuando haycuando hay una sola trayectoriauna sola trayectoria para lapara la
corriente.corriente.
La corrienteLa corriente II es la misma paraes la misma para
cada resistorcada resistor RR11, R, R22 yy RR33..
La energía ganada a través deLa energía ganada a través de EE
se pierde a través dese pierde a través de RR11, R, R22 yy RR33..
Lo mismo es cierto para losLo mismo es cierto para los
voltajes:voltajes:
Para conexiones
en serie:
Para conexiones
en serie:
I = I1 = I2 = I3 VT
= V1 + V2 + V3
I = I1 = I2 = I3 VT
= V1 + V2 + V3
R1
I
VT
R2
R3
Sólo una corriente
Resistencia equivalente:Resistencia equivalente:
SerieSerie
LaLa resistencia equivalente Rresistencia equivalente Ree de algunosde algunos
resistores conectados en serie es igual a laresistores conectados en serie es igual a la
sumasuma de las resistencias individuales.de las resistencias individuales.
VVTT = V= V11 + V+ V22 + V+ V33 ; (V = IR); (V = IR)
IITTRRee = I= I11RR11+ I+ I22RR22 + I+ I33RR33
Pero. . . IPero. . . ITT = I= I11 = I= I22 = I= I33
Re = R1 + R2 + R3
Re = R1 + R2 + R3
R1
I
VT
R2
R3
Resistencia equivalente
Ejemplo 1:Ejemplo 1: Encuentre la resistencia equivalenteEncuentre la resistencia equivalente
RRee. ¿Cuál es la corriente I en el circuito?. ¿Cuál es la corriente I en el circuito?
2 Ω
12 V
1 Ω3 Ω
Re = R1 + R2 + R3
Re = 3 Ω + 2 Ω + 1 Ω = 6 Ω
Re equivalente = 6 ΩRe equivalente = 6 Ω
La corriente se encuentra a partir de la ley de Ohm:La corriente se encuentra a partir de la ley de Ohm: V = IRV = IRee
12 V
6e
V
I
R
= =
Ω I = 2 AI = 2 A
Ejemplo 1 (Cont.):Ejemplo 1 (Cont.): Muestre que las caídas deMuestre que las caídas de
voltaje a través de los tres resistores totaliza lavoltaje a través de los tres resistores totaliza la
fem de 12 V.fem de 12 V.
2 Ω
12 V
1 Ω3 Ω
Re = 6 ΩRe = 6 Ω I = 2 AI = 2 A
VV11 = IR= IR11; V; V22 = IR= IR2;2; VV33 = IR= IR33
Corriente I = 2 A igual en cada R.Corriente I = 2 A igual en cada R.
VV11 == (2 A)(1(2 A)(1 Ω) = 2 V
VV11 == (2 A)(2(2 A)(2 Ω) = 4 V
VV11 == (2 A)(3(2 A)(3 Ω) = 6 V
VV11 + V+ V22 + V+ V33 = V= VTT
2 V + 4 V + 6 V = 12 V2 V + 4 V + 6 V = 12 V
¡Compruebe!¡Compruebe!
Fuentes de FEM en serieFuentes de FEM en serie
LaLa dirección de salidadirección de salida de unade una
fuente de fem es desde el ladofuente de fem es desde el lado ++:: E
+-
a b
Por tanto, dePor tanto, de aa aa bb elel potencial aumentapotencial aumenta enen E; de; de
bb aa aa, el, el potencial disminuyepotencial disminuye enen E..
Ejemplo:Ejemplo: EncuentreEncuentre ∆∆VV parapara
la trayectoriala trayectoria ABAB y luego paray luego para
la trayectoriala trayectoria BABA..
R
3 V
+-
+
-
9 V
A
B
AB:AB: ∆∆V = +9 V – 3 V =V = +9 V – 3 V = +6 V+6 V
BA:BA: ∆∆V = +3 V - 9 V =V = +3 V - 9 V = -6 V-6 V
Un solo circuito completoUn solo circuito completo
Considere el siguienteConsidere el siguiente circuito en seriecircuito en serie simple:simple:
2 Ω
3 V
+-
+
-
15 V
A
C B
D
4 Ω
Trayectoria ABCD: La
energía y V aumentan a
través de la fuente de 15 V y
disminuye a través de la
fuente de 3 V.
15 V - 3 V = 12 VΣE =
La ganancia neta en potencial se pierde aLa ganancia neta en potencial se pierde a
través de los dos resistores: estas caídas detravés de los dos resistores: estas caídas de
voltaje están envoltaje están en IRIR22 ee IRIR44, de modo que, de modo que la sumala suma
es cero para toda la mallaes cero para toda la malla..
Encontrar I en un circuito simpleEncontrar I en un circuito simple
2 Ω
3 V
+-
+
-
18 V
A
C B
D
3 Ω
Ejemplo 2:Ejemplo 2: Encuentre la corrienteEncuentre la corriente II en el siguiente circuito:en el siguiente circuito:
18V 3 V 15VΣ − =E =
+ 2 5RΣ Ω Ω = Ω= 3
Al aplicar la ley de Ohm:Al aplicar la ley de Ohm:
15 V
5
I
R
Σ
= =
Σ Ω
E
I = 3 A
En general, para unEn general, para un
circuito de una sola malla:circuito de una sola malla:
I
R
Σ
=
Σ
E
ResumenResumen
Circuitos de malla sencilla:Circuitos de malla sencilla:
Regla de resistencia: Re = ΣR
Regla de voltaje: ΣE = ΣIR
R2
E1
E2
R1
∑
∑=
R
I:Corriente
ε
Circuitos complejosCircuitos complejos
Un circuitoUn circuito complejocomplejo eses
aquel que contiene másaquel que contiene más
de una malla y diferentesde una malla y diferentes
trayectorias de corriente.trayectorias de corriente.
R2 E1
R3 E2
R1
I1
I3
I2
m nEn los nodos m y n:En los nodos m y n:
II11 = I= I22 + I+ I33 oo II22 + I+ I33 = I= I11
Regla de nodo:
ΣI (entra) = ΣI (sale)
Regla de nodo:
ΣI (entra) = ΣI (sale)
Conexiones en paraleloConexiones en paralelo
Se dice que los resistores están conectados enSe dice que los resistores están conectados en paraleloparalelo
cuando hay más de una trayectoria para la corriente.cuando hay más de una trayectoria para la corriente.
2 Ω 4 Ω 6 Ω
Conexión en serie:
Para resistores en serie:Para resistores en serie:
II22 = I= I44 = I= I66 = I= ITT
VV22 + V+ V44 + V+ V66 = V= VTT
Conexión en paralelo:
6 Ω2 Ω 4 Ω
Para resistores enPara resistores en
paralelo:paralelo:
VV22 = V= V44 = V= V66 = V= VTT
II22 + I+ I44 + I+ I66 = I= ITT
Resistencia equivalente: ParaleloResistencia equivalente: Paralelo
VVTT = V= V11 = V= V22 = V= V33
IITT = I= I11 + I+ I22 + I+ I33
Ley deLey de
Ohm:Ohm:
V
I
R
=
31 2
1 2 3
T
e
VV V V
R R R R
= + +
1 2 3
1 1 1 1
eR R R R
= + +
Resistencia equivalente
para resistores en paralelo:
Resistencia equivalente
para resistores en paralelo: 1
1 1N
ie iR R=
= ∑
Conexión en paralelo:
R3R2
VT
R1
Ejemplo 3.Ejemplo 3. Encuentre la resistencia equivalenteEncuentre la resistencia equivalente
RRee para los tres resistores siguientes.para los tres resistores siguientes.
R3R2VT R1
2 Ω 4 Ω 6 Ω
1
1 1N
ie iR R=
= ∑
1 2 3
1 1 1 1
eR R R R
= + +
1 1 1 1
0.500 0.250 0.167
2 4 6eR
= + + = + +
Ω Ω Ω
1 1
0.917; 1.09
0.917
e
e
R
R
= = = Ω Re = 1.09 ΩRe = 1.09 Ω
Para resistores en paralelo, Re es menor que la más baja Ri.Para resistores en paralelo, Re es menor que la más baja Ri.
Ejemplo 3 (Cont.):Ejemplo 3 (Cont.): Suponga que una fem deSuponga que una fem de
12 V se conecta al circuito que se muestra.12 V se conecta al circuito que se muestra.
¿Cuál es la corriente total que sale de la¿Cuál es la corriente total que sale de la
fuente de fem?fuente de fem?
R3R2
12 V
R1
2 Ω 4 Ω 6 Ω
VT VVTT == 12 V;12 V; RRee = 1.09= 1.09 ΩΩ
VV11 = V= V22 = V= V33 = 12= 12 VV
IITT = I= I11 + I+ I22 + I+ I33
Ley de Ohm:Ley de Ohm:
V
I
R
=
12 V
1.09
T
e
e
V
I
R
= =
Ω
Corriente total: IT = 11.0 A
Ejemplo 3 (Cont.):Ejemplo 3 (Cont.): Muestre que la corriente queMuestre que la corriente que
