SlideShare ist ein Scribd-Unternehmen logo
1 von 90
Chemical Kinetics
• Expression of rates.
• Stoichiometric relationships of rates of different
substances in a reaction.
• Determination of reaction orders, rate laws, and rate
constant by method of initial rate.
• Determination of rate laws by graphical or integration
method.
• Determination of half-lives
• Determination of activation energy
• Elementary steps and reaction mechanism
• Effect of catalysts
Chemical Kinetics
• The study of reaction rates;
– How fast does a reaction proceeds and what
factors affecting it;
– A measure of the change of the concentration of a
reactant (or a product) as a function of time.
• The study of rate yields information on the
mechanism by which a reaction occurs at
molecular level.
Types of Rates
• Initial Rates
– Rates measured at the beginning of the reaction,
which is dependent on the initial concentrations of
reactants.
• Instantaneous Rates
– Rates measured at any point during the reaction.
• Average Rates
– An overall rate measured over a period or time
interval.
Rate of reaction between phenolphthalein with
excess base.
• Experimental Data for the Reaction Between Phenolphthalein and Base
• Concentration of
Phenolphthalein (M) Time (s)
– 0.0050 0.0
– 0.0045 10.5
– 0.0040 22.3
– 0.0035 35.7
– 0.0030 51.1
– 0.0025 69.3
– 0.0020 91.6
– 0.0015 120.4
– 0.0010 160.9
– 0.00050 230.3
– 0.00025 299.6
– 0.00015 350.7
– 0.00010 391.2
Instantaneous Rate:
Rate of decrease in [Phenolphthalein]
Instantaneous Rate
• Value of the rate at a particular time.
• Can be obtained by computing the slope
of a line tangent to the curve at that
point.
The Decomposition of Nitrogen Dioxide
The Decomposition of Nitrogen Dioxide
Average Rate
• Consider the following reaction at 300o
C:
2 NO2(g)  2 NO(g) + O2(g)
• The initial concentration of NO2 is 0.0100 mol/L and
its concentration after 150 s is 0.0055 mol/L. What
are the average rates of this reaction during the first
150 s and during the second 150 s?
Average rate during the first 150 s
• Solution:
• Average rate =
• =
• =
• = 3.0 x 10-5
mol/(L.s)
t
]
[NO
- 2


s
150
mol/L)
0.0100
-
mol/L
(0.0055
-
s
150
mol/L
0.0045
Average rate during the second 150 s
• Solution:
• Average rate =
• =
• =
• = 1.1 x 10-5
mol/(L.s)
• Average rate decreases as reaction progresses
because the reactant concentration has decreased
t
]
[NO
- 2


s
150
mol/L)
0.0055
-
mol/L
(0.0038
-
s
150
mol/L
0.0017
Rate Law
• Shows how the rate depends on the
concentrations of reactants.
• For the decomposition of nitrogen dioxide:
2NO2(g) → 2NO(g) + O2(g)
Rate = k[NO2]n:
 k = rate constant
 n = order of the reactant
Rate Law
Rate = k[NO2]n
• The concentrations of the products do not
appear in the rate law because the reaction
rate is being studied under conditions where
the reverse reaction does not contribute to the
overall rate.
Rate Law
Rate = k[NO2]n
• The value of the exponent n must be
determined by experiment; it cannot be
written from the balanced equation.
Rate Law
• An expression or equation that relates the rate
of reaction to the concentrations of reactants at
constant temperature.
• For the reaction:
R1 + R2 + R3  Products
Rate = k[R1]x
[R2]y
[R3]z
Where k = rate constant; x, y, and z are the rate orders
with respect to individual reactants. Rate orders are
determined experimentally.
Types of Rate Laws
• Differential Rate Law (rate law) – shows
how the rate of a reaction depends on
concentrations.
• Integrated Rate Law – shows how the
concentrations of species in the reaction
depend on time.
Rate Laws: A Summary
• Our rate laws involve only concentrations of
reactants, because we typically consider
reactions only under conditions where the
reverse reaction is unimportant,
Rate Laws: A Summary
• Experimental convenience usually dictates
which type of rate law is determined
experimentally.
• Knowing the rate law for a reaction is
important mainly because we can usually infer
the individual steps involved in the reaction
from the specific form of the rate law.
Rate Order
• The power or exponent of the concentration of
a given reactant in the rate law. It indicates the
degree in which the rate depends on the
concentration of that particular reactant.
• The sum of the powers of the concentrations is
referred to as the overall order for the reaction.
Expressions of Reaction Rates and Their
Stoichiometric Relationships
• Consider the reaction:
2N2O5  4NO2 + O2
• Rate of disappearance of N2O5 =
• Rate of formation of NO2 =
• Rate of formation of O2 =
• Stoichiometric relationships of these rates
•
t
]
NO
[ 2


