SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
Intermediate Representations
Control Flow Graphs (CFG)
Don by khalid alsediri
COMP2105
Intermediate Representations(IR)
An intermediate representation is a representation of a program
part way between the source and target language
.
IR use many technique for representation
-Structured (graph or tree-based)
-Flat, tuple-based
-Flat, stack-based
-Or any combination of the above three
Optimization
Code transformations to improve program
-minimize execution time.
-reduce program size .
Must be save, the result program should give same
result to all possible input
Control Flow Graphs(CFG)
A control flow graph (CFG) is a data structure for High level
representation or low level representation .
1. break the big problem into smaller piece which are
manageable
2. To perform machine independent optimizations
3. Can easily find unreachable code
4. Makes syntactic structure (like loops) easy to find
The CFG is a directed graph where the vertices represent
basic blocks and edges represent possible transfer of control
flow from one basic block to another
Building CFG
• We divide the intermediate code of each procedure into basic
blocks. A basic block is a piece of straight line code, i.e. there
are no jumps in or out of the middle of a block.
• The basic blocks within one procedure are organized as a
(control) flow graph, or CFG. A flow-graph has
• basic blocks 𝑩 𝟏· · · 𝑩 𝒏 as nodes,
• a directed edge 𝑩 𝟏 𝑩 𝟐 if control can flow from 𝑩 𝟏 to 𝑩 𝟐.
• Special nodes ENTER and EXIT that are the source and sink
of the graph.
• Inside each basic block can be any of the IRs we’ve seen:
tuples, trees, DAGs, etc.
Building CFG
Building the CFG
• High-level representation
– Control flow is implicit in an AST.
• Low-level representation:
– Nodes represent statements (low-level linear IR)
– Edges represent explicit flow of control
• Program
x = z-2 ;
y = 2*z;
if (c) {
x = x+1;
y = y+1;
}
else {
x = x-1;
y = y-1;
}
z = x+y;
x = z-2 ;
y = 2*z;
if (c)
x = x+1;
y = y+1;
x = x-1;
y = y-1;
z = x+y;
B3
B1
B2
B4
FT
Example high level
1 a := 0
2 b := a * b
3 L1: c := b/d
4 if c < x goto L2
5 e := b / c
6 f := e + 1
7 L2: g := f
8 h := t - g
9 if e > 0 goto L3
10 goto L1
11 L3: return
a := 0
b := a * b
c := b/d
if c < x
e := b / c
f := e + 1
g := f
h := t - g
if e > 0
goto return
B1
B2
B3
B4
B6 B5
Low level example
---------Source Code-----------------------
X := 20; WHILE X < 10 DO
X := X-1; A[X] := 10;
IF X = 4 THEN X := X - 2; ENDIF;
ENDDO; Y := X + 5;
---------Intermediate Code---------------
(1) X := 20
(2) if X>=10 goto (8)
(3) X := X-1
(4) A[X] := 10
(5) if X<>4 goto (7)
(6) X := X-2
(7) goto (2)
(8) Y := X+5
X := 20
Y := X+5
goto B2
X := X-2
X := X-1
(4) A[X] := 10
(5) if X<>4 goto B6
if X>=10 goto B4
B1
B2
B4B3
B5
B6
Building basic blocks algorithm
• Identify leaders
1-The first instruction in a procedure, or
2-The target of any branch, or
3-An instruction immediately following a branch (implicit target)
• For each leader, its basic block is the leader
and all statements up to, but not including, the
next leader or the end of the program.
Building basic blocks algorithm
• Input: List of n instructions (instr[i] =𝑖 𝑡ℎ instruction),
A sequence of intermediate code statements
Output: Set of leaders & list of basic blocks
(block[x] is block with leader x)
leaders = {1} // First instruction is a leader
for i = 1 to n // Find all leaders
if instr[i] is a branch
leaders = leaders ∪ set of potential targets of instr[i]
foreach x ∈ leaders //each leader is leader of it self
block[x] = { x }
i = x+1 // Fill out x’s basic block
while i ≤ n and i ∉ leaders
block[x] = block[x] ∪ { i }
i = i + 1
Building basic blocks algorithm
1 a := 0
2 b := a * b
3 L1: c := b/d
4 if c < x got L2
5 e := b / c
6 f := e + 1
7 L2: g := f
8 h := t - g
9 if e > 0 goto L3
10 goto L1
11 L3: return
Building basic blocks algorithm
1 a := 0
2 b := a * b
3 L1: c := b/d
4 if c < x got L2
5 e := b / c
6 f := e + 1
7 L2: g := f
8 h := t - g
9 if e > 0 goto L3
10 goto L1
11 L3: return
Leaders?
– {1, 3, 5, 7, 10, 11}
Blocks?
– {1, 2}
– {3, 4}
– {5, 6}
– {7, 8, 9}
– {10}
– {11}
Building CFG
• Input: A list of m basic blocks (block)
Output: A CFG where each node is a basic block
for i = 1 to m
x = last instruction of block[i]
if instr x is a branch
for each target (to block j) of instr x
create an edge from block i to block j
if instr x is not an unconditional branch
create an edge from block i to block i+1
Building basic blocks algorithm
1 a := 0
2 b := a * b
3 L1: c := b/d
4 if c < x got L2
5 e := b / c
6 f := e + 1
7 L2: g := f
8 h := t - g
9 if e > 0 goto L3
10 goto L1
11 L3: return
Leaders?
– {1, 3, 5, 7, 10, 11}
Blocks?
– {1, 2}
– {3, 4}
– {5, 6}
– {7, 8, 9}
– {10}
– {11}
1 a := 0
2 b := a * b
3 L1: c := b/d
4 if c < x got L2
5 e := b /
c
6 f := e +
1
7 L2: g := f
8 h := t - g
9 if e > 0 goto
L3
10 goto
L1
11 L3:
return
Variation of CFG
• Extended basic blocks
-A maximal sequence of instructions that
-has no merge points in it (except perhaps in the leader)
-Single entry, multiple exits
• Reverse extended basic blocks
-Useful for “backward flow” problems
Reference
• Modern Compilers: Theory , V. Krishna Nandivada,
2015,http://www.cse.iitm.ac.in/~krishna/courses/2015/even-
cs6013/lecture4.pdf ,accessed(19-14-2016).
• Introduction to Compilers,Tim
Teitelbaum,2008,http://www.cs.cornell.edu/courses/cs412/2008sp/l
ectures/lec24.pdf,accessed(19-14-2016).
• Modern Programming Language Implementation , E Christopher
Lewis ,2006,http://www.cis.upenn.edu/~cis570/slides/lecture03.pdf,
accessed(19-14-2016).