sale de la fuentesale de la fuente IITT es la suma de lases la suma de las
corrientes a través de los resistorescorrientes a través de los resistores RR11, R, R22 y Ry R33..
R3R2
12 V
R1
2 Ω 4 Ω 6 Ω
VT IITT == 11 A;11 A; RRee = 1.09= 1.09 ΩΩ
VV11 = V= V22 = V= V33 == 12 V12 V
IITT = I= I11 + I+ I22 + I+ I33
1
12 V
6 A
2
I = =
Ω
2
12 V
3 A
4
I = =
Ω
3
12 V
2 A
6
I = =
Ω
6 A + 3 A + 2 A = 11 A6 A + 3 A + 2 A = 11 A ¡Compruebe!¡Compruebe!
Camino corto: Dos resistores en paraleloCamino corto: Dos resistores en paralelo
La resistencia equivalenteLa resistencia equivalente RRee parapara dosdos resistoresresistores
en paralelo es elen paralelo es el producto dividido por la sumaproducto dividido por la suma..
1 2
1 1 1
;
eR R R
= + 1 2
1 2
e
R R
R
R R
=
+
(3 )(6 )
3 6
eR
Ω Ω
=
Ω + Ω
Re = 2 ΩRe = 2 Ω
Ejemplo:Ejemplo:
R2VT R1
6 Ω 3 Ω
Combinaciones en serie y en paraleloCombinaciones en serie y en paralelo
En circuitos complejos, los resistores conEn circuitos complejos, los resistores con
frecuencia se conectanfrecuencia se conectan tanto entanto en serieserie comocomo enen
paraleloparalelo..
VT
R2 R3
R1
En tales casos, es mejor
usar las reglas para
resistencias en serie y en
paralelo para reducir el
circuito a un circuito
simple que contenga una
fuente de fem y una
resistencia equivalente.
En tales casos, es mejor
usar las reglas para
resistencias en serie y en
paralelo para reducir el
circuito a un circuito
simple que contenga una
fuente de fem y una
resistencia equivalente.
VT
Re
Ejemplo 4.Ejemplo 4. Encuentre la resistencia equivalenteEncuentre la resistencia equivalente
para el circuito siguiente (suponga Vpara el circuito siguiente (suponga VTT = 12 V).= 12 V).
3,6
(3 )(6 )
2
3 6
R
Ω Ω
= = Ω
Ω + Ω
RRee = 4= 4 ΩΩ + 2+ 2 ΩΩ
Re = 6 ΩRe = 6 Ω
VT 3 Ω 6 Ω
4 Ω
12 V 2 Ω
4 Ω
6 Ω12 V
Ejemplo 4 (Cont.)Ejemplo 4 (Cont.) Encuentre la corriente totalEncuentre la corriente total IITT..
VT 3 Ω 6 Ω
4 Ω
12 V 2 Ω
4 Ω
6 Ω12 V
IT
Re = 6 ΩRe = 6 Ω
IT = 2.00 AIT = 2.00 A
12 V
6
T
e
V
I
R
= =
Ω
Ejemplo 4 (Cont.)Ejemplo 4 (Cont.) Encuentre las corrientes yEncuentre las corrientes y
los voltajes a través de cada resistorlos voltajes a través de cada resistor..
I4 = IT = 2 AI4 = IT = 2 A
VV44 == (2 A)(4(2 A)(4 ΩΩ) = 8 V) = 8 V
El resto del voltaje (12 V – 8 V =El resto del voltaje (12 V – 8 V = 4 V4 V) cae a) cae a
través detravés de CADA UNOCADA UNO de los resistores paralelos.de los resistores paralelos.
V3 = V6 = 4 VV3 = V6 = 4 V
Esto también se puede encontrar de
V3,6 = I3,6R3,6 = (2 A)(2 Ω)
Esto también se puede encontrar de
V3,6 = I3,6R3,6 = (2 A)(2 Ω)
VT 3 Ω 6 Ω
4 Ω
(Continúa. . .)(Continúa. . .)
Ejemplo 4 (Cont.)Ejemplo 4 (Cont.) Encuentre las corrientes y losEncuentre las corrientes y los
voltajes a través de cada resistorvoltajes a través de cada resistor..
V6 = V3 = 4 VV6 = V3 = 4 VV4 = 8 VV4 = 8 V
VT 3 Ω 6 Ω
4 Ω
3
3
3
4V
3
V
I
R
= =
Ω I3 = 1.33 AI3 = 1.33 A
6
6
6
4V
6
V
I
R
= =
Ω I6 = 0.667 AI6 = 0.667 A I4 = 2 AI4 = 2 A
Note que laNote que la regla del notoregla del noto se satisface:se satisface:
IT = I4 = I3 + I6
IT = I4 = I3 + I6ΣI (entra) = ΣI (sale)ΣI (entra) = ΣI (sale)
Leyes de Kirchhoff para circuitos CDLeyes de Kirchhoff para circuitos CD
Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de lasLa suma de las
corrientes que entran a un nodo es igual a lacorrientes que entran a un nodo es igual a la
suma de las corrientes que salen del nodo.suma de las corrientes que salen del nodo.
Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de lasLa suma de las
corrientes que entran a un nodo es igual a lacorrientes que entran a un nodo es igual a la
suma de las corrientes que salen del nodo.suma de las corrientes que salen del nodo.
Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las fem alrededorLa suma de las fem alrededor
de cualquier malla cerrada debe ser igual a la suma dede cualquier malla cerrada debe ser igual a la suma de
las caídas de IR alrededor de la misma malla.las caídas de IR alrededor de la misma malla.
Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las fem alrededorLa suma de las fem alrededor
de cualquier malla cerrada debe ser igual a la suma dede cualquier malla cerrada debe ser igual a la suma de
las caídas de IR alrededor de la misma malla.las caídas de IR alrededor de la misma malla.
Regla del nodo: ΣI (entra) = ΣI (sale)Regla del nodo: ΣI (entra) = ΣI (sale)
Regla de voltaje: ΣE = ΣIRRegla de voltaje: ΣE = ΣIR
Convenciones de signos para femConvenciones de signos para fem
 Cuando aplique las leyes de Kirchhoff debe suponerCuando aplique las leyes de Kirchhoff debe suponer
unauna dirección de seguimientodirección de seguimiento positiva y consistente.positiva y consistente.
 Cuando aplique laCuando aplique la regla del voltajeregla del voltaje, las fem son, las fem son
positivaspositivas si la dirección de salida normal de la fem essi la dirección de salida normal de la fem es
enen la dirección de seguimiento supuesta.la dirección de seguimiento supuesta.
 Si el seguimiento es deSi el seguimiento es de A a BA a B,,
esta fem se consideraesta fem se considera positivapositiva..
E
A B
++
 Si el seguimiento es deSi el seguimiento es de B a AB a A,,
esta fem se consideraesta fem se considera negativanegativa..
E
A B
++
Signos de caídas IR en circuitosSignos de caídas IR en circuitos
 Cuando aplique laCuando aplique la regla del voltajeregla del voltaje, las, las caíadas IRcaíadas IR
sonson positivaspositivas si la dirección de corriente supuestasi la dirección de corriente supuesta
eses enen la dirección de seguimiento supuesta.la dirección de seguimiento supuesta.
 Si el seguimiento es deSi el seguimiento es de A aA a
BB, esta caída IR es, esta caída IR es positivapositiva..
 Si el seguimiento es deSi el seguimiento es de B aB a
AA, esta caída IR es, esta caída IR es negativanegativa..
I
A B
++
I
A B
++
Leyes de Kirchhoff: Malla ILeyes de Kirchhoff: Malla I
R3
R1
R2E2
E1
E3
1. Suponga posibles flujos de1. Suponga posibles flujos de
corrientes consistentes.corrientes consistentes.
2. Indique direcciones de salida2. Indique direcciones de salida
positivas para fem.positivas para fem.
3. Indique dirección de3. Indique dirección de
seguimiento consistenteseguimiento consistente
(sentido manecillas del reloj)(sentido manecillas del reloj)
+
Malla I
I1
I2
I3
Regla del nodo: I2 = I1 + I3
Regla del nodo: I2 = I1 + I3
Regla del voltaje: ΣE = ΣIR
E1 + E2 = I1R1 + I2R2
Regla del voltaje: ΣE = ΣIR
E1 + E2 = I1R1 + I2R2