t
]
[O2


t
]
O
[N 5
2



t
]
[O
)
t
]
NO
[
(
4
1
)
t
]
O
[N
(
2
1 2
2
5
2









Expressions of Reaction Rates
• For a general reaction,
aA + bB  cC + dD,
• the reaction rate can be written in a number of
different but equivalent ways,
Rate Laws
• For a general reaction,
aA + bB + eE  Products
• The rate law for this reaction takes the form:
• where k is called the "rate constant."
• x, y, and z, are small whole numbers or simple
fractions and they are the rate order with respect to
[A], [B], and [E]. The sum of x + y + z + . . . is called
the “overall order" of the reaction.
Types of Rate Laws
• Consider a general reaction:
aA + bB  Products
• The rate law is expressed as,
Rate = k[A]x
[B]y
,
Where the exponents x and y are called the rate
order of the reaction w.r.t. the respective reactants;
These exponents are usually small integers or simple
fractions.
Types of Rate Laws
1. Zero-Order Reactions
1. In a zero order reaction the rate does not depend
on the concentration of reactant,
2. For example, the decomposition of HI(g) on a
gold catalyst is a zero-order reaction;
3. 2 HI(g)  H2(g) + I2(g)
4. Rate = k[HI]0
= k;
(The rate is independent on the concentration of HI)
Types of Rate Laws
• First Order Reactions
In a first order reaction the rate is proportional to
the concentration of one of the reactants.
Example, for first-order reaction:
2N2O5(g)  4NO2(g) + O2(g)
• Rate = k[N2O5],
The rate of decomposition of N2O5 is proportional
to [N2O5], the molar concentration of N2O5
Types of Rate Laws
• Second Order Reactions
In a second order reaction, the rate is proportional
to the second power of the concentration of one of
the reactants.
Example, for the decomposition of NO2 follows
second order w.r.t. [NO2]
2NO2(g)  2NO(g) + O2(g)
• Rate = k[NO2]2
Determination of Rate Law using Initial Rate
• Consider the following reaction:
S2O8
2-
(aq) + 3I-
(aq)  2SO4
2-
(aq) + I3
-
(aq)
Determination of Rate Law using Initial Rate
Reaction: S2O8
2-
(aq) + 3I-
(aq)  2SO4
2-
(aq) + I3
-
(aq)
• The following data were obtain.
• 
• Expt. [S2O8
2-
] [I-
] Initial Rate,
• # (mol/L) (mol/L) (mol/L.s)
• 
• 1 0.036 0.060 1.5 x 10-5
• 2 0.072 0.060 2.9 x 10-5
• 3 0.036 0.120 2.9 x 10-5
• 
Determination of Rate Law using Initial Rate
Reaction: S2O8
2-
(aq) + 3I-
(aq)  2SO4
2-
(aq) + I3
-
(aq)
• (a) Determine the order of the reaction w.r.t. each
reactant. Write the rate law for the above reaction.
• (b) Calculate the rate constant, k, and give its
appropriate units.
• (c) Calculate the reaction rate when each reactant
concentration is 0.20 M
Determination of Rate Law using Initial Rate
• Solution: The rate law = Rate = k[S2O8
2-
]x
[I-
]y
,
here x and y are rate orders.
• (a) Calculation of rate order, x:
•
1
2
2
~
mol/L.s
10
x
1.5
mol/L.s
10
x
2.9
2
)
060
.
0
(
)
036
.
0
(
)
060
.
0
(
)
072
.
0
(
]
[I
]
O
[S
]
I
[
]
O
[S
5
-
5
-
1
-
1
-
2
8
2
3
-
2
-
2
8
2






y
M
M
k
M
M
k
k
k
x
x
y
x
y
x
y
x
y
x
Determination of Rate Law using Initial Rate
• (b) Calculation of rate order, y:
•
• This reaction is first order w.r.t. [S2O8
2-
] and [I-
]
• Rate = k[S2O8
2-
][I-
]
1
2
2
~
mol/L.s
10
x
1.5
mol/L.s
10
x
2.9
2
)
060
.
0
(
)
036
.
0
(
)
120
.
0
(
)
036
.
0
(
]
[I
]
O
[S
]
I
[
]
O
[S
5
-
5
-
1
-
-
2
8
2
3
-
-
2
8
2






y
M
M
k
M
M
k
k
k
y
y
y
x
y
x
y
x
y
x
Calculating rate constant and rate at different
concentrations of reactants
• Rate constant, k =
• = 6.6 x 10-3
L.mol-1
.s-1
• If [S2O8
2-
] = 0.20 M, [I-
] = 0.20 M, and
– k = 6.6 x 10-3
L.mol-1
.s-1
• Rate = (6.6 x 10-3
L.mol-1
.s-1
)(0.20 mol/L)2
• = 2.6 x 10-4
mol/(L.s)
mol/L)
60
mol/L)(0.0
(0.038
mol/L
10
x
1.5 -5
Integrated Rate Law
• Graphical method to derive the rate law
of a reaction:
• Consider a reaction with single reactant:
• R  Products
• If the reaction is zero-order w.r.t. [R],
• Then,
k
Rate
t
[R]
-




Graphical Method for Zero-Order Reaction
k
Rate
t
[R]
-




[R] = -kt, and [R]t = [R]0 = kt;
A plot of [R]t versus t yields a straight
line with k = -slope.
Various Plots for Zero Order Reactions
Graph of Zero-order Reactions
• Plot of [R]t versus t:
[R]t
t
slope = -k
Graphical Method for First Order Reactions
• If the reaction: R  Products is a first order
reaction, then
• Which yields:
• And a plot of ln[R]t versus t will yield a straight line
with slope = -k and y-intercept = ln[R]0
[R]
t
[R]
-
k
Rate 



t
-
ln[R]
ln[R]
t;
-
[R]
[R]
0
t k
k 


Graph of First Order Reactions
Plot of ln]R]t versus t:
ln[R]t
t
slope = -k
Plots of [A] and ln[A] versus time for First Order
Reactions
Various Plots for First Order Reactions
Graphical Method for Second Order Reactions
• If the reaction: R  Products follows second-
order kinetics, then
• or
•
• and
• A plot of 1/[R]t versus t will yield a straight line
with slope = k and y-intercept = 1/[R]0
2
[R]
t
[R]
-
k
Rate 