Weitere ähnliche Inhalte

Was ist angesagt?

8 queens problem using back tracking
8 queens problem using back tracking8 queens problem using back tracking
8 queens problem using back tracking
Tech_MX
 

Was ist angesagt? (20)

COCOMO model
COCOMO modelCOCOMO model
COCOMO model
 
Waterfall model
Waterfall modelWaterfall model
Waterfall model
 
Waterfall model ppt final
Waterfall model ppt  finalWaterfall model ppt  final
Waterfall model ppt final
 
Agile Development | Agile Process Models
Agile Development | Agile Process ModelsAgile Development | Agile Process Models
Agile Development | Agile Process Models
 
Software Engineering unit 2
Software Engineering unit 2Software Engineering unit 2
Software Engineering unit 2
 
software Engineering process
software Engineering processsoftware Engineering process
software Engineering process
 
Unified process Model
Unified process ModelUnified process Model
Unified process Model
 
Compiler lec 8
Compiler lec 8Compiler lec 8
Compiler lec 8
 
Spiral model presentation
Spiral model presentationSpiral model presentation
Spiral model presentation
 
Agile development, software engineering
Agile development, software engineeringAgile development, software engineering
Agile development, software engineering
 
Software Engineering Layered Technology Software Process Framework
Software Engineering  Layered Technology Software Process FrameworkSoftware Engineering  Layered Technology Software Process Framework
Software Engineering Layered Technology Software Process Framework
 
Lexical analyzer generator lex
Lexical analyzer generator lexLexical analyzer generator lex
Lexical analyzer generator lex
 
Parsing (Automata)
Parsing (Automata)Parsing (Automata)
Parsing (Automata)
 
Software Engineering Unit 1
Software Engineering Unit 1Software Engineering Unit 1
Software Engineering Unit 1
 
8 queens problem using back tracking
8 queens problem using back tracking8 queens problem using back tracking
8 queens problem using back tracking
 
Slides chapters 26-27
Slides chapters 26-27Slides chapters 26-27
Slides chapters 26-27
 
Graph coloring using backtracking
Graph coloring using backtrackingGraph coloring using backtracking
Graph coloring using backtracking
 
White Box Testing
White Box TestingWhite Box Testing
White Box Testing
 
Chomsky classification of Language
Chomsky classification of LanguageChomsky classification of Language
Chomsky classification of Language
 
Path testing, data flow testing
Path testing, data flow testingPath testing, data flow testing
Path testing, data flow testing
 

Ähnlich wie Control Flow Graphs

EMBEDDED SYSTEMS 4&5
EMBEDDED SYSTEMS 4&5EMBEDDED SYSTEMS 4&5
EMBEDDED SYSTEMS 4&5
PRADEEP
 
ESL Anyone?
ESL Anyone? ESL Anyone?
ESL Anyone?
DVClub
 
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptxLecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
wafawafa52
 