Leyes de Kirchhoff: Malla IILeyes de Kirchhoff: Malla II
4. Regla del voltaje para Malla II:4. Regla del voltaje para Malla II:
Suponga dirección deSuponga dirección de
seguimiento positivo contra lasseguimiento positivo contra las
manecillas del reloj.manecillas del reloj.
Regla del voltaje: ΣE = ΣIR
E2 + E3 = I2R2 + I3R3
Regla del voltaje: ΣE = ΣIR
E2 + E3 = I2R2 + I3R3
R3
R1
R2E2
E1
E3
Malla I
I1
I2
I3
Malla II
Malla inferior (II)
+
¿Se aplicaría la misma¿Se aplicaría la misma
ecuación si se siguieraecuación si se siguiera enen
sentido de las manecillas delsentido de las manecillas del
relojreloj??
- E2 - E3 = -I2R2 - I3R3
- E2 - E3 = -I2R2 - I3R3¡Sí!¡Sí!
Leyes de Kirchhoff: Malla IIILeyes de Kirchhoff: Malla III
5. Regla del voltaje para Malla III:5. Regla del voltaje para Malla III:
Suponga dirección deSuponga dirección de
seguimiento contra lasseguimiento contra las
manecillas del reloj.manecillas del reloj.
Regla del voltaje: ΣE = ΣIR
E3 – E1 = -I1R1 + I3R3
Regla del voltaje: ΣE = ΣIR
E3 – E1 = -I1R1 + I3R3
¿Se aplicaría la misma¿Se aplicaría la misma
ecuación si se siguiereecuación si se siguiere enen
sentido de las manecillas delsentido de las manecillas del
relojreloj??
E3 - E1 = I1R1 - I3R3
E3 - E1 = I1R1 - I3R3¡Sí!¡Sí!
R3
R1
R2E2
E1
E3
Malla I
I1
I2
I3
Malla II
Malla exterior (III)
+
+
Cuatro ecuaciones independientesCuatro ecuaciones independientes
6. Por tanto, ahora se tienen6. Por tanto, ahora se tienen
cuatro ecuacionescuatro ecuaciones
independientes a partir de lasindependientes a partir de las
leyes de Kirchhoff:leyes de Kirchhoff:
R3
R1
R2E2
E1
E3
Malla I
I1
I2
I3
Malla II
Malla exterior (III)
+
+
II22 = I= I11 + I+ I33
EE11 ++ EE22 = I= I11RR11 + I+ I22RR22
EE22 ++ EE33 = I= I22RR22 + I+ I33RR33
EE33 -- EE11 = -I= -I11RR11 + I+ I33RR33
Ejemplo 5.Ejemplo 5. Use las leyes de Kirchhoff paraUse las leyes de Kirchhoff para
encontrar las corrientes en el circuitoencontrar las corrientes en el circuito
siguiente.siguiente.
10 Ω
12 V
6 V
20 Ω
5 Ω
Regla del nodo: I2 + I3 = I1
Regla del nodo: I2 + I3 = I1
12 V = (512 V = (5 ΩΩ))II11 + (10+ (10 ΩΩ))II22
Regla del voltaje:Regla del voltaje: ΣΣEE == ΣΣIRIR
Considere el seguimiento de laConsidere el seguimiento de la
Malla IMalla I en sentido de lasen sentido de las
manecillas del relojmanecillas del reloj para obtener:para obtener:
Al recordar queAl recordar que V/V/ΩΩ = A= A, se obtiene, se obtiene
5I1 + 10I2 = 12 A5I1 + 10I2 = 12 A
I1
I2
I3
+
Malla I
Ejemplo 5 (Cont.)Ejemplo 5 (Cont.) Encuentre las corrientes.Encuentre las corrientes.
6 V = (206 V = (20 ΩΩ))II33 - (10- (10 ΩΩ))II22
Regla del voltaje:Regla del voltaje: ΣΣEE == ΣΣIRIR
Considere el seguimiento de laConsidere el seguimiento de la
Malla IIMalla II en sentido de lasen sentido de las
manecillas del relojmanecillas del reloj para obtener:para obtener:
10I3 - 5I2 = 3 A10I3 - 5I2 = 3 A
10 Ω
12 V
6 V
20 Ω
5 ΩI1
I2
I3
+
Loop IISimplifique: al dividir entre 2Simplifique: al dividir entre 2
yy V/V/ΩΩ = A= A, se obtiene, se obtiene
Ejemplo 5 (Cont.)Ejemplo 5 (Cont.) Tres ecuacionesTres ecuaciones
independientes se pueden resolver paraindependientes se pueden resolver para II11,, II22 ee II33..
(3) 10I3 - 5I2 = 3 A(3) 10I3 - 5I2 = 3 A 10 Ω
12 V
6 V
20 Ω
5 ΩI1
I2
I3
+
Malla II
(1) I2 + I3 = I1
(1) I2 + I3 = I1
(2) 5I1 + 10I2 = 12 A(2) 5I1 + 10I2 = 12 A
Sustituya la Ec.Sustituya la Ec. (1)(1) parapara II11 enen (2)(2)::
5(5(II22 + I+ I33) + 10) + 10II33 = 12 A= 12 A
Al simplificar se obtiene:Al simplificar se obtiene:
5I2 + 15I3 = 12 A5I2 + 15I3 = 12 A
Ejemplo 5 (Cont.)Ejemplo 5 (Cont.) Se pueden resolver tresSe pueden resolver tres
ecuaciones independientes.ecuaciones independientes.
(3) 10I3 - 5I2 = 3 A(3) 10I3 - 5I2 = 3 A(1) I2 + I3 = I1
(1) I2 + I3 = I1
(2) 5I1 + 10I2 = 12 A(2) 5I1 + 10I2 = 12 A 15I3 + 5I2 = 12 A15I3 + 5I2 = 12 A
Elimine IElimine I22 al sumar las ecuaciones de la derecha:al sumar las ecuaciones de la derecha:
10I3 - 5I2 = 3 A
15I3 + 5I2 = 12 A
2525II33 == 1515 AA
I3 = 0.600 A
Al poner IAl poner I33 = 0.6 A en (3) produce:= 0.6 A en (3) produce:
10(0.6 A) – 510(0.6 A) – 5II22 = 3= 3 AA
I2 = 0.600 AI2 = 0.600 A
Entonces, de (1):Entonces, de (1): I1 = 1.20 AI1 = 1.20 A
Resumen de fórmulasResumen de fórmulas
Reglas para un circuito de malla sencilla que
contiene una fuente de fem y resistores.
Reglas para un circuito de malla sencilla que
contiene una fuente de fem y resistores.
2 Ω
3 V
+-
+
-
18 V
A
C B
D
3 Ω
Malla sencilla
Regla de resistencia: Re = ΣR
Regla de voltaje: ΣE = ΣIR
∑
∑=
R
ICorriente:
ε
Resumen (Cont.)Resumen (Cont.)
Para resistores conectados en serie:
Re = R1 + R2 + R3
Re = R1 + R2 + R3
Para conexiones
en serie:
Para conexiones
en serie:
I = I1 = I2 = I3 VT
= V1 + V2 + V3
I = I1 = I2 = I3 VT
= V1 + V2 + V3
Re = ΣRRe = ΣR
2 Ω
12 V
1 Ω3 Ω
Resumen (Cont.)Resumen (Cont.)
Resistores conectados en paralelo:
Para conexiones
en paralelo:
Para conexiones
en paralelo:
V = V1 = V2 = V3
IT = I1 + I2 + I3
V = V1 = V2 = V3
IT = I1 + I2 + I3
1 2
1 2
e
R R
R
R R
=
+
1
1 1N
ie iR R=
= ∑ R3R2
12 V
R1
2 Ω 4 Ω 6 Ω
VT
Conexión en
paralelo
Resumen de leyes de KirchhoffResumen de leyes de Kirchhoff
Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de las corrientesLa suma de las corrientes
que entran a un nodo es igual a la suma de lasque entran a un nodo es igual a la suma de las
corrientes que salen de dicho nodo.corrientes que salen de dicho nodo.
Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de las corrientesLa suma de las corrientes
que entran a un nodo es igual a la suma de lasque entran a un nodo es igual a la suma de las
corrientes que salen de dicho nodo.corrientes que salen de dicho nodo.
Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las femLa suma de las fem
alrededor de cualquier malla cerrada debe seralrededor de cualquier malla cerrada debe ser
igual a la suma de las caídas de IR alrededor deigual a la suma de las caídas de IR alrededor de
esa misma malla.esa misma malla.
Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las femLa suma de las fem
alrededor de cualquier malla cerrada debe seralrededor de cualquier malla cerrada debe ser
igual a la suma de las caídas de IR alrededor deigual a la suma de las caídas de IR alrededor de
esa misma malla.esa misma malla.
Regla del nodo: ΣI (entra) = ΣI (sale)Regla del nodo: ΣI (entra) = ΣI (sale)
Regla del voltaje: ΣE = ΣIRRegla del voltaje: ΣE = ΣIR
Gracias por su atenciónGracias por su atención

