Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Virfac® | The Virtual Factory
Virtual Manufacturing Made Real
Simulations of the Surface Heat Treatment of a forged
cranks...
© 2012 - 2016 GeonX – All rights reserved
Private Belgian company incorporatedin October 2012 – 15 employees
Scientific an...
VIRFAC® PRODUCTS
Welding Designer
Fullytransient& highly
accurate thermal-
mechanical-metallurgical
simulationof welding
p...
Virfac ® | www.geonx.com © 2016 GeonX – All rights reserved
PROBLEM STATEMENT
• Stringent demands on fuel efficiency have ...
Virfac ® | www.geonx.com
PROBLEM STATEMENT
• Remedy – hardening the surface of the crankshaft in order to improve fatigue
...
Virfac ® | www.geonx.com
PROBLEM STATEMENT
• The present work models the induction heating and quenching of a journal in
t...
Virfac ® | www.geonx.com
PROCESS CHAIN DESCRIPTION
Stage 1: Surface heating by induction
• Very high heat flux at the surf...
Virfac ® | www.geonx.com
MATERIAL
• 38MnSiV6 steel with the following composition
• Phases present: Ferrite-Pearlite-Baini...
Virfac ® | www.geonx.com
MATERIAL PROPERTIES
40
65
90
0 500 1000 1500 2000
Thermalconductivity(W/mK)
Temperature (°C)
Ther...
Virfac ® | www.geonx.com
SIMULATION SET UP
Two different simulations are carried out:
• Full model – with the entire crank...
Virfac ® | www.geonx.com
SIMULATION SET UP
Thermal cycle:
• Induction Heating
• Hold
• Quench
© 2016 GeonX – All rights re...
Virfac ® | www.geonx.com
SIMULATION SET UP - FIXATION
• The simulations are set up using the Heat Treatment analysis in Vi...
Virfac ® | www.geonx.com
SIMULATION SET UP - FIXATION
• The simulations are set up using the Heat Treatment analysis in Vi...
Virfac ® | www.geonx.com
SIMULATION SET UP – THERMAL LOADS
• Volume flux due to induction heating
• Industrial processes h...
Virfac ® | www.geonx.com
SIMULATION SET UP – THERMAL LOAD HYPOTHESIS
• Constant surface flux of 20 MW.m-2 on one journal s...
Virfac ® | www.geonx.com
SIMULATION SET UP – THERMAL BOUNDARY
CONDITIONS
• Convection is applied on the entire surface
• H...
Virfac ® | www.geonx.com
SIMULATION STRATEGY IN MORFEO
• The Finite Element Solver Morfeo is used for the simulations
• St...
Virfac ® | www.geonx.com
RESULTS
• Temperature field at the beginning of the hold stage
© 2016 GeonX – All rights reserved
Virfac ® | www.geonx.com
RESULTS
• Phases present at the beginning of the hold stage – Austenite
© 2016 GeonX – All rights...
Virfac ® | www.geonx.com
RESULTS
• Phases present at the beginning of the hold stage – FPB
© 2016 GeonX – All rights reser...
Virfac ® | www.geonx.com
RESULTS
• Phases present at the end of the quench stage - Martensite
© 2016 GeonX – All rights re...
Virfac ® | www.geonx.com
RESULTS
• Phases present at the end of the quench stage - FPB
© 2016 GeonX – All rights reserved
Virfac ® | www.geonx.com
RESULTS
• Residual stresses and distortions at the end of the quenching phase
© 2016 GeonX – All ...
Virfac ® | www.geonx.com
RESULTS
Residual stresses profile
Typical residual stressprofile after
inductionhardening[1]
[1] ...
Virfac ® | www.geonx.com
RESULTS – COMPLETE MODEL
• Temperature at the beginning of the hold stage
© 2016 GeonX – All righ...
Virfac ® | www.geonx.com
RESULTS – COMPLETE MODEL
• Temperature at the beginning of the hold stage – identical to the redu...
Virfac ® | www.geonx.com
RESULTS – COMPLETE MODEL
• Residual stresses at the end of the quenching stage
© 2016 GeonX – All...
Virfac ® | www.geonx.com
RESULTS – COMPLETE MODEL
• Residual stresses at the end of the quenching stage
• As expected, res...
Virfac ® | www.geonx.com
RESULTS
• Thermal cycle is approximated using constant heat flux during heating,
and variable hea...
Virfac ® | www.geonx.com
RESULTS – COMPUTING PERFORMANCE
• Reduced model – Nodes: 185’589; Elements: 960’244
• Thermal-met...
Virfac ® | www.geonx.com
CONCLUSIONS
• A heat treatment simulation of the surface hardening of a crankshaft part
was set u...
FURTHER DETAILS
Contact details
Dr. Laurent D’Alvise
Mail: laurent.dalvise@geonx.com
Skype: geonx_
Visit: www.geonx.com
Fo...
Nächste SlideShare
Wird geladen in …5
×

Simulation of the Surface Hardening of a Forged Crankshaft

501 Aufrufe

Veröffentlicht am

Adhish Majumdar of GEONX delivered on 18th May 2016 a presentation on the "Simulation of the Surface Hardening of a Forged Crankshaft using High Performance Computing" at the second edition of the ICOMP conference held at Liège, Belgium.

