SlideShare ist ein Scribd-Unternehmen logo
1 von 64
Downloaden Sie, um offline zu lesen
CHAPTER 7 Techniques of Integration 
7.1 Concepts Review 
1. elementary function 
2. ∫u5du 
3. ex 
4. 2 3 
∫ u du 
1 
Problem Set 7.1 
1. ( – 2)5 1 ( – 2)6 
∫ x dx = x +C 
6 
2. 3 1 3 3 2 (3 )3/ 2 
∫ x dx = ∫ x ⋅ dx = x +C 
3 9 
3. u = x2 +1, du = 2x dx 
When x = 0, u = 1 and when x = 2, u = 5 . 
∫ 2 x ( x 2 + 1) 5 dx = 1 ∫ 2 ( x 2 + 1) 5 
(2 x dx 
) 
0 0 
2 
5 5 
1 
1 
2 
= ∫ u du 
6 5 6 6 
⎡u ⎤ − 
= ⎢ ⎥ = 
⎢⎣ ⎥⎦ 
= = 
12 12 
1 
15624 1302 
12 
5 1 
4. u = 1– x2 , du = –2x dx 
When x = 0, u = 1 and when x = 1, u = 0 . 
∫ 1 x 1– x 2 dx = – 1 ∫ 1 1 − x 2 
( − 2 x dx 
) 
0 0 
2 
1 
2 
1 
2 
0 1/ 2 
1 
1 1/ 2 
0 
u du 
∫ 
∫ 
u du 
= − 
= 
1 
1 1 
3 3 
= ⎡⎢ u 3/ 2 
⎤⎥ = ⎣ ⎦ 
0 
dx = 1 tan 
⎛ x ⎞ ⎜ ⎟ 
+ C 
x 
5. –1 
∫ 
2 
+ ⎝ ⎠ 4 2 2 
6. u = 2 + ex , du = exdx 
∫ ∫ 
2 
+ = ln u +C 
ln 2 
ln(2 ) 
x 
x 
e dx = 
du 
e u 
x 
e C 
e C 
= + + 
= + x 
+ 
7. u = x2 + 4, du = 2x dx 
x dx du 
x u 
∫ 2 
∫ 
+ 1 ln 
2 
1 
= 
4 2 
= u + C 
1 ln 2 4 
2 
= x + +C 
1 ln( 2 4) 
2 
= x + + C 
8. 
2 2 
2 2 
t dt t dt 
t t 
2 2 + 1 − 
1 
2 1 2 1 
∫ = 
∫ 
+ + – 1 
= 
∫ dt ∫ 
dt 
2 t 
2 
+ 1 
u = 2t, du = 2dt 
t – 1 dt t – 1 
du 
∫ = 
∫ 
+ + – 1 tan–1( 2 ) 
2 2 
2 1 2 1 
t u 
= t t + C 
2 
9. u = 4 + z2 , du = 2z dz 
∫6z 4 + z2 dz = 3∫ u du 
= 2u3/ 2 +C 
= 2(4 + z2 )3/ 2 +C 
412 Section 7.1 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
10. u = 2t +1, du = 2dt 
dt du 
5 5 
2 1 2 
∫ = 
∫ 
+ = 5 u +C 
= 5 2t +1 + C 
t u 
z dz z z dz 
z 
tan tan sec 
cos 
11. 2 
∫ = 2 
∫ 
u = tan z, du = sec2 z dz 
∫ tan z sec2 z dz = ∫u du 
1 2 
2 
= u +C 
1 tan2 
2 
= z +C 
12. u = cos z, du = –sin z dz 
∫ecos z sin z dz = –∫ecos z (– sin z dz) 
= −∫eudu = −eu +C 
= –ecos z +C 
13. , 1 
u t du dt 
= = 
2 
t 
sin t dt 2 sin u du 
∫ = ∫ 
t 
= –2 cos u + C 
= –2cos t +C 
14. u = x2 , du = 2x dx 
x dx du 
x u 
2 
1– 1– 
∫ = ∫ 
= sin–1 u +C 
= sin–1(x2 ) +C 
4 2 
15. u = sin x, du = cos x dx 
x dx du 
x u 
cos 
1 sin 1 
π 
/ 4 2 / 2 
0 2 0 2 
∫ = 
∫ 
+ + − u 
− 
1 2/2 
[tan ] 
tan 2 
0 
1 
= 
≈ 0.6155 
2 
= 
16. 1– , – 1 
u xdu dx 
2 1– 
x 
= = 
x dx u du 
x 
sin 1– –2 sin 
1– 
3/ 4 1/ 2 
0 1 
∫ = ∫ 
1 
1/ 2 
= 2∫ sin u du 
1 
= [ − 2cos u 
]1/ 2 
= − 2 ⎛ cos1 − cos 1 
⎞ ⎜ ⎟ 
2 
⎝ ⎠ 
≈ 0.6746 
17. 
3 2 2 1 (3 –1) 
x + 
xdx x dx dx 
x x 
∫ = ∫ + 
∫ 
+ + 3 2 – ln 1 
2 
1 1 
= x x + x + +C 
18. 
3 
x xdx x x dx dx 
x x 
7 ( 2 8) 8 1 
–1 –1 
+ 
∫ = ∫ + + + ∫ 
1 3 1 2 8 8ln –1 
3 2 
= x + x + x + x +C 
19. u ln 4x2 , du 2 dx 
= = 
x 
sin(ln 4 2 ) 1 sin 
x dx u du 
x 
∫ = ∫ 
2 
– 1 cos 
= u +C 
2 
– 1 cos(ln 4 2 ) 
2 
= x +C 
20. u = ln x, du 1 dx 
x 
= 
2 
sec (ln ) 1 sec2 
x dx u du 
x 
∫ = ∫ 
2 2 
1 tan 
2 
= u +C 
1 tan(ln ) 
2 
= x +C 
21. u = ex , du = exdx 
x 
x 
e dx du du 
e u 
6 = 
6 
∫ 
1 1 
2 2 
− − 
1 
1 
u C 
e C 
− 
− 
6sin 
6sin ( ) 
= + 
= x 
+ 
∫ 
Instructor’s Resource Manual Section 7.1 413 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
22. u = x2 , du = 2x dx 
x dx 1 
du 
x u 
∫ = 
∫ 
+ + 1 tan 1 
4 2 
4 2 
4 2 4 
= − u + C 
2 
⎛ ⎞ 
x C 
1 tan–1 
4 2 
= ⎜⎜ ⎟⎟ + 
⎝ ⎠ 
23. u = 1– e2x , du = –2e2xdx 
x 
x 
2 
2 
e dx du 
e u 
3 – 3 
1– 2 
∫ = ∫ 
= –3 u +C 
= –3 1– e2x +C 
24. 
3 3 
4 4 
x dx 1 4 
x dx 
x x 
∫ = 
∫ 
+ + 1 ln 4 4 
4 
4 4 4 
= x + +C 
1 ln( 4 4) 
4 
= x + + C 
25. 
3 1 2 3 
1 2 1 2 
0 0 
∫ t t dt = ∫ t t dt 
2 
2 1 
⎡ t ⎤ 
= ⎢ ⎥ = 
⎢ ⎥ 
⎣ ⎦ 
1 0.9102 
ln 3 
3 3 – 1 
2ln3 2ln3 2ln3 
0 
= ≈ 
26. / 6 cos / 6 cos 
2 x sin x dx – 2 x (– sin x dx) π π 
∫ = ∫ 
0 0 
cos / 6 
⎡ π =⎢ – 2 
x ⎤ 
⎥ 
⎢⎣ ln 2 
⎥⎦ 
0 
– 1 (2 3 / 2 – 2) 
= 
ln 2 
2 − 
2 3 / 2 
ln 2 
0.2559 
= 
≈ 
x x dx x dx 
27. sin cos 1 cos 
− ⎛ ⎞ = ⎜ − ⎟ 
∫ ∫ 
sin x ⎝ sin 
x 
⎠ u = sin x, du = cos x dx 
sin cos 
x − 
x dx x du 
∫ = − ∫ 
sin 
= x − ln u +C 
= x − ln sin x +C 
x u 
28. u = cos(4t – 1), du = –4 sin(4t – 1)dt 
t dt t dt 
t t 
sin(4 − 1) sin(4 − 
1) 
1 sin (4 1) cos (4 1) 
∫ = 
∫ 
− 2 − 2 
− 1 1 
4 
= − ∫ 
du 
u 
2 
1 1 1 sec(4 1) 
4 4 
= u− +C = t − +C 
29. u = ex , du = exdx 
∫ex sec exdx = ∫secu du 
= ln secu + tan u + C 
= ln sec ex + tan ex +C 
30. u = ex , du = exdx 
∫ex sec2 (ex )dx = ∫sec2 u du = tan u + C 
= tan(ex ) +C 
31. 
x 
3 sin 
sec (sec2 sin cos ) 
x + 
e dx x e x x dx 
x 
∫ = ∫ + 
sec 
= tan x + ∫esin x cos x dx 
u = sin x, du = cos x dx 
tan x + ∫esin x cos x dx = tan x + ∫eu du 
= tan x + eu +C = tan x + esin x +C 
32. u = 3t2 − t −1 , 
1 (3 2 1) 1/ 2 (6 1) 
2 
du = t − t − − t − dt 
2 
t t t dt u du 
(6 − 1)sin 3 − − 
1 2 sin 
∫ = 
∫ 
3 t 2 
− t 
− 
1 
= –2 cos u + C 
= −2cos 3t2 − t −1 + C 
414 Section 7.1 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
33. u = t3 − 2 , du = 3t2dt 
2 3 
t t dt u du 
cos( − 
2) 1 cos 
sin ( 2) 3 sin 
∫ = 
∫ 
− v = sin u, dv = cos u du 
2 3 2 
t u 
u du v dv v C 
u 
1 cos 1 1 
3 sin 3 3 
2 1 
∫ = ∫ − = − − + 
2 
1 
3sin 
C 
= − + 
u 
1 
= − + 
3 
t 
3sin( 2) 
C 
− 
. 
x dx dx x dx 
x x x 
1 cos2 1 cos2 
sin 2 sin 2 sin 2 
+ 
∫ = ∫ + ∫ 
= ∫csc2 2x dx + ∫cot 2x csc 2x dx 
34. 2 2 2 
1 cot 2 1 csc 2 
2 2 
= − x − x +C 
35. u = t3 − 2 , du = 3t2dt 
2 2 3 2 
t t dt u du 
cos ( − 
2) 1 cos 
sin ( 2) 3 sin 
∫ = 
∫ 
− 1 cot2 
3 
2 3 2 
t u 
= ∫ u du 1 (csc2 –1) 
= ∫ u du 
3 
= − u − u +C 
1 
1[ cot ] 
3 
1[ cot( 3 2) ( 3 
2)] 
3 
= − t − − t − + C 
1[cot( 3 2) 3] 
1 
= − t − + t +C 
3 
36. u = 1 + cot 2t, du = −2csc2 2t 
csc2 2 1 1 
1 cot 2 2 
t dt du 
t u 
∫ = − 
∫ 
+ = − u + C 
= − 1+ cot 2t + C 
2 
1 4 
37. u = tan−1 2t , 2 
du dt 
t 
= 
+ 
tan − 
1 2 
e dt eudu 
∫ + 2 
∫ 
1 1 tan 1 2 
2 2 
1 
t 
= 
1 4 t 
2 
− 
eu C e t C 
= + = + 
38. u = −t2 − 2t − 5 , 
du = (–2t – 2)dt = –2(t + 1)dt 
2 2 5 1 ( 1) 
∫ t + e−t − t− = − ∫eudu 
2 
1 
2 
= − eu +C 
1 2 2 5 
2 
= − e−t − t− +C 
39. u = 3y2 , du = 6y dy 
y dy 1 1 
du 
y u 
∫ = 
∫ 
1 sin 1 
6 4 
16 9 6 4 
4 2 2 
− − 
= − ⎛ u ⎞ +C ⎜ ⎟ 
⎝ ⎠ 
2 
− ⎛ y ⎞ C 
1 sin 1 3 
6 4 
= ⎜⎜ ⎟⎟ + 
⎝ ⎠ 
40. u = 3x, du = 3dx 
x dx 
u du u C 
∫ 
∫ 
cosh 3 
1 (cosh ) 1 sinh 
3 3 
1 sinh 3 
3 
= = + 
x C 
= + 
41. u = x3 , du = 3x2dx 
2 sinh 3 1 sinh 
∫ x x dx = ∫ u du 
3 
1 cosh 
3 
= u +C 
1 cosh 3 
3 
= x +C 
42. u = 2x, du = 2 dx 
5 5 1 
9 4 2 3 
∫ ∫ 
5 sin 1 
2 3 
dx = 
du 
x 2 2 u 
2 
− − 
= − ⎛ u ⎞ +C ⎜ ⎟ 
⎝ ⎠ 
= − ⎛ x ⎞ +C ⎜ ⎟ 
5 sin 1 2 
2 3 
⎝ ⎠ 
43. u = e3t , du = 3e3tdt 
t 
t 
3 
6 2 2 
e dt 1 1 
du 
e u 
∫ = 
∫ 
1 sin 1 
3 2 
4 3 2 
− − 
= − ⎛ u ⎞ +C ⎜ ⎟ 
⎝ ⎠ 
3 
e t − C ⎛ ⎞ 
1 sin 1 
3 2 
= ⎜⎜ ⎟⎟ + 
⎝ ⎠ 
44. u = 2t, du = 2dt 
dt 1 1 
du 
t t u u 
∫ = 
∫ 
1 sec 1 
2 
2 4 2 − 1 2 2 
− 
1 
= ⎣⎡ − u ⎦⎤ +C 
= 1 sec − 1 2 
t +C 
2 
Instructor’s Resource Manual Section 7.1 415 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
45. u = cos x, du = –sin x dx 
x dx du 
x u 
sin 1 
/ 2 0 
0 2 1 2 
∫ = − 
∫ 
+ + 16 cos 16 
π 
1 
16 
1 
0 2 
du 
u 
= 
+ ∫ 
1 
⎡ = 1 tan 
− 1 
⎛ u ⎞⎤ ⎢ 4 ⎜ ⎣ ⎝ 4 
⎠⎦ 
⎟⎥ 0 
1 tan 1 1 1 tan 1 0 
4 4 4 
= ⎡ − ⎛ ⎞ − − ⎤ ⎢ ⎜ ⎟ ⎥ ⎣ ⎝ ⎠ ⎦ 
1 tan 1 1 0.0612 
4 4 
= − ⎛ ⎞ ≈ ⎜ ⎟ 
⎝ ⎠ 
46. 2 2 x x u e e− 
= + , du = (2e2x − 2e−2x )dx 
= 2(e2x − e−2x )dx 
1 2 x − 2 x e 2 + e 
− 
2 
0 2 x − 
2 x 
2 
e − 
e dx 1 1 
du 
e e 2 
u 
∫ = 
∫ 
+ 2 2 
2 
+ − = ⎡⎣ ⎤⎦ 
1 ln 
2 
e e u 
1 ln 2 2 1 ln 2 
2 2 
= e + e− − 
4 
2 
e 
e 
1 + 
ln 1 1 ln 2 
2 2 
= − 
1 ln( 4 1) 1 ln( 2 ) 1 ln 2 
2 2 2 
= e + − e − 
1 4 1 ln 2 0.6625 
2 2 
= ⎛⎜ ⎛⎜ e + ⎞⎟ − ⎞⎟ ≈ ⎜ ⎜ ⎟ ⎟ ⎝ ⎝ ⎠ ⎠ 
1 1 
2 5 2 1 4 
+ + + + + ∫ ∫ 
47. 2 2 
dx = 
dx 
x x x x 
1 ( 1) 
+ + ∫ 
1 tan–1 1 
2 2 
= + 
2 2 
x 
( 1) 2 
d x 
x C 
⎛ + ⎞ = ⎜ ⎟ + 
⎝ ⎠ 
1 1 
–4 9 –4 4 5 
+ + + ∫ ∫ 
48. 2 2 
dx = 
dx 
x x x x 
1 ( –2) 
+ ∫ 
1 tan–1 – 2 
5 5 
2 2 
x 
( –2) ( 5) 
d x 
= 
x C 
⎛ ⎞ 
= ⎜ ⎟ + 
⎝ ⎠ 
dx dx 
+ + + + + ∫ ∫ 
49. = 
9 x 2 18 x 10 9 x 2 18 x 
9 1 
dx 
x 
= 
∫ 
(3 + 3)2 + 12 
u = 3x + 3, du = 3 dx 
dx 1 
du 
x u 
∫ = 
∫ 
+ + + 1 tan–1(3 3) 
3 
2 2 2 2 
(3 3) 1 3 1 
= x + +C 
50. 
dx dx 
x x x x 
∫ = 
∫ 
16 + 6 – 2 –( 2 – 6 + 
9 – 25) 
dx 
x 
dx 
x 
∫ –( – 3)2 52 
52 – ( – 3)2 
= 
+ 
= ∫ 
= sin–1 ⎛ x – 3 
⎞ ⎜ ⎟ 
+C 5 
⎝ ⎠ 
x + 1 dx 1 18 x + 
18 
dx 
+ + + + ∫ ∫ 
51. = 
2 2 
9 x 18 x 10 18 9 x 18 x 
10 
1 ln 9 2 
18 10 
18 
1 ln 9 18 10 
18 
x x C 
= + + + 
( 2 
) 
x x C 
= + + + 
52. 
x dx x dx 
x x x x 
3– 1 6 – 2 
16 6 – 2 16 6 – 
∫ = 
∫ 
2 2 
+ + 
= 16 + 6x – x2 +C 
53. u = 2t, du = 2dt 
dt du 
∫ = ∫ 
2 2 – 9 2 – 32 
t t u u 
⎛ ⎞ 
t 
–1 1 2 sec 
3 3 
C 
= ⎜ ⎟ + 
⎜ ⎟ 
⎝ ⎠ 
54. 
x dx x x dx 
x x x 
tan cos tan 
sec – 4 cos sec – 4 
∫ = ∫ 
2 2 
x dx 
= ∫ 
2 
u = 2 cos x, du = –2 sin x dx 
sin 
1– 4cos 
x 
x dx 
1 1 
2 1 
∫ 2 
2 
sin 
1 4cos 
− x 
du 
u 
= − 
− 
∫ 
= − − u +C – 1 sin–1(2cos ) 
1 sin 1 
2 
= x +C 
2 
55. The length is given by 
2 
L dy dx 
= + ⎛ ⎞ ⎜ ⎟ 
1 b 
a 
∫ 
⎝ dx 
⎠ / 4 2 
1 1 ( sin ) 
0 
π = ∫ 
+ ⎡ ⎢ − ⎤ ⎣ cos 
⎥ ⎦ x dx 
x 
= ∫ + / 4 2 
/ 4 2 
0 
1 tan x dx π 
sec x dx π 
= ∫ 
0 
/ 4 
0 
sec x dx π 
= ∫ 0= ⎡ ⎣ ln sec x + tan x ⎤ π / 4 
⎦ 
= ln 2 +1 − ln 1 = ln 2 +1 ≈ 0.881 
416 Section 7.1 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x 
1 + 
56. sec = = 
1 sin 
x x x 
cos cos (1 + 
sin ) 
sin sin2 cos2 sin (1 sin ) cos2 
x + x + x x + x + 
x 
= = 
x x x x 
cos (1 + sin ) cos (1 + 
sin ) 
x x 
x x 
sin cos 
cos 1 sin 
= + 
+ 
x x x dx 
sec sin cos 
∫ = ∫ 
⎛ ⎞ ⎜ + ⎝ cos x 1 + sin 
x 
⎟ ⎠ x dx x dx 
x x 
sin cos 
cos 1 sin 
= ∫ + 
∫ 
+ For the first integral use u = cos x, du = –sin x dx, 
and for the second integral use v = 1 + sin x, 
dv = cos x dx. 
sin cos – 
cos 1 sin 
x dx x dx du dv 
x x u v 
∫ + ∫ = ∫ + 
∫ 
+ = – ln u + ln v +C 
= – ln cos x + ln 1+ sin x +C 
1 + 
ln sin 
= + 
cos 
= ln sec x + tan x + C 
x C 
x 
57. u = x – π , du = dx 
x x u u 
sin ( + π ) sin( + π 
) 
2 
π π 
0 2 – 2 
+ + + π ∫ ∫ 
dx = 
du 
x π 
u 
1 cos 1 cos ( ) 
u u 
( )sin 
1 cos 
π 
π 
+ π 
+ ∫ 
– 2 
du 
u 
= 
u sin u sin 
u 
π π 
π π 
π 
+ + ∫ ∫ 
du du 
u u 
= + 
– 2 – 2 
1 cos 1 cos 
u sin 
u 
π 
π 
∫ 0 
by symmetry. 
– + 2 
1 cos 
du 
u 
= 
u u du du 
u u 
sin sin 2 
π π 
π π 
π 
∫ = 
∫ 
+ + v = cos u, dv = –sin u du 
– 2 0 2 
1 cos 1 cos 
π 
2 2 1 
–1 1 
1 2 –1 2 
+ + ∫ ∫ 
dv dv 
v v 
− = π 
1 1 
= 2 π [tan − 1 v 
] 1 
⎡π ⎛ π ⎞⎤ − 
1 = 2 
π ⎢ − ⎜− ⎣ 4 ⎝ 4 
⎟⎥ ⎠⎦ 
2 2 
⎛ π ⎞ = π⎜ ⎟ = π 
2 
⎝ ⎠ 
58. 
3 
4 
4 – 
π 
π 
⎛ π ⎞ = π ⎜ + ⎟ 
⎝ ⎠ ∫ 
– , 
4 
V 2 x sin x – cos 
x dx 
4 
π 
u = x du = 
dx 
π 
π 
⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ = π ⎜ + ⎟ ⎜ + ⎟ ⎜ + ⎟ 
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∫ 
V u u u du 
2 
2 – 
2 sin – cos 
2 4 4 
π 
π 
2 2 sin 2 cos – 2 cos 2 sin 
⎛ π ⎞ = π ⎜ + ⎟ + + 
⎝ ⎠ ∫ 
2 
2 – 
u u u u udu 
2 2 2 2 2 
π π π 
−π −π −π 
⎛ π ⎞ = π ⎜ + ⎟ = + 
2 2 sin 2 2 sin 2 2 sin 
⎝ ⎠ ∫ ∫ ∫ 
u u du π u u du π u du 
2 2 2 
2 2 
2 2 
π 
−π 
π∫ = by symmetry. Therefore, 
2 2 u sin u du 0 
2 
2 
π π 
2 2 2 2 2 
= π ∫ = π − = π 
V 2 2 sin u du 2 2 [ cosu] 2 2 
0 0 
Instructor’s Resource Manual Section 7.1 417 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
7.2 Concepts Review 
1. uv – ∫v du 
2. x; sin x dx 
3. 1 
4. reduction 
Problem Set 7.2 
1. u = x dv = exdx 
du = dx v = ex 
∫ xexdx = xex − ∫exdx = xex − ex +C 
2. u = x dv = e3xdx 
du = dx 1 3 
v = e x 
3 
3 1 3 1 3 
∫ xe xdx = xe x − ∫ e xdx 
3 3 
1 3 1 3 
3 9 
= xe x − e x +C 
3. u = t dv = e5t+πdt 
du = dt 1 5 
v = e t+π 
5 
5 1 5 – 1 5 
∫te t+πdt = te t+π ∫ e t+πdt 
5 5 
1 5 – 1 5 
5 25 
= te t+π e t+π +C 
4. u = t + 7 dv = e2t+3dt 
du = dt v = 1 e 2 t+ 
3 
2 
( 7) 2 3 1 ( 7) 2 3 – 1 2 3 
∫ t + e t+ dt = t + e t+ ∫ e t+ dt 
2 2 
1 ( 7) 2 3 – 1 2 3 
2 4 
= t + e t+ e t+ +C 
= t e t+ + e t+ + C 
2 3 13 2 3 
2 4 
5. u = x dv = cos x dx 
du = dx v = sin x 
∫ x cos x dx = x sin x – ∫sin x dx 
= x sin x + cos x + C 
6. u = x dv = sin 2x dx 
du = dx – 1 cos 2 
v = x 
2 
sin 2 – 1 cos 2 – – 1 cos 2 
∫ x x dx = x x ∫ x dx 
2 2 
– 1 cos 2 1 sin 2 
= x x + x +C 
2 4 
7. u = t – 3 dv = cos (t – 3)dt 
du = dt v = sin (t – 3) 
∫(t – 3) cos(t – 3)dt = (t – 3)sin(t – 3) – ∫sin(t – 3)dt 
= (t – 3) sin (t – 3) + cos (t – 3) + C 
8. u = x – π dv = sin(x)dx 
du = dx v = –cos x 
∫(x – π)sin(x)dx = –(x – π) cos x + ∫cos x dx 
= (π – x) cos x + sin x + C 
9. u = t dv = t +1 dt 
du = dt v = 2 ( t + 
1)3/ 2 
3 
1 2 ( 1)3/ 2 – 2 ( 1)3/ 2 
∫t t + dt = t t + ∫ t + dt 
3 3 
2 ( 1)3/ 2 – 4 ( 1)5/ 2 
3 15 
= t t + t + +C 
10. u = t dv = 3 2t + 7dt 
du = dt v = 3 (2 t + 
7)4 / 3 
8 
3 2 7 3 (2 7)4 / 3 – 3 (2 7)4 / 3 
∫t t + dt = t t + ∫ t + dt 
8 8 
3 (2 7)4 / 3 – 9 (2 7)7 / 3 
8 112 
= t t + t + +C 
11. u = ln 3x dv = dx 
du 1 dx 
= v = x 
x 
ln 3x dx x ln 3x x 1 dx 
∫ = −∫ = x ln 3x − x +C 
x 
12. u = ln(7x5 ) dv = dx 
du 5 dx 
= v = x 
x 
ln(7x5 )dx x ln(7x5 ) – x 5 dx 
x 
∫ = ∫ 
= x ln(7x5 ) – 5x +C 
418 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
13. u = arctan x dv = dx 
du dx 
2 
1 
1 
x 
= 
+ 
v = x 
x x x x dx 
+ ∫ ∫ 
2 arctan arctan 
1 
x 
= − 
x x x dx 
2 
arctan 1 2 
+ ∫ 
2 1 
x 
= − 
arctan 1 ln(1 2 ) 
= x x − + x +C 
2 
14. u = arctan 5x dv = dx 
du dx 
2 
5 
1 25 
x 
= 
+ 
v = x 
x dx x x x dx 
2 
arctan 5 arctan 5 – 5 
+ ∫ ∫ 
1 25 
x 
= 
x x x dx 
2 
arctan 5 – 1 50 
+ ∫ 
10 1 25 
x 
= 
arctan 5 – 1 ln(1 25 2 ) 
= x x + x +C 
10 
dv dx 
15. u = ln x 2 
x 
= 
du 1 dx 
= v – 1 
x 
x 
= 
ln x dx – ln x – – 1 1 dx 
x x x x 
∫ 2 
∫ 
⎝ ⎠ – ln x – 1 C 
= ⎛ ⎞ ⎜ ⎟ 
= + 
x x 
16. u = ln 2x5 
dv 1 dx 
2 
x 
= 
du 5 dx 
= v 1 
x 
x 
= − 
3 5 3 3 5 
2 2 2 2 2 
ln 2x dx 1 ln 2x 5 1 dx 
x x x 
= ⎡− ⎤ + ⎢⎣ ⎥⎦ ∫ ∫ 
3 
1 ln 2 5 5 
1 ln(2 3 ) 5 1 ln(2 2 ) 5 
3 3 2 2 
1 ln 2 5 ln 3 5 3ln 2 5 
3 3 3 2 
= ⎡− ⎢⎣ x 
− ⎤ x x 
⎥⎦ 
2 
= ⎛ − ⋅ 5 − ⎞ ⎜ ⎟ − ⎛− ⎜ ⋅ 5 
− ⎞ ⎟ 
⎝ ⎠ ⎝ ⎠ 
= − − − + + 
8 ln 2 5 ln 3 5 0.8507 
3 3 6 
= − + ≈ 
17. u = ln t dv = t dt 
du 1dt 
= 2 3/ 2 
t 
v = t 
3 
e e ∫ t ln t dt = ⎡⎢ 2 t 3/ 2 ln t⎤⎥ – ∫ 
e 2 
t 1/ 2 
dt ⎣ 3 ⎦ 3 
1 1 1 
2 ln – 2 1ln1 4 
3 3 9 
= e 3/ 2 e ⋅ − ⎡⎢ t 3/ 2 
⎤⎥ ⎣ ⎦ 
2 3/ 2 0 4 3/ 2 4 2 3/ 2 4 1.4404 
3 9 9 9 9 
e 
1 
= e − − e + = e + ≈ 
18. u = ln x3 dv = 2xdx 
du 3 dx 
= 1 (2 )3/ 2 
x 
v = x 
3 
5 3 
1 
∫ 2x ln x dx 
5 5 3 2 3 3 2 
1 (2 ) ln 2 
3 
= ⎡⎢ x x ⎤⎥ − x dx ⎣ ⎦ ∫ 
1 1 
5/ 2 5 
= ⎡ 1 ⎢⎣ (2 x ) 3/ 2 ln x 3 − 2 
x 3/ 2 
⎤ 
3 3 
⎥⎦ 
1 
5 2 5 2 
⎛ ⎞ 
1 (10)3 2 ln 53 2 53/ 2 1 (2)3 2 ln13 2 
3 3 3 3 
= − − ⎜⎜ − ⎟⎟ 
⎝ ⎠ 
4 2 53 2 4 2 103 2 ln 5 31.699 
3 3 
= − + + ≈ 
19. u = ln z dv = z3dz 
du 1 dz 
= 1 4 
z 
v = z 
4 
3 ln 1 4 ln 1 4 1 
∫ = − ∫ ⋅ 
1 4 ln 1 3 
4 4 
z zdz z z z dz 
4 4 
z 
= z z − ∫ z dz 
1 4 ln 1 4 
4 16 
= z z − z +C 
20. u = arctan t dv = t dt 
du dt 
2 
1 
1 
t 
= 
+ 
1 2 
2 
v = t 
2 
t arctan t dt 1 t 2 
arctan t – 1 
t dt 
2 
+ ∫ ∫ 
2 21 
t 
= 
2 
t t t dt 
1 2 
1 1 + − 
arctan 1 
2 2 1 
t 
2 
= − 
+ ∫ 
1 2 
arctan 1 ∫ 1 ∫ 
1 
2 2 2 1 
+ t t dt dt 
2 
t 
= − + 
1 2 arctan 1 1 arctan 
2 2 2 
= t t − t + t +C 
Instructor's Resource Manual Section 7.2 419 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
21. u arctan 1 
= ⎛ ⎞ ⎜ ⎟ 
t 
⎝ ⎠ 
dv = dt 
du dt 
2 
– 1 
1 
t 
= 
+ 
v = t 
dt t t dt 
t t t 
2 
arctan 1 arctan 1 
∫ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ = ⎜ ⎟ 
+ ∫ 
⎝ ⎠ ⎝ ⎠ 1 
+ arctan 1 1 ln(1 2 ) 
= ⎛ ⎞ + + + ⎜ ⎟ 
t t C 
2 
t 
⎝ ⎠ 
22. u = ln(t7 ) dv = t5dt 
du 7 dt 
= 1 6 
t 
v = t 
6 
5 ln( 7 ) 1 6 ln( 7 ) – 7 5 
∫t t dt = t t ∫t dt 
6 6 
= 1 t 6 ln( t 7 ) – 7 t 6 
+C 
6 36 
23. u = x dv = csc2 x dx 
du = dx v = −cot x 
[ ] / 2 2 / 2 / 2 
/ 6 / 6 / 6 
x csc x dx x cot x cot x dx π π π 
π π π 
∫ = − + ∫ 2 
6 cot ln sin x x x π 
π = ⎡⎣− + ⎤⎦ 
0 ln1 3 ln 1 ln 2 1.60 
2 6 2 2 3 
π π π 
= − ⋅ + + − = + ≈ 
24. u = x dv = sec2 x dx 
du = dx v = tan x 
[ ] 4 2 4 4 
6 6 6 
x sec x dx x tan x tan x dx π π π 
π π π 
π ⎛ π ⎞ 
tan ln cos ln 2 ln 3 
∫ = − ∫ x x π 
4 
x = ⎡⎣ + ⎤⎦ = + − ⎜⎜ + ⎟⎟ 
6 
4 2 6 3 2 
π 
⎝ ⎠ 
1 ln 2 0.28 
π π 
= − + ≈ 
4 6 3 2 3 
25. u = x3 dv = x2 x3 + 4dx 
du = 3x2dx v = 2 ( x 3 + 
4)3/ 2 
9 