 t
[R]
[R]
2



k
[R]
1
t
[R]
1
0
t

 k
Various Plots for Second Order Reactions
Graph of Second-order Reactions
• Plot of 1/[R]t versus time:
t
R]
[
1
time
slope = k
Plots of concentration versus time for first
and second order reactions
Plots of ln[Concentration] versus time
Plots of 1/[Concn.] versus time
Characteristics of plots for zero, first, and second
order reactions
• The graph that is linear indicates the order of the
reaction with respect to A (reactant):
• For a zero order reaction, Rate = k (k = - slope)
• For a 1st order reaction, Rate = k[A] (k = - slope)
• For a 2nd order reaction, Rate = k[A]2
(k = slope)
• For zero-order reaction, half-life, t1/2 = [R]0/2k;
• For first order reaction, half-life, t1/2 = 0.693/k;
• For second order reaction, half-life, t1/2 = 1/k[R]0;
Half-Lives of Reactions
• For zero-order reaction: t1/2 = [R]0/2k;
• For first-order reaction: t1/2 = 0.693/k;
• For second-order reaction: t1/2 = 1/(k[R]0)
• Note: For first-order reaction, the half-life is
independent of the concentration of reactant, but for
zero-order and second-order reactions, the half-lives
are dependent on the initial concentrations of the
reactants.
Half-Life of Reactions
Rate Laws
Summary of the Rate Laws
Exercise
Consider the reaction aA  Products.
[A]0 = 5.0 M and k = 1.0 x 10–2 (assume the
units are appropriate for each case). Calculate
[A] after 30.0 seconds have passed, assuming
the reaction is:
a) Zero order
b) First order
c) Second order
4.7 M
3.7 M
2.0 M
Reaction Mechanism
• The detail pictures of how a given reaction occurs at
molecular level
• It consists of a set of elementary steps that shows
probable reactions involving molecular species –
including reaction intermediates.
• The sum of these elementary steps yields the overall
balanced equation for the reaction.
Elementary Steps
• For example, the overall reaction:
2A + B  C + D
• may involves the following elementary steps in
its mechanism:
• Step-1: A + B  X;
• Step-2: X + A  Y;
• Step-3: Y  C + D
• Overall reaction: 2A + B  C + D;
Molecularity in Elementary Steps
• Molecularity in the number of molecular species that react in
an elementary process.
• Rate Law for Elementary Processes:
• Elementary Reactions Molecularity Rate Law
• 
• A  product Unimolecular Rate = k[A]
• 2A  product Bimolecular Rate = k[A]2
• A + B  product Bimolecular Rate = k[A][B]
• 2A + B  product Termolecular Rate = k[A]2
[B]
• 
A Molecular Representation of the Elementary
Steps in the Reaction of NO2 and CO
NO2(g) + CO(g) → NO(g) + CO2(g)
Reaction Mechanism
• Step-1: NO2 + NO2  NO3 + NO
• Step-2: NO3 + CO  NO2 + CO2
• Overall: NO2 + CO  NO + CO2
• The experimental rate law is Rate = k[NO2]2
• Which implies that the above reaction is second-order
w.r.t. NO2 , but is zero-order in [CO].
• The sum of the elementary steps
must give the overall balanced
equation for the reaction.
• The mechanism must agree with the
experimentally determined rate law.
Reaction Mechanism Requirements
Decomposition of N2O5
Decomposition of N2O5
2N2O5(g)  4NO2(g) + O2(g)
Step 1: N2O5 ⇌ NO2 + NO3 (fast)
Step 2: NO2 + NO3 → NO + O2 + NO2 (slow)
Step 3: NO3 + NO → 2NO2 (fast)
A Model for Chemical Reactions
For a reaction to occur:
1. Reactant molecules must collide;
2. Molecular collisions must occur with proper
orientations;
3. Collisions must be energetic and lead to the
formation of the transition-state complex;
4. The rate of formation of the transition-state
complex is the rate determining step;
5. The transition-state complex eventually leads to
the formation of products;
A Model for Reaction Kinetics
• All chemical reactions proceed through a transition-state
complex;
• An energy barrier called activation energy (Ea) must be
overcome to change reactants to the transition-state.
• The rate of formation of transition-state is the rate-
determining step for the overall reaction;
• The rate of formation of transition-state is dependent:
– on the frequency of effective molecular collisions, which
depends on the reactants concentrations;
– on the fraction of molecules with sufficient kinetic energy
to overcome the energy barrier, and
– on the reaction temperature
Transition States and Activation Energy
Change in Potential Energy
• Collision must involve enough energy to
produce the reaction (must equal or
exceed the activation energy).
• Relative orientation of the reactants must
allow formation of any new bonds
necessary to produce products.
For Reactants to Form Products
The Gas Phase Reaction of NO and Cl2
Dependence of Rate on Concentration
• This is contained in the rate law – that is, for
reaction:
aA + bB + cC  Products
Rate = k[A]x
[B]y
[C]z
;
Dependence of Rate on Temperature
• Rate depends on the fraction of “effective collisions”
per unit time.
– (Effective collisions are those with proper orientation and
sufficient energy to overcome activation energy Ea barrier.
• Thus rate depends on the activation energy and
temperature, such that,
– Higher activation energy implies high barrier and fewer
reactant molecules will form the transition-state complex.
This leads to a slower rate of reaction;
– Higher temperature results in a larger fraction of reactant
molecules with sufficient energy to overcome the energy
barrier. This leads to a faster rate of reaction.
Energy Profile of Endothermic Reaction
Energy Profile for Exothermic Reaction
Relationships between rate, rate constant,
activation energy, & temperature.
• Rate is dependent on rate constant, which is the
proportionality constant that relates rate to
concentrations (as depicted in the rate law).
• While rate constant is related to activation energy and
temperature by the Arrhenius equation:
• k = Ae-Ea/RT
• where A is Arrhenius collisional frequency factor, T is
the Kelvin temperature, and R is gas constant (R =
8.314 J/K.mol)
Graphical relationships of k, Ea, and T
• From Arrhenius equation: k = Ae-Ea/RT
ln(k) = ln(A) – (Ea/R)(1/T)
• The plot of ln(k) versus 1/T yields a straight line with the
slope = -(Ea/R), or Ea = -slope x R
• If k values are determined at two different temperatures,
such that at k1 at T1 and k2 at T2, then
ln(k2/k1) = (R = 8.314 J/K.mol)
)
T
1
-
T
1
)(
(
1
2
a
R
E

Exercise
Chemists commonly use a rule of thumb that
an increase of 10 K in temperature doubles
the rate of a reaction. What must the
activation energy be for this statement to be
true for a temperature increase from 25°C to
35°C?
Ea = 53 kJ
Catalysts
• Catalysts are substances that are added to reaction
mixtures to make the reactions go faster, but do not
get used up by the reactions.
• A catalyst functions by providing an alternative
reaction pathways with lower activation energy.
• It increases the reaction rate, but does not affect the
reaction enthalpy or the equilibrium position.
– It do not alter the reaction yields at equilibrium
Activation Energy in the absence and
presence of Catalyst
Energy Plots for a Catalyzed and an Uncatalyzed
Pathway for a Given Reaction
Effect of a Catalyst on the Number of
Reaction-Producing Collisions
Homogeneous Catalysts
• These are catalysts that have the same phase as the
reactants.
• Example:
1. The formation of SO3 from SO2 and O2 is an exothermic
reaction, but the activation energy is very high.
2. The reaction is very slow at low temperature.
3. Increasing the temperature increases the reaction rate, but
lowers the yield.
4. Adding nitric oxide, which leads to the formation of
transition-state complexes that have lower activation energy,
makes the reaction go faster at a moderate temperature.
(g)
2SO
(g)
O
(g)
SO
2 2
NO(g)
catalyst
2
2 


 

 
Mechanism of catalytic reaction by nitric
oxide on the formation of SO3
• Step-1: 2NO + O2  2NO2
• Step-2: 2NO2 + 2SO2  2NO + 2SO3

• Overall: 2 SO2(g) + O2(g)  2SO3(g)