Veröffentlicht in: Ingenieurwesen
  • Als Erste(r) kommentieren

Simulation of the Surface Hardening of a Forged Crankshaft

  1. 1. Virfac® | The Virtual Factory Virtual Manufacturing Made Real Simulations of the Surface Heat Treatment of a forged crankshaft using High Performance Computing ICOMP’16, 18/05/2016 A. Majumdar, J. Barboza, L. D’Alvise adhish.majumdar@geonx.com www.geonx.com
  2. 2. © 2012 - 2016 GeonX – All rights reserved Private Belgian company incorporatedin October 2012 – 15 employees Scientific and industrial software editing Development of a new generation manufacturing software: • The Virtual Factory, Virfac® powered by Morfeo: powerful user-interface (since 2012) • Morfeo (Manufacturing ORiented Finite Element tOol): parallel FE solver (since 2003 in partnership with Cenaero) The Virtual Factory Virfac® addresses the following processes: •Fusion & Friction Welding (LBW, EBW, FSW,IFW, etc.) •Additive Manufacturing (Cladding, etc.) •Advanced Machining •Damage tolerance anddurability •Heat treatment and Carburizing •Forlarge industrialmechanicalcomponents •Specificallydesigned for High Performance Computing systems •Extensivelytested on industrialand demandingapplications •Within the industrialenvironment (mimetic) GEONX IN A NUTSHELL Virfac® | www.geonx.com
  3. 3. VIRFAC® PRODUCTS Welding Designer Fullytransient& highly accurate thermal- mechanical-metallurgical simulationof welding process Welding Scheduler Time efficientoptimized computationof distortions for long& high numberof welds Welding Mega Time efficientcomputation of massive sheetmetals withan embeddedweld database Heat Treatment & Carburizing An effective heattreatment module combinedwith extremelyquickestimations of carbon diffusioninto workpiece Machining Fast methodologyfor computationof residual distortionsinsmall and large components Crack Propagation Builton XFEM technologies and highlyflexible predictionof crack generation Friction Stir Welding This module is basedon thermo-fluidformulation& can be utilizedforparticle flow calculations Additive Manufacturing Advancedslicingfeatures coupledwith thermo- mechanical-metallurgical analysis © 2012 - 2016 GeonX – All rights reservedVirfac® | www.geonx.com
  4. 4. Virfac ® | www.geonx.com © 2016 GeonX – All rights reserved PROBLEM STATEMENT • Stringent demands on fuel efficiency have driven improvements in performance of several automotive parts including those belonging to the powertrain • Failure in crankshaft is commonly due to fatigue failure [1] Asi,O.(2006).Failureanalysisof a crankshaftmadefromductilecastiron. EngineeringFailureAnalysis,13,1260–1267. Crack locationin a failedcrankshaft[1] Fracture surface showingcrack-initiation (A),fatigue failure (FF) andoverloaded(OL) regions[1]
  5. 5. Virfac ® | www.geonx.com PROBLEM STATEMENT • Remedy – hardening the surface of the crankshaft in order to improve fatigue resistance • Methods – Nitriding, Surface hardening heat treatment [1] Bristiel,P.(2001).Modélisationmagnetothermique,métallurgiqueetmécaniquedela trempesuperficielleaprèschauffageparinduction appliquéeaux vilebrequins.EcoleNationaleSupérieured’Arts etMétiers,CentredeBordeaux. Surface hardeningby inductionheatingand quenching[1] © 2016 GeonX – All rights reserved
  6. 6. Virfac ® | www.geonx.com PROBLEM STATEMENT • The present work models the induction heating and quenching of a journal in the crankshaft – taking into account the physics of the thermal, mechanical and metallurgical phenomena. © 2016 GeonX – All rights reserved
  7. 7. Virfac ® | www.geonx.com PROCESS CHAIN DESCRIPTION Stage 1: Surface heating by induction • Very high heat flux at the surface: 5 – 50 MW.m-2[1] • Heating rates of 1000°C/s or more • Highly localized austenitization in the zone near the surface Stage 2: Hold Stage 3: Water quenching • Austenite converted to Martensite • Accompanying distortions and residual stresses are developed [1] Wanser, S. (1995). Simulationdes phénomènes de chauffage parinduction - Applicationà la trempe superficielle,126. © 2016 GeonX – All rights reserved