∫ x 5 x 3 + 4 dx = 2 x 3( x 3 + 4)3/ 2 – ∫ 2 x 2 ( x 3 + 4)3/ 2 
dx 2 3( 3 4)3/ 2 – 4 ( 3 4)5 / 2 
9 3 
= x x + x + +C 
9 45 
26. u = x7 dv = x6 x7 +1 dx 
du = 7x6dx v = 2 ( x 7 + 
1)3/ 2 
21 
∫ x 13 x 7 + 1 dx = 2 x 7 ( x 7 + 1)3/ 2 – ∫ 2 x 6 ( x 7 + 1)3/ 2 
dx 2 7 ( 7 1)3/ 2 – 4 ( 7 1)5/ 2 
21 3 
= x x + x + +C 
21 105 
27. u = t4 
3 
dv t dt 
(7 – 3 t 
4 )3/ 2 
= 
du = 4t3 dt 
4 1/2 
1 
t 
6(7 – 3 ) 
v 
= 
7 4 3 
4 3/ 2 4 1/ 2 4 1/ 2 
t dt t – 2 
t dt 
t t t 
∫ = ∫ 
(7 – 3 ) 6(7 – 3 ) 3 (7 – 3 ) 
4 
t 1 (7 – 3 t 4 ) 
1/2 
C 
t 
= + + 
4 1/2 
6(7 – 3 ) 9 
420 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
28. u = x2 dv = x 4 – x2 dx 
du = 2x dx v = – 1 (4 – x 
2 )3/ 2 
3 
∫ x 3 4 – x 2 dx = – 1 x 2 (4 – x 2 )3/ 2 + 2 ∫ x (4 – x 2 )3/ 2 
dx – 1 2 (4 – 2 )3/ 2 – 2 (4 – 2 )5 / 2 
3 3 
= x x x +C 
3 15 
29. u = z4 
3 
dv z dz 
(4 – z 
4 )2 
= 
du = 4z3dz 
4 
1 
z 
4(4 – ) 
v 
= 
7 4 3 
z dz z z dz 
z z z 
∫ = − ∫ 
(4 – 4 )2 4(4 – 4 ) 4 – 4 
4 
z z 4 
C 
z 
= + + 
4 
1 ln 4 – 
4(4 – ) 4 
30. u = x dv = cosh x dx 
du = dx v = sinh x 
∫ x cosh x dx = x sinh x – ∫sinh x dx = x sinh x – cosh x + C 
31. u = x dv = sinh x dx 
du = dx v = cosh x 
∫ x sinh x dx = x cosh x – ∫cosh x dx = x cosh x – sinh x + C 
32. u = ln x dv = x–1/ 2dx 
du 1 dx 
= v = 2x1/ 2 
x 
ln x dx 2 x ln x – 2 1 dx 
x x 
∫ = ∫ = 2 x ln x – 4 x +C 
1/ 2 
33. u = x dv = (3x +10)49 dx 
du = dx v = 1 (3 x + 
10)50 
150 
∫ x (3 x + 10)49 dx = x (3 x + 10)50 – 1 ∫ (3 x + 10)50 
dx (3 10)50 – 1 (3 10)51 
150 150 
= x x + x + + C 
150 22,950 
34. u = t dv = (t −1)12 dt 
du = dt 1 ( 1)13 
v = t − 
13 
( ) ( ) 
1 1 1 12 13 13 
0 0 0 
t ( t 1) dt t t 1 1 t 1 
dt 
− = ⎡ − ⎤ − − ⎢⎣ ⎥⎦ 
∫ ∫ 
13 13 
t t t 
1 1 1 1 
= ⎡ 13 14 
⎤ ⎢⎣ ( − ) − ( − ) 
⎥⎦ 
= 1 
13 182 182 
0 
35. u = x dv = 2x dx 
du = dx 1 2 
v = x 
ln 2 
∫ x 2 x dx = x 2 x – 1 ∫ 2 
x dx 
ln 2 ln 2 
= x 2 x – 1 2 
x +C 
2 
ln 2 (ln 2) 
36. u = z dv = azdz 
du = dz 1 
v az 
ln 
a 
= 
zazdz z az – 1 
azdz 
∫ = ∫ 
a a 
ln ln 
z az az C 
a a 
= + 
2 
– 1 
ln (ln ) 
37. u = x2 dv = exdx 
du = 2x dx v = ex 
∫ x2exdx = x2ex − ∫ 2xexdx 
u = x dv = exdx 
du = dx v = ex 
∫ x2ex dx = x2ex − 2(xex − ∫ex dx) 
= x2ex − 2xex + 2ex +C 
Instructor's Resource Manual Section 7.2 421 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
38. u = x4 
x2 dv = xe dx 
du = 4x3dx 
1 2 
2 
v = ex 
5 2 1 4 2 3 2 – 2 
∫ x ex dx = x ex ∫ x ex dx 
2 
2 
u = x2 
dv = 2xex dx 
du = 2x dx 
x2 v = e 
5 2 1 4 2 2 2 2 – 2 
x ex dx = x ex ⎛ x ex − xex dx ⎞ ⎜ ⎟ 
∫ ∫ 
2 
⎝ ⎠ 1 4 2 2 2 – 
2 2 
= x ex x ex + ex +C 
39. u = ln2 z dv = dz 
du 2ln z dz 
= v = z 
z 
∫ln2 z dz = z ln2 z – 2∫ln z dz 
u = ln z dv = dz 
du 1 dz 
= v = z 
z 
∫ln2 z dz = z ln2 z – 2(z ln z – ∫ dz) 
= z ln2 z – 2z ln z + 2z +C 
40. u = ln2 x20 dv = dx 
40ln x20 du dx 
= v = x 
x 
∫ln2 x20dx = x ln2 x20 – 40∫ln x20dx 
u = ln x20 dv = dx 
du 20 dx 
= v = x 
x 
∫ln2 x20dx = x ln2 x20 – 40(x ln x20 – 20∫ dx) 
= x ln2 x20 – 40x ln x20 + 800x +C 
41. u = et dv = cos t dt 
du = etdt v = sin t 
∫et cos t dt = et sin t − ∫et sin t dt 
u = et dv = sin t dt 
du = etdt v = –cos t 
∫et cost dt = et sin t − ⎡⎣−et cost + ∫et cos t dt⎤⎦ 
∫et cos t dt = et sin t + et cos t − ∫et cos t dt 
2∫et cos t dt = et sin t + et cos t +C 
cos 1 (sin cos ) 
∫et t dt = et t + t +C 
2 
42. u = eat dv = sin t dt 
du = aeatdt v = –cos t 
∫eat sin t dt = –eat cos t + a∫eat cos t dt 
u = eat dv = cos t dt 
du = aeatdt v = sin t 
∫eat sin t dt = –eat cos t + a (eat sin t – a∫eat sin t dt ) 
∫eat sin t dt = –eat cos t + aeat sin t – a2 ∫eat sin t dt 
(1+ a2 )∫eat sin t dt = –eat cos t + aeat sin t + C 
at at 
eat sin t dt – e cos t ae sin 
t C 
+ + ∫ 
= + + 
2 2 
a a 
1 1 
43. u = x2 dv = cos x dx 
du = 2x dx v = sin x 
∫ x2 cos x dx = x2 sin x − ∫ 2x sin x dx 
u = 2x dv = sin x dx 
du = 2dx v = −cos x 
∫ x2 cos x dx = x2 sin x − (−2x cos x + ∫ 2cos x dx) 
= x2 sin x + 2x cos x − 2sin x +C 
44. u = r2 dv = sin r dr 
du = 2r dr v = –cos r 
∫ r2 sin r dr = –r2 cos r + 2∫ r cos r dr 
u = r dv = cos r dr 
du = dr v = sin r 
∫ r2 sin r dr = –r2 cos r + 2(r sin r – ∫sin r dr ) = –r2 cos r + 2r sin r + 2cos r +C 
422 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
45. u = sin(ln x) dv = dx 
du cos(ln x) 1 dx 
= ⋅ v = x 
x 
∫sin(ln x)dx = x sin(ln x) − ∫cos(ln x) dx 
u = cos (ln x) dv = dx 
du sin(ln x) 1 dx 
= − ⋅ v = x 
x 
∫sin(ln x)dx = x sin(ln x) − ⎡⎣x cos(ln x) − ∫ −sin(ln x)dx⎤⎦ 
∫sin(ln x)dx = x sin(ln x) − x cos(ln x) − ∫sin(ln x)dx 
2∫sin(ln x)dx = x sin(ln x) − x cos(ln x) +C 
sin(ln ) [sin(ln ) cos(ln )] 
∫ x dx = x x − x +C 
2 
46. u = cos(ln x) dv = dx 
du – sin(ln x) 1 dx 
= v = x 
x 
∫cos(ln x)dx = x cos(ln x) + ∫sin(ln x)dx 
u = sin(ln x) dv = dx 
du cos(ln x) 1 dx 
= v = x 
x 
∫cos(ln x)dx = x cos(ln x) + ⎡⎣x sin(ln x) – ∫cos(ln x)dx⎤⎦ 
2∫cos(ln x)dx = x[cos(ln x) + sin(ln x)]+C 
cos(ln ) [cos(ln ) sin(ln )] 
∫ x dx = x x + x + C 
2 
47. u = (ln x)3 dv = dx 
3ln2 x du dx 
= v = x 
x 
∫(ln x)3dx = x(ln x)3 – 3∫ln2 x dx 
= x ln3 x – 3(x ln2 x – 2x ln x + 2x +C) 
= x ln3 x – 3x ln2 x + 6x ln x − 6x +C 
48. u = (ln x)4 dv = dx 
4ln3 x du dx 
= v = x 
x 
∫(ln x)4 dx = x(ln x)4 – 4∫ln3 x dx = x ln4 x – 4(x ln3 x – 3x ln2 x + 6x ln x − 6x +C) 
= x ln4 x – 4x ln3 x +12x ln2 x − 24x ln x + 24x +C 
49. u = sin x dv = sin(3x)dx 
du = cos x dx v = – 1 cos(3 x 
) 
3 
sin sin(3 ) – 1 sin cos(3 ) 1 cos cos(3 ) 
∫ x x dx = x x + ∫ x x dx 
3 3 
u = cos x dv = cos(3x)dx 
du = –sin x dx v = 1 sin(3 x 
) 
3 
Instructor's Resource Manual Section 7.2 423 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
sin sin(3 ) – 1 sin cos(3 ) 1 1 cos sin(3 ) 1 sin sin(3 ) 
∫ x x dx = x x + ⎡⎢ x x + ∫ 
x x dx⎤⎥ 3 33 ⎣ 3 
⎦ – 1 sin cos(3 ) 1 cos sin(3 ) 1 sin sin(3 ) 
= x x + x x + ∫ x x dx 
3 9 9 
8 sin sin(3 ) – 1 sin cos(3 ) 1 cos sin(3 ) 
9 3 9 
∫ x x dx = x x + x x + C 
sin sin(3 ) – 3 sin cos(3 ) 1 cos sin(3 ) 
∫ x x dx = x x + x x +C 
8 8 
50. u = cos (5x) dv = sin(7x)dx 
du = –5 sin(5x)dx v = – 1 cos(7 x 
) 
7 
cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 ) cos(7 ) 
∫ x x dx = x x ∫ x x dx 
7 7 
u = sin(5x) dv = cos(7x)dx 
du = 5 cos(5x)dx v = 1 sin(7 x 
) 
7 
cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 1 sin(5 )sin(7 ) – 5 cos(5 )sin(7 ) 
∫ x x dx = x x ⎡⎢ x x ∫ 
x x dx⎤⎥ 7 77 ⎣ 7 
⎦ – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 25 cos(5 )sin(7 ) 
= x x x x + ∫ x x dx 
7 49 49 
24 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 
49 7 49 
∫ x x dx = x x x x +C 
cos(5 )sin(7 ) – 7 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 
∫ x x dx = x x x x + C 
24 24 
51. u = eα z dv = sin βz dz 
du =αeα zdz v – 1 cosβ z 
β 
= 
eα z sin z dz – 1 eα z cos z α eα z cos z dz 
∫ = + ∫ 
u = eα z dv = cos βz dz 
du =αeα zdz v 1 sinβ z 
β β β 
β β 
β 
= 
⎡ ⎤ 
eα z sin z dz 1 eα z cos z α 1 eα z sin z α eα z sin z dz 
⎣ ⎦ ∫ ∫ 
β β β β 
= − + ⎢ − ⎥ 
β β β β 
2 
– 1 eα z cos z α eα z sin z –α eα z sin z dz 
= + ∫ 
2 2 
β β β 
2 2 
β β β 
β α eα z sin z dz – 1 eα z cos z α eα z sin z C 
∫ = + + 
β β β 
+ 
2 2 
β β β 
e α z ( α sin β z – β cos β 
z) C 
eα z sin z dz –β eα z cos z α eα z sin z C 
∫ β = β + β 
+ 
2 + 2 2 + 2 
2 2 
α β α β 
= + 
α + 
β 
424 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
52. u = eα z dv = cosβ z dz 
du =αeα zdz v 1 sinβ z 
β 
= 
eα z cos z dz 1 eα z sin z – α eα z sin z dz 
∫ = ∫ 
u = eα z dv = sin βz dz 
du =αeα zdz v – 1 cosβ z 
β β β 
β β 
β 
= 
⎡ ⎤ 
eα z cos z dz 1 eα z sin z α 1 eα z cos z α eα z cos z dz 
⎣ ⎦ ∫ ∫ 
β β β β 
= − ⎢− + ⎥ 
β β β β 
2 
1 eα z sin z α eα z cos z –α eα z cos z dz 
= + ∫ 
2 2 
β β β 
2 2 
β β β 
α β eα z cos z dz α eα z cos z 1 eα z sin z C 
∫ = + + 
β β β 
+ 
2 2 
β β β 
z 
α 
α z e ( α cos β z + 
β β 
e cos z dz sin z ) 
C 
+ ∫ 
= + 
2 2 
β 
α β 
53. u = ln x dv = xα dx 
du 1 dx 
x 
= 
1 
1 
α 
α 
v x 
+ 
= 
+ 
, α ≠ –1 
α 
+ 
1 ln ln – 
1 x x dx x x x dx 
α α 
1 1 
+ + 
x x x C 
α α 
+ + ∫ ∫ 
α α 
1 1 
= 
α 
2 ln – , –1 
1 ( 1) 
= + ≠ 
α α 
+ + 
54. u = (ln x)2 dv = xα dx 
du 2ln x dx 
x 
= 
1 
1 
α 
α 
v x 
+ 
= 
+ 
, α ≠ –1 
1 
α 
+ 
x (ln x )2 dx x (ln x )2 – 2 x ln 
x dx 
1 1 1 
+ ⎡ + + ⎤ 
x α α α 
x x x x C 
α α α α 
(ln ) 2 ln 
1 1 1 ( 1) 
α α 
+ + ∫ ∫ 
α α 
1 1 
= 
2 
= − ⎢ − ⎥ + 
2 
+ + ⎢⎣ + + ⎥⎦ 
1 1 1 
+ + + 
α α α 
x x 2 
x x x C 
α 
2 3 (ln ) – 2 ln 2 , –1 
1 ( 1) ( 1) 
= + + ≠ 
α + α + α 
+ 
Problem 53 was used for xα ln x dx. ∫ 
55. u = xα dv = eβ x dx 
du =α xα –1dx v 1 eβ x 
β 
= 
α β 
x α e β xdx x e α – x α –1 
e β 
xdx 
x 
∫ = ∫ 
β β 
56. u = xα dv = sin βx dx 
du =α xα –1dx v – 1 cosβ x 
β 
= 
α 
x sin x dx – x cos x x –1 cos x dx 
α β α α 
∫ = + ∫ 
β β 
β β 
Instructor's Resource Manual Section 7.2 425 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
57. u = xα dv = cos βx dx 
du =α xα –1dx v 1 sinβ x 
β 
= 
α 
x cos x dx x sin x – x –1 sin x dx 
α β α α 
∫ = ∫ 
β β 
β β 
58. u = (ln x)α dv = dx 
(ln x) –1 du dx 
α α 
= v = x 
x 
∫(ln x)α dx = x(ln x)α –α ∫(ln x)α –1dx 
59. u = (a2 – x2 )α dv = dx 
du = –2α x(a2 – x2 )α –1dx v = x 
∫(a2 – x2 )α dx = x(a2 – x2 )α + 2α ∫ x2 (a2 – x2 )α –1dx 
60. u = cosα –1 x dv = cos x dx 
du = –(α –1) cosα –2 x sin x dx v = sin x 
∫cosα x dx = cosα –1 x sin x + (α –1)∫cosα –2 x sin2 x dx 
= cosα −1 x sin x + (α −1)∫cosα −2 x(1− cos2 x) dx = cosα –1 x sin x + (α –1)∫cosα –2 x dx – (α –1)∫cosα x dx 
α ∫cosα x dx = cosα −1 x sin x + (α −1)∫cosα −2 x dx 
–1 
α 
cos x dx cos x sin x –1 cos –2 x dx 
α α α 
∫ = + ∫ 
α α 
61. u = cosα –1 β x dv = cos βx dx 
du = –β (α –1) cosα –2 β x sinβ x dx v 1 sinβ x 
β 
= 
–1 
α 
cos x dx cos x sin x ( –1) cos –2 x sin2 x dx 
α β β α 
β α β β 
∫ = + ∫ 
β 
1 
− 
α 
cos β x sin β x ( 1) cos α 
2 x(1 cos2 x) dx 
= + − ∫ − − 
α β β 
β 
–1 
α 
cos x sin x ( –1) cos –2 x dx – ( –1) cos x dx 
β β α α 
= + ∫ ∫ 
α β α β 
β 
1 
− 
α 
cos x cos x sin x ( 1) cos 2 x dx 
α β β α 
∫ = + − ∫ − 
α β α β 
β 
–1 
α 
cos x dx cos x sin x –1 cos –2 x dx 
α β β α α 
β β 
∫ = + ∫ 
αβ α 
62. 4 3 1 4 3 – 4 3 3 
∫ x e xdx = x e x ∫ x e xdx 1 4 3 – 4 1 3 3 – 2 3 
3 3 
= x e x ⎡ ⎢⎣ x e x ∫ 
x e xdx⎤ 3 33 
⎥⎦ = 1 x 4 e 3 x – 4 x 3 e 3 x + 4 ⎡ 1 x 2 e 3 x – 2 ∫ xe 3 
xdx⎤ 1 4 3 – 4 3 3 4 2 3 – 8 1 3 – 1 3 
3 9 33 ⎢⎣ 3 
⎥⎦ = x e x x e x + x e x ⎡ ⎢⎣ xe x ∫ 
e xdx⎤ 3 9 9 93 3 
⎥⎦ 1 4 3 – 4 3 3 4 2 3 – 8 3 8 3 
3 9 9 27 81 
= x e x x e x + x e x xe x + e x +C 
426 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
63. 4 cos3 1 4 sin 3 – 4 3 sin 3 
∫ x x dx = x x ∫ x x dx 1 4 sin 3 – 4 – 1 3 cos3 2 cos3 
3 3 
= x x ⎡⎢ x x + ∫ 
x x dx⎤⎥ 3 3 ⎣ 3 
⎦ 1 4 sin 3 4 3 cos3 – 4 1 2 sin 3 2 sin 3 
3 9 3 3 3 
= x x + x x ⎡⎢ x x − x x dx⎤⎥ ⎣ ⎦ ∫ 
1 4 sin 3 4 3 cos3 – 4 2 sin 3 8 – 1 cos3 1 cos3 
3 9 9 9 3 3 
= x x + x x x x + ⎡⎢ x x + ∫ 
x dx⎤⎥ ⎣ ⎦ = 1 x 4 sin 3 x + 4 x 3 cos3 x – 4 x 2 sin 3 x – 8 x cos3 x + 8 sin 3 
x + C 
3 9 9 27 81 
64. cos6 3 1 cos5 3 sin 3 5 cos4 3 
∫ x dx = x x + ∫ x dx 1 cos5 3 sin 3 5 1 cos3 3 sin 3 3 cos2 3 
18 6 
= x x + ⎡⎢ x x + ∫ 
x dx⎤⎥ 18 6 ⎣ 12 4 
⎦ 1 cos5 3 sin 3 5 cos3 3 sin 3 5 1 cos3 sin 3 1 
18 72 8 6 2 
= x x + x x + ⎡⎢ x x + ∫ 
dx⎤⎥ ⎣ ⎦ = 1 cos5 3 x sin 3 x + 5 cos3 3 x sin 3 x + 5 cos3 x sin 3 x + 5 
x +C 
18 72 48 16 
65. First make a sketch. 
From the sketch, the area is given by 
∫ e ln x dx 
1 
u = ln x dv = dx 
du 1 dx 
= v = x 
x 
ln ln ∫e x dx = x x e − ∫e dx 1 [ ln ]e 
[ ]1 1 1 
= x x − x = (e – e) – (1 · 0 – 1) = 1 
(ln ) e V = ∫ π x dx 
u = (ln x)2 dv = dx 
du 2ln x dx 
66. 2 
1 
= v = x 
x 
π ∫ e 2 e (ln x ) dx = π⎛ 2 
e ⎞ 2 
1 ⎜ ⎡ ⎤ ⎝ ⎣ x (ln x ) ⎦ − 2 ∫ ln 
x dx 1 1 
⎟ ⎠ e 
⎡x x x x x ⎤ 
⎣ ⎦ = π − − 2 
1 
(ln ) 2( ln ) 
1 [ (ln ) 2 ln 2 ]e 
= π x x − x x + x 
= π[(e − 2e + 2e) − (0 − 0 + 2)] = π(e − 2) ≈ 2.26 
Instructor's Resource Manual Section 7.2 427 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
67. 
3 –9 – 1 
e x dx = e x ⎛ dx ⎞ ⎜ ⎟ 
9 – / 3 9 – / 3 
0 0 
–9[e x ] – 9 9 
∫ 0 
∫ – /3 ⎝ 3 
⎠ 9= = + ≈ 8.55 
3 
e 
68. 9 – / 3 2 9 –2 / 3 
V = ∫ π(3e x ) dx = 9π∫ e x dx 
0 0 
9 – 3 – 2 
= π⎛ ⎞ e x ⎛ dx ⎞ ⎜ ⎟ ⎜ ⎟ 
9 –2 / 3 
0 
– 27 π [ e x 
] – 27 π 27 π 
42.31 
2 2 2 
∫ –2 / 3 9 
⎝ 2 ⎠ ⎝ 3 
⎠ = = + ≈ 
0 6 
e 
69. / 4 / 4 / 4 
(x cos x – x sin x)dx x cos x dx – x sin x dx π π π 
∫ = ∫ ∫ 
0 0 0 
4 4 
0 0 xsin x sin x dx ⎛ π π ⎞ = ⎜ ⎡⎣ ⎤⎦ ⎟ ⎝ ⎠ 
− ∫ [ ] 4 4 
xπ 
−⎜ ⎛ − x cos x π ∫ 
π + cos x dx ⎞ ⎟ 
⎝ 0 0 
⎠ [ x sin x cos x x cos x – sin ] / 4 
0 = + + 2 –1 
= ≈ 0.11 
4 
π 
Use Problems 60 and 61 for ∫ x sin x dx and ∫ x cos x dx. 
V x x dx π ⎛ ⎞ = π ⎜ ⎟ 
70. 2 
⎝ ⎠ ∫ 
2 sin2 
0 
dv = x dx 
u = x sin 
2 
v = x 
du = dx –2cos 
2 
2 2 
0 0 
⎛ ⎡ ⎤ π π ⎞ = π⎜ ⎢ ⎥ + ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
V x x x dx 
∫ 
2 –2 cos 2cos 
2 2 
2 
2 
⎛ π ⎞ = 2 π⎜ 4 π + ⎡ 4sin x ⎤ ⎢ ⎥ ⎟ = 8 
π ⎜ ⎝ ⎣ 2 
⎦ ⎟ 0 
⎠ 
ln 2 ln e e ∫ x dx = ∫ x dx 
u = ln x dv = dx 
du 1 dx 
71. 2 
1 1 
= v = x 
x 
( ) 1 1 1 1 
2 ln 2 [ ln ] 2 [ ] 2 e x dx ⎛ x x e e dx⎞ e x e ⎜ − ⎟ 
∫ = ∫ = − = 
⎝ ⎠ 
∫ e x ln x 2 
dx = 2 ∫ e x ln x dx 
1 1 
u = ln x dv = x dx 
du = 1 dx 
1 2 
x 
v = x 
2 
e e e x xdx x x xdx 
⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
2 ln 2 1 ln – 1 
e 
⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ = + ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
2 1 – 1 1 ( 1) 
2 4 2 
∫ 2 
∫ 2 2 2 
2 2 
1 1 1 
e x e 
1 
428 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
∫e x 2 
dx 
u = (ln x)2 dv = dx 
du 2ln x dx 
1 (ln ) 
2 
1 
= v = x 
x 
1 (ln ) 1 [ (ln ) ] – 2 ln 
2 2 
∫ e x 2 dx = ⎛ ⎜ x x 2 
e e 1 ∫ x dx ⎞ ⎟ 
= 1( e 
–2) 
1 ⎝ 1 
⎠ 2 
1 2 2 
2( 1) 1 
e e x 
+ + 
= = 
2 4 
1 
( –2) 2– 2 
e e y = = 
2 4 
72. a. u = cot x dv = csc2 x dx 
du = – csc2 x dx v = –cot x 
2 2 2 
∫ ∫ 
∫ 
∫ 
x xdx x x xdx 
x xdx x C 
x xdx x C 
cot csc = − cot − 
cot csc 
2 cot csc 2 = − cot 
2 
+ 
cot csc 2 = − 1 cot 
2 
+ 
2 
b. u = csc x dv = cot x csc x dx 
du = –cot x csc x dx v = –csc x 
2 2 2 
∫ ∫ 
∫ 
∫ 
x xdx x x xdx 
x xdx x C 
x xdx x C 
cot csc = − csc − 
cot csc 
2 cot csc 2 = − csc 
2 
+ 
cot csc 2 = − 1 csc 
2 
+ 
2 
c. – 1 cot2 – 1 (csc2 –1) 
x = x – 1 csc2 1 
2 2 
= x + 
2 2 
73. a. p(x) = x3 − 2x 
g(x) = ex 
All antiderivatives of g(x) = ex 
∫(x3 − 2x)exdx = (x3 − 2x)ex − (3x2 − 2)ex + 6xex − 6ex + C 
b. p(x) = x2 − 3x +1 
g(x) = sin x 
G1(x) = −cos x 
G2 (x) = −sin x 
G3(x) = cos x 
∫(x2 − 3x +1)sin x dx = (x2 − 3x +1)(−cos x) − (2x − 3)(−sin x) + 2cos x + C 
Instructor's Resource Manual Section 7.2 429 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
74. a. We note that the nth arch extends from x = 2π (n −1) to x =π (2n −1) , so the area of the nth arch is 
( ) sin n 
(2 − 
1) 
2 ( − 
1) 
A n x xdx π 
= ∫ . Using integration by parts: 
n 
π 
u = x dv = 
sin 
xdx 
du = dx v =− 
cos 
x 
A n x xdx x x xdx x x x 
n n n n n 
n n n n n 
(2 − 1) (2 − 1) (2 − 1) (2 − 1) (2 − 
1) 
2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 
1) 
π [ ] π π [ ] π [ ] 
π 
π π π π π 
( ) sin cos cos cos sin 
= ∫ = − − ∫ − = − + 
= − − − + − − +[ − − − ] 
[ ] 
n n n n n n 
)) 
(2 1) cos( (2 1)) 2 ( 1) cos(2 ( 1)) sin( (2 1)) sin(2 ( 1 
π π π π π π 
[ ] 
= −π (2n −1)(−1) + 2π (n −1)(1) + 0 − 0 =π (2n −1) + (2n − 2) . So A(n) = (4n − 3)π 
b. 3 2 
V 2 x sin x dx π 
= π∫ 
2 
π 
u = x2 dv = sin x dx 
du = 2x dx v = –cos x 
2 3 3 
π π 
π π 
⎛ ⎡ ⎤ ⎞ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
= π + ∫ 2 2 3 
V 2 –x cos x 2x cos x dx 
2 2 
2 2 9 4 2x cos x dx π 
⎛ ⎞ 
⎜ ⎝ π 
⎟ 
⎠ 
= π π + π + ∫ 
u = 2x dv = cos x dx 
du = 2 dx v = sin x 
2 3 3 
2 2 V 2 13 [2xsin x] – 2sin x π π 
⎛ ⎞ 
⎜ ⎟ 
⎝ ⎠ 
= π π + π ∫ 
π 
( 2 3 ) 2 
2 13 [2cos x]2 2 (13 – 4) π 
= π π + π = π π ≈ 781 
75. u = f(x) dv = sin nx dx 
du = f ′(x)dx v 1 cos nx 
n 
= − 
π π 
−π −π 
⎡ ⎡ ⎤ ′ ⎤ = ⎢ ⎢− ⎥ + ⎥ π ⎣ ⎣ ⎦ ⎦ ∫ 
1 1 cos( ) ( ) 1 cos( ) ( ) an nx f x nx f x dx 
n n 
	