Homogeneous Catalysis
Heterogeneous Catalysis
• Most reactions involving gases use inert metals or
metal oxides as catalysts.
• These solid catalysts provide surface areas for
effective molecular to interactions.
• The solid surface facilitates the breaking and
formation of bonds.
• For examples, Ni, Pd and Pt are often used in the
hydrogenation of vegetable oil to make margarine and
Crisco oil.
Hydrogenation on Catalyst Surface
Heterogeneous Catalysis
Polyunsaturated, cis- and trans-Monounsaturated
and Saturated Fatty Acids
Hydrogenation of Monounsaturated Fatty Acid
Catalytic Converter
• Heterogeneous catalyst used in automobile catalytic
converters is a mixture of Pd, Pt, and Rh, which are
embedded in ceramic honeycombs.
• These metals catalyze the following reaction, which
converts toxic gases (NO & CO) to non-toxic CO2
and N2:
2CO(g) + 2NO(g)  2CO2(g) + N2(g)
Catalytic Reactions in Industrial Processes
• Some reactions require specific catalyst. For example,
Ni catalyzes the following reaction:
• While ZnO-Cr2O3 mixture catalyzes the formation of
methanol from the same reactants:
O(g)
H
(g)
CH
(g)
3H
CO(g) 2
4
catalyst
-
Ni
2 


 


OH(g)
CH
(g)
2H
CO(g) 3
Catalyst
O
Cr
-
ZnO
2
3
2




 


Enzyme-catalyzed Reactions
• In enzymatic reactions, the molecules at the beginning of the
process (the substrates) are converted by the enzyme into
different molecules (the products).
•
Activation Energy in the presence and absence of
Enzyme
End of Slide

Weitere ähnliche Inhalte

Was ist angesagt?

Bab 6 Hubungan Energi dalam Reaksi Kimia
Bab 6 Hubungan Energi dalam Reaksi KimiaBab 6 Hubungan Energi dalam Reaksi Kimia
Bab 6 Hubungan Energi dalam Reaksi Kimia
Jajang Sulaeman
 
Soal seleksi peserta olimpiade kimia
Soal seleksi peserta olimpiade kimiaSoal seleksi peserta olimpiade kimia
Soal seleksi peserta olimpiade kimia
dasi anto
 
Kesetimbangan kimia
Kesetimbangan kimiaKesetimbangan kimia
Kesetimbangan kimia
Tillapia
 
TUGAS UTS STRATEGI PEMBELAJARAN KIMIA
TUGAS UTS STRATEGI PEMBELAJARAN KIMIATUGAS UTS STRATEGI PEMBELAJARAN KIMIA
TUGAS UTS STRATEGI PEMBELAJARAN KIMIA
NisaUlFitri
 
Soal Pilihan Ganda Hidrolisis Garam
Soal Pilihan Ganda Hidrolisis GaramSoal Pilihan Ganda Hidrolisis Garam
Soal Pilihan Ganda Hidrolisis Garam
ditanovia
 
https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...
https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...
https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...
NovitasariVita2
 
Labovoorbereiding - neerslagtitraties
Labovoorbereiding - neerslagtitratiesLabovoorbereiding - neerslagtitraties
Labovoorbereiding - neerslagtitraties
Tom Mortier
 
Chapter 4 periodic table
Chapter 4 periodic tableChapter 4 periodic table
Chapter 4 periodic table
Ling Leon
 
Penetapan Kadar MnO2 dalam Batu Kawi
Penetapan Kadar MnO2 dalam Batu KawiPenetapan Kadar MnO2 dalam Batu Kawi
Penetapan Kadar MnO2 dalam Batu Kawi
Anshori Suhendro
 

Was ist angesagt? (20)

Pertemuan 1 anorg.lanjut
Pertemuan 1 anorg.lanjutPertemuan 1 anorg.lanjut
Pertemuan 1 anorg.lanjut
 
Bab 6 Hubungan Energi dalam Reaksi Kimia
Bab 6 Hubungan Energi dalam Reaksi KimiaBab 6 Hubungan Energi dalam Reaksi Kimia
Bab 6 Hubungan Energi dalam Reaksi Kimia
 
Soal seleksi peserta olimpiade kimia
Soal seleksi peserta olimpiade kimiaSoal seleksi peserta olimpiade kimia
Soal seleksi peserta olimpiade kimia
 
Unit 1 Intro to chemistry chapter 1
Unit 1 Intro to chemistry chapter 1Unit 1 Intro to chemistry chapter 1
Unit 1 Intro to chemistry chapter 1
 
Kesetimbangan Kimia SMA 10.ppt
Kesetimbangan Kimia SMA 10.pptKesetimbangan Kimia SMA 10.ppt
Kesetimbangan Kimia SMA 10.ppt
 
Lembar kerja siswa
Lembar kerja siswaLembar kerja siswa
Lembar kerja siswa
 
Kesetimbangan kimia
Kesetimbangan kimiaKesetimbangan kimia
Kesetimbangan kimia
 
გაკვეთილი N 2
გაკვეთილი N 2გაკვეთილი N 2
გაკვეთილი N 2
 
TUGAS UTS STRATEGI PEMBELAJARAN KIMIA
TUGAS UTS STRATEGI PEMBELAJARAN KIMIATUGAS UTS STRATEGI PEMBELAJARAN KIMIA
TUGAS UTS STRATEGI PEMBELAJARAN KIMIA
 
Soal Pilihan Ganda Hidrolisis Garam
Soal Pilihan Ganda Hidrolisis GaramSoal Pilihan Ganda Hidrolisis Garam
Soal Pilihan Ganda Hidrolisis Garam
 
Xii pkwu pengolahan-kd-3.8-_final
Xii pkwu pengolahan-kd-3.8-_finalXii pkwu pengolahan-kd-3.8-_final
Xii pkwu pengolahan-kd-3.8-_final
 
https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...
https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...
https___materikimia.com_wp-content_uploads_2020_06_Materi-Kuliah-Kimia-Dasar-...
 
Sistem kesetimbangan heterogen
Sistem kesetimbangan heterogenSistem kesetimbangan heterogen
Sistem kesetimbangan heterogen
 
Termokimia
TermokimiaTermokimia
Termokimia
 
Labovoorbereiding - neerslagtitraties
Labovoorbereiding - neerslagtitratiesLabovoorbereiding - neerslagtitraties
Labovoorbereiding - neerslagtitraties
 
Stoikiometri - kimia - kelas X
Stoikiometri - kimia - kelas XStoikiometri - kimia - kelas X
Stoikiometri - kimia - kelas X
 
Chapter 4 periodic table
Chapter 4 periodic tableChapter 4 periodic table
Chapter 4 periodic table
 
Stoikiometri 1
Stoikiometri 1Stoikiometri 1
Stoikiometri 1
 
Reaksi redoks-xii
Reaksi redoks-xiiReaksi redoks-xii
Reaksi redoks-xii
 
Penetapan Kadar MnO2 dalam Batu Kawi
Penetapan Kadar MnO2 dalam Batu KawiPenetapan Kadar MnO2 dalam Batu Kawi
Penetapan Kadar MnO2 dalam Batu Kawi
 