Weitere ähnliche Inhalte

Was ist angesagt?

Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aRobert
 
AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )Daffodil International University
 
Diapositivas instrumentacion corregidas
Diapositivas instrumentacion corregidasDiapositivas instrumentacion corregidas
Diapositivas instrumentacion corregidasYesid Perdomo Bahamon
 
control de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacioncontrol de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacionsorzua
 
Inductancia y capacitancia
Inductancia y capacitanciaInductancia y capacitancia
Inductancia y capacitanciaLuifer Amn
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosdesfaiter
 
Circuitos rcl jeymer anaya
Circuitos rcl jeymer anayaCircuitos rcl jeymer anaya
Circuitos rcl jeymer anayaJeymer Anaya
 
Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27Norberto Cabrera
 
Ejericios de redes electricas de www.fiec.espol.edu.ec
Ejericios de redes electricas de  www.fiec.espol.edu.ecEjericios de redes electricas de  www.fiec.espol.edu.ec
Ejericios de redes electricas de www.fiec.espol.edu.ecSilvana Vargas
 
Amplificadores Operacionales - Seguidor, Inversor y No Inversor
Amplificadores Operacionales - Seguidor, Inversor y No InversorAmplificadores Operacionales - Seguidor, Inversor y No Inversor
Amplificadores Operacionales - Seguidor, Inversor y No InversorCris Mascote
 
Problemas de acoplamiento magnetico
Problemas de  acoplamiento magneticoProblemas de  acoplamiento magnetico
Problemas de acoplamiento magneticoJefferson Duran
 

Was ist angesagt? (20)

Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32a
 
A.c circuits
A.c circuitsA.c circuits
A.c circuits
 
AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )AC-Alternative Current & Circuit Analysis ( Full of Information )
AC-Alternative Current & Circuit Analysis ( Full of Information )
 
Diapositivas instrumentacion corregidas
Diapositivas instrumentacion corregidasDiapositivas instrumentacion corregidas
Diapositivas instrumentacion corregidas
 
Informe laboratorio thevenin
Informe laboratorio theveninInforme laboratorio thevenin
Informe laboratorio thevenin
 
Circuitos de corriente electrica
Circuitos de corriente electricaCircuitos de corriente electrica
Circuitos de corriente electrica
 
control de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacioncontrol de velocidad de un motor cd en derivacion
control de velocidad de un motor cd en derivacion
 
Inductancia y capacitancia
Inductancia y capacitanciaInductancia y capacitancia
Inductancia y capacitancia
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitos
 
Circuitos rcl jeymer anaya
Circuitos rcl jeymer anayaCircuitos rcl jeymer anaya
Circuitos rcl jeymer anaya
 
Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27Tippens fisica 7e_diapositivas_27
Tippens fisica 7e_diapositivas_27
 
Circuitos leyes
Circuitos leyesCircuitos leyes
Circuitos leyes
 
Ejericios de redes electricas de www.fiec.espol.edu.ec
Ejericios de redes electricas de  www.fiec.espol.edu.ecEjericios de redes electricas de  www.fiec.espol.edu.ec
Ejericios de redes electricas de www.fiec.espol.edu.ec
 
Divisor de Tension
Divisor de TensionDivisor de Tension
Divisor de Tension
 
Transformadores
TransformadoresTransformadores
Transformadores
 
Informe 1 Electronica I Laboratorio
Informe 1 Electronica I  LaboratorioInforme 1 Electronica I  Laboratorio
Informe 1 Electronica I Laboratorio
 
Amplificadores Operacionales - Seguidor, Inversor y No Inversor
Amplificadores Operacionales - Seguidor, Inversor y No InversorAmplificadores Operacionales - Seguidor, Inversor y No Inversor
Amplificadores Operacionales - Seguidor, Inversor y No Inversor
 
Problemas de acoplamiento magnetico
Problemas de  acoplamiento magneticoProblemas de  acoplamiento magnetico
Problemas de acoplamiento magnetico
 
CURRENT ELECTRICITY
CURRENT ELECTRICITYCURRENT ELECTRICITY
CURRENT ELECTRICITY
 
Transistor Bipolar
Transistor BipolarTransistor Bipolar
Transistor Bipolar
 

Ähnlich wie ANALISIS DE CIRCUITOS EN CORRIENTE DIRECTA Y ALTERNA

Ähnlich wie ANALISIS DE CIRCUITOS EN CORRIENTE DIRECTA Y ALTERNA (20)

Circuitos de Corriente Directa.pdf
Circuitos de Corriente Directa.pdfCircuitos de Corriente Directa.pdf
Circuitos de Corriente Directa.pdf
 
CIRCUITO ELÉCTRICO
CIRCUITO ELÉCTRICOCIRCUITO ELÉCTRICO
CIRCUITO ELÉCTRICO
 
CIRCUITOS DE CORRIENTE ELECTRICA
CIRCUITOS DE CORRIENTE ELECTRICACIRCUITOS DE CORRIENTE ELECTRICA
CIRCUITOS DE CORRIENTE ELECTRICA
 
Circuitos v1
Circuitos  v1Circuitos  v1
Circuitos v1
 
Circuito de electricidad basica.ppt
Circuito de electricidad basica.pptCircuito de electricidad basica.ppt
Circuito de electricidad basica.ppt
 
Circuitos calculo
Circuitos calculoCircuitos calculo
Circuitos calculo
 
Introducción a la Electricidad.ppt
Introducción a la Electricidad.pptIntroducción a la Electricidad.ppt
Introducción a la Electricidad.ppt
 