 	
 
Term 1 Term 2 
Term 1 = 1 cos(n π )( f ( −π ) − f ( π )) =± 1 ( f ( −π ) − f ( π 
)) 
n n 
Since f ′(x) is continuous on [–∞ ,∞ ], it is bounded. Thus, 
cos(nx) f (x)dx π 
π 
∫ ′ is bounded so 
– 
a 1 ⎡± f π 
lim n 
= lim ⎢⎣ ( ( −π ) − f ( π )) + ∫ 
cos( nx ) f ′ ( x ) dx 
⎤ ⎥⎦ = 0. n n 
π n 
→∞ →∞ −π 
76. 
1 
G n n n n 
n n 
[( + 1)( + 2) ⋅⋅⋅ ( + 
)] 
n 1 
n 
[ ] 
n 
n 
= 
n n 
1/ 1 1 1 2 1 
= ⎡⎛ ⎢⎜ + ⎞⎛ ⎟⎜ + ⎟…⎜ ⎞ ⎛ + ⎞⎤ ⎣⎝ n ⎠⎝ n ⎠ ⎝ n 
⎟⎥ ⎠⎦ 
ln Gn 1 ln 1 1 1 2 1 n 
⎛ ⎞ ⎡⎛ ⎞⎛ ⎜ ⎟ = + + ⎞ ⎟…⎜ ⎛ + ⎞⎤ ⎝ n ⎠ n ⎢⎜ n ⎟⎜ ⎣⎝ ⎠⎝ n ⎠ ⎝ n 
⎠⎦ 
⎟⎥ 1 ln 1 1 ln 1 2 ln 1 n 
n n n n 
⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎤ = ⎢ ⎜ + ⎟ + ⎜ + ⎟ + ⋅⋅⋅+ ⎜ + ⎟⎥ ⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ 
G xdx 
⎛ ⎞ 2 
⎜ ⎟ 
= ∫ 
= ⎝ ⎠ 1 
lim ln n ln 2ln 2 –1 
n 
→∞ n 
G e e 
lim n 2ln 2–1 4 –1 4 
n 
⎛ ⎞ = = = ⎜ ⎟ 
⎝ ⎠ 
→∞ n e 
430 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
77. The proof fails to consider the constants when integrating . 1t 
The symbol ( ) 1 t dt ∫ is a family of functions, all of who whom have derivative . 1t 
We know that any two of these 
functions will differ by a constant, so it is perfectly correct (notationally) to write ∫(1 t )dt = ∫(1 t )dt +1 
[ ( 1 cos 7 2 sin 7 ) 3] 5 ( 1 cos7 2 sin 7 ) (–7 1 sin 7 7 2 cos 7 ) d e x C x C x C e x C x C x e x C x C x 
dx 
78. 5 5 5 
+ + = + + + 
5 
[(5 1 7 2 ) cos 7 (5 2 – 7 1)sin 7 ] = e x C + C x + C C x 
Thus, 5C1 + 7C2 = 4 and 5C2 – 7C1 = 6. 
Solving, 1 2 
– 11 ; 29 
37 37 
C = C = 
79. u = f(x) dv = dx 
du = f ′(x)dx v = x 
( ) [ ( )] – ( ) b b b 
a a a 
∫ f x dx = xf x ∫ xf ′ x dx 
Starting with the same integral, 
u = f(x) dv = dx 
du = f ′(x)dx v = x – a 
( ) [( – ) ( )] – ( – ) ( ) b b b 
a a a 
∫ f x dx = x a f x ∫ x a f ′ x dx 
80. u = f ′(x) dv = dx 
du = f ′′(x)dx v = x – a 
( )– ( ) ( ) b 
f b f a = ∫ f ′ x dx [( – ) ( )] – ( – ) ( ) b b 
a 
= x a f ′ x ∫ x a f ′′ x dx ( )( – ) – ( – ) ( ) b 
a a 
= f ′ b b a ∫ x a f ′′ x dx 
a 
Starting with the same integral, 
u = f ′(x) dv = dx 
du = f ′′(x)dx v = x – b 
( ) ( ) ( ) [( – ) ( )] – ( – ) ( ) b b b 
f b − f a = ∫ f ′ x dx = x b f ′ x ∫ x b f ′′ x dx ( )( ) – ( – ) ( ) b 
a a a 
= f ′ a b − a ∫ x b f ′′ x dx 
a 
81. Use proof by induction. 
n = 1: ( ) ( )( – ) ( – ) ( ) ( ) ( )( – ) [ ( )( – )] ( ) t t t 
f a + f ′ a t a + ∫ t x f ′′ x dx = f a + f ′ a t a + f ′ x t x + ∫ f ′ x dx 
a a a 
( ) ( )( – ) – ( )( – ) [ ( )]t ( ) 
= f a + f ′ a t a f ′ a t a + f x a = f t 
Thus, the statement is true for n = 1. Note that integration by parts was used with u = (t – x), dv = f ′′(x)dx. 
Suppose the statement is true for n. 
n ( i ) 
n i t n 
f ( t ) f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 1) 
( x ) 
dx 
= +Σ + ∫ 
1 
i n 
! a 
! 
i 
+ 
= 
t n n 
a 
t x f x dx 
n 
Integrate ( – ) ( 1) ( ) 
+ ∫ by parts. 
! 
t x n dv dx 
u = f (n+1) (x) ( – ) 
! 
n 
= 
du = f (n+2) (x) 
t x n v 
– 
( – ) + 
1 ( n 
1)! 
= 
+ 
1 1 
n n + t t t n + 
n n n 
a a 
+ ⎡ + ⎤ + 
t x f x dx t x f x t x f x dx 
n n n 
( – ) ( 1) ( ) – ( – ) ( 1) ( ) ( – ) ( 2) ( ) 
∫ ∫ 
= ⎢ ⎥ + 
⎢⎣ + ⎥⎦ + 
! ( 1)! ( 1)! 
a 
Instructor's Resource Manual Section 7.2 431 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
n + 1 t n + 
1 
n n 
t a f a t x f x dx 
n n 
( – ) ( 1) ( ) ( – ) ( 2) ( ) 
( 1)! ( 1)! 
= + + + 
∫ 
+ a 
+ Thus 
n ( i ) n + 1 t n + 
1 
i n n 
f ( t ) f ( a ) f ( a ) ( t – a ) ( t – a ) f ( a ) ( t – x ) f ( x ) 
dx 
+ + Σ ∫ 
( 1) ( 2) 
= + + + 
1 
+ + 
i n n 
! ( 1)! a 
( 1)! 
i 
= 
n + 1 ( i ) t n + 
1 
i n 
f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 2) 
( x ) 
dx 
+ Σ ∫ 
= + + 
1 
i n 
! a 
( 1)! 
i 
+ 
= 
Thus, the statement is true for n + 1. 
82. a. 1 1 1 
B(α , β ) = ∫ xα − (1− x)β − dx where α ≥ 1,β ≥ 1 
0 
x = 1 – u, dx = –du 
1 1 1 0 1 1 
0 1 
∫ xα − (1− x)β − dx = ∫ (1− u)α − (u)β − (−du) 1 1 1 
= ∫ (1− u)α − uβ − du = B(β , α ) 
0 
Thus, B(α, β) = B(β, α). 
b. 1 1 1 
B(α , β ) = ∫ xα − (1− x)β − dx 
0 
u = xα −1 dv = (1− x)β −1dx 
du = (α −1) xα −2dx v = − 1 (1 − 
x)β 
β 
1 
⎡ − ⎤ − − − − 
= ⎢− − ⎥ + − = − 
⎣ ⎦ 
( , ) 1 (1 ) 1 (1 ) 1 (1 ) 
α β α α β α α β 
1 1 2 1 2 
∫ ∫ 
B x x x x dx x x dx 
β β 0 β 
0 
0 
1 B 
( 1, 1) 
α β 
− 
α 
= − + 
α β 
β 
(*) 
Similarly, 
1 1 1 
0 
B(α , β ) = ∫ xα − (1− x)β − dx 
u = (1− x)β −1 dv = xα −1dx 
du = −(β −1)(1− x)β −2 dx v 1 xα 
α 
= 
1 1 1 2 
0 0 
B( , ) 1 xα (1 x)β β 1 xα (1 x)β dx 
β − 1 α β − β − 
x(1 x)dx 1 B( 1, 1) 
= ⎡ − − ⎤ + − − − ⎢⎣ ⎥⎦ ∫ 1 2 
α β 
α α 
= ∫ − = + − 
α 0 
α 
α β 
c. Assume that n ≤ m. Using part (b) n times, 
( ) 
n n n B n m B n m B n m 
− 1 − 1 ( − 
2) ( , ) = ( − 1, + 1) = ( − 2, + 
2) 
m mm 
( 1) 
( n ) n ( n 
) 
+ 
1 ( 2) 3 2 1 
− − − …⋅ ⋅ 
= … = + − 
( ) 
B m n 
(1, 1). 
m m m m n 
( 1) 2 ( 2) 
+ + … + − 
1 2 11 
0 0 
(1, 1) (1 ) 1 [(1 ) ] 1 
B m n x m n dx x m n 
+ − = − + − = − − + − = 
∫ + − + − 
m n m n 
1 1 
Thus, 
( ) ( ) 
( ) ( ) ( 
1 ( 2) 3 2 1 1)!( 1)! ( 1)!( 1)! 
B n m 
( , ) 
n n n n m n m 
− − − …⋅ ⋅ − − − − 
= = = 
m m m m n m n m n n m 
( + 1) + 2 … ( + − 2) + − 1 ( + − 1)! ( + − 
1)! 
If n  m, then 
( 1)!( 1)! 
B n m B m n 
( , ) ( , ) 
n m 
− − 
n m 
( 1)! 
= = 
+ − 
by the above reasoning. 
432 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
83. u = f(t) dv = f ′′(t)dt 
du = f ′(t)dt v = f ′(t) 
( ) ( ) [ ( ) ( )] – [ ( )]2 b b b 
a a a 
∫ f ′′ t f t dt = f t f ′ t ∫ f ′ t dt 
= f ( b ) f ′ ( b ) − f ( a ) f ′ ( a ) − ∫ b 
[ f ′ ( t )]2 dt b 
[ ( )]2 a 
= −∫ f ′ t dt 
a 
[ ( )]2 0, so [ ( )]2 0 b 
f ′ t ≥ − ∫ f ′ t ≤ . 
a 
84. 
∫ x ⎛ ⎜ ∫ 
t f ( z ) dz ⎞ ⎟ 
dt 
0 ⎝ 0 
⎠ u = ∫ t f ( z ) dz dv = dt 
0 
du = f(t)dt v = t 
∫ x ⎛⎜ x ∫ t f ( z ) dz ⎞⎟ dt = ⎡⎢t ∫ t f ( z ) dz⎤⎥ – ∫ x t f ( t ) 
dt ⎝ ⎠ ⎣ ⎦ 0 0 
0 0 0 0 0 
( ) – ( ) x x = ∫ x f z dz ∫ t f t dt 
By letting z = t, 
( ) ( ) , x x ∫ x f z dz = ∫ x f t dt so 
0 0 
∫ x ⎛⎜ ∫ t f ( z ) dz ⎞⎟ dt = ∫ x x f ( t ) dt – ∫ x t f ( t ) dt 
0 ⎝ 0 ⎠ 0 0 
0 
( – ) ( ) x = ∫ x t f t dt 
( ) ... x t tn 
I f tn dtn dt dt = ∫ ∫ ⋅⋅⋅∫ − be the iterated integral. Note that for i ≥ 2, the limits of integration of the 
85. Let 1 1 
0 0 0 2 1 
integral with respect to ti are 0 to ti−1 so that any change of variables in an outer integral affects the limits, and 
hence the variables in all interior integrals. We use induction on n, noting that the case n = 2 is solved in the 
previous problem. 
Assume we know the formula for n −1, and we want to show it for n. 
I x t 1 t 2 tn − 1 f ( tn ) dtn ... dt dt dt t 1 t 2 tn 
− 
2 
F ( tn ) dtn ... dt dt dt = ∫ ∫ ∫ ⋅⋅⋅∫ = ∫ ∫ ⋅⋅⋅∫ − − 
where ( ) 1 ( ) 
0 0 0 0 3 2 1 0 0 0 1 1 3 2 1 
tn 
− = ∫ . 
F tn f tn dn − 
1 0 
By induction, 
1 
2 ! 
I x F t x t n dt 
( ) ( )( ) 2 
− = − 
− ∫ 
( ) 1 ( ) 
1 0 
0 1 1 1 
n 
t 
dv x t n− = − 
u = F t = ∫ f tn dtn , ( ) 2 
1 
1 
1 
v x t n 
− = − − 
( ) du = f t1 dt1 , ( ) 1 
1 
n 
− 
t = 
x 
⎧⎪⎡ ⎤ ⎪⎫ = ⎨⎢− − ⎥ + − ⎬ − ⎩⎪⎣ − ⎦ − ⎪⎭ 
= − 
1 1 1 
2 ! 1 1 
1 ( )( ) 
( 1)! 
( ) ( ) ( ) ( )( ) 1 
n t x n 
− − 
1 1 
∫ 1 
∫ 
I x t f t dt f t x t dt 
n n 
1 0 0 1 1 1 
n n n 
t 
1 
0 
− 
1 
x n 
f t x t dt 
∫ 
0 1 1 1 
n 
= 
− 
. 
(note: that the quantity in square brackets equals 0 when evaluated at the given limits) 
Instructor’s Resource Manual Section 7.3 433 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
86. Proof by induction. 
n = 1: 
u = P1(x) dv = exdx 
du x) = dP1(dx 
v = ex 
dx 
exP (x)dx exP (x) – ex dP (x) dx 
exP (x) – dP (x) exdx 
∫ = ∫ 1 
1 
1 1 
dx 
exP (x) – ex dP (x) 
= ∫ 1 
1 
dx 
1 
dx 
= 
Note that dP1(x) 
dx 
is a constant. 
Suppose the formula is true for n. By using integration by parts with u = Pn+1(x) and dv = exdx, 
dP x 
1 
x ( ) x ( ) – x n 
n n 
+ 
∫ + = + ∫ 
Note that n 1( ) dP x 
e P x dx e P x e dx 
1 1 
( ) 
dx 
+ is a polynomial of degree n, so 
dx 
⎡ ⎛ ⎞⎤ = − ⎢ − ⎜ ⎟⎥ = − − ⎢⎣ ⎝ ⎠⎥⎦ 
n j n j 
+ 
1 
( ) ( ) ( ) e P x dx e P x e d dP ( x ) 
d P x e P x e 
x x x j n x x j n 
n n j n j 
∫ Σ Σ 
1 1 
+ + 
( ) ( ) ( 1) 1 
1 1 1 1 
+ + + + 
dx dx dx 
j j 
0 0 
= = 
n j 
1 
d P x 
+ 
= + Σ − 
x x j n 
n j 
1 
e P x e 
1 
( ) ( 1) 
1 
( ) 
j 
+ 
dx 
+ 
= 
n 1 
j 
x j n 
d P x 
1 
+ 
= Σ − 
0 
( ) 
( 1) 
+ 
j 
j 
e 
dx 
= 
87. 
j 
4 4 2 
x x e dx e d x x 
(3 2 ) (–1) (3 2 ) 
∫ 4 + 2 
x = x Σ 
j 
= 0 
dx 
= ex[3x4 + 2x2 –12x3 – 4x + 36x2 + 4 – 72x + 72] 
= ex (3x4 –12x3 + 38x2 – 76x + 76) 
+ 
j 
j 
7.3 Concepts Review 
1. 1 cos2 
2 
x dx 
+ ∫ 
2. ∫(1– sin2 x) cos x dx 
3. ∫sin2 x(1– sin2 x) cos x dx 
4. cos mx cos nx = 1 [cos( m+ n ) x + cos( m− n ) x 
] 
2 
Problem Set 7.3 
∫ x dx = ∫ x dx 
1 – 1 cos 2 
2 2 
1. sin2 1– cos 2 
2 
= ∫ dx ∫ x dx 
= 1 x – 1 sin 2 
x +C 
2 4 
2. u = 6x, du = 6 dx 
sin4 6 1 sin4 
∫ x dx = ∫ u du 
6 
1 1– cos 2 2 
6 2 
= ⎛ u ⎞ du ⎜ ⎟ 
⎝ ⎠ ∫ 
1 (1– 2cos 2 cos2 2 ) 
24 
= ∫ u + u du 
1 – 1 2cos 2 1 (1 cos 4 ) 
24 24 48 
= ∫ du ∫ u du + ∫ + u du 
3 – 1 2cos 2 1 4cos 4 
48 24 192 
= ∫ du ∫ u du + ∫ u du 
3 (6 ) – 1 sin12 1 sin 24 
48 24 192 
= x x + x +C 
= 3 x – 1 sin12 x + 1 sin 24 
x +C 
8 24 192 
434 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
3. ∫sin3 x dx = ∫sin x(1− cos2 x)dx 
= ∫sin x dx − ∫sin x cos2 x dx 
cos 1 cos3 
= − x + x +C 
3 
4. ∫cos3 x dx = 
= ∫cos x(1− sin2 x)dx 
= ∫cos x dx − ∫cos x sin2 x dx 
= sin x − 1 sin3 
x + C 
3 
5. / 2 5 / 2 2 2 
π π 
∫ = ∫ 
cos θ dθ (1– sin θ ) cosθ dθ 
0 0 
/ 2 2 4 
0 
= ∫ + 
(1– 2sin θ sin θ ) cosθ dθ 
π 
/ 2 
⎡ π = sin – 2 sin 3 + 1 sin 
5 
⎤ ⎢⎣ ⎥⎦ 
1– 2 1 – 0 8 
θ θ θ 
0 
3 5 
= ⎛ + ⎞ = ⎜ ⎟ 
⎝ ⎠ 
3 5 15 
6. 
π / 2 π sin 6 
= / 2 ⎛ 1– cos 2 
θ 
⎞ 3 0 0 
⎜ ⎟ 
⎝ ⎠ ∫ ∫ 
d d 
θ θ θ 
2 
1 / 2 (1– 3cos 2 3cos 2 2 – cos 3 
2 ) 
8 
0 
= ∫ + 
θ θ θ dθ 
π 
1 π / 2 3 π / 2 3 π / 2 2 1 π 
– 2cos 2 cos 2 – / 2 cos 3 
2 
8 0 16 0 8 0 8 
0 
= ∫ ∫ + ∫ ∫ 
dθ θ dθ θ θ dθ 
1[ 3 3 1 cos 4 θ 
] – [sin 2 ] – 1 (1– sin 2 ) cos 2 
8 16 8 2 8 
π π π ⎛ + ⎞ π = + ⎜ ⎟ 
/ 2 / 2 / 2 / 2 2 
0 0 0 0 
⎝ ⎠ ∫ ∫ 
d d 
θ θ θ θ θ θ 
1 π 3 π / 2 3 π / 2 π 4cos 4 – 1 / 2 π 
2cos 2 1 / 2 sin 2 
2 2cos 2 
8 2 16 0 64 0 16 0 16 
0 
= ⋅ + ∫ + ∫ ∫ + ∫ ⋅ 
dθ θ dθ θ dθ θ θ dθ 
θ π θ π θ π π π 
= + + + 5 
3 3 [sin 4 ] – 1 [sin 2 ] 1 [sin 2 ] 
/ 2 / 2 3 / 2 
0 0 0 
16 32 64 16 48 
π 
32 
= 
7. ∫sin5 4x cos2 4x dx = ∫(1– cos2 4x)2 cos2 4x sin 4x dx = ∫(1– 2cos2 4x + cos4 4x) cos2 4x sin 4x dx 
= ∫ x x + x x dx – 1 cos3 4 1 cos5 4 – 1 cos7 4 
– 1 (cos2 4 – 2cos4 4 cos6 4 )(–4sin 4 ) 
4 
= x + x x +C 
12 10 28 
8. ∫(sin3 2t) cos 2tdt = ∫(1– cos2 2t)(cos 2t)1/ 2 sin 2t dt – 1 [(cos 2 )1/ 2 – (cos 2 )5/ 2 ](–2sin 2 ) 
= ∫ t t t dt 
2 
– 1 (cos 2 )3/ 2 1 (cos 2 )7 / 2 
3 7 
= t + t +C 
9. ∫cos3 3θ sin–2 3θ dθ = ∫(1– sin2 3θ )sin–2 3θ cos3θ dθ 1 (sin 2 3 1)3cos3 
= ∫ − θ − θ dθ 
3 
– 1 csc3 – 1 sin 3 
3 3 
= θ θ +C 
10. ∫sin1/ 2 2z cos3 2z dz = ∫(1– sin2 2z)sin1/ 2 2z cos 2z dz 
= ∫ z z z dz 1 sin3/ 2 2 – 1 sin7 / 2 2 
1 (sin1/ 2 2 – sin5/ 2 2 )2cos 2 
2 
= z z +C 
3 7 
Instructor’s Resource Manual Section 7.3 435 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
11. 
2 2 
t t dt t t dt 
∫ sin4 + 3 cos4 3 = ∫ ⎛ 1– cos 6 ⎞ ⎛ 1 cos 6 
⎞ 1 ⎜ ⎟ ⎜ ⎟ 
(1– 2cos2 6 cos4 6 ) 
⎝ 2 ⎠ ⎝ 2 
⎠ = ∫ t + t dt 
16 
= 1 ∫ ⎡⎢ 1– (1 + cos12 t ) + 1 (1 + cos12 t )2 
⎤⎥ dt – 1 cos12 1 (1 2cos12 cos2 12 ) 
16 ⎣ 4 
⎦ = ∫ t dt + ∫ + t + t dt 
16 64 
– 1 12cos12 1 1 12cos12 1 (1 cos 24 ) 
192 64 384 128 
= ∫ t dt + ∫ dt + ∫ t dt + ∫ + t dt 
– 1 sin12 1 1 sin12 1 1 sin 24 
= t + t + t + t + t +C 3 – 1 sin12 1 sin 24 
192 64 384 128 3072 
= t t + t +C 
128 384 3072 
12. 
3 
∫ cos6 sin2 d = ∫ ⎛ 1 + cos 2 θ ⎞ ⎛ 1– cos 2 
θ 
⎞ ⎜ ⎟ ⎜ ⎟ 
d 
1 (1 2cos 2 – 2cos3 2 – cos4 2 ) 
⎝ ⎠ ⎝ ⎠ = ∫ + θ θ θ dθ 
θ θ θ θ 
2 2 
16 
1 1 2cos 2 – 1 (1– sin2 2 ) cos 2 – 1 (1 cos 4 )2 
16 16 8 64 
= ∫ dθ + ∫ θ dθ ∫ θ θ dθ ∫ + θ dθ 
1 1 2cos 2 – 1 2cos 2 1 2sin2 2 cos 2 – 1 (1 2cos 4 cos2 4 ) 
16 16 16 16 64 
= ∫ dθ + ∫ θ dθ ∫ θ dθ + ∫ θ θ dθ ∫ + θ + θ dθ 
1 1 sin2 2 2cos 2 – 1 – 1 4cos 4 – 1 (1 cos8 ) 
16 16 64 128 128 
= ∫ dθ + ∫ θ ⋅ θ dθ ∫ dθ ∫ θ dθ ∫ + θ dθ 
= 1 1 sin3 2 1 1 sin 4 1 1 sin8 
16 48 64 128 128 1024 
θ + θ − θ − θ − θ − θ +C 
5 1 sin3 2 – 1 sin 4 – 1 sin8 
128 48 128 1024 
= θ + θ θ θ + C 
13. sin 4 cos5 1 [sin 9 sin( )] 1 (sin 9 sin ) 
∫ y y dy = ∫ y + −y dy = ∫ y − y dy 
2 2 
1 1 cos9 cos 1 cos 1 cos9 
2 9 2 18 
= ⎛⎜ − y + y ⎞⎟ +C = y − y +C 
⎝ ⎠ 
∫ y y dy = ∫ y + − y dy 1 sin 5 1 sin( 3 ) 
14. cos cos 4 1 [cos5 cos( 3 )] 
2 
= y − − y +C 1 sin 5 1 sin 3 
10 6 
= y + y +C 
10 6 
15. 
2 
w w dw w w dw 
∫ sin4 ⎛ ⎞ cos2 ⎛ ⎞ = ∫ ⎛ 1– cos ⎞ ⎛ 1 + cos 
⎞ 1 ⎜ (1– cos – cos2 cos3 ) 
⎝ 2 ⎟ ⎜ ⎠ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ 
⎠ ⎝ 2 ⎠ ⎝ 2 
⎠ = ∫ w w+ w dw 
8 
= 1 ∫ ⎡⎢ 1– cos w – 1 (1 + cos 2 w ) + (1– sin2 w ) cos 
w⎤⎥ dw 1 1 – 1 cos 2 – sin2 cos 
8 ⎣ 2 
⎦ = ∫ 
⎡⎢ w w w⎤⎥dw 8 ⎣ 2 2 
⎦ 1 – 1 sin 2 – 1 sin3 
16 32 24 
= w w w+C 
sin 3 sin 1 cos 4 cos 2 
16. [ ] 
∫ ∫ 
t t dt = − t − 
t dt 
2 
( ) 
1 ∫ cos 4 ∫ 
cos 2 
2 
1 1 sin 4 1 sin 2 
2 4 2 
1 sin 4 1 sin 2 
8 4 
tdt tdt 
= − − 
= − ⎛ − ⎞ + ⎜ ⎟ 
t t C 
⎝ ⎠ 
t tC 
= − + + 
436 Section 7.3 Instructor's Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
17. 2 
∫ 
x cos x sin 
xdx 
u = x du = 
1 
dx 
dv = 
2 
x x dx 
v = − x − x dx = − 
x 
cos sin 
(cos ) ( sin ) 1 cos 
2 3 
cos 
t = 
x 3 
∫ 
Thus 
2 
∫ 
x x xdx 
x x xdx 
cos sin 
= 
( 1 cos 3 ) ∫ 
(1)( 1 cos 3 
) 
3 3 
1 cos ∫ 
cos 
3 
1 cos ∫ 
cos (1 sin ) 
3 
− − − = 
⎡− x 3 x + 3 
⎣ xdx 
⎤ ⎦ 
= ⎡− x 3 ⎣ x + x − 2 
xdx 
⎤ ⎦ 
= ⎡ ⎤ 
⎢− + − ⎥ = 
⎣ ⎦ 
⎡− + − ⎤ + ⎢⎣ ⎥⎦ 
1 cos 3 ∫ 
(cos cos sin 2 
) 
3 
1 cos sin 1 sin 
3 3 
x x x x xdx 
t sin 
x 
3 3 
= 
x x x x C 
18. 3 
∫ 
x sin x cos 
xdx 
u = x du = 
1 
dx 
dv = 
sin 3 
x cos 
x dx 
v = (sin x ) (cos xdx ) = 
1 sin 
x 
3 4 
sin 
t = 
x 4 
∫ 
Thus 
3 
∫ 
x x xdx 
x x xdx 
sin cos 
= 
(1 sin 4 ) ∫ 
(1)(1 sin 4 
) 
4 4 
1 sin ∫ 
(sin ) 
4 
1 sin 1 ∫ 
(1 cos 2 ) 
4 4 
− = 
4 2 2 
⎡ ⎣ x x − x dx 
⎤ ⎦ 
= ⎡ 4 2 
⎤ ⎢⎣ x x − − x dx 
⎥⎦ 
= 1 sin 1 (1 2cos 2 cos 2 ) 
4 4 
1 sin 1 1 sin 2 1 (1 cos 4 ) 
4 4 4 8 
1 sin 3 1 sin 2 1 sin 4 
4 8 4 32 
⎡ ⎢⎣ x 4 x − ∫ 
− x + 2 
xdx 
⎤ ⎥⎦ 
= ⎡ ⎢⎣ x 4 
x − x + x − ∫ 
+ xdx 
⎤ ⎥⎦ 
= ⎡ 4 
⎤ ⎢⎣ x x − x + x − x ⎥⎦ 
+ C 
19. 4 ( 2 )( 2 
) 
∫ ∫ 
x dx x x dx 
tan tan tan 
= 
= ∫ 
( 2 ) 
2 
− 
= ∫ 
( − 
) 
= ∫ − ∫ 
− 
= − + + 
x x dx 
x x xdx 
x x dx x dx 
x x x C 
tan (sec 1) 
tan 2 sec 2 tan 
2 
tan 2 sec 2 (sec 2 
1) 
1 tan 3 
tan 
3 
20. 4 ( 2 )( 2 
) 
∫ ∫ 
∫ 
( 2 2 2 ) 
x dx x x dx 
x x dx 
cot = 
cot cot 
cot (csc 1) 
( ) 
2 2 
= − 
∫ 
∫ ∫ 
x x xdx 
x x dx x dx 
x x x C 
cot csc cot 
cot csc (csc 1) 
1 cot cot 
3 
= − 
= 2 2 − 2 
− 
= − 3 
+ + + 
21. tan 3 x ( )( 2 
) 
x x dx 
x x dx 
x x C 
∫ 
∫ 
tan tan 
tan sec 1 
1 tan ln cos 
2 
= 
= − 
( )( 2 
) 
2 
= + + 
22. 3 ( )( 2 
) 
∫ ∫ 
∫ 
∫ ∫ 
t dt t t dt 
t t dt 
t tdt tdt 
cot 2 = 
cot 2 cot 2 
( cot 2 )( csc 2 
2 1 
) 
cot 2 csc 2 cot 2 
1 cot 2 1 ln sin 2 
4 2 
= − 
= 2 
− 
= − 2 
− + 
t t C 
Instructor’s Resource Manual Section 7.3 437 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
θ 
⎛ ⎞ θ 
⎜ ⎟ 
⎝ ⎠ ∫ 
23. tan5 
2 
d 
u du d 
⎛θ ⎞ θ = ⎜ 2 ⎟ ; 
= 
⎝ ⎠ 
2 
θ 
⎛ ⎞ = ⎜ ⎟ 
⎝ ⎠ 
5 5 
∫ ∫ 
d udu 
tan 2 tan 
( )( ) 
∫ 
∫ ∫ 
∫ ∫ 
∫ ∫ ∫ 
u u du 
u udu udu 
u u du u u du 
u udu u udu u 
2 tan sec 1 
2 tan sec 2 tan 
2 tan sec 2 tan sec 1 
2 tan sec 2 tan sec 2 tan du 
1 tan tan 2ln cos 
2 2 2 2 
= − 
= − 
= − ( − 
) 
= − + 
3 2 
3 2 3 
3 2 2 
3 2 2 
θ θ θ 
= 4 ⎛ ⎞ − 2 
⎛ ⎞ ⎜ ⎟ ⎜ ⎟ 
− + 2 
C 
θ 
⎝ ⎠ ⎝ ⎠ 
24. ∫cot5 2t dt 
u = 2t;du = 2dt 
cot 2 1 cot 
5 5 
∫ ∫ 
t dt u du 
2 
1 ∫ ( cot 3 u )( cot 2 udu ) 1 ∫ 
( cot 3 u )( csc 2 
1 
) 
du 
2 2 
1 ∫ ( cot )( csc ) 
1 ∫ 
cot 
2 2 
1 ∫ ( cot )( csc ) 1 ∫ 
( cot )( csc 1 
) 
2 2 
1 ∫ ( cot )( csc ) 1 ∫ ( cot )( csc ) 
1 ∫ 
cot 
2 2 2 
1 cot 1 cot 1 ln sin 
8 4 2 
1 cot 2 1 c 
8 4 
= = − 
3 2 3 
u udu udu 
= − 
3 2 2 
u u du u u du 
= − − 
3 2 2 
u u du u u du u 
= − + 
4 2 
= − + + + 
4 
u u u C 
t 
= 
= − + 
ot2 2 1 ln sin 2 
t + t +C 
2 
25. − 3 4 ( − 
3 )( 2 )( 2 
) 
∫ ∫ 
x xdx x x x dx 
tan sec tan sec sec 
= 
= + 
= + 
= − + + 
( 3 )( 2 )( 2 
) 
∫ 
∫ ∫ 
x x x dx 
x x x x dx 
x x C 
− 
tan 1 tan sec 
tan sec dx tan sec 
1 tan ln tan 
2 
3 2 1 2 
− − 
( ) 
2 
− 
26. − 3/ 2 4 ( − 
3/ 2 )( 2 )( 2 
) 
∫ ∫ 
x xdx x x x 
tan sec tan sec sec 
= 
= + 
= + 
= − + + 
( 3/ 2 )( 2 )( 2 
) 
∫ 
∫ ∫ 
x x x dx 
x x dx x x dx 
x x C 
− 
tan 1 tan sec 
tan sec tan sec 
2 tan 2 tan 
3/2 2 1/2 2 
1/ 2 3/ 2 
3 
− 
− 
438 Section 7.3 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
27. ∫ tan3 x sec2 x dx 
Let u = tan x . Then du = sec2 x dx . 
tan3 sec2 3 1 4 1 tan4 
∫ x x dx = ∫ u du = u +C = x +C 
4 4 
28. 
3 − 1/2 2 − 
3/2 
∫ ∫ 
x xdx x x x xdx 
tan sec tan sec (sec tan ) 
= 
= − 
= − 
= + + 
( 2 )( − 
3/ 2 
)( ) 
∫ 
∫ ∫ 
x x x x dx 
x x x dx x x x dx 
x x C 
sec 1 sec sec tan 
sec 1/ 2 sec tan sec − 
3/ 2 
sec tan 
2 sec 2sec 
3 
( ) ( ) 
3/ 2 − 
1/ 2 
29. 
∫ cos cos = 1 ∫ (cos[( + ) ] + cos[( − ) ]) 
1 1 sin[( ) ] 1 sin[( ) ] 
mx nx dx m n x m n x dx π π 
π π 
2 
– – 
= ⎡ m + n x + m − n x 
⎤ 2 
⎢⎣ m + n m − n 
⎥⎦ 
π 
−π 
= 0 for m ≠ n, since sin kπ = 0 for all integers k. 
30. If we let u x 
π 
= then du dx 
L 
π 
= . Making the substitution and changing the limits as necessary, we get 
L 
m π x n π 
x dx L mu nu du 
L L 
L 
π 
cos cos cos cos 0 L 
π 
∫ = ∫ = (See Problem 29 
− π − 
(x sin x) dx π 
∫ π + 2 2 
31. 2 
0 
(x 2x sin x sin x) dx π 
x dx x x dx x dx π π π π 
= π∫ + + 2 
0 
= π∫ + π∫ + ∫ − 
2 sin (1 cos2) 
2 
0 0 0 
π π 
1 2 sin cos 1 sin 2 
3 2 2 
⎡ 3 ⎤ π π = π ⎡ ⎤ ⎢⎣ x ⎥⎦ + π [ x − x x ] 
+ x − x 
0 
⎢⎣ ⎥⎦ 
0 0 
= π + π + π − + π − − 1 4 5 2 57.1437 
1 4 π 
2 (0 0) ( 0 0) 
3 2 
= π + π ≈ 
3 2 
Use Formula 40 with u = x for ∫ x sin x dx 
32. / 2 2 2 
V 2 x sin (x )dx π 
= π∫ 
0 
u = x2 , du = 2x dx 
/ 2 / 2 / 2 2 2 
0 0 0 
π π ⎡ ⎤π π = π = π = π ⎢ ⎥ = ≈ ⎣ ⎦ ∫ ∫ 
V u du u du u u 
sin 1– cos 2 1 – 1 sin 2 2.4674 
2 2 4 4 
33. a. 1 f (x)sin(mx)dx π 
π −π ∫ 
N 
⎛ ⎞ 
1 sin( ) sin( ) 
a nx mxdx π 
−π 
∫ Σ 
= ⎜⎜ ⎟⎟ π ⎝ ⎠ 
1 
n 
n 
= 
N 
1 sin( )sin( ) 
= 
π Σ ∫ 
1 
a nx mxdx π 
n 
n 
−π 
= 
From Example 6, 
0 if 
∫ ⎧ ≠ 
sin( nx )sin( mx ) 
dx 
= ⎨so every term in the sum is 0 except for when n = m. 
⎩ π if 
= If m  N, there is no term where n = m, while if m ≤ N, then n = m occurs. When n = m 
an π 
sin(nx)sin(mx) dx am n m 
n m 
π 
−π 
∫ = π so when m ≤ N, 
−π 
1 π 
f ( x )sin( mx ) dx 1 am am ∫ = ⋅ ⋅π = 
. 
π −π 
π Instructor’s Resource Manual Section 7.3 439 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
b. 1 f 2 (x)dx π 
π −π ∫ 
N N 
⎛ ⎞⎛ ⎞ 
1 sin( ) sin( ) 
a nx a mx dx π 
−π 
∫ Σ Σ 
= π ⎜⎜ n ⎟⎟⎜⎜ m 
⎟⎟ ⎝ ⎠⎝ ⎠ 
n m 
1 1 
= = 
N N 
1 sin( )sin( ) 
a a nx mxdx π 
= 
Σ n Σ ∫ 
πm 
n m 
1 1 
−π 
= = 
From Example 6, the integral is 0 except when m = n. When m = n, we obtain 
Σ Σ 2 
. 
πN N 
1 ( ) 
a a π = 
a 
= = 
n n n 
n n 
1 1 
34. a. Proof by induction 
x = x 
n = 1: cos cos 
2 2 
Assume true for k ≤ n. 
n 
⎡ ⎤ 
x x x x x x x x + + 
cos cos cos cos cos 1 cos 3 cos 2 –1 1 cos 
⋅ = ⎢ + + + ⎥ 
  