Ähnlich wie Chapter_12_Chemical_Kinetics.ppt

Chapter 17.4 : Reaction Rate
Chapter 17.4 : Reaction RateChapter 17.4 : Reaction Rate
Chapter 17.4 : Reaction Rate
Chris Foltz
 
Abc Kinetics
Abc KineticsAbc Kinetics
Abc Kinetics
dluetgens
 

Ähnlich wie Chapter_12_Chemical_Kinetics.ppt (20)

Kinetics.ppt
Kinetics.pptKinetics.ppt
Kinetics.ppt
 
chemical kinetics of chemical reaction (1).pptx
chemical kinetics of chemical reaction (1).pptxchemical kinetics of chemical reaction (1).pptx
chemical kinetics of chemical reaction (1).pptx
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Chapter11 130905235811-
Chapter11 130905235811-Chapter11 130905235811-
Chapter11 130905235811-
 
Kinetics.pptx
Kinetics.pptxKinetics.pptx
Kinetics.pptx
 
Apchemunit12presentation 120116192240-phpapp02
Apchemunit12presentation 120116192240-phpapp02Apchemunit12presentation 120116192240-phpapp02
Apchemunit12presentation 120116192240-phpapp02
 
rate of reaction ppt.ppt
rate of reaction ppt.pptrate of reaction ppt.ppt
rate of reaction ppt.ppt
 
Chemical kinetics_Rate laws and reaction mechanisms.pdf
Chemical kinetics_Rate laws and reaction mechanisms.pdfChemical kinetics_Rate laws and reaction mechanisms.pdf
Chemical kinetics_Rate laws and reaction mechanisms.pdf
 
Tro chapter 13 kinetics spring 2015 (1)
Tro chapter 13 kinetics spring 2015 (1)Tro chapter 13 kinetics spring 2015 (1)
Tro chapter 13 kinetics spring 2015 (1)
 
Chapter 17.4 : Reaction Rate
Chapter 17.4 : Reaction RateChapter 17.4 : Reaction Rate
Chapter 17.4 : Reaction Rate
 
Ch16 kinetics 1
Ch16 kinetics 1Ch16 kinetics 1
Ch16 kinetics 1
 
Abc Kinetics
Abc KineticsAbc Kinetics
Abc Kinetics
 
Chemical kinetics v2
Chemical kinetics v2Chemical kinetics v2
Chemical kinetics v2
 
Reaction Rates.pptx
Reaction Rates.pptxReaction Rates.pptx
Reaction Rates.pptx
 
Ch12z5ekinetics 110115231226-phpapp02
Ch12z5ekinetics 110115231226-phpapp02Ch12z5ekinetics 110115231226-phpapp02
Ch12z5ekinetics 110115231226-phpapp02
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
8.1 rate law
8.1 rate law8.1 rate law
8.1 rate law
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
AP Chemistry Study Guide- Kinetics
AP Chemistry Study Guide- KineticsAP Chemistry Study Guide- Kinetics
AP Chemistry Study Guide- Kinetics
 
chemical-kinetics-ppt.pptx
chemical-kinetics-ppt.pptxchemical-kinetics-ppt.pptx
chemical-kinetics-ppt.pptx
 

Kürzlich hochgeladen

Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Sheetaleventcompany
 
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
Sheetaleventcompany
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Sheetaleventcompany
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
Sheetaleventcompany
 
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Sheetaleventcompany
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
Sheetaleventcompany
 
Control of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicControl of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronic
MedicoseAcademics
 
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
rajnisinghkjn
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Sheetaleventcompany
 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
jualobat34
 

Kürzlich hochgeladen (20)

Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service AvailableCall Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
Call Girls Mussoorie Just Call 8854095900 Top Class Call Girl Service Available
 
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
Bhawanipatna Call Girls 📞9332606886 Call Girls in Bhawanipatna Escorts servic...
 
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
Race Course Road } Book Call Girls in Bangalore | Whatsapp No 6378878445 VIP ...
 
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
Genuine Call Girls Hyderabad 9630942363 Book High Profile Call Girl in Hydera...
 
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
Jaipur Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Jaipur No💰...
 
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
Gastric Cancer: Сlinical Implementation of Artificial Intelligence, Synergeti...
 
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
❤️Amritsar Escorts Service☎️9815674956☎️ Call Girl service in Amritsar☎️ Amri...
 
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
Premium Call Girls Dehradun {8854095900} ❤️VVIP ANJU Call Girls in Dehradun U...
 
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
👉Chandigarh Call Girl Service📲Niamh 8868886958 📲Book 24hours Now📲👉Sexy Call G...
 
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
Pune Call Girl Service 📞9xx000xx09📞Just Call Divya📲 Call Girl In Pune No💰Adva...
 
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
💚Call Girls In Amritsar 💯Anvi 📲🔝8725944379🔝Amritsar Call Girl No💰Advance Cash...
 
Intramuscular & Intravenous Injection.pptx
Intramuscular & Intravenous Injection.pptxIntramuscular & Intravenous Injection.pptx
Intramuscular & Intravenous Injection.pptx
 
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
❤️Chandigarh Escorts Service☎️9814379184☎️ Call Girl service in Chandigarh☎️ ...
 
Control of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronicControl of Local Blood Flow: acute and chronic
Control of Local Blood Flow: acute and chronic
 
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
👉 Chennai Sexy Aunty’s WhatsApp Number 👉📞 7427069034 👉📞 Just📲 Call Ruhi Colle...
 
Kolkata Call Girls Shobhabazar 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Gir...
Kolkata Call Girls Shobhabazar  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Gir...Kolkata Call Girls Shobhabazar  💯Call Us 🔝 8005736733 🔝 💃  Top Class Call Gir...
Kolkata Call Girls Shobhabazar 💯Call Us 🔝 8005736733 🔝 💃 Top Class Call Gir...
 
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls KPHB 7877925207 ₹5000 To 25K With AC Room 💚😋
 
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
Call Girl In Indore 📞9235973566📞 Just📲 Call Inaaya Indore Call Girls Service ...
 
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan CytotecJual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
Jual Obat Aborsi Di Dubai UAE Wa 0838-4800-7379 Obat Penggugur Kandungan Cytotec
 
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
Chandigarh Call Girls Service ❤️🍑 9809698092 👄🫦Independent Escort Service Cha...
 