Archi Modelling
Archi ModellingArchi Modelling
Archi Modelling
dilane007
 

Ähnlich wie Control Flow Graphs (20)

Lecture03
Lecture03Lecture03
Lecture03
 
Principal Sources of Optimization in compiler design
Principal Sources of Optimization in compiler design Principal Sources of Optimization in compiler design
Principal Sources of Optimization in compiler design
 
Code Optimization.ppt
Code Optimization.pptCode Optimization.ppt
Code Optimization.ppt
 
CS540-2-lecture11 - Copy.ppt
CS540-2-lecture11 - Copy.pptCS540-2-lecture11 - Copy.ppt
CS540-2-lecture11 - Copy.ppt
 
ERTS UNIT 3.ppt
ERTS UNIT 3.pptERTS UNIT 3.ppt
ERTS UNIT 3.ppt
 
Code optimization lecture
Code optimization lectureCode optimization lecture
Code optimization lecture
 
EMBEDDED SYSTEMS 4&5
EMBEDDED SYSTEMS 4&5EMBEDDED SYSTEMS 4&5
EMBEDDED SYSTEMS 4&5
 
Compiler unit 4
Compiler unit 4Compiler unit 4
Compiler unit 4
 
Code optimization in compiler design
Code optimization in compiler designCode optimization in compiler design
Code optimization in compiler design
 
Control Flow Analysis
Control Flow AnalysisControl Flow Analysis
Control Flow Analysis
 
ESL Anyone?
ESL Anyone? ESL Anyone?
ESL Anyone?
 
vlsi design using verilog presentaion 1
vlsi design using verilog   presentaion 1vlsi design using verilog   presentaion 1
vlsi design using verilog presentaion 1
 
Lcdf4 chap 03_p2
Lcdf4 chap 03_p2Lcdf4 chap 03_p2
Lcdf4 chap 03_p2
 
1.ppt
1.ppt1.ppt
1.ppt
 
Boosting Developer Productivity with Clang
Boosting Developer Productivity with ClangBoosting Developer Productivity with Clang
Boosting Developer Productivity with Clang
 
Part II: LLVM Intermediate Representation
Part II: LLVM Intermediate RepresentationPart II: LLVM Intermediate Representation
Part II: LLVM Intermediate Representation
 
Basic Block
Basic BlockBasic Block
Basic Block
 
Verilogforlab
VerilogforlabVerilogforlab
Verilogforlab
 
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptxLecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
 