Sesion 1 y 2
Sesion 1 y 2Sesion 1 y 2
Sesion 1 y 2
 
Ley De Ohm
Ley De OhmLey De Ohm
Ley De Ohm
 
INTRODUCCIÓN A LA ELECTRICIDAD BÁSICA.pdf
INTRODUCCIÓN A LA ELECTRICIDAD BÁSICA.pdfINTRODUCCIÓN A LA ELECTRICIDAD BÁSICA.pdf
INTRODUCCIÓN A LA ELECTRICIDAD BÁSICA.pdf
 
Corriente Continua
Corriente ContinuaCorriente Continua
Corriente Continua
 
Guia circuito serie, Juan Arias Portuguez
Guia circuito serie, Juan Arias PortuguezGuia circuito serie, Juan Arias Portuguez
Guia circuito serie, Juan Arias Portuguez
 
Curso electricidad básica
Curso electricidad básicaCurso electricidad básica
Curso electricidad básica
 
corriente continua
corriente continuacorriente continua
corriente continua
 
MATERIAL SEMANA 1.PPT
MATERIAL SEMANA 1.PPTMATERIAL SEMANA 1.PPT
MATERIAL SEMANA 1.PPT
 
MATERIAL SEMANA 1.PPT
MATERIAL SEMANA 1.PPTMATERIAL SEMANA 1.PPT
MATERIAL SEMANA 1.PPT
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 
SERIE CIRCUITOS
SERIE CIRCUITOSSERIE CIRCUITOS
SERIE CIRCUITOS
 

Kürzlich hochgeladen

Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaAlexanderimanolLencr
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASPersonalJesusGranPod
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAJOSLUISCALLATAENRIQU
 
clases de porcinos generales de porcinos
clases de porcinos generales de porcinosclases de porcinos generales de porcinos
clases de porcinos generales de porcinosDayanaCarolinaAP
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxClaudiaPerez86192
 
CAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESO
CAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESOCAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESO
CAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESOLUISDAVIDVIZARRETARA
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfedsonzav8
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.pptoscarvielma45
 
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptxCARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptxvalenciaespinozadavi1
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacajeremiasnifla
 
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLTERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLdanilojaviersantiago
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdfCristhianZetaNima
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfXimenaFallaLecca1
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILProblemSolved
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxMarcelaArancibiaRojo
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingKevinCabrera96
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfalexquispenieto2
 

Kürzlich hochgeladen (20)

Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiología
 
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERASDOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
DOCUMENTO PLAN DE RESPUESTA A EMERGENCIAS MINERAS
 
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICAINTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
INTEGRALES TRIPLES CLASE TEORICA Y PRÁCTICA
 
clases de porcinos generales de porcinos
clases de porcinos generales de porcinosclases de porcinos generales de porcinos
clases de porcinos generales de porcinos
 
Comite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptxComite Operativo Ciberseguridad 012020.pptx
Comite Operativo Ciberseguridad 012020.pptx
 
CAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESO
CAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESOCAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESO
CAPITULO 4 ANODIZADO DE ALUMINIO ,OBTENCION Y PROCESO
 
Manual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdfManual_Identificación_Geoformas_140627.pdf
Manual_Identificación_Geoformas_140627.pdf
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
 
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptxCARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
CARGAS VIVAS Y CARGAS MUERTASEXPOCI.pptx
 
Reporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpacaReporte de Exportaciones de Fibra de alpaca
Reporte de Exportaciones de Fibra de alpaca
 
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOLTERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
TERMODINAMICA YUNUS SEPTIMA EDICION, ESPAÑOL
 
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
04. Sistema de fuerzas equivalentes II - UCV 2024 II.pdf
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdfTEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
TEXTO UNICO DE LA LEY-DE-CONTRATACIONES-ESTADO.pdf
 
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVILClase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
Clase 7 MECÁNICA DE FLUIDOS 2 INGENIERIA CIVIL
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docx
 
Principales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards DemingPrincipales aportes de la carrera de William Edwards Deming
Principales aportes de la carrera de William Edwards Deming
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdf
 