n n n n n n n 
1 –1 1 
2 4 2 2 2 2 2 2 2 
⎢⎣ ⎥⎦ 
Note that 
k x x k x k x + + + 
cos cos 1 1 cos 2 1 cos 2 –1 , 
2n 2n 2 2n 2n 
⎛ ⎞⎛ ⎞ ⎡ + ⎤ 
⎜ ⎟⎜ = 1 ⎟ ⎢ + ⎥ 
⎝ ⎠⎝ ⎠ ⎣ 1 1 
⎦ 
so 
1 
n n 
+ 
⎡ ⎤ ⎛ ⎞ ⎡ ⎤ 
⎢ + + + ⎥ ⎜ ⎟ = ⎢ + + + ⎥ 
⎢⎣ ⎥⎦ ⎝ ⎠ ⎢⎣ ⎥⎦ 
cos 1 cos 3 cos 2 –1 cos 1 1 cos 1 cos 3 cos 2 –1 1 
x x x x x x x 
n n  n n n n n  
n n 1 –1 1 1 1 
+ + + + 
2 2 2 2 2 2 2 2 2 
n n 
⎡ ⎤ ⎡ ⎤ 
⎢ + + + ⎥ = ⎢ + + + ⎥ 
⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ 
x x x x x x x 
lim cos 1 cos 3 cos 2 –1 1 1 lim cos 1 cos 3 cos 2 –1 
b.   
–1 –1 
n n n n n n n n n n 
→∞ x →∞ 
2 2 2 2 2 2 2 2 
1 cos x t dt 
x 
= ∫ 
0 
1 ∫ x cos t dt = 1 [sin t ] x = 
sin x 
x x x 
c. 0 0 
x + x 
= we see that since 
35. Using the half-angle identity cos 1 cos , 
2 2 
π π 
= = 
cos cos 2 2 
4 2 2 
2 
π π + + 
= = = 
2 2 1 2 2 cos cos , 
8 4 2 2 
2 2 
π π + + + + 
= = = etc. 
2 2 1 2 2 2 cos cos , 
16 8 2 2 
Thus, 2 2 + 2 2 + 2 + 
2 
⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ 
⋅ ⋅  cos 2 cos 2 cos 2 
2 2 2 
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 
⎜ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ 
⎠ ⎝ 4 ⎠ ⎝ 8 
⎠ 
 