  8. 8. Virfac ® | www.geonx.com MATERIAL • 38MnSiV6 steel with the following composition • Phases present: Ferrite-Pearlite-Bainite (FPB) (initial phase), Austenite, Martensite • Phase transformations C Si Mn P S V 0.35-0.4 0.5-0.8 1.2-1.5 0.035max 0.03-0.065 0.08-0.13 FPB Austenite MartensiteKoistinen-Marburger JMAK JMAK JMAK 800 °C 850 °C 300 °C © 2016 GeonX – All rights reserved
  9. 9. Virfac ® | www.geonx.com MATERIAL PROPERTIES 40 65 90 0 500 1000 1500 2000 Thermalconductivity(W/mK) Temperature (°C) Thermal conductivity (W/mK) 0 800 1600 0 200 400 600 800 1000 1200 1400 1600 SpecificHeatCapacity(J/kg.K) Temperature (°C) Specific Heat Capacity (J/kg.K) • Temperature-dependent material properties are provided • Mechanical properties are described using an elasto-plastic power law of the type 𝜎 = 𝜎 𝑌 + 𝐻𝜀 𝑝 𝑁 • The specific heat capacity includes the latent heat of transformation from the low-temperature phases to Austenite © 2016 GeonX – All rights reserved
  10. 10. Virfac ® | www.geonx.com SIMULATION SET UP Two different simulations are carried out: • Full model – with the entire crankshaft geometry • Reduced model – containing a single journal Full model: Nodes: 900’035 Elements: 4’705’964 Analysis: Thermal-Mechanical Reduced model: Nodes: 185’589 Elements: 960’244 Analysis: Thermal- metallurgical-mechanical © 2016 GeonX – All rights reserved
  11. 11. Virfac ® | www.geonx.com SIMULATION SET UP Thermal cycle: • Induction Heating • Hold • Quench © 2016 GeonX – All rights reserved
  12. 12. Virfac ® | www.geonx.com SIMULATION SET UP - FIXATION • The simulations are set up using the Heat Treatment analysis in Virfac® - Virtual Factory developed by GeonX • Types of heat treatment stages available in Virfac Heat Treatment: • Ramp Up/Down • Hold • Carburizing* • Quench © 2016 GeonX – All rights reserved
  13. 13. Virfac ® | www.geonx.com SIMULATION SET UP - FIXATION • The simulations are set up using the Heat Treatment analysis in Virfac® - Virtual Factory developed by GeonX • The ends of the geometry are blocked © 2016 GeonX – All rights reserved
  14. 14. Virfac ® | www.geonx.com SIMULATION SET UP – THERMAL LOADS • Volume flux due to induction heating • Industrial processes have surface flux in the range of 5–50 MW.m-2 [1] • Heating rate of 1000 °C/s in the skin [1] Wanser,S.(1995).Simulation desphénomènes dechauffagepar induction - Applicationà latrempesuperficielle,126. Heat flux in the volume due to induction[1] © 2016 GeonX – All rights reserved
  15. 15. Virfac ® | www.geonx.com SIMULATION SET UP – THERMAL LOAD HYPOTHESIS • Constant surface flux of 20 MW.m-2 on one journal surface © 2016 GeonX – All rights reserved
  16. 16. Virfac ® | www.geonx.com SIMULATION SET UP – THERMAL BOUNDARY CONDITIONS • Convection is applied on the entire surface • Heating + Hold: Constant convection coefficient 20 W.m-2.K-1 • Quenching phase: Variable convection coefficient[1] 0 500 1000 1500 2000 2500 3000 3500 4000 -100 100 300 500 700 900 1100 1300 1500 Heattransfercoefficient(W.m-2.K-1) SurfaceTemperature(°C) [1] Bristiel,P.(2001).Modélisationmagnétothermique, métallurgiqueetmécaniquedela trempesuperficielleaprèschauffageparinduction appliquéeaux vilebrequins.EcoleNationaleSupérieured’Arts etMétiers,CentredeBordeaux. © 2016 GeonX – All rights reserved
  17. 17. Virfac ® | www.geonx.com SIMULATION STRATEGY IN MORFEO • The Finite Element Solver Morfeo is used for the simulations • Staggered coupling between thermal-metallurgical-mechanical calculations • Massively distributed parallel computation © 2016 GeonX – All rights reserved Thermal •Temperature field Phase transformations •Update phase fractions Displacement calculation •Displacement •Stress •Strain Export
  18. 18. Virfac ® | www.geonx.com RESULTS • Temperature field at the beginning of the hold stage © 2016 GeonX – All rights reserved
  19. 19. Virfac ® | www.geonx.com RESULTS • Phases present at the beginning of the hold stage – Austenite © 2016 GeonX – All rights reserved
  20. 20. Virfac ® | www.geonx.com RESULTS • Phases present at the beginning of the hold stage – FPB © 2016 GeonX – All rights reserved