ANALISIS DE CIRCUITOS EN CORRIENTE DIRECTA Y ALTERNA

  • 1. Unidad I – Análisis enUnidad I – Análisis en Corriente DirectaCorriente Directa Presentación PowerPoint dePresentación PowerPoint de Ing. David Vasquez,Ing. David Vasquez, Universidad Autónoma Gabriel RenéUniversidad Autónoma Gabriel René MorenoMoreno © 2015
  • 2. Objetivos:Objetivos: Después de completarDespués de completar esta unidad deberá:esta unidad deberá: • Identificar en un circuito eléctrico losIdentificar en un circuito eléctrico los componentes que lo conforman.componentes que lo conforman. • Relacionar los componentesRelacionar los componentes eléctricos pasivos con laseléctricos pasivos con las magnitudes eléctricas.magnitudes eléctricas. • Analizar e interpretar circuitos deAnalizar e interpretar circuitos de corriente Directa y Alterna a travéscorriente Directa y Alterna a través de las Leyes de Ohm y Kirchoof.de las Leyes de Ohm y Kirchoof.
  • 3. Símbolos de circuito eléctricoSímbolos de circuito eléctrico Con frecuencia, losCon frecuencia, los circuitos eléctricoscircuitos eléctricos contienencontienen uno o más resistores agrupados y unidos a unauno o más resistores agrupados y unidos a una fuente de energía, como una batería.fuente de energía, como una batería. Los siguientes símbolos se usan conLos siguientes símbolos se usan con frecuencia:frecuencia: + - + - - + - + - Tierra Batería -+ Resistor
  • 4. Resistencias en serieResistencias en serie Se dice que los resistores están conectados enSe dice que los resistores están conectados en serieserie cuando haycuando hay una sola trayectoriauna sola trayectoria para lapara la corriente.corriente. La corrienteLa corriente II es la misma paraes la misma para cada resistorcada resistor RR11, R, R22 yy RR33.. La energía ganada a través deLa energía ganada a través de EE se pierde a través dese pierde a través de RR11, R, R22 yy RR33.. Lo mismo es cierto para losLo mismo es cierto para los voltajes:voltajes: Para conexiones en serie: Para conexiones en serie: I = I1 = I2 = I3 VT = V1 + V2 + V3 I = I1 = I2 = I3 VT = V1 + V2 + V3 R1 I VT R2 R3 Sólo una corriente
  • 5. Resistencia equivalente:Resistencia equivalente: SerieSerie LaLa resistencia equivalente Rresistencia equivalente Ree de algunosde algunos resistores conectados en serie es igual a laresistores conectados en serie es igual a la sumasuma de las resistencias individuales.de las resistencias individuales. VVTT = V= V11 + V+ V22 + V+ V33 ; (V = IR); (V = IR) IITTRRee = I= I11RR11+ I+ I22RR22 + I+ I33RR33 Pero. . . IPero. . . ITT = I= I11 = I= I22 = I= I33 Re = R1 + R2 + R3 Re = R1 + R2 + R3 R1 I VT R2 R3 Resistencia equivalente
  • 6. Ejemplo 1:Ejemplo 1: Encuentre la resistencia equivalenteEncuentre la resistencia equivalente RRee. ¿Cuál es la corriente I en el circuito?. ¿Cuál es la corriente I en el circuito? 2 Ω 12 V 1 Ω3 Ω Re = R1 + R2 + R3 Re = 3 Ω + 2 Ω + 1 Ω = 6 Ω Re equivalente = 6 ΩRe equivalente = 6 Ω La corriente se encuentra a partir de la ley de Ohm:La corriente se encuentra a partir de la ley de Ohm: V = IRV = IRee 12 V 6e V I R = = Ω I = 2 AI = 2 A
  • 7. Ejemplo 1 (Cont.):Ejemplo 1 (Cont.): Muestre que las caídas deMuestre que las caídas de voltaje a través de los tres resistores totaliza lavoltaje a través de los tres resistores totaliza la fem de 12 V.fem de 12 V. 2 Ω 12 V 1 Ω3 Ω Re = 6 ΩRe = 6 Ω I = 2 AI = 2 A VV11 = IR= IR11; V; V22 = IR= IR2;2; VV33 = IR= IR33 Corriente I = 2 A igual en cada R.Corriente I = 2 A igual en cada R. VV11 == (2 A)(1(2 A)(1 Ω) = 2 V VV11 == (2 A)(2(2 A)(2 Ω) = 4 V VV11 == (2 A)(3(2 A)(3 Ω) = 6 V VV11 + V+ V22 + V+ V33 = V= VTT 2 V + 4 V + 6 V = 12 V2 V + 4 V + 6 V = 12 V ¡Compruebe!¡Compruebe!
  • 8. Fuentes de FEM en serieFuentes de FEM en serie LaLa dirección de salidadirección de salida de unade una fuente de fem es desde el ladofuente de fem es desde el lado ++:: E +- a b Por tanto, dePor tanto, de aa aa bb elel potencial aumentapotencial aumenta enen E; de; de bb aa aa, el, el potencial disminuyepotencial disminuye enen E.. Ejemplo:Ejemplo: EncuentreEncuentre ∆∆VV parapara la trayectoriala trayectoria ABAB y luego paray luego para la trayectoriala trayectoria BABA.. R 3 V +- + - 9 V A B AB:AB: ∆∆V = +9 V – 3 V =V = +9 V – 3 V = +6 V+6 V BA:BA: ∆∆V = +3 V - 9 V =V = +3 V - 9 V = -6 V-6 V
  • 9. Un solo circuito completoUn solo circuito completo Considere el siguienteConsidere el siguiente circuito en seriecircuito en serie simple:simple: 2 Ω 3 V +- + - 15 V A C B D 4 Ω Trayectoria ABCD: La energía y V aumentan a través de la fuente de 15 V y disminuye a través de la fuente de 3 V. 15 V - 3 V = 12 VΣE = La ganancia neta en potencial se pierde aLa ganancia neta en potencial se pierde a través de los dos resistores: estas caídas detravés de los dos resistores: estas caídas de voltaje están envoltaje están en IRIR22 ee IRIR44, de modo que, de modo que la sumala suma es cero para toda la mallaes cero para toda la malla..
  • 10. Encontrar I en un circuito simpleEncontrar I en un circuito simple 2 Ω 3 V +- + - 18 V A C B D 3 Ω Ejemplo 2:Ejemplo 2: Encuentre la corrienteEncuentre la corriente II en el siguiente circuito:en el siguiente circuito: 18V 3 V 15VΣ − =E = + 2 5RΣ Ω Ω = Ω= 3 Al aplicar la ley de Ohm:Al aplicar la ley de Ohm: 15 V 5 I R Σ = = Σ Ω E I = 3 A En general, para unEn general, para un circuito de una sola malla:circuito de una sola malla: I R Σ = Σ E
  • 11. ResumenResumen Circuitos de malla sencilla:Circuitos de malla sencilla: Regla de resistencia: Re = ΣR Regla de voltaje: ΣE = ΣIR R2 E1 E2 R1 ∑ ∑= R I:Corriente ε
  • 12. Circuitos complejosCircuitos complejos Un circuitoUn circuito complejocomplejo eses aquel que contiene másaquel que contiene más de una malla y diferentesde una malla y diferentes trayectorias de corriente.trayectorias de corriente. R2 E1 R3 E2 R1 I1 I3 I2 m nEn los nodos m y n:En los nodos m y n: II11 = I= I22 + I+ I33 oo II22 + I+ I33 = I= I11 Regla de nodo: ΣI (entra) = ΣI (sale) Regla de nodo: ΣI (entra) = ΣI (sale)
  • 13. Conexiones en paraleloConexiones en paralelo Se dice que los resistores están conectados enSe dice que los resistores están conectados en paraleloparalelo cuando hay más de una trayectoria para la corriente.cuando hay más de una trayectoria para la corriente. 2 Ω 4 Ω 6 Ω Conexión en serie: Para resistores en serie:Para resistores en serie: II22 = I= I44 = I= I66 = I= ITT VV22 + V+ V44 + V+ V66 = V= VTT Conexión en paralelo: 6 Ω2 Ω 4 Ω Para resistores enPara resistores en paralelo:paralelo: VV22 = V= V44 = V= V66 = V= VTT II22 + I+ I44 + I+ I66 = I= ITT
  • 14. Resistencia equivalente: ParaleloResistencia equivalente: Paralelo VVTT = V= V11 = V= V22 = V= V33 IITT = I= I11 + I+ I22 + I+ I33 Ley deLey de Ohm:Ohm: V I R = 31 2 1 2 3 T e VV V V R R R R = + + 1 2 3 1 1 1 1 eR R R R = + + Resistencia equivalente para resistores en paralelo: Resistencia equivalente para resistores en paralelo: 1 1 1N ie iR R= = ∑ Conexión en paralelo: R3R2 VT R1