( ) 2 2 2 2 
π π π π 
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
sin 2 lim cos cos cos 
n 2 4 2n 
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = = 
 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ π ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 
→∞ π 
2 
440 Section 7.3 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
π π 
∫ π − = ∫ − + 
36. Since (k − sin x)2 = (sin x − k)2 , the volume of S is 2 2 2 
(k sin x) π (k 2k sin x sin x) dx 
0 0 
k dx k xdx xdx π π π π 
x k x 2 k cos x x 1 sin 2 
π 
= π π + π π + π ⎡ − ⎤ ⎢⎣ ⎥⎦ 
2 
= π ∫ − π∫ + ∫ − 2 [ ] [ ] 
2 
0 0 0 
2 sin (1 cos2) 
2 
0 0 
0 
2 2 
π π 
2 2 2 ( 1 1) ( 0) 2 2 4 
k k k k 
= π + π − − + π − = π − π + 
2 2 
Let 
2 
π 
= π − π + then f ′(k) = 2π2k − 4π and f ′(k) = 0 when k = 2 . 
( ) 2 2 4 , 
2 
f k k k 
π 
The critical points of f(k) on 0 ≤ k ≤ 1 are 0, 2 , 
π 
1. 
2 2 2 
(0) 4.93, 2 4 8 0.93, (1) 2 4 2.24 
π ⎛ ⎞ π π = ≈ ⎜ ⎟ = − + ≈ = π − π + ≈ ⎝ π ⎠ 
f f f 
2 2 2 
a. S has minimum volume when k = 2 . 
π 
b. S has maximum volume when k = 0. 
7.4 Concepts Review 
1. x – 3 
2. 2 sin t 
3. 2 tan t 
4. 2 sec t 
Problem Set 7.4 
1. u = x +1, u2 = x +1, 2u du = dx 
∫ x x +1dx = ∫(u2 –1)u(2u du) 
= ∫(2u4 – 2u2 )du 2 5 – 2 3 
= u u +C 
5 3 
2 ( 1)5 / 2 – 2 ( 1)3/ 2 
5 3 
= x + x + + C 
2. u = 3 x + π, u3 = x + π, 3u2du = dx 
∫ x3 x + πdx = ∫(u3 – π)u(3u2du) 
= ∫(3u6 – 3πu3)du 3 7 – 3 π 
4 
u u C 
= + 
7 4 
3 7 / 3 3 π 
( )– ( )4 / 3 
7 4 
x x C 
= +π +π + 
3. u = 3t + 4, u2 = 3t + 4, 2u du = 3 dt 
1 2 2 
3 3 2 ( 4) 2 ( –4) 
t dt u − 
u du u du 
t u 
∫ = ∫ = 
∫ 
3 + 4 9 
2 3 – 8 
27 9 
= u u +C 
2 (3 4)3/ 2 – 8 (3 4)1/ 2 
27 9 
= t + t + + C 
4. u = x + 4, u2 = x + 4, 2u du = dx 
2 2 2 2 3 ( – 4) 3( – 4)2 
x + x u + 
dx u u du 
x u 
∫ = 
∫ 
+ 4 
= 2∫(u4 – 5u2 + 4)du 2 5 – 10 3 8 
= u u + u + C 
5 3 
2 ( 4)5/ 2 – 10 ( 4)3/ 2 8( 4)1/ 2 
5 3 
= x + x + + x + +C 
5. u = t , u2 = t, 2u du = dt 
dt 2u du 2 u e e du 
t e u e u e 
2 2 2 
1 1 1 
+ − 
∫ = ∫ = 
∫ 
+ + + 2 –2 e 
du du 
2 2 
1 1 
+ ∫ ∫ 
u e 
= 
= 2[u] 2 1 – 2e ⎡⎣ln u + e ⎤⎦ 
2 
1 = 2( 2 –1) – 2e[ln( 2 + e) – ln(1+ e)] 
⎛ 2 
+ ⎞ 
2 2 – 2 – 2 ln e e 
= ⎜⎜ ⎝ 1 
+ e 
⎟⎟ ⎠ 
6. u = t , u2 = t, 2u du = dt 
t dt u u du 
t u 
1 1 
0 0 2 
(2 ) 
∫ = 
∫ 
+ + 1 1 
1 2 1 2 
0 2 0 2 
u du u du 
u u 
+ − 
2 2 1 1 
+ + ∫ ∫ 
1 1 
0 0 2 
= = 
1 1 
2 – 2 1 
∫ du ∫ du 
1 –1 1 
+ 1 
u 
= 
= 2[u]0 – 2[tan u]0 
π 
2 – 2 tan–11 2 – 0.4292 
= = ≈ 
2 
Instructor’s Resource Manual Section 7.4 441 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
7. u = (3t + 2)1/ 2 , u2 = 3t + 2, 2u du = 3dt 
(3 2)3/ 2 1 ( 2 – 2) 3 2 
t t + dt = u u ⎛⎜ u du ⎞⎟ 
∫ ∫ 
3 ⎝ 3 
⎠ 2 ( 6 – 2 4 ) 2 7 4 5 
9 63 45 
= ∫ u u du = u − u +C 
= 2 (3 t + 2)7 / 2 – 4 (3 t + 2)5 / 2 
+C 
63 45 
8. u = (1– x)1/ 3, u3 = 1– x, 3u2du = –dx 
∫ x(1– x)2 / 3dx = ∫(1– u3)u2 (–3u2 )du 
3 ( 7 – 4 ) 3 8 3 5 
= ∫ u u du = u − u +C 
8 5 
3 (1– )8/ 3 – 3 (1– )5 / 3 
8 5 
= x x +C 
9. x = 2 sin t, dx = 2 cos t dt 
4 – 2 2cos (2cos ) 
x dx t t dt 
x 2sin 
t 
∫ = ∫ 
1– sin2 2 
= ∫ = 2∫csct dt – 2∫sin t dt 
sin 
= 2ln csct − cot t + 2cos t + C 
t dt 
t 
2 
2ln 2 4 – x 4 – x2 C 
= + + 
x 
− 
10. x = 4sin t, dx = 4cos t dt 
2 2 
x dx t t dt 
∫ = ∫ 
16 – x 2 
cos 
t 
= 16∫sin2 t dt = 8∫(1– cos 2t)dt 
= 8t – 4sin 2t +C = 8t −8sin t cos t +C 
16 sin cos 
2 
= 8sin–1 ⎛ x ⎞ – x 16 – 
x ⎜ ⎟ 
+C 4 2 
⎝ ⎠ 
11. x = 2 tan t, dx = 2sec2 t dt 
2 
dx 2sec t dt 1 cos 
t dt 
∫ = = 
( x 2 + 4) 3/2 ∫ 2 ∫ 
(4sec t 
) 3/2 
4 
1 sin 
4 
= t + C 
x C 
x 
= + 
4 2 + 
4 
12. t = sec x, dt = sec x tan x dx 
x 
π 
Note that 0 . 
2 
≤  
t2 –1 = tan x = tan x 
3 sec–1(3) 
2 2 2 / 3 2 
dt sec x tan 
x dx 
∫ = ∫ 
t t –1 π 
sec x tan 
x sec–1(3) 
/ 3 
= ∫ 
cos x dx π 
sec–1(3) 1 
x − 
π 
[sin ] / 3 sin[sec (3)] sin 
π 
3 
= = − 
sin cos 1 1 3 2 2 – 3 0.0768 
⎡ = − ⎛ ⎞⎤ ⎢ ⎜ − = ≈ ⎣ ⎝ 3 ⎟⎥ ⎠⎦ 
2 3 2 
13. t = sec x, dt = sec x tan x dx 
π 
 ≤ π 
x 
Note that . 
2 
t2 –1 = tan x = – tan x 
–3 2 sec–1(–3) 
–2 3 2 / 3 3 
t –1 dt – tan x sec x tan 
x dx 
t π sec 
x 
∫ = ∫ 
sec–1(–3) sec–1(–3) 2 
2 /3 2 /3 
– sin 1 cos 2 – 1 
= = ⎛ ⎞ ⎜ ⎟ 
⎝ ⎠ ∫ ∫ 
x dx x dx π π 
2 2 
sec–1(–3) 
π 
2 /3 
1 sin 2 – 1 
4 2 
= ⎡ ⎤ ⎢⎣ x x 
⎥⎦ 
sec–1(–3) 
= ⎡ ⎢⎣ x x ⎤ ⎥⎦ 
2 /3 
– 2 – 1 sec–1(–3) π 
3 x0.151252 
1 sin cos – 1 
2 2 
π 
= + + ≈ 
9 2 8 3 
14. t = sin x, dt = cos x dx 
t dt x dx 
t 
∫ = ∫ = –cos x + C 
2 
sin 
1– 
= – 1– t2 +C 
15. z = sin t, dz = cos t dt 
z dz t dt 
z 
2 –3 (2sin – 3) 
1– 
∫ = ∫ 
2 
= –2 cos t – 3t + C 
= –2 1– z2 – 3sin–1 z +C 
442 Section 7.4 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
16. x = π tan t, dx = πsec2 t dt 
π 
x –1 dx ( 2 
tan t –1)sect dt 
x 
∫ = ∫ 
π 
2 + π 
2 
= π2 ∫ tan t sect dt – ∫sect dt 
= π2 sect – ln sect + tan t +C 
= π x2 + π2 − ln 1 x2 + π2 + x + C 
π π 
x 1 dx 
x 
π π − 
∫ 
0 2 2 
+ π 
⎡ π x 2 + π 2 
⎤ = ⎢π x 2 + π 2 
– ln + x 
⎥ 
⎢ π π ⎥ 
⎣ ⎦ 
0 
= [ 2π2 – ln( 2 +1)] – [π2 − ln1] 
= ( 2 –1)π2 – ln( 2 +1) ≈ 3.207 
17. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 
u = x + 1, du = dx 
dx du 
∫ = 
∫ 
u = 2 tan t, du = 2sec2 t dt 
2 2 5 2 4 
x x u 
+ + + 
du sec t dt ln sec t tan 
t C 
u 
∫ ∫ 
= = + + 
2 1 
4 
+ 
2 
u u C 
1 
+ 
ln 4 
= + + 
2 2 
2 
x x x C 
1 
+ 2 + 5 + + 
ln 1 
= + 
2 
= ln x2 + 2x + 5 + x +1 +C 
18. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 
u = x + 2, du = dx 
dx du 
∫ = 
∫ 
u = tan t, du = sec2 t dt 
2 4 5 2 1 
x x u 
+ + + 
du t dt t t C 
u 
∫ ∫ 
2 
sec ln sec tan 
1 
= = + + 
+ 
dx u 2 
u C 
2 
ln 1 
x x 
4 5 
= + + + 
+ + 
∫ 
= ln x2 + 4x + 5 + x + 2 +C 
19. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 
u = x + 1, du = dx 
x dx u du 
3 3– 3 
2 5 4 
∫ = 
∫ 
2 2 
x x u 
+ + + 
u du du 
u u 
∫ ∫ 
3 –3 
2 2 
4 4 
= 
+ + 
(Use the result of Problem 17.) 
= 3 u2 + 4 – 3ln u2 + 4 + u +C 
= 3 x2 + 2x + 5 – 3ln x2 + 2x + 5 + x +1 +C 
20. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 
u = x + 2, du = dx 
2 x –1 2 u − 
dx 5 
du 
x 4 x 5 u 
1 
∫ = 
∫ 
2 2 
+ + + 
u du du 
u u 
2 – 5 
= 
∫ ∫ 
2 + 1 2 
+ 
1 
(Use the result of Problem 18.) 
= 2 u2 +1 – 5ln u2 +1 + u +C 
= 2 x2 + 4x + 5 – 5ln x2 + 4x + 5 + x + 2 +C 
21. 5 − 4x − x2 = 9 − (4 + 4x + x2 ) = 9 − (x + 2)2 
u = x + 2, du = dx 
∫ 5 – 4x – x2 dx =∫ 9 – u2 du 
u = 3 sin t, du = 3 cos t dt 
9 2 9 cos2 9 (1 cos 2 ) 
∫ − u du = ∫ t dt = ∫ + t dt 
2 
9 1sin 2 
2 2 
= ⎛⎜ t + t ⎞⎟ +C 
⎝ ⎠ 
9( sin cos ) 
2 
= t + t t +C 
= ⎛ u ⎞ + u u +C ⎜ ⎟ 
9 sin–1 1 9 – 2 
2 3 2 
⎝ ⎠ 
x x x x C 
9 sin–1 2 2 5 – 4 – 2 
2 3 2 
⎛ + ⎞ + = ⎜ ⎟ + + 
⎝ ⎠ 
22. 16 + 6x – x2 = 25 − (9 − 6x + x2 ) = 25 – (x – 3)2 
u = x – 3, du = dx 
dx du 
x x u 
∫ = 
∫ 
u = 5 sin t, du = 5 cos t 
16 + 
6 – 2 25 – 2 
du dt t C 
u 
= ⎛ u ⎞ +C ⎜ ⎟ 
∫ ∫ sin–1 
25 2 
= = + 
− 
5 
⎝ ⎠ 
= sin–1 ⎛ x – 3 
⎞ ⎜ ⎟ 
+C 5 
⎝ ⎠ 
Instructor’s Resource Manual Section 7.4 443 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
23. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 
u = x – 2, du = dx 
dx du 
x x u 
∫ = ∫ 
4 – 2 4 – 2 
u = 2 sin t, du = 2 cos t dt 
du dt t C 
u 
= ⎛ u ⎞ +C ⎜ ⎟ 
∫ ∫ sin–1 
4 2 
= = + 
− 
2 
⎝ ⎠ 
= sin–1 ⎛ x – 2 
⎞ ⎜ ⎟ 
+C 2 
⎝ ⎠ 
24. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 
u = x – 2, du = dx 
x u + 
dx 2 
du 
x x u 
∫ = ∫ 
2 2 
4 – 4– 
u du du 
u u 
– – 2 
= ∫ + ∫ 
4 – 2 4 – 
2 
(Use the result of Problem 23.) 
– 4 – 2 2sin–1 
= u + ⎛ u ⎞ +C ⎜ ⎟ 
2 
⎝ ⎠ 
= – 4 x – x 2 + 2sin–1 ⎛ x – 2 
⎞ ⎜ ⎟ 
+ C 2 
⎝ ⎠ 
25. x2 + 2x + 2 = x2 + 2x +1+1 = (x +1)2 +1 
u = x + 1, du = dx 
x dx u du 
2 + 
1 2 –1 
2 2 1 
∫ = 
2 ∫ 
+ + 2 
+ x x u 
u du du 
u u 
2 – 
1 1 
= 
∫ 2 ∫ 
+ 2 
+ = ln u2 +1 – tan–1 u +C 
= ln (x2 + 2x + 2)− tan−1(x +1) +C 
26. x2 – 6x +18 = x2 – 6x + 9 + 9 = (x – 3)2 + 9 
u = x – 3, du = dx 
x dx u du 
2 –1 2 5 
–6 18 9 
∫ = 
2 ∫ 
+ 2 
+ x x u 
+ 
2 u du 5 
du 
u u 
+ + ∫ ∫ 
ln ( 2 9) 5 tan 1 
= + 
2 2 
9 9 
= u + + − ⎛ u ⎞ +C ⎜ ⎟ 
3 3 
⎝ ⎠ 
ln ( 2 6 18) 5 tan 1 3 
= x − x + + − ⎛ x − ⎞ +C ⎜ ⎟ 
3 3 
⎝ ⎠ 
27. 
2 
⎛ ⎞ 
1 
0 2 
1 
2 5 
⎝ + + ⎠ ∫ 
V dx 
= π ⎜ ⎟ 
x x 
2 
⎡ ⎤ 
1 
1 
0 2 
∫ 
= π ⎢ ⎥ 
x 
( 1) 4 
dx 
⎢⎣ + + ⎥⎦ 
x + 1 = 2 tan t, dx = 2sec2 t dt 
1 2sec 
4sec 
π ⎛ ⎞ 
/ 4 2 
tan (1/ 2) 2 
⎝ ⎠ ∫ 
V tdt 
= π –1 
⎜ ⎟ 
2 
t 
1 
t dt π π 
π π 
= ∫ –1 
/ 4 
tan –1 
(1/ 2) 2 
8 sec 
dt 
t 
/ 4 cos 
2 
tan (1/ 2) 
= ∫ 
8 
t dt π π ⎛ ⎞ = ⎜ + ⎟ 
/ 4 
tan (1/ 2) 
∫ 
–1 
⎝ ⎠ 1 1cos 2 
8 2 2 
/ 4 
–1 
π ⎡ ⎤π = ⎢ + ⎥ ⎣ ⎦ 
tan (1/ 2) 
1 1sin 2 
8 2 4 
t t 
/ 4 
t t t π 
–1 
tan (1/ 2) 
1 1sin cos 
8 2 2 
π ⎡ ⎤ = ⎢ + ⎥ ⎣ ⎦ 
1 – 1 tan–1 1 1 
π π = ⎡⎛ + ⎞ ⎛ ⎢⎜ ⎟ ⎜ + ⎞⎤ 8 ⎣⎝ 8 4 ⎠ ⎝ 2 2 5 
⎠⎦ 
⎟⎥ 1 – tan–1 1 0.082811 
π ⎛ π ⎞ = ⎜ + ⎟ ≈ 
16 10 4 2 
⎝ ⎠ 
2 1 
28. 1 
+ + ∫ 
1 
0 2 
V xdx 
0 2 
x x 
2 5 
= π 
2 
x dx 
∫ 
( x 
+ 1) + 4 
1 1 
0 2 0 2 
= π 
x dx dx 
x x 
+ 
2 1 – 2 1 
+ + + + ∫ ∫ 
= π π 
( 1) 4 ( 1) 4 
1 1 
x x 
2 1 ln[( 1) 4] – 2 1 tan 1 
⎡ ⎡ = π + 2 + ⎤ π –1 
⎛ + ⎞⎤ ⎜ ⎣ ⎢ 2 ⎥ ⎦ ⎢ ⎣ 2 ⎝ 2 
⎠⎦ 
⎟⎥ [ln8 – ln 5] – tan–11– tan–1 1 
0 0 
= π π ⎡ ⎤ ⎢⎣ 2 
⎥⎦ 
ln 8 – tan–1 1 0.465751 
5 4 2 
⎛ π ⎞ = π⎜ + ⎟ ≈ 
⎝ ⎠ 
29. a. u = x2 + 9, du = 2x dx 
xdx du u C 
x u 
∫ 2 
∫ 
+ 1 ln 2 9 1 ln ( 2 9) 
2 2 
1 1ln 
= = + 
9 2 2 
= x + +C = x + +C 
b. x = 3 tan t, dx = 3sec2 t dt 
xdx t dt 
x 
∫ ∫ tan 
= – ln cost +C 
2 + 9 
= 
⎛ ⎞ 
ln 3 ln 3 
= − + = − ⎜ ⎟ + 
C C 
2 1 2 1 
+ ⎜ + ⎟ ⎝ ⎠ 
x x 
9 9 
= ln ⎛⎜ x 2 
+ 9 ⎞⎟ − ln 3 + 
C1 ⎝ ⎠ 
= ln ((x2 + 9)1/ 2 )+C 1 ln ( 2 9) 
= x + +C 
2 
444 Section 7.4 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
30. u = 9 + x2 , u2 = 9 + x2 , 2u du = 2x dx 
3 3 3 2 3 2 2 
0 2 0 2 3 
x dx x u − 
x dx 9 
udu 
∫ = ∫ = 
∫ 
x x u 
9 9 
+ + 
3 2 ⎡ 3 2 
⎤ 
3 2 u du u u 
3 
∫ 
≈ 5.272 
( 9) – 9 18 – 9 2 
= − = ⎢ ⎥ = 
3 
3 
⎢⎣ ⎥⎦ 
31. a. u = 4 – x2 , u2 = 4 – x2 , 2u du = –2x dx 
2 2 2 
x dx x x dx u du 
x x u 
4 – 4 − 
– 
∫ = ∫ = ∫ 
2 2 
4 – 
2 
2 2 
u du du du 
u u 
4 4 4 1 
4 4 
− + − 
− − ∫ ∫ ∫ 
4 1 ln 2 
= =− + 
u + 
u C 
u 
= − ⋅ + + 
4 2 
− 
2 
x x 2 
C 
x 
− + 
ln 4 2 4 
= − + − + 
2 
4 − − 
2 
b. x = 2 sin t, dx = 2 cos t dt 
4 – 2 cos2 2 
x dx t dt 
x sin 
t 
∫ = ∫ 
(1– sin2 ) 2 
= ∫ 
sin 
= 2∫csct dt – 2∫sin t dt 
= 2ln csct − cot t + 2cos t + C 
t dt 
t 
2 
− 
2ln 2 4 x 4 x2 C 
= − + − + 
x x 
2 
− − 
2ln 2 4 x 4 x2 C 
= + − + 
x 
To reconcile the answers, note that 
2 2 
2 2 
x x 
x x 
− + − − 
ln 4 2 ln 4 2 
− = 
4 − − 2 4 − + 
2 
2 2 
x 
− − 
ln ( 4 2) 
( 4 x 2 2)( 4 x 
2 
2) 
= 
− + − − 
2 2 2 2 
x x 
(2 − 4 − ln ) ln (2 − 4 − 
) 
= = 
2 2 
x x 
4 4 
− − − 
2 
⎛ − − ⎞ − − = ⎜ ⎟ = 
2 4 2 2 4 2 ln x 2ln x 
x x 
⎜ ⎟ 
⎝ ⎠ 
32. The equation of the circle with center (–a, 0) is 
(x + a)2 + y2 = b2 , so y = ± b2 – (x + a)2 . By 
symmetry, the area of the overlap is four times 
the area of the region bounded by x = 0, y = 0, 
and y = b2 – (x + a)2 dx . 
A = 4 ∫ b – a b 2 –( x + a ) 2 
dx 
0 
x + a = b sin t, dx = b cos t dt 
/ 2 2 2 
sin ( / ) 
A b tdt π 
= ∫ 
4 cos 
–1 
a b 
b tdt π 
2 / 2 
sin ( / ) 
= ∫ + 
2 (1 cos 2 ) 
–1 
a b 
b t t π 
/ 2 
= ⎡ + ⎤ ⎢⎣ ⎥⎦ 
2 –1 
a b 
2 2 
1 sin 2 
sin ( / ) 
b t t tπ 
2 /2 
–1 
2 [ sin cos ] 
a b 
sin ( / ) 
= + 
⎡π ⎛ ⎛ a ⎞ a b 2 – 
a 
2 
⎞⎤ = 2 b 2 ⎢ – ⎜ sin–1 ⎢ 2 
⎜ ⎜ ⎟ + ⎟⎥ ⎝ ⎝ b ⎠ b b 
⎟⎥ ⎣ ⎠⎦ 
b2 – 2b2 sin–1 a – 2a b2 – a2 
= π ⎛ ⎞ ⎜ ⎟ 
b 
⎝ ⎠ 
33. a. The coordinate of C is (0, –a). The lower arc 
of the lune lies on the circle given by the 
equation x2 + ( y + a)2 = 2a2 or 
y = ± 2a2 – x2 – a. The upper arc of the 
lune lies on the circle given by the equation 
x2 + y2 = a2 or y = ± a2 – x2 . 
– – 2 – – a a 
a a 
A = a 2 x 2 dx ⎛⎜ a 2 x 2 
a ⎞⎟ dx 
∫ ∫ 
– – 
⎝ ⎠ – – 2 – 2 a a 
a a 
2 2 2 2 2 
= ∫ a x dx ∫ a x dx + a 
– – 
Note that 2 2 
– a 
a 
∫ a x dx is the area of a 
– 
semicircle with radius a, so 
2 
a 2 x 2 
dx a 
a 
a 
∫ = 
– 
For 2 2 
π 
– . 
2 
2 – , a 
a 
∫ a x dx let 
– 
x = 2a sin t, dx = 2a cos t dt 
2 – 2 cos a 
a 
a 2 x 2 dx π 
/ 4 a 2 2 
tdt π 
∫ = ∫ 
– –/ 4 
2 π / 4 1 π 
/ 4 (1 cos 2 ) 2 
sin 2 
– π /4 – π 
/ 4 
= a ∫ 
+ tdt = a ⎡ ⎢⎣ t + t 
⎤ 2 
⎥⎦ 2 
2 
a a 
π 
= + 
2 
2 2 
– 2 2 2 2 
2 2 
π ⎛ π ⎞ 
= ⎜⎜ + ⎟⎟ + = 
A a a a a a 
⎝ ⎠ 
Thus, the area of the lune is equal to the area 
of the square. 
Instructor’s Resource Manual Section 7.4 445 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
b. Without using calculus, consider the 
following labels on the figure. 
Area of the lune = Area of the semicircle of 
radius a at O + Area (ΔABC) – Area of the 
sector ABC. 
1 2 2 – 1 ( 2 )2 
2 2 2 
⎛ π ⎞ = π + ⎜ ⎟ 
A a a a 
⎝ ⎠ 
1 2 2 – 1 2 2 
2 2 
= πa + a πa = a 
Note that since BC has length 2a, the 
π 
measure of angle OCB is , 
4 
so the measure 
π 
of angle ACB is . 
2 
34. Using reasoning similar to Problem 33 b, the area is 
a a b a a b 
1 1 (2 ) – – 1 2sin 
2 2 2 
1 – – sin . 
2 
π + ⎛ ⎞ ⎜ ⎟ 
2 2 2 –1 2 
⎝ ⎠ 
a 2 a b 2 a 2 b 2 –1 
a 
b 
b 
= π + 
35. 
2 – 2 dy – a x 
dx x 
= ; 
2 – 2 y – a x dx 
x 
= ∫ 
x = a sin t, dx = a cos t dt 
cos cos2 – cos – 
y a t a t dt a t dt 
= ∫ = ∫ 
a sin t sin 
t 
1– sin2 – (sin – csc ) 
a t dt a t t dt 
= ∫ = sin 
t 
∫ 
= a (– cos t − ln csct − cot t ) +C 
2 cos t = a – x 2 2 2 , csct = a , cot t = 
a – x 
a x x 
⎛ − ⎞ = ⎜ − − ⎟ + 
2 – 2 2 2 y a – a x ln a a x C 
⎜ a x x 
⎟ 
⎝ ⎠ 
2 2 
a2 x2 a − a ln a − 
x C 
= − − − + 
x 
Since y = 0 when x = a, 
0 = 0 – a ln 1 + C, so C = 0. 
2 2 
y – a2 x2 a ln a a – x 
x 
− 
= − − 
7.5 Concepts Review 
1. proper 
2. –1 5 
1 
x 
x 
+ 
+ 
3. a = 2; b = 3; c = –1 
A B Cx + 
D 
x x x 
4. + + 
–1 ( –1)2 2 + 
1 
Problem Set 7.5 
1. 1 
A B 
= + 
xx x x 
( + 1) + 
1 
1 = A(x + 1) + Bx 
A = 1, B = –1 
1 1 – 1 
( 1) 1 
+ + ∫ ∫ ∫ 
= ln x – ln x +1 + C 
dx = 
dx dx 
x x x x 
2. 2 
A B 
2 = 2 
= + 
3 ( 3) 3 
x x x x x x 
+ + + 
2 = A(x + 3) + Bx 
2 , – 2 
3 3 
A = B = 
∫ 2 
∫ ∫ 
+ + 2 ln – 2 ln 3 
3 3 
dx dx B dx 
2 = 
2 1 – 2 
3 3 3 3 
x x x x 
= x x + + C 
A B 
3 3 
–1 ( 1)( –1) 1 –1 
3. 2 
= = + 
x x + x x + 
x 
3 = A(x – 1) + B(x + 1) 
– 3 , 3 
2 2 
A = B = 
3 – 3 1 3 1 
–1 2 1 2 –1 
∫ 2 
∫ ∫ 
+ – 3 ln 1 3 ln –1 
dx = dx + 
dx 
x x x 
= x + + x + C 
2 2 