Chapter_12_Chemical_Kinetics.ppt

  • 1. Chemical Kinetics • Expression of rates. • Stoichiometric relationships of rates of different substances in a reaction. • Determination of reaction orders, rate laws, and rate constant by method of initial rate. • Determination of rate laws by graphical or integration method. • Determination of half-lives • Determination of activation energy • Elementary steps and reaction mechanism • Effect of catalysts
  • 2. Chemical Kinetics • The study of reaction rates; – How fast does a reaction proceeds and what factors affecting it; – A measure of the change of the concentration of a reactant (or a product) as a function of time. • The study of rate yields information on the mechanism by which a reaction occurs at molecular level.
  • 3. Types of Rates • Initial Rates – Rates measured at the beginning of the reaction, which is dependent on the initial concentrations of reactants. • Instantaneous Rates – Rates measured at any point during the reaction. • Average Rates – An overall rate measured over a period or time interval.
  • 4. Rate of reaction between phenolphthalein with excess base. • Experimental Data for the Reaction Between Phenolphthalein and Base • Concentration of Phenolphthalein (M) Time (s) – 0.0050 0.0 – 0.0045 10.5 – 0.0040 22.3 – 0.0035 35.7 – 0.0030 51.1 – 0.0025 69.3 – 0.0020 91.6 – 0.0015 120.4 – 0.0010 160.9 – 0.00050 230.3 – 0.00025 299.6 – 0.00015 350.7 – 0.00010 391.2
  • 5. Instantaneous Rate: Rate of decrease in [Phenolphthalein]
  • 6. Instantaneous Rate • Value of the rate at a particular time. • Can be obtained by computing the slope of a line tangent to the curve at that point.
  • 7. The Decomposition of Nitrogen Dioxide
  • 8. The Decomposition of Nitrogen Dioxide
  • 9. Average Rate • Consider the following reaction at 300o C: 2 NO2(g)  2 NO(g) + O2(g) • The initial concentration of NO2 is 0.0100 mol/L and its concentration after 150 s is 0.0055 mol/L. What are the average rates of this reaction during the first 150 s and during the second 150 s?
  • 10. Average rate during the first 150 s • Solution: • Average rate = • = • = • = 3.0 x 10-5 mol/(L.s) t ] [NO - 2   s 150 mol/L) 0.0100 - mol/L (0.0055 - s 150 mol/L 0.0045
  • 11. Average rate during the second 150 s • Solution: • Average rate = • = • = • = 1.1 x 10-5 mol/(L.s) • Average rate decreases as reaction progresses because the reactant concentration has decreased t ] [NO - 2   s 150 mol/L) 0.0055 - mol/L (0.0038 - s 150 mol/L 0.0017
  • 12. Rate Law • Shows how the rate depends on the concentrations of reactants. • For the decomposition of nitrogen dioxide: 2NO2(g) → 2NO(g) + O2(g) Rate = k[NO2]n:  k = rate constant  n = order of the reactant
  • 13. Rate Law Rate = k[NO2]n • The concentrations of the products do not appear in the rate law because the reaction rate is being studied under conditions where the reverse reaction does not contribute to the overall rate.
  • 14. Rate Law Rate = k[NO2]n • The value of the exponent n must be determined by experiment; it cannot be written from the balanced equation.
  • 15. Rate Law • An expression or equation that relates the rate of reaction to the concentrations of reactants at constant temperature. • For the reaction: R1 + R2 + R3  Products Rate = k[R1]x [R2]y [R3]z Where k = rate constant; x, y, and z are the rate orders with respect to individual reactants. Rate orders are determined experimentally.
  • 16. Types of Rate Laws • Differential Rate Law (rate law) – shows how the rate of a reaction depends on concentrations. • Integrated Rate Law – shows how the concentrations of species in the reaction depend on time.
  • 17. Rate Laws: A Summary • Our rate laws involve only concentrations of reactants, because we typically consider reactions only under conditions where the reverse reaction is unimportant,
  • 18. Rate Laws: A Summary • Experimental convenience usually dictates which type of rate law is determined experimentally. • Knowing the rate law for a reaction is important mainly because we can usually infer the individual steps involved in the reaction from the specific form of the rate law.
  • 19. Rate Order • The power or exponent of the concentration of a given reactant in the rate law. It indicates the degree in which the rate depends on the concentration of that particular reactant. • The sum of the powers of the concentrations is referred to as the overall order for the reaction.
  • 20. Expressions of Reaction Rates and Their Stoichiometric Relationships • Consider the reaction: 2N2O5  4NO2 + O2 • Rate of disappearance of N2O5 = • Rate of formation of NO2 = • Rate of formation of O2 = • Stoichiometric relationships of these rates • t ] NO [ 2   t ] [O2   t ] O [N 5 2    t ] [O ) t ] NO [ ( 4 1 ) t ] O [N ( 2 1 2 2 5 2         
  • 21. Expressions of Reaction Rates • For a general reaction, aA + bB  cC + dD, • the reaction rate can be written in a number of different but equivalent ways,
  • 22. Rate Laws • For a general reaction, aA + bB + eE  Products • The rate law for this reaction takes the form: • where k is called the "rate constant." • x, y, and z, are small whole numbers or simple fractions and they are the rate order with respect to [A], [B], and [E]. The sum of x + y + z + . . . is called the “overall order" of the reaction.
  • 23. Types of Rate Laws • Consider a general reaction: aA + bB  Products • The rate law is expressed as, Rate = k[A]x [B]y , Where the exponents x and y are called the rate order of the reaction w.r.t. the respective reactants; These exponents are usually small integers or simple fractions.
  • 24. Types of Rate Laws 1. Zero-Order Reactions 1. In a zero order reaction the rate does not depend on the concentration of reactant, 2. For example, the decomposition of HI(g) on a gold catalyst is a zero-order reaction; 3. 2 HI(g)  H2(g) + I2(g) 4. Rate = k[HI]0 = k; (The rate is independent on the concentration of HI)
  • 25. Types of Rate Laws • First Order Reactions In a first order reaction the rate is proportional to the concentration of one of the reactants. Example, for first-order reaction: 2N2O5(g)  4NO2(g) + O2(g) • Rate = k[N2O5], The rate of decomposition of N2O5 is proportional to [N2O5], the molar concentration of N2O5