  • 15. Ejemplo 3.Ejemplo 3. Encuentre la resistencia equivalenteEncuentre la resistencia equivalente RRee para los tres resistores siguientes.para los tres resistores siguientes. R3R2VT R1 2 Ω 4 Ω 6 Ω 1 1 1N ie iR R= = ∑ 1 2 3 1 1 1 1 eR R R R = + + 1 1 1 1 0.500 0.250 0.167 2 4 6eR = + + = + + Ω Ω Ω 1 1 0.917; 1.09 0.917 e e R R = = = Ω Re = 1.09 ΩRe = 1.09 Ω Para resistores en paralelo, Re es menor que la más baja Ri.Para resistores en paralelo, Re es menor que la más baja Ri.
  • 16. Ejemplo 3 (Cont.):Ejemplo 3 (Cont.): Suponga que una fem deSuponga que una fem de 12 V se conecta al circuito que se muestra.12 V se conecta al circuito que se muestra. ¿Cuál es la corriente total que sale de la¿Cuál es la corriente total que sale de la fuente de fem?fuente de fem? R3R2 12 V R1 2 Ω 4 Ω 6 Ω VT VVTT == 12 V;12 V; RRee = 1.09= 1.09 ΩΩ VV11 = V= V22 = V= V33 = 12= 12 VV IITT = I= I11 + I+ I22 + I+ I33 Ley de Ohm:Ley de Ohm: V I R = 12 V 1.09 T e e V I R = = Ω Corriente total: IT = 11.0 A
  • 17. Ejemplo 3 (Cont.):Ejemplo 3 (Cont.): Muestre que la corriente queMuestre que la corriente que sale de la fuentesale de la fuente IITT es la suma de lases la suma de las corrientes a través de los resistorescorrientes a través de los resistores RR11, R, R22 y Ry R33.. R3R2 12 V R1 2 Ω 4 Ω 6 Ω VT IITT == 11 A;11 A; RRee = 1.09= 1.09 ΩΩ VV11 = V= V22 = V= V33 == 12 V12 V IITT = I= I11 + I+ I22 + I+ I33 1 12 V 6 A 2 I = = Ω 2 12 V 3 A 4 I = = Ω 3 12 V 2 A 6 I = = Ω 6 A + 3 A + 2 A = 11 A6 A + 3 A + 2 A = 11 A ¡Compruebe!¡Compruebe!
  • 18. Camino corto: Dos resistores en paraleloCamino corto: Dos resistores en paralelo La resistencia equivalenteLa resistencia equivalente RRee parapara dosdos resistoresresistores en paralelo es elen paralelo es el producto dividido por la sumaproducto dividido por la suma.. 1 2 1 1 1 ; eR R R = + 1 2 1 2 e R R R R R = + (3 )(6 ) 3 6 eR Ω Ω = Ω + Ω Re = 2 ΩRe = 2 Ω Ejemplo:Ejemplo: R2VT R1 6 Ω 3 Ω
  • 19. Combinaciones en serie y en paraleloCombinaciones en serie y en paralelo En circuitos complejos, los resistores conEn circuitos complejos, los resistores con frecuencia se conectanfrecuencia se conectan tanto entanto en serieserie comocomo enen paraleloparalelo.. VT R2 R3 R1 En tales casos, es mejor usar las reglas para resistencias en serie y en paralelo para reducir el circuito a un circuito simple que contenga una fuente de fem y una resistencia equivalente. En tales casos, es mejor usar las reglas para resistencias en serie y en paralelo para reducir el circuito a un circuito simple que contenga una fuente de fem y una resistencia equivalente. VT Re
  • 20. Ejemplo 4.Ejemplo 4. Encuentre la resistencia equivalenteEncuentre la resistencia equivalente para el circuito siguiente (suponga Vpara el circuito siguiente (suponga VTT = 12 V).= 12 V). 3,6 (3 )(6 ) 2 3 6 R Ω Ω = = Ω Ω + Ω RRee = 4= 4 ΩΩ + 2+ 2 ΩΩ Re = 6 ΩRe = 6 Ω VT 3 Ω 6 Ω 4 Ω 12 V 2 Ω 4 Ω 6 Ω12 V
  • 21. Ejemplo 4 (Cont.)Ejemplo 4 (Cont.) Encuentre la corriente totalEncuentre la corriente total IITT.. VT 3 Ω 6 Ω 4 Ω 12 V 2 Ω 4 Ω 6 Ω12 V IT Re = 6 ΩRe = 6 Ω IT = 2.00 AIT = 2.00 A 12 V 6 T e V I R = = Ω
  • 22. Ejemplo 4 (Cont.)Ejemplo 4 (Cont.) Encuentre las corrientes yEncuentre las corrientes y los voltajes a través de cada resistorlos voltajes a través de cada resistor.. I4 = IT = 2 AI4 = IT = 2 A VV44 == (2 A)(4(2 A)(4 ΩΩ) = 8 V) = 8 V El resto del voltaje (12 V – 8 V =El resto del voltaje (12 V – 8 V = 4 V4 V) cae a) cae a través detravés de CADA UNOCADA UNO de los resistores paralelos.de los resistores paralelos. V3 = V6 = 4 VV3 = V6 = 4 V Esto también se puede encontrar de V3,6 = I3,6R3,6 = (2 A)(2 Ω) Esto también se puede encontrar de V3,6 = I3,6R3,6 = (2 A)(2 Ω) VT 3 Ω 6 Ω 4 Ω (Continúa. . .)(Continúa. . .)
  • 23. Ejemplo 4 (Cont.)Ejemplo 4 (Cont.) Encuentre las corrientes y losEncuentre las corrientes y los voltajes a través de cada resistorvoltajes a través de cada resistor.. V6 = V3 = 4 VV6 = V3 = 4 VV4 = 8 VV4 = 8 V VT 3 Ω 6 Ω 4 Ω 3 3 3 4V 3 V I R = = Ω I3 = 1.33 AI3 = 1.33 A 6 6 6 4V 6 V I R = = Ω I6 = 0.667 AI6 = 0.667 A I4 = 2 AI4 = 2 A Note que laNote que la regla del notoregla del noto se satisface:se satisface: IT = I4 = I3 + I6 IT = I4 = I3 + I6ΣI (entra) = ΣI (sale)ΣI (entra) = ΣI (sale)
  • 24. Leyes de Kirchhoff para circuitos CDLeyes de Kirchhoff para circuitos CD Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de lasLa suma de las corrientes que entran a un nodo es igual a lacorrientes que entran a un nodo es igual a la suma de las corrientes que salen del nodo.suma de las corrientes que salen del nodo. Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de lasLa suma de las corrientes que entran a un nodo es igual a lacorrientes que entran a un nodo es igual a la suma de las corrientes que salen del nodo.suma de las corrientes que salen del nodo. Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las fem alrededorLa suma de las fem alrededor de cualquier malla cerrada debe ser igual a la suma dede cualquier malla cerrada debe ser igual a la suma de las caídas de IR alrededor de la misma malla.las caídas de IR alrededor de la misma malla. Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las fem alrededorLa suma de las fem alrededor de cualquier malla cerrada debe ser igual a la suma dede cualquier malla cerrada debe ser igual a la suma de las caídas de IR alrededor de la misma malla.las caídas de IR alrededor de la misma malla. Regla del nodo: ΣI (entra) = ΣI (sale)Regla del nodo: ΣI (entra) = ΣI (sale) Regla de voltaje: ΣE = ΣIRRegla de voltaje: ΣE = ΣIR
  • 25. Convenciones de signos para femConvenciones de signos para fem  Cuando aplique las leyes de Kirchhoff debe suponerCuando aplique las leyes de Kirchhoff debe suponer unauna dirección de seguimientodirección de seguimiento positiva y consistente.positiva y consistente.  Cuando aplique laCuando aplique la regla del voltajeregla del voltaje, las fem son, las fem son positivaspositivas si la dirección de salida normal de la fem essi la dirección de salida normal de la fem es enen la dirección de seguimiento supuesta.la dirección de seguimiento supuesta.  Si el seguimiento es deSi el seguimiento es de A a BA a B,, esta fem se consideraesta fem se considera positivapositiva.. E A B ++  Si el seguimiento es deSi el seguimiento es de B a AB a A,, esta fem se consideraesta fem se considera negativanegativa.. E A B ++
  • 26. Signos de caídas IR en circuitosSignos de caídas IR en circuitos  Cuando aplique laCuando aplique la regla del voltajeregla del voltaje, las, las caíadas IRcaíadas IR sonson positivaspositivas si la dirección de corriente supuestasi la dirección de corriente supuesta eses enen la dirección de seguimiento supuesta.la dirección de seguimiento supuesta.  Si el seguimiento es deSi el seguimiento es de A aA a BB, esta caída IR es, esta caída IR es positivapositiva..  Si el seguimiento es deSi el seguimiento es de B aB a AA, esta caída IR es, esta caída IR es negativanegativa.. I A B ++ I A B ++