446 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x 
5 5 5 
4. 3 2 2 
= = 
x x x x x x 
2 + 6 2 ( + 3) 2 ( + 
3) 
3 
A B 
x x 
= + 
+ 
5 ( 3) 
2 
= A x + + Bx 
5 , – 5 
6 6 
A = B = 
x dx dx 
5 5 1 – 5 1 
∫ = 
x 3 + x 2 
∫ x ∫ 
x 
+ 5 ln – 5 ln 3 
6 6 
2 6 6 6 3 
= x x + +C 
x x A B 
x x x x x x 
5. 2 
11 11 
3 4 ( 4)( 1) 4 1 
− − 
= = + 
+ − + − + − 
x – 11 = A(x – 1) + B(x + 4) 
A =3, B = –2 
x dx dx dx 
x x x x 
∫ 2 
∫ ∫ 
+ − + − = 3ln x + 4 − 2ln x −1 + C 
11 3 1 2 1 
3 4 4 1 
− 
= − 
x x A B 
x x x x x x 
6. 2 
– 7 = – 7 
= + 
– –12 ( – 4)( + 3) – 4 + 
3 
x – 7 = A(x + 3) + B(x – 4) 
– 3 , 10 
7 7 
A = B = 
x dx dx dx 
x x x x 
∫ 2 
∫ ∫ 
+ – 3 ln – 4 10 ln 3 
– 7 = – 3 1 + 
10 1 
– –12 7 – 4 7 3 
= x + x + +C 
7 7 
7. 2 
x x A B 
3 − 13 3 − 
= 13 
= + 
3 10 ( 5)( 2) 5 2 
x x x x x x 
+ − + − + − 
3x −13 = A(x − 2) + B(x + 5) 
A = 4, B = –1 
∫ x − 
dx 
4 1 1 
2 
+ − 3 13 
3 10 
x x 
+ − ∫ ∫ 
dx dx 
= − 
x x 
5 2 
= 4ln x + 5 − ln x − 2 +C 
x x 
+ π + π 
8. = 
2 – 3 2 2 ( – 2 )( – ) 
x x x x 
A B 
x x 
= + 
π + π π π – 2 – 
π π 
x +π = A(x −π ) + B(x − 2π ) 
A = 3, B = –2 
x + π 
dx dx dx 
∫ 2 π + π 2 
∫ ∫ 
π π = 3ln x – 2π – 2ln x – π + C 
3 – 2 
= 
x x x x 
– 3 2 – 2 – 
x x 
x x x x 
2 21 2 21 
2 9 – 5 (2 –1)( 5) 
9. 2 
+ + 
= 
A B 
x x 
= + 
+ + 2 –1 + 
5 
2x + 21 = A(x + 5) + B(2x – 1) 
A = 4, B = –1 
x dx dx dx 
x x x x 
2 21 4 – 1 
2 9 – 5 2 –1 5 
∫ 2 
∫ ∫ 
+ + = 2ln 2x –1 – ln x + 5 +C 
+ 
= 
10. 
2 2 
2 2 
x x x x x 
x x x x 
2 − − 20 2( + − 6)− 3 − 
8 
= 
6 6 
+ − + − 
x 
x x 
2 3 8 
2 
6 
+ 
= − 
+ − 
x x 
x x x x 
3 8 3 8 
2 
+ + 
= 
A B 
x x 
= + 
+ − + − 3 2 
6 ( 3)( 2) 
+ − 
3x + 8 = A(x – 2) + B(x + 3) 
1 , 14 
5 5 
A = B = 
2 
2 
x x dx 
x x 
2 20 
6 
− − 
+ − ∫ 
2 1 1 14 1 
+ − ∫ ∫ ∫ 
2 1 ln 3 14 ln 2 
dx dx dx 
= − − 
x x 
5 3 5 2 
= x − x + − x − +C 
5 5 
x x 
x x x x 
17 – 3 17 – 3 
3 – 2 (3 – 2)( 1) 
11. 2 
= 
A B 
x x 
= + 
+ + 3 – 2 + 
1 
17x – 3 = A(x + 1) + B(3x – 2) 
A = 5, B = 4 
x dx dx dx 
x x x x 
+ + ∫ ∫ ∫ 5 ln 3 – 2 4ln 1 
17 – 3 = 5 + 
4 
3 2 
– 2 3 – 2 1 
= x + x + +C 
3 
Instructor’s Resource Manual Section 7.5 447 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
12. 2 
x x 
5 – 5 – 
= 
x x x x 
– ( 4) 4 ( – )( – 4) 
A B 
x x 
= + 
π + + π π – π 
– 4 
5 – x = A(x – 4) + B(x – π ) 
5 – π 
, 1 
–4 4– 
A B 
= = 
π π 
∫ 2 
∫ ∫ 5 – ln – 1 ln – 4 
− π + + π π π π x dx dx dx 
5 – 5 – π 
= 1 + 
1 1 
( 4) 4 – 4 – 4 – – 4 
x x x x 
x x C 
π 
= π + + 
π π 
– 4 4 – 
13. 
2 2 
3 2 
x x x x 
x x x x x x 
2 + − 4 2 + − 
4 
= 
A B C 
x x x 
= + + 
− − + − 1 2 
2 ( 1)( 2) 
+ − 
2x2 + x − 4 = A(x +1)(x − 2) + Bx(x − 2) + Cx(x +1) 
A = 2, B = –1, C = 1 
2 
3 2 
2 x + x − 
4 dx 2 dx 1 dx 1 
dx 
x x x x x x 
∫ = ∫ − ∫ + 
∫ = 2ln x − ln x +1 + ln x − 2 + C 
− − + − 2 1 2 
14. 
7 2 2 – 3 
x + 
x A B C 
= + + 
x x x x x x 
(2 –1)(3 + 2)( – 3) 2 –1 3 + 
2 – 3 
7x2 + 2x – 3 = A(3x + 2)(x – 3) + B(2x –1)(x – 3) +C(2x –1)(3x + 2) 
1 , – 1 , 6 
35 7 5 
A = B = C = 
7 2 2 – 3 1 1 1 1 6 1 – 
x + 
x dx dx dx dx 
∫ = ∫ ∫ + 
∫ 
+ + 1 ln 2 –1 – 1 ln 3 2 6 ln – 3 
70 21 5 
x x x x x x 
(2 –1)(3 2)( – 3) 35 2 –1 7 3 2 5 – 3 
= x x + + x +C 
15. 
2 2 
x x x x 
x x x x x x 
6 + 22 − 23 + − 
= 
6 22 23 
(2 1)( 2 
6) (2 1)( 3)( 2) 
A B C 
x x x 
= + + 
− + − − + − 2 − 1 + 3 − 
2 
6x2 + 22x − 23 = A(x + 3)(x − 2) + B(2x −1)(x − 2) + C(2x −1)(x + 3) 
A = 2, B = –1, C = 3 
2 
x x dx dx dx dx 
x x x x x x 
6 + 22 − 
23 2 1 3 
(2 1)( 6) 2 1 3 2 
∫ = ∫ − ∫ + 
∫ = ln 2x −1 − ln x + 3 + 3ln x − 2 + C 
− 2 
+ − − + − 16. 
3 2 
3 2 
x x x 
x x x 
6 11 6 
− + − 
− + − 
4 28 56 32 
3 2 
3 2 
⎛ − + − ⎞ 
x x x 
x x x 
1 6 11 6 
4 7 14 8 
= ⎜⎜ ⎟⎟ ⎝ − + − ⎠ 
2 
⎛ − + ⎞ 
x x 
1 1 3 2 
4 7 14 8 
= ⎜⎜ + ⎝ x 3 ⎟⎟ − x 2 
+ x 
− ⎠ 
⎛ − − ⎞ 
x x 
x x x 
1 1 ( 1)( 2) 
4 ( 1)( 2)( 4) 
= ⎜ + ⎟ ⎝ − − − ⎠ 
1 1 1 
4 x 4 
= ⎛ + ⎞ ⎜ − ⎟ ⎝ ⎠ 
3 2 
3 2 
x x x dx 
x x x 
∫ – 6 + 
11 – 6 
1 1 1 
+ 4 –28 56 –32 
= ∫ dx + ∫ dx 
1 1ln – 4 
x 
4 4 –4 
= x + x +C 
4 4 
448 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
17. 
3 
x x x 
–1 3 – 2 
= + 
2 2 
x x x x 
–2 –2 
+ + 
3 x –2 = 3 x –2 
= A + 
B 
x 2 
x x x x x 
– 2 ( 2)( –1) 2 –1 
+ + + 
3x – 2 = A(x – 1) + B(x + 2) 
8 , 1 
3 3 
A = B = 
3 
x dx 
∫ ( 1) 8 1 1 1 
x 2 + x – 2 
∫ x dx ∫ dx ∫ dx 
1 2 – 8 ln 2 1 ln –1 
+ − = − + + 
x x 
3 2 3 1 
= x x + x + + x +C 
2 3 3 
18. 
3 2 
2 
x x x x 
x x x x 
– 4 14 24 
+ + 
= + 
5 6 ( 3)( 2) 
+ + + + 
14 x + 
24 
= A + 
B 
( x 3)( x 2) x 3 x 
2 
+ + + + 
14x + 24 = A(x + 2) + B(x + 3) 
A = 18, B = –4 
3 2 
2 5 6 
x x dx 
x x 
+ 
+ + ∫ ( 4) 18 – 4 
∫ x dx ∫ dx ∫ dx 
1 2 4 18ln 3 – 4ln 2 
+ + x x 
3 2 
= − + 
= x − x + x + x + +C 
2 
19. 
4 2 2 
3 
x x x x 
x x x x x 
8 8 12 8 
4 ( 2)( – 2) 
+ + + 
= + 
− + 
12 x 2 + 
8 
= A + B + 
C 
( 2)( – 2) 2 – 2 
x x + x x x + 
x 
12x2 + 8 = A(x + 2)(x – 2) + Bx(x – 2) + Cx(x + 2) 
A = –2, B = 7, C = 7 
4 2 
3 
x x dx x dx dx dx dx 
x x x x x 
+ ∫ ∫ ∫ ∫ ∫ 1 2 – 2ln 7ln 2 7 ln – 2 
8 8 – 2 1 7 1 7 1 
– 4 2 – 2 
+ + 
= + + 
= x x + x + + x +C 
2 
20. 
6 3 2 
x x x x x x 
x x x x 
4 4 4 16 68 272 4 
– 4 – 4 
+ + + 
3 2 
= + + + + 
3 2 3 2 
2 
x A B C 
272 + 
4 
= + + 
x 2 ( x – 4) x x 2 
x 
– 4 
272x2 + 4 = Ax(x – 4) + B(x – 4) +Cx2 
– 1 , –1, 1089 
4 4 
A = B = C = 
6 3 
3 2 
x 4 x 4 
dx 
x – 4 
x 
( 4 16 68) – 1 1 – 1 1089 1 
+ + ∫ 3 2 
− ∫ ∫ ∫ ∫ 
x x x dx dx dx dx 
= + + + + 
2 
x x x 
4 4 4 
1 4 4 3 8 2 68 – 1 ln 1 1089 ln – 4 
4 3 4 4 
x x x x x x C 
= + + + + + + 
x 
x + 
1 
A B 
x x x 
21. = + 
2 2 
( 3) 3 ( 3) 
− − − 
x + 1 = A(x – 3) + B 
A = 1, B = 4 
x dx dx dx 
x x x 
∫ + 
1 = ∫ 1 + 
∫ 4 
ln 3 4 
− 2 − − 2 
( 3) 3 ( 3) 
x C 
= − − + 
3 
x 
− 
Instructor’s Resource Manual Section 7.5 449 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x A B 
5 + 7 5 + 
7 
4 4 ( 2) 2 ( 2) 
22. = = + 
2 2 2 
x x x x x 
+ + + + + 
5x + 7 = A(x + 2) + B 
A = 5, B = –3 
x dx dx dx 
+ + + + ∫ ∫ ∫ 5ln 2 3 
5 + 
7 = 5 − 
3 
4 4 2 ( 2) 
2 2 
x x x x 
x C 
= + + + 
2 
x 
+ 
x x 
3 + 2 3 + 
2 
3 3 1 ( 1) 
23. = 
3 2 3 
A B C 
x x x 
= + + 
+ + + + 1 ( 1)2 ( 1)3 
x x x x 
+ + + 
3x + 2 = A(x +1)2 + B(x +1) +C 
A = 0, B = 3, C = –1 
x dx dx dx C 
3 + 
2 3 1 3 1 
3 3 1 ( 1) ( 1) 1 2( 1) 
+ + + + + + + ∫ ∫ ∫ 
= − = − + + 
3 2 2 3 2 
x x x x x x x 
24. 
6 
x A B C D E F G 
= + + + + + + 
( x – 2)2 (1– x )5 x – 2 ( x – 2)2 1– x (1– x )2 (1– x )3 (1– x )4 (1– x 
)5 
A = 128, B = –64, C = 129, D = –72, E = 30, F = –8, G = 1 
6 
2 5 2 2 3 4 5 
⎡ ⎤ 
x dx 128 – 64 129 – 72 30 8 1 
dx 
∫ ∫ 
= ⎢ + + − + ⎥ 
x x x x x x x x x 
( – 2) (1– ) – 2 ( – 2) 1– (1– ) (1– ) (1– ) (1– ) 
⎢⎣ ⎥⎦ 
128ln – 2 64 –129ln 1– 72 15 8 1 
x x C 
= + + − + − + 
2 3 4 
x x x x x 
– 2 1– (1– ) 3(1– ) 4(1– ) 
25. 
2 2 
3 2 2 2 
x x x x A B C 
x x x x x x x x 
3 − 21 + 32 3 − 21 + 
32 
= = + + 
8 16 ( 4) 4 ( 4) 
− + − − − 
3x2 − 21x + 32 = A(x − 4)2 + Bx(x − 4) + Cx 
A = 2, B = 1, C = –1 
2 
3 2 2 
x x dx dx dx dx 
x x x x x 
∫ 3 − 21 + 
32 = ∫ 2 + ∫ 1 − 
∫ 1 
2ln ln 4 1 
− + − − 8 16 4 ( 4) 
x x C 
= + − + + 
4 
x 
− 
26. 
2 2 
x x x x 
x x x x 
+ 19 + 10 + 19 + 
= 
10 
2 4 5 3 3 
(2 5) 
A B C D 
x x x x 
= + + + 
+ + 2 3 2 + 
5 
A = –1, B = 3, C = 2, D = 2 
2 
x + 19 x + 10 ⎛ 1 3 2 2 
⎞ 
dx – dx 
2 x 5 x x x x 2 x 
5 
– ln x – 3 – 1 ln 2x 5 C 
∫ = 4 3 ∫ ⎜ + + + + ⎝ 2 3 
+ ⎟ ⎠ 2 
= + + + 
x x 
27. 
2 2 
3 2 2 
x x x x A BxC 
x x x x x x 
2 –8 2 –8 
+ + + 
= = + 
4 ( 4) 4 
+ + + 
A = –2, B = 4, C = 1 
2 
3 2 
x x dx dx x dx 
x x x x 
2 + – 8 –2 1 4 + 
1 
dx x dx dx 
x x x 
2 1 2 2 1 
+ + ∫ ∫ ∫ 
∫ = ∫ + 
∫ + + 2 2 
4 4 
= − + + 
4 4 
= –2ln x + 2ln x 2 + 4 + 1 tan–1 
⎛ x ⎞ ⎜ ⎟ 
+C 2 2 
⎝ ⎠ 
450 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x 
3 + 2 3 + 
2 
( 2) 16 ( 4 20) 
28. = 
2 2 
A Bx + 
C 
x x x 
= + 
+ + + + 2 4 20 
x x x x x x 
+ + 
1 , – 1 , 13 
10 10 5 
A = B = C = 
x dx 
3 + 
2 
( 2) 16 
∫ 
+ 2 
+ xx x 
1 x 
13 
10 5 
2 
1 1 – 
+ 
10 4 20 
1 1 14 1 
10 5 ( 2) 16 
+ + ∫ ∫ 2 
dx dx 
x x x 
= + 
x dx 
1 2 4 
20 4 20 
+ + ∫ ∫ 2 
dx dx 
x x 
= + 
+ 
+ + ∫ 
x x 
− 
x x 
1 ln 7 tan–1 2 
10 10 4 
⎛ + ⎞ = + ⎜ ⎟ 
⎝ ⎠ 
– 1 ln 2 4 20 
20 
x + x + +C 
29. 
2 
x x A Bx C 
x x x x 
2 –3 –36 
+ 
= + 
(2 − 1)( 2 + 9) 2 –1 2 
+ 
9 
A = –4, B = 3, C = 0 
2 
x x dx dx x dx 
x x x x 
2 – 3 – 36 –4 1 3 
(2 –1)( 9) 2 –1 9 
∫ = ∫ + 
∫ –2ln 2 –1 3 ln 2 9 
2 + 2 
+ = x + x + +C 
2 
1 1 
x –16 (x 2)(x 2)(x 4) 
30. = 
4 2 
− + + 
A B Cx + 
D 
x x x 
= + + 
– 2 + 2 2 + 
4 
1 , – 1 , 0, – 1 
32 32 8 
A = B = C = D = 
= x x + ⎛ x ⎞ +C ⎜ ⎟ 
+ + ∫ ∫ ∫ ∫ 1 ln – 2 – 1 ln 2 – 1 tan–1 
1 1 1 – 1 1 1 1 
–16 32 – 2 32 2 8 4 
dx = dx dx − 
dx 
4 2 
x x x x 
32 32 16 2 
⎝ ⎠ 
1 
A B C D 
31. = + + + 
2 2 2 2 
x x x x x x 
( –1) ( + 4) –1 ( –1) + 4 ( + 
4) 
– 2 , 1 , 2 , 1 
125 25 125 25 
A = B = C = D = 
1 – 2 1 1 1 2 1 1 1 
+ + + ∫ ∫ ∫ ∫ ∫ 
– 2 ln –1 – 1 2 ln 4 – 1 
dx = dx + dx + dx + 
dx 
2 2 2 2 
x x x x x x 
( –1) ( 4) 125 –1 25 ( –1) 125 4 25 ( 4) 
x x C 
= + + + 
x x 
125 25( –1) 125 25( + 
4) 
32. 
3 2 2 
x x x x 
x x x x x x 
– 8 –1 + 
= 1 + 
–7 7 –16 
2 2 
( + 3)( –4 + 5) ( + 3)( − 4 + 
5) 
2 
2 2 
x x A Bx C 
–7 + 7 –16 
+ 
= + 
( x 3)( x – 4 x 5) x 3 x – 4 x 
5 
+ + + + 
– 50 , – 41, 14 
A = B = C = 
13 13 13 
3 2 41 14 
⎡ ⎛ ⎞ + ⎤ = ⎢ ⎜ ⎟ + ⎥ + + ⎢⎣ ⎝ + ⎠ + ⎥⎦ 
x – 8 x –1 – x dx 1– 
50 1 13 13 
dx 
x x x x x x 
∫ ∫ 
2 2 
( 3)( – 4 5) 13 3 – 4 5 
dx dx dx x dx 
50 1 68 1 41 2 4 
13 3 13 ( 2) 1 26 4 5 
+ − + − + ∫ ∫ ∫ ∫ 
– 50 ln 3 – 68 tan–1( – 2) – 41 ln 2 – 4 5 
= − − − 
2 2 
− 
x x x x 
= x x + x x x + +C 
13 13 26 
Instructor’s Resource Manual Section 7.5 451 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
33. x = sin t, dx = cos t dt 
3 2 3 2 
t t t dt x x dx 
t t t x x x 
(sin − 8sin − 1) cos − 8 − 
1 
(sin 3)(sin 4sin 5) ( 3)( 4 5) 
∫ = 
2 ∫ 
+ − + + 2 
− + 50 ln 3 68 tan 1( 2) 41 ln 2 4 5 
13 13 26 
= x − x + − − x − − x − x + + C 
which is the result of Problem 32. 
3 2 
t t t dt t t t t t C 
t t t 
(sin – 8sin –1) cos sin – 50 ln sin 3 – 68 tan –1 (sin – 2) – 41 ln sin 2 
– 4sin 5 
(sin 3)(sin – 4sin 5) 13 13 26 
∫ 
+ 2 
+ = + + + 
34. x = sin t, dx = cos t dt 
t dt dx x x x C 
t x 
cos 1 1 ln 2 1 ln 2 1 tan 
sin 16 16 32 32 16 2 
= = − − + − − 1 
⎛ ⎞ ⎜ ⎟ 
+ ∫ 4 ∫ 
− 4 
− ⎝ ⎠ which is the result of Problem 30. 
t dt t t t C 
t 
cos 1 ln sin – 2 – 1 ln sin 2 – 1 tan sin 
sin –16 32 32 16 2 
= + –1 
⎛ ⎞ ⎜ ⎟ 
+ ∫ 
4 
⎝ ⎠ 35. 
3 
2 2 2 2 2 
x – 4 
x + + 
= Ax B + 
Cx D 
x x x 
( + 1) + 1 ( + 
1) 
A = 1, B = 0, C = –5, D = 0 
3 
2 2 2 2 2 
x – 4 x dx x dx 5 
x dx 
x x x 
1 ln 1 5 
2 2( 1) 
∫ = ∫ − 
∫ 2 
+ + + ( 1) 1 ( 1) 
x C 
= + + + 
2 
x 
+ 
36. x = cos t, dx = –sin t dt 
2 2 
2 4 2 4 
t t dt x dx 
(sin )(4cos –1) – 4 –1 
∫ = 
∫ 
+ + + + t t t x x x 
(cos )(1 2cos cos ) (1 2 ) 
2 2 
2 4 2 2 2 2 2 
x x A BxC DxE 
4 − 1 4 − 1 
+ + 
= = + + 
(1 2 ) ( 1) 1 ( 1) 
x x x x x x x x 
+ + + + + 
A = –1, B = 1, C = 0, D = 5, E = 0 
⎡ ⎤ 
− ⎢− + + ⎥ = − + + + 
⎢⎣ + + ⎥⎦ + 
x x dx x x C 
1 5 ln 1 ln 1 5 
ln cos 1 ln cos 1 5 
∫ 2 
2 
2 2 2 2 
x x x x 
1 ( 1) 2 2( 1) 
t t C 
= − + + + 
2 
2 2(cos t 
+ 
1) 
37. 
3 2 2 
5 3 4 2 
x x x x x x 
x x x xx x 
2 + 5 + 16 (2 + 5 + 
16) 
= 
8 16 ( 8 16) 
+ + + + 
2 
2 2 2 2 2 
x x Ax B Cx D 
x x x 
2 + 5 + 16 
+ + 
( 4) 4 ( 4) 
= = + 
+ + + 
A = 0, B = 2, C = 5, D = 8 
3 2 
5 3 2 2 2 
x x x dx dx x dx 
x x x x x 
2 + 5 + 16 2 5 + 
8 
dx x dx dx 
2 5 8 
4 ( 4) ( 4) 
∫ = ∫ + 
∫ + + + + 2 2 2 2 2 
8 16 4 ( 4) 
+ + + ∫ ∫ ∫ 
= + + 
x x x 
8 , 
x + ∫ let x = 2 tan θ, dx = 2sec2θ dθ . 
To integrate 2 2 
( 4) 
dx 
2 
8 16sec 
θ 
∫ dx = 
∫ d 
cos2 1 1 cos 2 
2 + 2 4 
x 
( 4) 16sec 
θ 
θ 
= θ dθ = ⎛⎜ + θ ⎞⎟ dθ 
∫ ∫ 
⎝ 2 2 
⎠ 1 1 sin 2 1 1 sin cos 
2 4 2 2 
x x C 
1 tan 
2 2 4 
= θ + θ +C = θ + θ θ +C –1 
= + + 
2 
x 
+ 
3 2 
x x x dx x x x C 
x x x x x 
2 5 16 tan – 5 1 tan 
x x C 
3 tan 2 – 5 
2 2 2( 4) 
∫ –1 –1 
–1 
+ + + + + + 
= + + + 
5 3 2 2 
8 16 2 2( 4) 2 2 4 
= + + 
2 
x 
+ 
452 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x A B 
x x x x x x 
38. 2 
–17 = –17 
= + 
–12 ( 4)( – 3) 4 – 3 
+ + + 
A = 3, B = –2 
6 6 
4 2 4 
x dx dx 
x x x x 
–17 3 – 2 
–12 4 – 3 
= ⎛ ⎞ ⎜ + ⎟ + ⎝ ⎠ ∫ ∫ 6 
4 = ⎡⎣3ln x + 4 – 2ln x – 3 ⎤⎦ = (3ln10 – 2ln 3) – (3ln8 – 2ln1) 
= 3ln10 – 2ln 3 – 3ln8 ≈ –1.53 
39. u = sin θ, du = cos θ dθ 
cos θ 
1 
∫ / 4 d ∫ 1/ 2 
du 
1/ 2 
0 2 2 + 2 0 2 2 + 2 
u u 
θ 
= 
(1– sin θ )(sin θ 
1) (1– )( 1) 
π 
1 
+ + ∫ 
0 2 2 
u u u 
(1 – )(1 )( 1) 
du 
= 
1 
A B Cu + D Eu + 
F 
= + + + 
2 2 2 2 2 2 
u u u u u u 
(1– )( + 1) 1– 1 + + 1 ( + 
1) 
1 , 1 , 0, 1 , 0, 1 
8 8 4 2 
A = B = C = D = E = F = 
1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 
1 
0 2 2 2 0 0 0 2 0 2 2 
− + − + + + ∫ ∫ ∫ ∫ ∫ 
du = du + du + du + 
du 
u u u u u u 
(1 )( 1) 8 1 8 1 4 1 2 ( 1) 
1/ 2 
⎡ ⎛ ⎞⎤ 
= ⎢ – 1 ln 1– u + 1 ln 1 + u + 1 tan –1 u + 1 ⎜ tan 
–1 
u + u 
⎣ 8 8 4 4 ⎝ 2 
⎟⎥ 
+ 1 
⎠⎦ 
0 
u 
1/ 2 
⎡ + = 1 ln 1 u 1 ⎢ + tan 
–1 
u + u 
⎤ 
⎥ 
⎢⎣ 8 1 − u 2 4( u 
2 
+ 1) 
⎥⎦ 
0 
1 2 + 
ln 1 1 tan–1 1 1 0.65 
8 2 1 2 2 6 2 
= + + ≈ 
− 
1 , 
u + ∫ let u = tan t.) 
(To integrate 2 2 
( 1) 
du 
x x 
x x x x 
3 13 3 13 
4 3 ( 3)( 1) 
40. 2 
+ + 
= 
A B 
x x 
= + 
+ + + + + 3 + 
1 
A = –2, B = 5 
5 5 
1 2 1 
x dx x x 
x x 
3 + 
13 –2ln 3 5ln 1 
4 3 
∫ = ⎡⎣ + + + ⎤⎦ 
= –2 ln 8 + 5 ln 6 + 2 ln 4 – 5 ln 2 = 5ln 3− 2ln 2 ≈ 4.11 
+ + 41. dy y(1 y) 
dt 
= − so that 
∫ dy ∫ 
dt t C 
− a. Using partial fractions: 
1 
1 1 
(1 ) 
y y 
= = + 
A B A y By 
1 (1 − ) 
+ 
(1 ) 1 (1 ) 
= + = ⇒ 
y y y y y y 
− − − 
( ) 1 0 1, 0 1, 1 1 1 1 
+ − = + ⇒ = − = ⇒ = = ⇒ = + 
y (1 y ) y 1 
y 
A B Ay y A B A A B 
− − 
⎛ ⎞ 
⎛ ⎞ 
y y y 
+ = ⎜ + ⎟ = ⎝ − ⎠ ∫ ln ln(1 ) ln 
t C dy 
Thus: 1 
1 1 
y 1 
y 
− − = ⎜ ⎟ ⎝ 1 
− y 
⎠ 
so that 
y e Ce 
y 
t C t 
= 1 
= 
+ 
1 ( C1 ) 
C = 
e 
− 
y t e 
or 1 ( ) 
C 
t 
t 
e 
= 
+ 
(0) 0.5, 0.5 1 or 1 
y = = C = 
Since 1 
1 
C 
+ 
y t e 
; thus ( ) 
= 
+ 
1 
t 
t 
e 
b. 
3 
3 (3) 0.953 
y e 
= ≈ 
1 
e 
+ 
Instructor’s Resource Manual Section 7.5 453 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter
Techniques of Integration Chapter