  21. 21. Virfac ® | www.geonx.com RESULTS • Phases present at the end of the quench stage - Martensite © 2016 GeonX – All rights reserved
  22. 22. Virfac ® | www.geonx.com RESULTS • Phases present at the end of the quench stage - FPB © 2016 GeonX – All rights reserved
  23. 23. Virfac ® | www.geonx.com RESULTS • Residual stresses and distortions at the end of the quenching phase © 2016 GeonX – All rights reserved
  24. 24. Virfac ® | www.geonx.com RESULTS Residual stresses profile Typical residual stressprofile after inductionhardening[1] [1] Grum, J. (2001). A review of the influence of grinding conditions on resulting residual stresses after induction surface hardeningand grinding.Journalof Materials Processing Technology,114, 212–226. © 2016 GeonX – All rights reserved
  25. 25. Virfac ® | www.geonx.com RESULTS – COMPLETE MODEL • Temperature at the beginning of the hold stage © 2016 GeonX – All rights reserved
  26. 26. Virfac ® | www.geonx.com RESULTS – COMPLETE MODEL • Temperature at the beginning of the hold stage – identical to the reduced model © 2016 GeonX – All rights reserved
  27. 27. Virfac ® | www.geonx.com RESULTS – COMPLETE MODEL • Residual stresses at the end of the quenching stage © 2016 GeonX – All rights reserved
  28. 28. Virfac ® | www.geonx.com RESULTS – COMPLETE MODEL • Residual stresses at the end of the quenching stage • As expected, residual stresses are underestimated due to missing metallurgy Typical residual stressprofile after inductionhardening[1] [1] Grum, J. (2001). A review of the influence of grinding conditions on resulting residual stresses after induction surface hardeningand grinding.Journalof Materials Processing Technology,114, 212–226. © 2016 GeonX – All rights reserved
  29. 29. Virfac ® | www.geonx.com RESULTS • Thermal cycle is approximated using constant heat flux during heating, and variable heat transfer coefficient during quenching • Martensite is obtained in the skin of the workpiece and the FPB phase is retained in the core • The formation of Martensite in the skin creates compressive stresses in this region, characteristic of surfacehardening treatments • The analysis without metallurgy ignores the effects of transformation plasticity and hardening and thus predicts lower residual stresses and distortions © 2016 GeonX – All rights reserved
  30. 30. Virfac ® | www.geonx.com RESULTS – COMPUTING PERFORMANCE • Reduced model – Nodes: 185’589; Elements: 960’244 • Thermal-metallurgical-mechanical coupling • Shared memory processing: 1 node, 12 processors • Computational time: 18:14 hours or 5:54 minutes per increment • Complete model – Nodes: 900’035; Elements: 4’705’964 • Thermal-mechanical coupling • Distributed memory processing using Virfac Cloud on Bull supercomputing facility Numberof processors Totaltime (hours) Numberof time steps Time perincrement* (minutes) 72 21:32 190 6:48 96 11:05 190 3:31 *Includes overheads such as communicationsand input/outputprocessing © 2016 GeonX – All rights reserved
  31. 31. Virfac ® | www.geonx.com CONCLUSIONS • A heat treatment simulation of the surface hardening of a crankshaft part was set up using Virfac® and carried out using Morfeo • Simulation set up time using Virfac®/HeatTreatment: 15 minutes • A thermal-metallurgical-mechanical coupling simulation was carried out on a reduced model, and a thermal-mechanical coupling simulation on the entire crankshaft geometry • Thanks to distributed parallel computation, results on a full component are obtained in less than 24 hours • Access to a supercomputer was possible due to Virfac® Cloud on Bull infrastructure within a web interface Future work • Modelling induction heating with magneto-thermal coupling • Simulation of crankshaft surface hardening by carburizing/nitriding • Extending the heat treatment to tempering post-induction hardening © 2016 GeonX – All rights reserved
  32. 32. FURTHER DETAILS Contact details Dr. Laurent D’Alvise Mail: laurent.dalvise@geonx.com Skype: geonx_ Visit: www.geonx.com Follow us on Twitter: @geonx_ Virfac ® | www.geonx.com © 2016 GeonX – All rights reserved

×