Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Matlab: Discrete Linear Systems

2.873 Aufrufe

Veröffentlicht am

Discrete Linear Systems using Matlab

Veröffentlicht in: Technologie, Business
  • Quite well made presentation, congratulations!
    http://www.bathroomsinkconsoles.net/
    http://www.bathroomsinkconsoles.net/category/bathroom-sink-consoles/
       Antworten 
    Sind Sie sicher, dass Sie …  Ja  Nein
    Ihre Nachricht erscheint hier

Matlab: Discrete Linear Systems

  1. 1. Discrete Linear Systems<br />
  2. 2. Discrete Linear Systems<br />A discrete linear system is a digital implementation of a linear time-invariant system. A linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the general, nonlinear case.<br />
  3. 3. Discrete Linear Systems<br />&gt;&gt; A=[8 -7 6 -5 6 -5 2 -3 2 -1];<br />x=[0 1 0 0 0 0 0 0 0 0 ];<br />B=conv(A,x);<br />subplot(2,3,1); plot(A);<br />subplot(2,3,2); plot(x);<br />subplot(2,3,3); plot(B);<br />x=[0 1 0 0 0 0 0 1 0 0 ];<br />B=conv(A,x);<br />subplot(2,3,4); plot(A);<br />subplot(2,3,5); plot(x);<br />subplot(2,3,6); plot(B);<br />
  4. 4. Discrete Linear Systems<br />
  5. 5. Discrete-Time System Models<br />Transfer Function<br />Zero-Pole-Gain<br />State-Space<br />Partial Fraction Expansion (Residue Form)<br />Second-Order Sections (SOS)<br />Lattice Structure<br />Convolution Matrix<br />
  6. 6. Discrete-Time System Models<br />The transfer functionis a basic z-domain representation of a digital filter, expressing the filter as a ratio of two polynomials.<br />
  7. 7. Discrete-Time System Models<br />The factored or zero-pole-gain form of a transfer function is<br />
  8. 8. Discrete-Time System Models<br />It is always possible to represent a digital filter, or a system of difference equations, as a set of first-order difference equations. In matrix or state-space form, we can write the equations as<br />
  9. 9. Discrete-Time System Models<br />Each transfer function also has a corresponding partial fraction expansion or residue form representation, given by<br />
  10. 10. Discrete-Time System Models<br />Any transfer function H(z) has a second-order sections representation<br />
  11. 11. Discrete-Time System Models<br />The function latc2tf calculates the polynomial coefficients for a filter from its lattice (reflection) coefficients. Given the reflection coefficient vector k(above), the corresponding polynomial form is<br />b = latc2tf(k)<br /> b = 1.0000 0.6149 0.9899 -0.0000 0.0031 -0.0082 <br />The lattice or lattice/ladder coefficients can be used to implement the filter using the function latcfilt.<br />
  12. 12. Discrete-Time System Models<br />Given any vector, the toolbox function convmtx generates a matrix whose inner product with another vector is equivalent to the convolution of the two vectors. The generated matrix represents a digital filter that you can apply to any vector of appropriate length; the inner dimension of the operands must agree to compute the inner product.<br />
  13. 13. Visit more self help tutorials<br />Pick a tutorial of your choice and browse through it at your own pace.<br />The tutorials section is free, self-guiding and will not involve any additional support.<br />Visit us at www.dataminingtools.net<br />

×