Weitere ähnliche Inhalte

Was ist angesagt?

Biến đổi và đổi biến hàm tích phân bậc 2
Biến đổi và đổi biến hàm tích phân bậc 2Biến đổi và đổi biến hàm tích phân bậc 2
Biến đổi và đổi biến hàm tích phân bậc 2Thế Giới Tinh Hoa
 
Chuyên đề phương trình chứa căn thức bookbooming
Chuyên đề phương trình chứa căn thức   bookboomingChuyên đề phương trình chứa căn thức   bookbooming
Chuyên đề phương trình chứa căn thức bookboomingThế Giới Tinh Hoa
 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201Drradz Maths
 
Systems%20of%20 equations%20elimination
Systems%20of%20 equations%20eliminationSystems%20of%20 equations%20elimination
Systems%20of%20 equations%20eliminationNene Thomas
 
Đặt ẩn phụ giải phương trình chứa căn
Đặt ẩn phụ giải phương trình chứa cănĐặt ẩn phụ giải phương trình chứa căn
Đặt ẩn phụ giải phương trình chứa căntuituhoc
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201Drradz Maths
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2José Encalada
 
Polynomials class-10-maths-april-19
Polynomials class-10-maths-april-19Polynomials class-10-maths-april-19
Polynomials class-10-maths-april-19RaveenKaushal
 
Solucionario Baldor
Solucionario BaldorSolucionario Baldor
Solucionario Baldorrepc1982
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201Drradz Maths
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201Drradz Maths
 
226 bai toan luong giac lop 10 co giai
226 bai toan luong giac lop 10 co giai226 bai toan luong giac lop 10 co giai
226 bai toan luong giac lop 10 co giaiPham Tai
 
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcỨng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcNhập Vân Long
 
RationalExpressionsReview.pdf
RationalExpressionsReview.pdfRationalExpressionsReview.pdf
RationalExpressionsReview.pdfbwlomas
 
Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3luxvis
 
Bài tập tích phân kép.pdf
Bài tập tích phân kép.pdfBài tập tích phân kép.pdf
Bài tập tích phân kép.pdfNhNguynHoi1
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomialsmlynczyk
 

Was ist angesagt? (20)

Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
Biến đổi và đổi biến hàm tích phân bậc 2
Biến đổi và đổi biến hàm tích phân bậc 2Biến đổi và đổi biến hàm tích phân bậc 2
Biến đổi và đổi biến hàm tích phân bậc 2
 
Chuyên đề phương trình chứa căn thức bookbooming
Chuyên đề phương trình chứa căn thức   bookboomingChuyên đề phương trình chứa căn thức   bookbooming
Chuyên đề phương trình chứa căn thức bookbooming
 
Tutorial 7 mth 3201
Tutorial 7 mth 3201Tutorial 7 mth 3201
Tutorial 7 mth 3201
 
Systems%20of%20 equations%20elimination
Systems%20of%20 equations%20eliminationSystems%20of%20 equations%20elimination
Systems%20of%20 equations%20elimination
 
Đặt ẩn phụ giải phương trình chứa căn
Đặt ẩn phụ giải phương trình chứa cănĐặt ẩn phụ giải phương trình chứa căn
Đặt ẩn phụ giải phương trình chứa căn
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
Polynomials class-10-maths-april-19
Polynomials class-10-maths-april-19Polynomials class-10-maths-april-19
Polynomials class-10-maths-april-19
 
Tu és santo violino
Tu és santo   violinoTu és santo   violino
Tu és santo violino
 
ECUACIONESpdf
ECUACIONESpdfECUACIONESpdf
ECUACIONESpdf
 
Solucionario Baldor
Solucionario BaldorSolucionario Baldor
Solucionario Baldor
 
Tutorial 5 mth 3201
Tutorial 5 mth 3201Tutorial 5 mth 3201
Tutorial 5 mth 3201
 
Tutorial 3 mth 3201
Tutorial 3 mth 3201Tutorial 3 mth 3201
Tutorial 3 mth 3201
 
226 bai toan luong giac lop 10 co giai
226 bai toan luong giac lop 10 co giai226 bai toan luong giac lop 10 co giai
226 bai toan luong giac lop 10 co giai
 
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thứcỨng dụng tam thức bậc 2 để chứng minh bất đẳng thức
Ứng dụng tam thức bậc 2 để chứng minh bất đẳng thức
 
RationalExpressionsReview.pdf
RationalExpressionsReview.pdfRationalExpressionsReview.pdf
RationalExpressionsReview.pdf
 
Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3Chapter 1 Functions Relations V3
Chapter 1 Functions Relations V3
 
Bài tập tích phân kép.pdf
Bài tập tích phân kép.pdfBài tập tích phân kép.pdf
Bài tập tích phân kép.pdf
 
Multiplying Polynomials
Multiplying PolynomialsMultiplying Polynomials
Multiplying Polynomials
 

Andere mochten auch

Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04hcuiller
 
Ansanm Ansanm
Ansanm AnsanmAnsanm Ansanm
Ansanm AnsanmJo Anis
 
Comment trouver des jeux pour entraînement clavier
Comment trouver des jeux pour entraînement clavierComment trouver des jeux pour entraînement clavier
Comment trouver des jeux pour entraînement clavierdrrivedroite
 
Doc compex wireless pro
Doc compex wireless proDoc compex wireless pro
Doc compex wireless procasimir91
 
Pladn réalisations
Pladn réalisationsPladn réalisations
Pladn réalisationsmduch024
 
Le marché secondaire des logiciels
Le marché secondaire des logicielsLe marché secondaire des logiciels
Le marché secondaire des logicielstipsmarketing
 
SeminaireAA3-PrstationAPaouri
SeminaireAA3-PrstationAPaouriSeminaireAA3-PrstationAPaouri
SeminaireAA3-PrstationAPaouriConsortiumArcMC
 
Information metier hotellerie restauration personnel d'étage www.hotellerie r...
Information metier hotellerie restauration personnel d'étage www.hotellerie r...Information metier hotellerie restauration personnel d'étage www.hotellerie r...
Information metier hotellerie restauration personnel d'étage www.hotellerie r...Emploi Hotellerie Restauration
 

Andere mochten auch (20)

Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Rapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - final
Rapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - finalRapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - final
Rapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - final
 
Upsc ias-2014-gs-paper-1
Upsc ias-2014-gs-paper-1Upsc ias-2014-gs-paper-1
Upsc ias-2014-gs-paper-1
 
Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04
 
Programme de 11 jours
Programme de 11 joursProgramme de 11 jours
Programme de 11 jours
 
Ansanm Ansanm
Ansanm AnsanmAnsanm Ansanm
Ansanm Ansanm
 
Comment trouver des jeux pour entraînement clavier
Comment trouver des jeux pour entraînement clavierComment trouver des jeux pour entraînement clavier
Comment trouver des jeux pour entraînement clavier
 
Nousty 07 web
Nousty 07 webNousty 07 web
Nousty 07 web
 
Doc compex wireless pro
Doc compex wireless proDoc compex wireless pro
Doc compex wireless pro
 
Le code de l'abstinence
Le code de l'abstinenceLe code de l'abstinence
Le code de l'abstinence
 
Pladn réalisations
Pladn réalisationsPladn réalisations
Pladn réalisations
 
Programme 2000 Infocom
Programme 2000 InfocomProgramme 2000 Infocom
Programme 2000 Infocom
 
Le marché secondaire des logiciels
Le marché secondaire des logicielsLe marché secondaire des logiciels
Le marché secondaire des logiciels
 
le sommeil
le sommeille sommeil
le sommeil
 
Picsay 6°c
Picsay 6°cPicsay 6°c
Picsay 6°c
 
(Règlement offline uk_fin2)
(Règlement offline uk_fin2)(Règlement offline uk_fin2)
(Règlement offline uk_fin2)
 
Programme de 4 jours
Programme de 4 joursProgramme de 4 jours
Programme de 4 jours
 
SeminaireAA3-PrstationAPaouri
SeminaireAA3-PrstationAPaouriSeminaireAA3-PrstationAPaouri
SeminaireAA3-PrstationAPaouri
 
Information metier hotellerie restauration personnel d'étage www.hotellerie r...
Information metier hotellerie restauration personnel d'étage www.hotellerie r...Information metier hotellerie restauration personnel d'étage www.hotellerie r...
Information metier hotellerie restauration personnel d'étage www.hotellerie r...
 
Programme de 16 jours
Programme de 16 joursProgramme de 16 jours
Programme de 16 jours
 

Ähnlich wie Techniques of Integration Chapter

51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7Carlos Fuentes
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsolziich
 
deveratives integrals
deveratives integralsdeveratives integrals
deveratives integralsRaka S
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integrationmusadoto
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15silvio_sas
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec mathsAndrew Smith
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualLarson2017
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculoMan50035
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15Carlos Fuentes
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculoFavian Flores
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltosbellidomates
 

Ähnlich wie Techniques of Integration Chapter (20)

51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Calculo i
Calculo iCalculo i
Calculo i
 
Calculo i
Calculo iCalculo i
Calculo i
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Deber10
Deber10Deber10
Deber10
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
deveratives integrals
deveratives integralsdeveratives integrals
deveratives integrals
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integration
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 