Archi Modelling
Archi ModellingArchi Modelling
Archi Modelling
 

Kürzlich hochgeladen

Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 

Kürzlich hochgeladen (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 

Control Flow Graphs

  • 1. Intermediate Representations Control Flow Graphs (CFG) Don by khalid alsediri COMP2105
  • 2. Intermediate Representations(IR) An intermediate representation is a representation of a program part way between the source and target language . IR use many technique for representation -Structured (graph or tree-based) -Flat, tuple-based -Flat, stack-based -Or any combination of the above three
  • 3. Optimization Code transformations to improve program -minimize execution time. -reduce program size . Must be save, the result program should give same result to all possible input
  • 4. Control Flow Graphs(CFG) A control flow graph (CFG) is a data structure for High level representation or low level representation . 1. break the big problem into smaller piece which are manageable 2. To perform machine independent optimizations 3. Can easily find unreachable code 4. Makes syntactic structure (like loops) easy to find The CFG is a directed graph where the vertices represent basic blocks and edges represent possible transfer of control flow from one basic block to another
  • 5. Building CFG • We divide the intermediate code of each procedure into basic blocks. A basic block is a piece of straight line code, i.e. there are no jumps in or out of the middle of a block. • The basic blocks within one procedure are organized as a (control) flow graph, or CFG. A flow-graph has • basic blocks 𝑩 𝟏· · · 𝑩 𝒏 as nodes, • a directed edge 𝑩 𝟏 𝑩 𝟐 if control can flow from 𝑩 𝟏 to 𝑩 𝟐. • Special nodes ENTER and EXIT that are the source and sink of the graph. • Inside each basic block can be any of the IRs we’ve seen: tuples, trees, DAGs, etc.
  • 7. Building the CFG • High-level representation – Control flow is implicit in an AST. • Low-level representation: – Nodes represent statements (low-level linear IR) – Edges represent explicit flow of control
  • 8. • Program x = z-2 ; y = 2*z; if (c) { x = x+1; y = y+1; } else { x = x-1; y = y-1; } z = x+y; x = z-2 ; y = 2*z; if (c) x = x+1; y = y+1; x = x-1; y = y-1; z = x+y; B3 B1 B2 B4 FT Example high level
  • 9. 1 a := 0 2 b := a * b 3 L1: c := b/d 4 if c < x goto L2 5 e := b / c 6 f := e + 1 7 L2: g := f 8 h := t - g 9 if e > 0 goto L3 10 goto L1 11 L3: return a := 0 b := a * b c := b/d if c < x e := b / c f := e + 1 g := f h := t - g if e > 0 goto return B1 B2 B3 B4 B6 B5 Low level example
  • 10. ---------Source Code----------------------- X := 20; WHILE X < 10 DO X := X-1; A[X] := 10; IF X = 4 THEN X := X - 2; ENDIF; ENDDO; Y := X + 5; ---------Intermediate Code--------------- (1) X := 20 (2) if X>=10 goto (8) (3) X := X-1 (4) A[X] := 10 (5) if X<>4 goto (7) (6) X := X-2 (7) goto (2) (8) Y := X+5 X := 20 Y := X+5 goto B2 X := X-2 X := X-1 (4) A[X] := 10 (5) if X<>4 goto B6 if X>=10 goto B4 B1 B2 B4B3 B5 B6
  • 11. Building basic blocks algorithm • Identify leaders 1-The first instruction in a procedure, or 2-The target of any branch, or 3-An instruction immediately following a branch (implicit target) • For each leader, its basic block is the leader and all statements up to, but not including, the next leader or the end of the program.
  • 12. Building basic blocks algorithm • Input: List of n instructions (instr[i] =𝑖 𝑡ℎ instruction), A sequence of intermediate code statements Output: Set of leaders & list of basic blocks (block[x] is block with leader x) leaders = {1} // First instruction is a leader for i = 1 to n // Find all leaders if instr[i] is a branch leaders = leaders ∪ set of potential targets of instr[i] foreach x ∈ leaders //each leader is leader of it self block[x] = { x } i = x+1 // Fill out x’s basic block while i ≤ n and i ∉ leaders block[x] = block[x] ∪ { i } i = i + 1
  • 13. Building basic blocks algorithm 1 a := 0 2 b := a * b 3 L1: c := b/d 4 if c < x got L2 5 e := b / c 6 f := e + 1 7 L2: g := f 8 h := t - g 9 if e > 0 goto L3 10 goto L1 11 L3: return
  • 14. Building basic blocks algorithm 1 a := 0 2 b := a * b 3 L1: c := b/d 4 if c < x got L2 5 e := b / c 6 f := e + 1 7 L2: g := f 8 h := t - g 9 if e > 0 goto L3 10 goto L1 11 L3: return Leaders? – {1, 3, 5, 7, 10, 11} Blocks? – {1, 2} – {3, 4} – {5, 6} – {7, 8, 9} – {10} – {11}
  • 15. Building CFG • Input: A list of m basic blocks (block) Output: A CFG where each node is a basic block for i = 1 to m x = last instruction of block[i] if instr x is a branch for each target (to block j) of instr x create an edge from block i to block j if instr x is not an unconditional branch create an edge from block i to block i+1
  • 16. Building basic blocks algorithm 1 a := 0 2 b := a * b 3 L1: c := b/d 4 if c < x got L2 5 e := b / c 6 f := e + 1 7 L2: g := f 8 h := t - g 9 if e > 0 goto L3 10 goto L1 11 L3: return Leaders? – {1, 3, 5, 7, 10, 11} Blocks? – {1, 2} – {3, 4} – {5, 6} – {7, 8, 9} – {10} – {11} 1 a := 0 2 b := a * b 3 L1: c := b/d 4 if c < x got L2 5 e := b / c 6 f := e + 1 7 L2: g := f 8 h := t - g 9 if e > 0 goto L3 10 goto L1 11 L3: return
  • 17. Variation of CFG • Extended basic blocks -A maximal sequence of instructions that -has no merge points in it (except perhaps in the leader) -Single entry, multiple exits • Reverse extended basic blocks -Useful for “backward flow” problems
  • 18. Reference • Modern Compilers: Theory , V. Krishna Nandivada, 2015,http://www.cse.iitm.ac.in/~krishna/courses/2015/even- cs6013/lecture4.pdf ,accessed(19-14-2016). • Introduction to Compilers,Tim Teitelbaum,2008,http://www.cs.cornell.edu/courses/cs412/2008sp/l ectures/lec24.pdf,accessed(19-14-2016). • Modern Programming Language Implementation , E Christopher Lewis ,2006,http://www.cis.upenn.edu/~cis570/slides/lecture03.pdf, accessed(19-14-2016).