  • 27. Leyes de Kirchhoff: Malla ILeyes de Kirchhoff: Malla I R3 R1 R2E2 E1 E3 1. Suponga posibles flujos de1. Suponga posibles flujos de corrientes consistentes.corrientes consistentes. 2. Indique direcciones de salida2. Indique direcciones de salida positivas para fem.positivas para fem. 3. Indique dirección de3. Indique dirección de seguimiento consistenteseguimiento consistente (sentido manecillas del reloj)(sentido manecillas del reloj) + Malla I I1 I2 I3 Regla del nodo: I2 = I1 + I3 Regla del nodo: I2 = I1 + I3 Regla del voltaje: ΣE = ΣIR E1 + E2 = I1R1 + I2R2 Regla del voltaje: ΣE = ΣIR E1 + E2 = I1R1 + I2R2
  • 28. Leyes de Kirchhoff: Malla IILeyes de Kirchhoff: Malla II 4. Regla del voltaje para Malla II:4. Regla del voltaje para Malla II: Suponga dirección deSuponga dirección de seguimiento positivo contra lasseguimiento positivo contra las manecillas del reloj.manecillas del reloj. Regla del voltaje: ΣE = ΣIR E2 + E3 = I2R2 + I3R3 Regla del voltaje: ΣE = ΣIR E2 + E3 = I2R2 + I3R3 R3 R1 R2E2 E1 E3 Malla I I1 I2 I3 Malla II Malla inferior (II) + ¿Se aplicaría la misma¿Se aplicaría la misma ecuación si se siguieraecuación si se siguiera enen sentido de las manecillas delsentido de las manecillas del relojreloj?? - E2 - E3 = -I2R2 - I3R3 - E2 - E3 = -I2R2 - I3R3¡Sí!¡Sí!
  • 29. Leyes de Kirchhoff: Malla IIILeyes de Kirchhoff: Malla III 5. Regla del voltaje para Malla III:5. Regla del voltaje para Malla III: Suponga dirección deSuponga dirección de seguimiento contra lasseguimiento contra las manecillas del reloj.manecillas del reloj. Regla del voltaje: ΣE = ΣIR E3 – E1 = -I1R1 + I3R3 Regla del voltaje: ΣE = ΣIR E3 – E1 = -I1R1 + I3R3 ¿Se aplicaría la misma¿Se aplicaría la misma ecuación si se siguiereecuación si se siguiere enen sentido de las manecillas delsentido de las manecillas del relojreloj?? E3 - E1 = I1R1 - I3R3 E3 - E1 = I1R1 - I3R3¡Sí!¡Sí! R3 R1 R2E2 E1 E3 Malla I I1 I2 I3 Malla II Malla exterior (III) + +
  • 30. Cuatro ecuaciones independientesCuatro ecuaciones independientes 6. Por tanto, ahora se tienen6. Por tanto, ahora se tienen cuatro ecuacionescuatro ecuaciones independientes a partir de lasindependientes a partir de las leyes de Kirchhoff:leyes de Kirchhoff: R3 R1 R2E2 E1 E3 Malla I I1 I2 I3 Malla II Malla exterior (III) + + II22 = I= I11 + I+ I33 EE11 ++ EE22 = I= I11RR11 + I+ I22RR22 EE22 ++ EE33 = I= I22RR22 + I+ I33RR33 EE33 -- EE11 = -I= -I11RR11 + I+ I33RR33
  • 31. Ejemplo 5.Ejemplo 5. Use las leyes de Kirchhoff paraUse las leyes de Kirchhoff para encontrar las corrientes en el circuitoencontrar las corrientes en el circuito siguiente.siguiente. 10 Ω 12 V 6 V 20 Ω 5 Ω Regla del nodo: I2 + I3 = I1 Regla del nodo: I2 + I3 = I1 12 V = (512 V = (5 ΩΩ))II11 + (10+ (10 ΩΩ))II22 Regla del voltaje:Regla del voltaje: ΣΣEE == ΣΣIRIR Considere el seguimiento de laConsidere el seguimiento de la Malla IMalla I en sentido de lasen sentido de las manecillas del relojmanecillas del reloj para obtener:para obtener: Al recordar queAl recordar que V/V/ΩΩ = A= A, se obtiene, se obtiene 5I1 + 10I2 = 12 A5I1 + 10I2 = 12 A I1 I2 I3 + Malla I
  • 32. Ejemplo 5 (Cont.)Ejemplo 5 (Cont.) Encuentre las corrientes.Encuentre las corrientes. 6 V = (206 V = (20 ΩΩ))II33 - (10- (10 ΩΩ))II22 Regla del voltaje:Regla del voltaje: ΣΣEE == ΣΣIRIR Considere el seguimiento de laConsidere el seguimiento de la Malla IIMalla II en sentido de lasen sentido de las manecillas del relojmanecillas del reloj para obtener:para obtener: 10I3 - 5I2 = 3 A10I3 - 5I2 = 3 A 10 Ω 12 V 6 V 20 Ω 5 ΩI1 I2 I3 + Loop IISimplifique: al dividir entre 2Simplifique: al dividir entre 2 yy V/V/ΩΩ = A= A, se obtiene, se obtiene
  • 33. Ejemplo 5 (Cont.)Ejemplo 5 (Cont.) Tres ecuacionesTres ecuaciones independientes se pueden resolver paraindependientes se pueden resolver para II11,, II22 ee II33.. (3) 10I3 - 5I2 = 3 A(3) 10I3 - 5I2 = 3 A 10 Ω 12 V 6 V 20 Ω 5 ΩI1 I2 I3 + Malla II (1) I2 + I3 = I1 (1) I2 + I3 = I1 (2) 5I1 + 10I2 = 12 A(2) 5I1 + 10I2 = 12 A Sustituya la Ec.Sustituya la Ec. (1)(1) parapara II11 enen (2)(2):: 5(5(II22 + I+ I33) + 10) + 10II33 = 12 A= 12 A Al simplificar se obtiene:Al simplificar se obtiene: 5I2 + 15I3 = 12 A5I2 + 15I3 = 12 A
  • 34. Ejemplo 5 (Cont.)Ejemplo 5 (Cont.) Se pueden resolver tresSe pueden resolver tres ecuaciones independientes.ecuaciones independientes. (3) 10I3 - 5I2 = 3 A(3) 10I3 - 5I2 = 3 A(1) I2 + I3 = I1 (1) I2 + I3 = I1 (2) 5I1 + 10I2 = 12 A(2) 5I1 + 10I2 = 12 A 15I3 + 5I2 = 12 A15I3 + 5I2 = 12 A Elimine IElimine I22 al sumar las ecuaciones de la derecha:al sumar las ecuaciones de la derecha: 10I3 - 5I2 = 3 A 15I3 + 5I2 = 12 A 2525II33 == 1515 AA I3 = 0.600 A Al poner IAl poner I33 = 0.6 A en (3) produce:= 0.6 A en (3) produce: 10(0.6 A) – 510(0.6 A) – 5II22 = 3= 3 AA I2 = 0.600 AI2 = 0.600 A Entonces, de (1):Entonces, de (1): I1 = 1.20 AI1 = 1.20 A
  • 35. Resumen de fórmulasResumen de fórmulas Reglas para un circuito de malla sencilla que contiene una fuente de fem y resistores. Reglas para un circuito de malla sencilla que contiene una fuente de fem y resistores. 2 Ω 3 V +- + - 18 V A C B D 3 Ω Malla sencilla Regla de resistencia: Re = ΣR Regla de voltaje: ΣE = ΣIR ∑ ∑= R ICorriente: ε
  • 36. Resumen (Cont.)Resumen (Cont.) Para resistores conectados en serie: Re = R1 + R2 + R3 Re = R1 + R2 + R3 Para conexiones en serie: Para conexiones en serie: I = I1 = I2 = I3 VT = V1 + V2 + V3 I = I1 = I2 = I3 VT = V1 + V2 + V3 Re = ΣRRe = ΣR 2 Ω 12 V 1 Ω3 Ω
  • 37. Resumen (Cont.)Resumen (Cont.) Resistores conectados en paralelo: Para conexiones en paralelo: Para conexiones en paralelo: V = V1 = V2 = V3 IT = I1 + I2 + I3 V = V1 = V2 = V3 IT = I1 + I2 + I3 1 2 1 2 e R R R R R = + 1 1 1N ie iR R= = ∑ R3R2 12 V R1 2 Ω 4 Ω 6 Ω VT Conexión en paralelo
  • 38. Resumen de leyes de KirchhoffResumen de leyes de Kirchhoff Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de las corrientesLa suma de las corrientes que entran a un nodo es igual a la suma de lasque entran a un nodo es igual a la suma de las corrientes que salen de dicho nodo.corrientes que salen de dicho nodo. Primera ley de Kirchhoff:Primera ley de Kirchhoff: La suma de las corrientesLa suma de las corrientes que entran a un nodo es igual a la suma de lasque entran a un nodo es igual a la suma de las corrientes que salen de dicho nodo.corrientes que salen de dicho nodo. Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las femLa suma de las fem alrededor de cualquier malla cerrada debe seralrededor de cualquier malla cerrada debe ser igual a la suma de las caídas de IR alrededor deigual a la suma de las caídas de IR alrededor de esa misma malla.esa misma malla. Segunda ley de Kirchhoff:Segunda ley de Kirchhoff: La suma de las femLa suma de las fem alrededor de cualquier malla cerrada debe seralrededor de cualquier malla cerrada debe ser igual a la suma de las caídas de IR alrededor deigual a la suma de las caídas de IR alrededor de esa misma malla.esa misma malla. Regla del nodo: ΣI (entra) = ΣI (sale)Regla del nodo: ΣI (entra) = ΣI (sale) Regla del voltaje: ΣE = ΣIRRegla del voltaje: ΣE = ΣIR
  • 39. Gracias por su atenciónGracias por su atención