  • 26. Types of Rate Laws • Second Order Reactions In a second order reaction, the rate is proportional to the second power of the concentration of one of the reactants. Example, for the decomposition of NO2 follows second order w.r.t. [NO2] 2NO2(g)  2NO(g) + O2(g) • Rate = k[NO2]2
  • 27. Determination of Rate Law using Initial Rate • Consider the following reaction: S2O8 2- (aq) + 3I- (aq)  2SO4 2- (aq) + I3 - (aq)
  • 28. Determination of Rate Law using Initial Rate Reaction: S2O8 2- (aq) + 3I- (aq)  2SO4 2- (aq) + I3 - (aq) • The following data were obtain. •  • Expt. [S2O8 2- ] [I- ] Initial Rate, • # (mol/L) (mol/L) (mol/L.s) •  • 1 0.036 0.060 1.5 x 10-5 • 2 0.072 0.060 2.9 x 10-5 • 3 0.036 0.120 2.9 x 10-5 • 
  • 29. Determination of Rate Law using Initial Rate Reaction: S2O8 2- (aq) + 3I- (aq)  2SO4 2- (aq) + I3 - (aq) • (a) Determine the order of the reaction w.r.t. each reactant. Write the rate law for the above reaction. • (b) Calculate the rate constant, k, and give its appropriate units. • (c) Calculate the reaction rate when each reactant concentration is 0.20 M
  • 30. Determination of Rate Law using Initial Rate • Solution: The rate law = Rate = k[S2O8 2- ]x [I- ]y , here x and y are rate orders. • (a) Calculation of rate order, x: • 1 2 2 ~ mol/L.s 10 x 1.5 mol/L.s 10 x 2.9 2 ) 060 . 0 ( ) 036 . 0 ( ) 060 . 0 ( ) 072 . 0 ( ] [I ] O [S ] I [ ] O [S 5 - 5 - 1 - 1 - 2 8 2 3 - 2 - 2 8 2       y M M k M M k k k x x y x y x y x y x
  • 31. Determination of Rate Law using Initial Rate • (b) Calculation of rate order, y: • • This reaction is first order w.r.t. [S2O8 2- ] and [I- ] • Rate = k[S2O8 2- ][I- ] 1 2 2 ~ mol/L.s 10 x 1.5 mol/L.s 10 x 2.9 2 ) 060 . 0 ( ) 036 . 0 ( ) 120 . 0 ( ) 036 . 0 ( ] [I ] O [S ] I [ ] O [S 5 - 5 - 1 - - 2 8 2 3 - - 2 8 2       y M M k M M k k k y y y x y x y x y x
  • 32. Calculating rate constant and rate at different concentrations of reactants • Rate constant, k = • = 6.6 x 10-3 L.mol-1 .s-1 • If [S2O8 2- ] = 0.20 M, [I- ] = 0.20 M, and – k = 6.6 x 10-3 L.mol-1 .s-1 • Rate = (6.6 x 10-3 L.mol-1 .s-1 )(0.20 mol/L)2 • = 2.6 x 10-4 mol/(L.s) mol/L) 60 mol/L)(0.0 (0.038 mol/L 10 x 1.5 -5
  • 33. Integrated Rate Law • Graphical method to derive the rate law of a reaction: • Consider a reaction with single reactant: • R  Products • If the reaction is zero-order w.r.t. [R], • Then, k Rate t [R] -    
  • 34. Graphical Method for Zero-Order Reaction k Rate t [R] -     [R] = -kt, and [R]t = [R]0 = kt; A plot of [R]t versus t yields a straight line with k = -slope.
  • 35. Various Plots for Zero Order Reactions
  • 36. Graph of Zero-order Reactions • Plot of [R]t versus t: [R]t t slope = -k
  • 37. Graphical Method for First Order Reactions • If the reaction: R  Products is a first order reaction, then • Which yields: • And a plot of ln[R]t versus t will yield a straight line with slope = -k and y-intercept = ln[R]0 [R] t [R] - k Rate     t - ln[R] ln[R] t; - [R] [R] 0 t k k   
  • 38. Graph of First Order Reactions Plot of ln]R]t versus t: ln[R]t t slope = -k
  • 39. Plots of [A] and ln[A] versus time for First Order Reactions
  • 40. Various Plots for First Order Reactions
  • 41. Graphical Method for Second Order Reactions • If the reaction: R  Products follows second- order kinetics, then • or • • and • A plot of 1/[R]t versus t will yield a straight line with slope = k and y-intercept = 1/[R]0 2 [R] t [R] - k Rate     t [R] [R] 2    k [R] 1 t [R] 1 0 t   k
  • 42. Various Plots for Second Order Reactions
  • 43. Graph of Second-order Reactions • Plot of 1/[R]t versus time: t R] [ 1 time slope = k
  • 44. Plots of concentration versus time for first and second order reactions
  • 46. Plots of 1/[Concn.] versus time
  • 47. Characteristics of plots for zero, first, and second order reactions • The graph that is linear indicates the order of the reaction with respect to A (reactant): • For a zero order reaction, Rate = k (k = - slope) • For a 1st order reaction, Rate = k[A] (k = - slope) • For a 2nd order reaction, Rate = k[A]2 (k = slope) • For zero-order reaction, half-life, t1/2 = [R]0/2k; • For first order reaction, half-life, t1/2 = 0.693/k; • For second order reaction, half-life, t1/2 = 1/k[R]0;
  • 48. Half-Lives of Reactions • For zero-order reaction: t1/2 = [R]0/2k; • For first-order reaction: t1/2 = 0.693/k; • For second-order reaction: t1/2 = 1/(k[R]0) • Note: For first-order reaction, the half-life is independent of the concentration of reactant, but for zero-order and second-order reactions, the half-lives are dependent on the initial concentrations of the reactants.
  • 51. Summary of the Rate Laws
  • 52. Exercise Consider the reaction aA  Products. [A]0 = 5.0 M and k = 1.0 x 10–2 (assume the units are appropriate for each case). Calculate [A] after 30.0 seconds have passed, assuming the reaction is: a) Zero order b) First order c) Second order 4.7 M 3.7 M 2.0 M
  • 53. Reaction Mechanism • The detail pictures of how a given reaction occurs at molecular level • It consists of a set of elementary steps that shows probable reactions involving molecular species – including reaction intermediates. • The sum of these elementary steps yields the overall balanced equation for the reaction.
  • 54. Elementary Steps • For example, the overall reaction: 2A + B  C + D • may involves the following elementary steps in its mechanism: • Step-1: A + B  X; • Step-2: X + A  Y; • Step-3: Y  C + D • Overall reaction: 2A + B  C + D;
  • 55. Molecularity in Elementary Steps • Molecularity in the number of molecular species that react in an elementary process. • Rate Law for Elementary Processes: • Elementary Reactions Molecularity Rate Law •  • A  product Unimolecular Rate = k[A] • 2A  product Bimolecular Rate = k[A]2 • A + B  product Bimolecular Rate = k[A][B] • 2A + B  product Termolecular Rate = k[A]2 [B] • 
  • 56. A Molecular Representation of the Elementary Steps in the Reaction of NO2 and CO NO2(g) + CO(g) → NO(g) + CO2(g)
  • 57. Reaction Mechanism • Step-1: NO2 + NO2  NO3 + NO • Step-2: NO3 + CO  NO2 + CO2 • Overall: NO2 + CO  NO + CO2 • The experimental rate law is Rate = k[NO2]2 • Which implies that the above reaction is second-order w.r.t. NO2 , but is zero-order in [CO].
  • 58. • The sum of the elementary steps must give the overall balanced equation for the reaction. • The mechanism must agree with the experimentally determined rate law. Reaction Mechanism Requirements
  • 60. Decomposition of N2O5 2N2O5(g)  4NO2(g) + O2(g) Step 1: N2O5 ⇌ NO2 + NO3 (fast) Step 2: NO2 + NO3 → NO + O2 + NO2 (slow) Step 3: NO3 + NO → 2NO2 (fast)
  • 61. A Model for Chemical Reactions For a reaction to occur: 1. Reactant molecules must collide; 2. Molecular collisions must occur with proper orientations; 3. Collisions must be energetic and lead to the formation of the transition-state complex; 4. The rate of formation of the transition-state complex is the rate determining step; 5. The transition-state complex eventually leads to the formation of products;
  • 62. A Model for Reaction Kinetics • All chemical reactions proceed through a transition-state complex; • An energy barrier called activation energy (Ea) must be overcome to change reactants to the transition-state. • The rate of formation of transition-state is the rate- determining step for the overall reaction; • The rate of formation of transition-state is dependent: – on the frequency of effective molecular collisions, which depends on the reactants concentrations; – on the fraction of molecules with sufficient kinetic energy to overcome the energy barrier, and – on the reaction temperature
  • 63. Transition States and Activation Energy
  • 65. • Collision must involve enough energy to produce the reaction (must equal or exceed the activation energy). • Relative orientation of the reactants must allow formation of any new bonds necessary to produce products. For Reactants to Form Products
  • 66. The Gas Phase Reaction of NO and Cl2
  • 67. Dependence of Rate on Concentration • This is contained in the rate law – that is, for reaction: aA + bB + cC  Products Rate = k[A]x [B]y [C]z ;
  • 68. Dependence of Rate on Temperature • Rate depends on the fraction of “effective collisions” per unit time. – (Effective collisions are those with proper orientation and sufficient energy to overcome activation energy Ea barrier. • Thus rate depends on the activation energy and temperature, such that, – Higher activation energy implies high barrier and fewer reactant molecules will form the transition-state complex. This leads to a slower rate of reaction; – Higher temperature results in a larger fraction of reactant molecules with sufficient energy to overcome the energy barrier. This leads to a faster rate of reaction.
  • 69. Energy Profile of Endothermic Reaction
  • 70. Energy Profile for Exothermic Reaction
  • 71. Relationships between rate, rate constant, activation energy, & temperature. • Rate is dependent on rate constant, which is the proportionality constant that relates rate to concentrations (as depicted in the rate law). • While rate constant is related to activation energy and temperature by the Arrhenius equation: • k = Ae-Ea/RT • where A is Arrhenius collisional frequency factor, T is the Kelvin temperature, and R is gas constant (R = 8.314 J/K.mol)
  • 72. Graphical relationships of k, Ea, and T • From Arrhenius equation: k = Ae-Ea/RT ln(k) = ln(A) – (Ea/R)(1/T) • The plot of ln(k) versus 1/T yields a straight line with the slope = -(Ea/R), or Ea = -slope x R • If k values are determined at two different temperatures, such that at k1 at T1 and k2 at T2, then ln(k2/k1) = (R = 8.314 J/K.mol) ) T 1 - T 1 )( ( 1 2 a R E 
  • 73. Exercise Chemists commonly use a rule of thumb that an increase of 10 K in temperature doubles the rate of a reaction. What must the activation energy be for this statement to be true for a temperature increase from 25°C to 35°C? Ea = 53 kJ
  • 74. Catalysts • Catalysts are substances that are added to reaction mixtures to make the reactions go faster, but do not get used up by the reactions. • A catalyst functions by providing an alternative reaction pathways with lower activation energy. • It increases the reaction rate, but does not affect the reaction enthalpy or the equilibrium position. – It do not alter the reaction yields at equilibrium
  • 75. Activation Energy in the absence and presence of Catalyst
  • 76. Energy Plots for a Catalyzed and an Uncatalyzed Pathway for a Given Reaction
  • 77. Effect of a Catalyst on the Number of Reaction-Producing Collisions
  • 78. Homogeneous Catalysts • These are catalysts that have the same phase as the reactants. • Example: 1. The formation of SO3 from SO2 and O2 is an exothermic reaction, but the activation energy is very high. 2. The reaction is very slow at low temperature. 3. Increasing the temperature increases the reaction rate, but lowers the yield. 4. Adding nitric oxide, which leads to the formation of transition-state complexes that have lower activation energy, makes the reaction go faster at a moderate temperature. (g) 2SO (g) O (g) SO 2 2 NO(g) catalyst 2 2        
  • 79. Mechanism of catalytic reaction by nitric oxide on the formation of SO3 • Step-1: 2NO + O2  2NO2 • Step-2: 2NO2 + 2SO2  2NO + 2SO3  • Overall: 2 SO2(g) + O2(g)  2SO3(g) 
  • 81. Heterogeneous Catalysis • Most reactions involving gases use inert metals or metal oxides as catalysts. • These solid catalysts provide surface areas for effective molecular to interactions. • The solid surface facilitates the breaking and formation of bonds. • For examples, Ni, Pd and Pt are often used in the hydrogenation of vegetable oil to make margarine and Crisco oil.
  • 84. Polyunsaturated, cis- and trans-Monounsaturated and Saturated Fatty Acids
  • 86. Catalytic Converter • Heterogeneous catalyst used in automobile catalytic converters is a mixture of Pd, Pt, and Rh, which are embedded in ceramic honeycombs. • These metals catalyze the following reaction, which converts toxic gases (NO & CO) to non-toxic CO2 and N2: 2CO(g) + 2NO(g)  2CO2(g) + N2(g)
  • 87. Catalytic Reactions in Industrial Processes • Some reactions require specific catalyst. For example, Ni catalyzes the following reaction: • While ZnO-Cr2O3 mixture catalyzes the formation of methanol from the same reactants: O(g) H (g) CH (g) 3H CO(g) 2 4 catalyst - Ni 2        OH(g) CH (g) 2H CO(g) 3 Catalyst O Cr - ZnO 2 3 2        
  • 88. Enzyme-catalyzed Reactions • In enzymatic reactions, the molecules at the beginning of the process (the substrates) are converted by the enzyme into different molecules (the products). •
  • 89. Activation Energy in the presence and absence of Enzyme