Kürzlich hochgeladen

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 

Kürzlich hochgeladen (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 

Techniques of Integration Chapter

  • 1. CHAPTER 7 Techniques of Integration 7.1 Concepts Review 1. elementary function 2. ∫u5du 3. ex 4. 2 3 ∫ u du 1 Problem Set 7.1 1. ( – 2)5 1 ( – 2)6 ∫ x dx = x +C 6 2. 3 1 3 3 2 (3 )3/ 2 ∫ x dx = ∫ x ⋅ dx = x +C 3 9 3. u = x2 +1, du = 2x dx When x = 0, u = 1 and when x = 2, u = 5 . ∫ 2 x ( x 2 + 1) 5 dx = 1 ∫ 2 ( x 2 + 1) 5 (2 x dx ) 0 0 2 5 5 1 1 2 = ∫ u du 6 5 6 6 ⎡u ⎤ − = ⎢ ⎥ = ⎢⎣ ⎥⎦ = = 12 12 1 15624 1302 12 5 1 4. u = 1– x2 , du = –2x dx When x = 0, u = 1 and when x = 1, u = 0 . ∫ 1 x 1– x 2 dx = – 1 ∫ 1 1 − x 2 ( − 2 x dx ) 0 0 2 1 2 1 2 0 1/ 2 1 1 1/ 2 0 u du ∫ ∫ u du = − = 1 1 1 3 3 = ⎡⎢ u 3/ 2 ⎤⎥ = ⎣ ⎦ 0 dx = 1 tan ⎛ x ⎞ ⎜ ⎟ + C x 5. –1 ∫ 2 + ⎝ ⎠ 4 2 2 6. u = 2 + ex , du = exdx ∫ ∫ 2 + = ln u +C ln 2 ln(2 ) x x e dx = du e u x e C e C = + + = + x + 7. u = x2 + 4, du = 2x dx x dx du x u ∫ 2 ∫ + 1 ln 2 1 = 4 2 = u + C 1 ln 2 4 2 = x + +C 1 ln( 2 4) 2 = x + + C 8. 2 2 2 2 t dt t dt t t 2 2 + 1 − 1 2 1 2 1 ∫ = ∫ + + – 1 = ∫ dt ∫ dt 2 t 2 + 1 u = 2t, du = 2dt t – 1 dt t – 1 du ∫ = ∫ + + – 1 tan–1( 2 ) 2 2 2 1 2 1 t u = t t + C 2 9. u = 4 + z2 , du = 2z dz ∫6z 4 + z2 dz = 3∫ u du = 2u3/ 2 +C = 2(4 + z2 )3/ 2 +C 412 Section 7.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 2. 10. u = 2t +1, du = 2dt dt du 5 5 2 1 2 ∫ = ∫ + = 5 u +C = 5 2t +1 + C t u z dz z z dz z tan tan sec cos 11. 2 ∫ = 2 ∫ u = tan z, du = sec2 z dz ∫ tan z sec2 z dz = ∫u du 1 2 2 = u +C 1 tan2 2 = z +C 12. u = cos z, du = –sin z dz ∫ecos z sin z dz = –∫ecos z (– sin z dz) = −∫eudu = −eu +C = –ecos z +C 13. , 1 u t du dt = = 2 t sin t dt 2 sin u du ∫ = ∫ t = –2 cos u + C = –2cos t +C 14. u = x2 , du = 2x dx x dx du x u 2 1– 1– ∫ = ∫ = sin–1 u +C = sin–1(x2 ) +C 4 2 15. u = sin x, du = cos x dx x dx du x u cos 1 sin 1 π / 4 2 / 2 0 2 0 2 ∫ = ∫ + + − u − 1 2/2 [tan ] tan 2 0 1 = ≈ 0.6155 2 = 16. 1– , – 1 u xdu dx 2 1– x = = x dx u du x sin 1– –2 sin 1– 3/ 4 1/ 2 0 1 ∫ = ∫ 1 1/ 2 = 2∫ sin u du 1 = [ − 2cos u ]1/ 2 = − 2 ⎛ cos1 − cos 1 ⎞ ⎜ ⎟ 2 ⎝ ⎠ ≈ 0.6746 17. 3 2 2 1 (3 –1) x + xdx x dx dx x x ∫ = ∫ + ∫ + + 3 2 – ln 1 2 1 1 = x x + x + +C 18. 3 x xdx x x dx dx x x 7 ( 2 8) 8 1 –1 –1 + ∫ = ∫ + + + ∫ 1 3 1 2 8 8ln –1 3 2 = x + x + x + x +C 19. u ln 4x2 , du 2 dx = = x sin(ln 4 2 ) 1 sin x dx u du x ∫ = ∫ 2 – 1 cos = u +C 2 – 1 cos(ln 4 2 ) 2 = x +C 20. u = ln x, du 1 dx x = 2 sec (ln ) 1 sec2 x dx u du x ∫ = ∫ 2 2 1 tan 2 = u +C 1 tan(ln ) 2 = x +C 21. u = ex , du = exdx x x e dx du du e u 6 = 6 ∫ 1 1 2 2 − − 1 1 u C e C − − 6sin 6sin ( ) = + = x + ∫ Instructor’s Resource Manual Section 7.1 413 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 3. 22. u = x2 , du = 2x dx x dx 1 du x u ∫ = ∫ + + 1 tan 1 4 2 4 2 4 2 4 = − u + C 2 ⎛ ⎞ x C 1 tan–1 4 2 = ⎜⎜ ⎟⎟ + ⎝ ⎠ 23. u = 1– e2x , du = –2e2xdx x x 2 2 e dx du e u 3 – 3 1– 2 ∫ = ∫ = –3 u +C = –3 1– e2x +C 24. 3 3 4 4 x dx 1 4 x dx x x ∫ = ∫ + + 1 ln 4 4 4 4 4 4 = x + +C 1 ln( 4 4) 4 = x + + C 25. 3 1 2 3 1 2 1 2 0 0 ∫ t t dt = ∫ t t dt 2 2 1 ⎡ t ⎤ = ⎢ ⎥ = ⎢ ⎥ ⎣ ⎦ 1 0.9102 ln 3 3 3 – 1 2ln3 2ln3 2ln3 0 = ≈ 26. / 6 cos / 6 cos 2 x sin x dx – 2 x (– sin x dx) π π ∫ = ∫ 0 0 cos / 6 ⎡ π =⎢ – 2 x ⎤ ⎥ ⎢⎣ ln 2 ⎥⎦ 0 – 1 (2 3 / 2 – 2) = ln 2 2 − 2 3 / 2 ln 2 0.2559 = ≈ x x dx x dx 27. sin cos 1 cos − ⎛ ⎞ = ⎜ − ⎟ ∫ ∫ sin x ⎝ sin x ⎠ u = sin x, du = cos x dx sin cos x − x dx x du ∫ = − ∫ sin = x − ln u +C = x − ln sin x +C x u 28. u = cos(4t – 1), du = –4 sin(4t – 1)dt t dt t dt t t sin(4 − 1) sin(4 − 1) 1 sin (4 1) cos (4 1) ∫ = ∫ − 2 − 2 − 1 1 4 = − ∫ du u 2 1 1 1 sec(4 1) 4 4 = u− +C = t − +C 29. u = ex , du = exdx ∫ex sec exdx = ∫secu du = ln secu + tan u + C = ln sec ex + tan ex +C 30. u = ex , du = exdx ∫ex sec2 (ex )dx = ∫sec2 u du = tan u + C = tan(ex ) +C 31. x 3 sin sec (sec2 sin cos ) x + e dx x e x x dx x ∫ = ∫ + sec = tan x + ∫esin x cos x dx u = sin x, du = cos x dx tan x + ∫esin x cos x dx = tan x + ∫eu du = tan x + eu +C = tan x + esin x +C 32. u = 3t2 − t −1 , 1 (3 2 1) 1/ 2 (6 1) 2 du = t − t − − t − dt 2 t t t dt u du (6 − 1)sin 3 − − 1 2 sin ∫ = ∫ 3 t 2 − t − 1 = –2 cos u + C = −2cos 3t2 − t −1 + C 414 Section 7.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 4. 33. u = t3 − 2 , du = 3t2dt 2 3 t t dt u du cos( − 2) 1 cos sin ( 2) 3 sin ∫ = ∫ − v = sin u, dv = cos u du 2 3 2 t u u du v dv v C u 1 cos 1 1 3 sin 3 3 2 1 ∫ = ∫ − = − − + 2 1 3sin C = − + u 1 = − + 3 t 3sin( 2) C − . x dx dx x dx x x x 1 cos2 1 cos2 sin 2 sin 2 sin 2 + ∫ = ∫ + ∫ = ∫csc2 2x dx + ∫cot 2x csc 2x dx 34. 2 2 2 1 cot 2 1 csc 2 2 2 = − x − x +C 35. u = t3 − 2 , du = 3t2dt 2 2 3 2 t t dt u du cos ( − 2) 1 cos sin ( 2) 3 sin ∫ = ∫ − 1 cot2 3 2 3 2 t u = ∫ u du 1 (csc2 –1) = ∫ u du 3 = − u − u +C 1 1[ cot ] 3 1[ cot( 3 2) ( 3 2)] 3 = − t − − t − + C 1[cot( 3 2) 3] 1 = − t − + t +C 3 36. u = 1 + cot 2t, du = −2csc2 2t csc2 2 1 1 1 cot 2 2 t dt du t u ∫ = − ∫ + = − u + C = − 1+ cot 2t + C 2 1 4 37. u = tan−1 2t , 2 du dt t = + tan − 1 2 e dt eudu ∫ + 2 ∫ 1 1 tan 1 2 2 2 1 t = 1 4 t 2 − eu C e t C = + = + 38. u = −t2 − 2t − 5 , du = (–2t – 2)dt = –2(t + 1)dt 2 2 5 1 ( 1) ∫ t + e−t − t− = − ∫eudu 2 1 2 = − eu +C 1 2 2 5 2 = − e−t − t− +C 39. u = 3y2 , du = 6y dy y dy 1 1 du y u ∫ = ∫ 1 sin 1 6 4 16 9 6 4 4 2 2 − − = − ⎛ u ⎞ +C ⎜ ⎟ ⎝ ⎠ 2 − ⎛ y ⎞ C 1 sin 1 3 6 4 = ⎜⎜ ⎟⎟ + ⎝ ⎠ 40. u = 3x, du = 3dx x dx u du u C ∫ ∫ cosh 3 1 (cosh ) 1 sinh 3 3 1 sinh 3 3 = = + x C = + 41. u = x3 , du = 3x2dx 2 sinh 3 1 sinh ∫ x x dx = ∫ u du 3 1 cosh 3 = u +C 1 cosh 3 3 = x +C 42. u = 2x, du = 2 dx 5 5 1 9 4 2 3 ∫ ∫ 5 sin 1 2 3 dx = du x 2 2 u 2 − − = − ⎛ u ⎞ +C ⎜ ⎟ ⎝ ⎠ = − ⎛ x ⎞ +C ⎜ ⎟ 5 sin 1 2 2 3 ⎝ ⎠ 43. u = e3t , du = 3e3tdt t t 3 6 2 2 e dt 1 1 du e u ∫ = ∫ 1 sin 1 3 2 4 3 2 − − = − ⎛ u ⎞ +C ⎜ ⎟ ⎝ ⎠ 3 e t − C ⎛ ⎞ 1 sin 1 3 2 = ⎜⎜ ⎟⎟ + ⎝ ⎠ 44. u = 2t, du = 2dt dt 1 1 du t t u u ∫ = ∫ 1 sec 1 2 2 4 2 − 1 2 2 − 1 = ⎣⎡ − u ⎦⎤ +C = 1 sec − 1 2 t +C 2 Instructor’s Resource Manual Section 7.1 415 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 5. 45. u = cos x, du = –sin x dx x dx du x u sin 1 / 2 0 0 2 1 2 ∫ = − ∫ + + 16 cos 16 π 1 16 1 0 2 du u = + ∫ 1 ⎡ = 1 tan − 1 ⎛ u ⎞⎤ ⎢ 4 ⎜ ⎣ ⎝ 4 ⎠⎦ ⎟⎥ 0 1 tan 1 1 1 tan 1 0 4 4 4 = ⎡ − ⎛ ⎞ − − ⎤ ⎢ ⎜ ⎟ ⎥ ⎣ ⎝ ⎠ ⎦ 1 tan 1 1 0.0612 4 4 = − ⎛ ⎞ ≈ ⎜ ⎟ ⎝ ⎠ 46. 2 2 x x u e e− = + , du = (2e2x − 2e−2x )dx = 2(e2x − e−2x )dx 1 2 x − 2 x e 2 + e − 2 0 2 x − 2 x 2 e − e dx 1 1 du e e 2 u ∫ = ∫ + 2 2 2 + − = ⎡⎣ ⎤⎦ 1 ln 2 e e u 1 ln 2 2 1 ln 2 2 2 = e + e− − 4 2 e e 1 + ln 1 1 ln 2 2 2 = − 1 ln( 4 1) 1 ln( 2 ) 1 ln 2 2 2 2 = e + − e − 1 4 1 ln 2 0.6625 2 2 = ⎛⎜ ⎛⎜ e + ⎞⎟ − ⎞⎟ ≈ ⎜ ⎜ ⎟ ⎟ ⎝ ⎝ ⎠ ⎠ 1 1 2 5 2 1 4 + + + + + ∫ ∫ 47. 2 2 dx = dx x x x x 1 ( 1) + + ∫ 1 tan–1 1 2 2 = + 2 2 x ( 1) 2 d x x C ⎛ + ⎞ = ⎜ ⎟ + ⎝ ⎠ 1 1 –4 9 –4 4 5 + + + ∫ ∫ 48. 2 2 dx = dx x x x x 1 ( –2) + ∫ 1 tan–1 – 2 5 5 2 2 x ( –2) ( 5) d x = x C ⎛ ⎞ = ⎜ ⎟ + ⎝ ⎠ dx dx + + + + + ∫ ∫ 49. = 9 x 2 18 x 10 9 x 2 18 x 9 1 dx x = ∫ (3 + 3)2 + 12 u = 3x + 3, du = 3 dx dx 1 du x u ∫ = ∫ + + + 1 tan–1(3 3) 3 2 2 2 2 (3 3) 1 3 1 = x + +C 50. dx dx x x x x ∫ = ∫ 16 + 6 – 2 –( 2 – 6 + 9 – 25) dx x dx x ∫ –( – 3)2 52 52 – ( – 3)2 = + = ∫ = sin–1 ⎛ x – 3 ⎞ ⎜ ⎟ +C 5 ⎝ ⎠ x + 1 dx 1 18 x + 18 dx + + + + ∫ ∫ 51. = 2 2 9 x 18 x 10 18 9 x 18 x 10 1 ln 9 2 18 10 18 1 ln 9 18 10 18 x x C = + + + ( 2 ) x x C = + + + 52. x dx x dx x x x x 3– 1 6 – 2 16 6 – 2 16 6 – ∫ = ∫ 2 2 + + = 16 + 6x – x2 +C 53. u = 2t, du = 2dt dt du ∫ = ∫ 2 2 – 9 2 – 32 t t u u ⎛ ⎞ t –1 1 2 sec 3 3 C = ⎜ ⎟ + ⎜ ⎟ ⎝ ⎠ 54. x dx x x dx x x x tan cos tan sec – 4 cos sec – 4 ∫ = ∫ 2 2 x dx = ∫ 2 u = 2 cos x, du = –2 sin x dx sin 1– 4cos x x dx 1 1 2 1 ∫ 2 2 sin 1 4cos − x du u = − − ∫ = − − u +C – 1 sin–1(2cos ) 1 sin 1 2 = x +C 2 55. The length is given by 2 L dy dx = + ⎛ ⎞ ⎜ ⎟ 1 b a ∫ ⎝ dx ⎠ / 4 2 1 1 ( sin ) 0 π = ∫ + ⎡ ⎢ − ⎤ ⎣ cos ⎥ ⎦ x dx x = ∫ + / 4 2 / 4 2 0 1 tan x dx π sec x dx π = ∫ 0 / 4 0 sec x dx π = ∫ 0= ⎡ ⎣ ln sec x + tan x ⎤ π / 4 ⎦ = ln 2 +1 − ln 1 = ln 2 +1 ≈ 0.881 416 Section 7.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 6. x x 1 + 56. sec = = 1 sin x x x cos cos (1 + sin ) sin sin2 cos2 sin (1 sin ) cos2 x + x + x x + x + x = = x x x x cos (1 + sin ) cos (1 + sin ) x x x x sin cos cos 1 sin = + + x x x dx sec sin cos ∫ = ∫ ⎛ ⎞ ⎜ + ⎝ cos x 1 + sin x ⎟ ⎠ x dx x dx x x sin cos cos 1 sin = ∫ + ∫ + For the first integral use u = cos x, du = –sin x dx, and for the second integral use v = 1 + sin x, dv = cos x dx. sin cos – cos 1 sin x dx x dx du dv x x u v ∫ + ∫ = ∫ + ∫ + = – ln u + ln v +C = – ln cos x + ln 1+ sin x +C 1 + ln sin = + cos = ln sec x + tan x + C x C x 57. u = x – π , du = dx x x u u sin ( + π ) sin( + π ) 2 π π 0 2 – 2 + + + π ∫ ∫ dx = du x π u 1 cos 1 cos ( ) u u ( )sin 1 cos π π + π + ∫ – 2 du u = u sin u sin u π π π π π + + ∫ ∫ du du u u = + – 2 – 2 1 cos 1 cos u sin u π π ∫ 0 by symmetry. – + 2 1 cos du u = u u du du u u sin sin 2 π π π π π ∫ = ∫ + + v = cos u, dv = –sin u du – 2 0 2 1 cos 1 cos π 2 2 1 –1 1 1 2 –1 2 + + ∫ ∫ dv dv v v − = π 1 1 = 2 π [tan − 1 v ] 1 ⎡π ⎛ π ⎞⎤ − 1 = 2 π ⎢ − ⎜− ⎣ 4 ⎝ 4 ⎟⎥ ⎠⎦ 2 2 ⎛ π ⎞ = π⎜ ⎟ = π 2 ⎝ ⎠ 58. 3 4 4 – π π ⎛ π ⎞ = π ⎜ + ⎟ ⎝ ⎠ ∫ – , 4 V 2 x sin x – cos x dx 4 π u = x du = dx π π ⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ = π ⎜ + ⎟ ⎜ + ⎟ ⎜ + ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∫ V u u u du 2 2 – 2 sin – cos 2 4 4 π π 2 2 sin 2 cos – 2 cos 2 sin ⎛ π ⎞ = π ⎜ + ⎟ + + ⎝ ⎠ ∫ 2 2 – u u u u udu 2 2 2 2 2 π π π −π −π −π ⎛ π ⎞ = π ⎜ + ⎟ = + 2 2 sin 2 2 sin 2 2 sin ⎝ ⎠ ∫ ∫ ∫ u u du π u u du π u du 2 2 2 2 2 2 2 π −π π∫ = by symmetry. Therefore, 2 2 u sin u du 0 2 2 π π 2 2 2 2 2 = π ∫ = π − = π V 2 2 sin u du 2 2 [ cosu] 2 2 0 0 Instructor’s Resource Manual Section 7.1 417 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 7. 7.2 Concepts Review 1. uv – ∫v du 2. x; sin x dx 3. 1 4. reduction Problem Set 7.2 1. u = x dv = exdx du = dx v = ex ∫ xexdx = xex − ∫exdx = xex − ex +C 2. u = x dv = e3xdx du = dx 1 3 v = e x 3 3 1 3 1 3 ∫ xe xdx = xe x − ∫ e xdx 3 3 1 3 1 3 3 9 = xe x − e x +C 3. u = t dv = e5t+πdt du = dt 1 5 v = e t+π 5 5 1 5 – 1 5 ∫te t+πdt = te t+π ∫ e t+πdt 5 5 1 5 – 1 5 5 25 = te t+π e t+π +C 4. u = t + 7 dv = e2t+3dt du = dt v = 1 e 2 t+ 3 2 ( 7) 2 3 1 ( 7) 2 3 – 1 2 3 ∫ t + e t+ dt = t + e t+ ∫ e t+ dt 2 2 1 ( 7) 2 3 – 1 2 3 2 4 = t + e t+ e t+ +C = t e t+ + e t+ + C 2 3 13 2 3 2 4 5. u = x dv = cos x dx du = dx v = sin x ∫ x cos x dx = x sin x – ∫sin x dx = x sin x + cos x + C 6. u = x dv = sin 2x dx du = dx – 1 cos 2 v = x 2 sin 2 – 1 cos 2 – – 1 cos 2 ∫ x x dx = x x ∫ x dx 2 2 – 1 cos 2 1 sin 2 = x x + x +C 2 4 7. u = t – 3 dv = cos (t – 3)dt du = dt v = sin (t – 3) ∫(t – 3) cos(t – 3)dt = (t – 3)sin(t – 3) – ∫sin(t – 3)dt = (t – 3) sin (t – 3) + cos (t – 3) + C 8. u = x – π dv = sin(x)dx du = dx v = –cos x ∫(x – π)sin(x)dx = –(x – π) cos x + ∫cos x dx = (π – x) cos x + sin x + C 9. u = t dv = t +1 dt du = dt v = 2 ( t + 1)3/ 2 3 1 2 ( 1)3/ 2 – 2 ( 1)3/ 2 ∫t t + dt = t t + ∫ t + dt 3 3 2 ( 1)3/ 2 – 4 ( 1)5/ 2 3 15 = t t + t + +C 10. u = t dv = 3 2t + 7dt du = dt v = 3 (2 t + 7)4 / 3 8 3 2 7 3 (2 7)4 / 3 – 3 (2 7)4 / 3 ∫t t + dt = t t + ∫ t + dt 8 8 3 (2 7)4 / 3 – 9 (2 7)7 / 3 8 112 = t t + t + +C 11. u = ln 3x dv = dx du 1 dx = v = x x ln 3x dx x ln 3x x 1 dx ∫ = −∫ = x ln 3x − x +C x 12. u = ln(7x5 ) dv = dx du 5 dx = v = x x ln(7x5 )dx x ln(7x5 ) – x 5 dx x ∫ = ∫ = x ln(7x5 ) – 5x +C 418 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 8. 13. u = arctan x dv = dx du dx 2 1 1 x = + v = x x x x x dx + ∫ ∫ 2 arctan arctan 1 x = − x x x dx 2 arctan 1 2 + ∫ 2 1 x = − arctan 1 ln(1 2 ) = x x − + x +C 2 14. u = arctan 5x dv = dx du dx 2 5 1 25 x = + v = x x dx x x x dx 2 arctan 5 arctan 5 – 5 + ∫ ∫ 1 25 x = x x x dx 2 arctan 5 – 1 50 + ∫ 10 1 25 x = arctan 5 – 1 ln(1 25 2 ) = x x + x +C 10 dv dx 15. u = ln x 2 x = du 1 dx = v – 1 x x = ln x dx – ln x – – 1 1 dx x x x x ∫ 2 ∫ ⎝ ⎠ – ln x – 1 C = ⎛ ⎞ ⎜ ⎟ = + x x 16. u = ln 2x5 dv 1 dx 2 x = du 5 dx = v 1 x x = − 3 5 3 3 5 2 2 2 2 2 ln 2x dx 1 ln 2x 5 1 dx x x x = ⎡− ⎤ + ⎢⎣ ⎥⎦ ∫ ∫ 3 1 ln 2 5 5 1 ln(2 3 ) 5 1 ln(2 2 ) 5 3 3 2 2 1 ln 2 5 ln 3 5 3ln 2 5 3 3 3 2 = ⎡− ⎢⎣ x − ⎤ x x ⎥⎦ 2 = ⎛ − ⋅ 5 − ⎞ ⎜ ⎟ − ⎛− ⎜ ⋅ 5 − ⎞ ⎟ ⎝ ⎠ ⎝ ⎠ = − − − + + 8 ln 2 5 ln 3 5 0.8507 3 3 6 = − + ≈ 17. u = ln t dv = t dt du 1dt = 2 3/ 2 t v = t 3 e e ∫ t ln t dt = ⎡⎢ 2 t 3/ 2 ln t⎤⎥ – ∫ e 2 t 1/ 2 dt ⎣ 3 ⎦ 3 1 1 1 2 ln – 2 1ln1 4 3 3 9 = e 3/ 2 e ⋅ − ⎡⎢ t 3/ 2 ⎤⎥ ⎣ ⎦ 2 3/ 2 0 4 3/ 2 4 2 3/ 2 4 1.4404 3 9 9 9 9 e 1 = e − − e + = e + ≈ 18. u = ln x3 dv = 2xdx du 3 dx = 1 (2 )3/ 2 x v = x 3 5 3 1 ∫ 2x ln x dx 5 5 3 2 3 3 2 1 (2 ) ln 2 3 = ⎡⎢ x x ⎤⎥ − x dx ⎣ ⎦ ∫ 1 1 5/ 2 5 = ⎡ 1 ⎢⎣ (2 x ) 3/ 2 ln x 3 − 2 x 3/ 2 ⎤ 3 3 ⎥⎦ 1 5 2 5 2 ⎛ ⎞ 1 (10)3 2 ln 53 2 53/ 2 1 (2)3 2 ln13 2 3 3 3 3 = − − ⎜⎜ − ⎟⎟ ⎝ ⎠ 4 2 53 2 4 2 103 2 ln 5 31.699 3 3 = − + + ≈ 19. u = ln z dv = z3dz du 1 dz = 1 4 z v = z 4 3 ln 1 4 ln 1 4 1 ∫ = − ∫ ⋅ 1 4 ln 1 3 4 4 z zdz z z z dz 4 4 z = z z − ∫ z dz 1 4 ln 1 4 4 16 = z z − z +C 20. u = arctan t dv = t dt du dt 2 1 1 t = + 1 2 2 v = t 2 t arctan t dt 1 t 2 arctan t – 1 t dt 2 + ∫ ∫ 2 21 t = 2 t t t dt 1 2 1 1 + − arctan 1 2 2 1 t 2 = − + ∫ 1 2 arctan 1 ∫ 1 ∫ 1 2 2 2 1 + t t dt dt 2 t = − + 1 2 arctan 1 1 arctan 2 2 2 = t t − t + t +C Instructor's Resource Manual Section 7.2 419 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 9. 21. u arctan 1 = ⎛ ⎞ ⎜ ⎟ t ⎝ ⎠ dv = dt du dt 2 – 1 1 t = + v = t dt t t dt t t t 2 arctan 1 arctan 1 ∫ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ = ⎜ ⎟ + ∫ ⎝ ⎠ ⎝ ⎠ 1 + arctan 1 1 ln(1 2 ) = ⎛ ⎞ + + + ⎜ ⎟ t t C 2 t ⎝ ⎠ 22. u = ln(t7 ) dv = t5dt du 7 dt = 1 6 t v = t 6 5 ln( 7 ) 1 6 ln( 7 ) – 7 5 ∫t t dt = t t ∫t dt 6 6 = 1 t 6 ln( t 7 ) – 7 t 6 +C 6 36 23. u = x dv = csc2 x dx du = dx v = −cot x [ ] / 2 2 / 2 / 2 / 6 / 6 / 6 x csc x dx x cot x cot x dx π π π π π π ∫ = − + ∫ 2 6 cot ln sin x x x π π = ⎡⎣− + ⎤⎦ 0 ln1 3 ln 1 ln 2 1.60 2 6 2 2 3 π π π = − ⋅ + + − = + ≈ 24. u = x dv = sec2 x dx du = dx v = tan x [ ] 4 2 4 4 6 6 6 x sec x dx x tan x tan x dx π π π π π π π ⎛ π ⎞ tan ln cos ln 2 ln 3 ∫ = − ∫ x x π 4 x = ⎡⎣ + ⎤⎦ = + − ⎜⎜ + ⎟⎟ 6 4 2 6 3 2 π ⎝ ⎠ 1 ln 2 0.28 π π = − + ≈ 4 6 3 2 3 25. u = x3 dv = x2 x3 + 4dx du = 3x2dx v = 2 ( x 3 + 4)3/ 2 9 ∫ x 5 x 3 + 4 dx = 2 x 3( x 3 + 4)3/ 2 – ∫ 2 x 2 ( x 3 + 4)3/ 2 dx 2 3( 3 4)3/ 2 – 4 ( 3 4)5 / 2 9 3 = x x + x + +C 9 45 26. u = x7 dv = x6 x7 +1 dx du = 7x6dx v = 2 ( x 7 + 1)3/ 2 21 ∫ x 13 x 7 + 1 dx = 2 x 7 ( x 7 + 1)3/ 2 – ∫ 2 x 6 ( x 7 + 1)3/ 2 dx 2 7 ( 7 1)3/ 2 – 4 ( 7 1)5/ 2 21 3 = x x + x + +C 21 105 27. u = t4 3 dv t dt (7 – 3 t 4 )3/ 2 = du = 4t3 dt 4 1/2 1 t 6(7 – 3 ) v = 7 4 3 4 3/ 2 4 1/ 2 4 1/ 2 t dt t – 2 t dt t t t ∫ = ∫ (7 – 3 ) 6(7 – 3 ) 3 (7 – 3 ) 4 t 1 (7 – 3 t 4 ) 1/2 C t = + + 4 1/2 6(7 – 3 ) 9 420 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 10. 28. u = x2 dv = x 4 – x2 dx du = 2x dx v = – 1 (4 – x 2 )3/ 2 3 ∫ x 3 4 – x 2 dx = – 1 x 2 (4 – x 2 )3/ 2 + 2 ∫ x (4 – x 2 )3/ 2 dx – 1 2 (4 – 2 )3/ 2 – 2 (4 – 2 )5 / 2 3 3 = x x x +C 3 15 29. u = z4 3 dv z dz (4 – z 4 )2 = du = 4z3dz 4 1 z 4(4 – ) v = 7 4 3 z dz z z dz z z z ∫ = − ∫ (4 – 4 )2 4(4 – 4 ) 4 – 4 4 z z 4 C z = + + 4 1 ln 4 – 4(4 – ) 4 30. u = x dv = cosh x dx du = dx v = sinh x ∫ x cosh x dx = x sinh x – ∫sinh x dx = x sinh x – cosh x + C 31. u = x dv = sinh x dx du = dx v = cosh x ∫ x sinh x dx = x cosh x – ∫cosh x dx = x cosh x – sinh x + C 32. u = ln x dv = x–1/ 2dx du 1 dx = v = 2x1/ 2 x ln x dx 2 x ln x – 2 1 dx x x ∫ = ∫ = 2 x ln x – 4 x +C 1/ 2 33. u = x dv = (3x +10)49 dx du = dx v = 1 (3 x + 10)50 150 ∫ x (3 x + 10)49 dx = x (3 x + 10)50 – 1 ∫ (3 x + 10)50 dx (3 10)50 – 1 (3 10)51 150 150 = x x + x + + C 150 22,950 34. u = t dv = (t −1)12 dt du = dt 1 ( 1)13 v = t − 13 ( ) ( ) 1 1 1 12 13 13 0 0 0 t ( t 1) dt t t 1 1 t 1 dt − = ⎡ − ⎤ − − ⎢⎣ ⎥⎦ ∫ ∫ 13 13 t t t 1 1 1 1 = ⎡ 13 14 ⎤ ⎢⎣ ( − ) − ( − ) ⎥⎦ = 1 13 182 182 0 35. u = x dv = 2x dx du = dx 1 2 v = x ln 2 ∫ x 2 x dx = x 2 x – 1 ∫ 2 x dx ln 2 ln 2 = x 2 x – 1 2 x +C 2 ln 2 (ln 2) 36. u = z dv = azdz du = dz 1 v az ln a = zazdz z az – 1 azdz ∫ = ∫ a a ln ln z az az C a a = + 2 – 1 ln (ln ) 37. u = x2 dv = exdx du = 2x dx v = ex ∫ x2exdx = x2ex − ∫ 2xexdx u = x dv = exdx du = dx v = ex ∫ x2ex dx = x2ex − 2(xex − ∫ex dx) = x2ex − 2xex + 2ex +C Instructor's Resource Manual Section 7.2 421 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 11. 38. u = x4 x2 dv = xe dx du = 4x3dx 1 2 2 v = ex 5 2 1 4 2 3 2 – 2 ∫ x ex dx = x ex ∫ x ex dx 2 2 u = x2 dv = 2xex dx du = 2x dx x2 v = e 5 2 1 4 2 2 2 2 – 2 x ex dx = x ex ⎛ x ex − xex dx ⎞ ⎜ ⎟ ∫ ∫ 2 ⎝ ⎠ 1 4 2 2 2 – 2 2 = x ex x ex + ex +C 39. u = ln2 z dv = dz du 2ln z dz = v = z z ∫ln2 z dz = z ln2 z – 2∫ln z dz u = ln z dv = dz du 1 dz = v = z z ∫ln2 z dz = z ln2 z – 2(z ln z – ∫ dz) = z ln2 z – 2z ln z + 2z +C 40. u = ln2 x20 dv = dx 40ln x20 du dx = v = x x ∫ln2 x20dx = x ln2 x20 – 40∫ln x20dx u = ln x20 dv = dx du 20 dx = v = x x ∫ln2 x20dx = x ln2 x20 – 40(x ln x20 – 20∫ dx) = x ln2 x20 – 40x ln x20 + 800x +C 41. u = et dv = cos t dt du = etdt v = sin t ∫et cos t dt = et sin t − ∫et sin t dt u = et dv = sin t dt du = etdt v = –cos t ∫et cost dt = et sin t − ⎡⎣−et cost + ∫et cos t dt⎤⎦ ∫et cos t dt = et sin t + et cos t − ∫et cos t dt 2∫et cos t dt = et sin t + et cos t +C cos 1 (sin cos ) ∫et t dt = et t + t +C 2 42. u = eat dv = sin t dt du = aeatdt v = –cos t ∫eat sin t dt = –eat cos t + a∫eat cos t dt u = eat dv = cos t dt du = aeatdt v = sin t ∫eat sin t dt = –eat cos t + a (eat sin t – a∫eat sin t dt ) ∫eat sin t dt = –eat cos t + aeat sin t – a2 ∫eat sin t dt (1+ a2 )∫eat sin t dt = –eat cos t + aeat sin t + C at at eat sin t dt – e cos t ae sin t C + + ∫ = + + 2 2 a a 1 1 43. u = x2 dv = cos x dx du = 2x dx v = sin x ∫ x2 cos x dx = x2 sin x − ∫ 2x sin x dx u = 2x dv = sin x dx du = 2dx v = −cos x ∫ x2 cos x dx = x2 sin x − (−2x cos x + ∫ 2cos x dx) = x2 sin x + 2x cos x − 2sin x +C 44. u = r2 dv = sin r dr du = 2r dr v = –cos r ∫ r2 sin r dr = –r2 cos r + 2∫ r cos r dr u = r dv = cos r dr du = dr v = sin r ∫ r2 sin r dr = –r2 cos r + 2(r sin r – ∫sin r dr ) = –r2 cos r + 2r sin r + 2cos r +C 422 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 12. 45. u = sin(ln x) dv = dx du cos(ln x) 1 dx = ⋅ v = x x ∫sin(ln x)dx = x sin(ln x) − ∫cos(ln x) dx u = cos (ln x) dv = dx du sin(ln x) 1 dx = − ⋅ v = x x ∫sin(ln x)dx = x sin(ln x) − ⎡⎣x cos(ln x) − ∫ −sin(ln x)dx⎤⎦ ∫sin(ln x)dx = x sin(ln x) − x cos(ln x) − ∫sin(ln x)dx 2∫sin(ln x)dx = x sin(ln x) − x cos(ln x) +C sin(ln ) [sin(ln ) cos(ln )] ∫ x dx = x x − x +C 2 46. u = cos(ln x) dv = dx du – sin(ln x) 1 dx = v = x x ∫cos(ln x)dx = x cos(ln x) + ∫sin(ln x)dx u = sin(ln x) dv = dx du cos(ln x) 1 dx = v = x x ∫cos(ln x)dx = x cos(ln x) + ⎡⎣x sin(ln x) – ∫cos(ln x)dx⎤⎦ 2∫cos(ln x)dx = x[cos(ln x) + sin(ln x)]+C cos(ln ) [cos(ln ) sin(ln )] ∫ x dx = x x + x + C 2 47. u = (ln x)3 dv = dx 3ln2 x du dx = v = x x ∫(ln x)3dx = x(ln x)3 – 3∫ln2 x dx = x ln3 x – 3(x ln2 x – 2x ln x + 2x +C) = x ln3 x – 3x ln2 x + 6x ln x − 6x +C 48. u = (ln x)4 dv = dx 4ln3 x du dx = v = x x ∫(ln x)4 dx = x(ln x)4 – 4∫ln3 x dx = x ln4 x – 4(x ln3 x – 3x ln2 x + 6x ln x − 6x +C) = x ln4 x – 4x ln3 x +12x ln2 x − 24x ln x + 24x +C 49. u = sin x dv = sin(3x)dx du = cos x dx v = – 1 cos(3 x ) 3 sin sin(3 ) – 1 sin cos(3 ) 1 cos cos(3 ) ∫ x x dx = x x + ∫ x x dx 3 3 u = cos x dv = cos(3x)dx du = –sin x dx v = 1 sin(3 x ) 3 Instructor's Resource Manual Section 7.2 423 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 13. sin sin(3 ) – 1 sin cos(3 ) 1 1 cos sin(3 ) 1 sin sin(3 ) ∫ x x dx = x x + ⎡⎢ x x + ∫ x x dx⎤⎥ 3 33 ⎣ 3 ⎦ – 1 sin cos(3 ) 1 cos sin(3 ) 1 sin sin(3 ) = x x + x x + ∫ x x dx 3 9 9 8 sin sin(3 ) – 1 sin cos(3 ) 1 cos sin(3 ) 9 3 9 ∫ x x dx = x x + x x + C sin sin(3 ) – 3 sin cos(3 ) 1 cos sin(3 ) ∫ x x dx = x x + x x +C 8 8 50. u = cos (5x) dv = sin(7x)dx du = –5 sin(5x)dx v = – 1 cos(7 x ) 7 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 ) cos(7 ) ∫ x x dx = x x ∫ x x dx 7 7 u = sin(5x) dv = cos(7x)dx du = 5 cos(5x)dx v = 1 sin(7 x ) 7 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 1 sin(5 )sin(7 ) – 5 cos(5 )sin(7 ) ∫ x x dx = x x ⎡⎢ x x ∫ x x dx⎤⎥ 7 77 ⎣ 7 ⎦ – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 25 cos(5 )sin(7 ) = x x x x + ∫ x x dx 7 49 49 24 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 49 7 49 ∫ x x dx = x x x x +C cos(5 )sin(7 ) – 7 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) ∫ x x dx = x x x x + C 24 24 51. u = eα z dv = sin βz dz du =αeα zdz v – 1 cosβ z β = eα z sin z dz – 1 eα z cos z α eα z cos z dz ∫ = + ∫ u = eα z dv = cos βz dz du =αeα zdz v 1 sinβ z β β β β β β = ⎡ ⎤ eα z sin z dz 1 eα z cos z α 1 eα z sin z α eα z sin z dz ⎣ ⎦ ∫ ∫ β β β β = − + ⎢ − ⎥ β β β β 2 – 1 eα z cos z α eα z sin z –α eα z sin z dz = + ∫ 2 2 β β β 2 2 β β β β α eα z sin z dz – 1 eα z cos z α eα z sin z C ∫ = + + β β β + 2 2 β β β e α z ( α sin β z – β cos β z) C eα z sin z dz –β eα z cos z α eα z sin z C ∫ β = β + β + 2 + 2 2 + 2 2 2 α β α β = + α + β 424 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 14. 52. u = eα z dv = cosβ z dz du =αeα zdz v 1 sinβ z β = eα z cos z dz 1 eα z sin z – α eα z sin z dz ∫ = ∫ u = eα z dv = sin βz dz du =αeα zdz v – 1 cosβ z β β β β β β = ⎡ ⎤ eα z cos z dz 1 eα z sin z α 1 eα z cos z α eα z cos z dz ⎣ ⎦ ∫ ∫ β β β β = − ⎢− + ⎥ β β β β 2 1 eα z sin z α eα z cos z –α eα z cos z dz = + ∫ 2 2 β β β 2 2 β β β α β eα z cos z dz α eα z cos z 1 eα z sin z C ∫ = + + β β β + 2 2 β β β z α α z e ( α cos β z + β β e cos z dz sin z ) C + ∫ = + 2 2 β α β 53. u = ln x dv = xα dx du 1 dx x = 1 1 α α v x + = + , α ≠ –1 α + 1 ln ln – 1 x x dx x x x dx α α 1 1 + + x x x C α α + + ∫ ∫ α α 1 1 = α 2 ln – , –1 1 ( 1) = + ≠ α α + + 54. u = (ln x)2 dv = xα dx du 2ln x dx x = 1 1 α α v x + = + , α ≠ –1 1 α + x (ln x )2 dx x (ln x )2 – 2 x ln x dx 1 1 1 + ⎡ + + ⎤ x α α α x x x x C α α α α (ln ) 2 ln 1 1 1 ( 1) α α + + ∫ ∫ α α 1 1 = 2 = − ⎢ − ⎥ + 2 + + ⎢⎣ + + ⎥⎦ 1 1 1 + + + α α α x x 2 x x x C α 2 3 (ln ) – 2 ln 2 , –1 1 ( 1) ( 1) = + + ≠ α + α + α + Problem 53 was used for xα ln x dx. ∫ 55. u = xα dv = eβ x dx du =α xα –1dx v 1 eβ x β = α β x α e β xdx x e α – x α –1 e β xdx x ∫ = ∫ β β 56. u = xα dv = sin βx dx du =α xα –1dx v – 1 cosβ x β = α x sin x dx – x cos x x –1 cos x dx α β α α ∫ = + ∫ β β β β Instructor's Resource Manual Section 7.2 425 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 15. 57. u = xα dv = cos βx dx du =α xα –1dx v 1 sinβ x β = α x cos x dx x sin x – x –1 sin x dx α β α α ∫ = ∫ β β β β 58. u = (ln x)α dv = dx (ln x) –1 du dx α α = v = x x ∫(ln x)α dx = x(ln x)α –α ∫(ln x)α –1dx 59. u = (a2 – x2 )α dv = dx du = –2α x(a2 – x2 )α –1dx v = x ∫(a2 – x2 )α dx = x(a2 – x2 )α + 2α ∫ x2 (a2 – x2 )α –1dx 60. u = cosα –1 x dv = cos x dx du = –(α –1) cosα –2 x sin x dx v = sin x ∫cosα x dx = cosα –1 x sin x + (α –1)∫cosα –2 x sin2 x dx = cosα −1 x sin x + (α −1)∫cosα −2 x(1− cos2 x) dx = cosα –1 x sin x + (α –1)∫cosα –2 x dx – (α –1)∫cosα x dx α ∫cosα x dx = cosα −1 x sin x + (α −1)∫cosα −2 x dx –1 α cos x dx cos x sin x –1 cos –2 x dx α α α ∫ = + ∫ α α 61. u = cosα –1 β x dv = cos βx dx du = –β (α –1) cosα –2 β x sinβ x dx v 1 sinβ x β = –1 α cos x dx cos x sin x ( –1) cos –2 x sin2 x dx α β β α β α β β ∫ = + ∫ β 1 − α cos β x sin β x ( 1) cos α 2 x(1 cos2 x) dx = + − ∫ − − α β β β –1 α cos x sin x ( –1) cos –2 x dx – ( –1) cos x dx β β α α = + ∫ ∫ α β α β β 1 − α cos x cos x sin x ( 1) cos 2 x dx α β β α ∫ = + − ∫ − α β α β β –1 α cos x dx cos x sin x –1 cos –2 x dx α β β α α β β ∫ = + ∫ αβ α 62. 4 3 1 4 3 – 4 3 3 ∫ x e xdx = x e x ∫ x e xdx 1 4 3 – 4 1 3 3 – 2 3 3 3 = x e x ⎡ ⎢⎣ x e x ∫ x e xdx⎤ 3 33 ⎥⎦ = 1 x 4 e 3 x – 4 x 3 e 3 x + 4 ⎡ 1 x 2 e 3 x – 2 ∫ xe 3 xdx⎤ 1 4 3 – 4 3 3 4 2 3 – 8 1 3 – 1 3 3 9 33 ⎢⎣ 3 ⎥⎦ = x e x x e x + x e x ⎡ ⎢⎣ xe x ∫ e xdx⎤ 3 9 9 93 3 ⎥⎦ 1 4 3 – 4 3 3 4 2 3 – 8 3 8 3 3 9 9 27 81 = x e x x e x + x e x xe x + e x +C 426 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 16. 63. 4 cos3 1 4 sin 3 – 4 3 sin 3 ∫ x x dx = x x ∫ x x dx 1 4 sin 3 – 4 – 1 3 cos3 2 cos3 3 3 = x x ⎡⎢ x x + ∫ x x dx⎤⎥ 3 3 ⎣ 3 ⎦ 1 4 sin 3 4 3 cos3 – 4 1 2 sin 3 2 sin 3 3 9 3 3 3 = x x + x x ⎡⎢ x x − x x dx⎤⎥ ⎣ ⎦ ∫ 1 4 sin 3 4 3 cos3 – 4 2 sin 3 8 – 1 cos3 1 cos3 3 9 9 9 3 3 = x x + x x x x + ⎡⎢ x x + ∫ x dx⎤⎥ ⎣ ⎦ = 1 x 4 sin 3 x + 4 x 3 cos3 x – 4 x 2 sin 3 x – 8 x cos3 x + 8 sin 3 x + C 3 9 9 27 81 64. cos6 3 1 cos5 3 sin 3 5 cos4 3 ∫ x dx = x x + ∫ x dx 1 cos5 3 sin 3 5 1 cos3 3 sin 3 3 cos2 3 18 6 = x x + ⎡⎢ x x + ∫ x dx⎤⎥ 18 6 ⎣ 12 4 ⎦ 1 cos5 3 sin 3 5 cos3 3 sin 3 5 1 cos3 sin 3 1 18 72 8 6 2 = x x + x x + ⎡⎢ x x + ∫ dx⎤⎥ ⎣ ⎦ = 1 cos5 3 x sin 3 x + 5 cos3 3 x sin 3 x + 5 cos3 x sin 3 x + 5 x +C 18 72 48 16 65. First make a sketch. From the sketch, the area is given by ∫ e ln x dx 1 u = ln x dv = dx du 1 dx = v = x x ln ln ∫e x dx = x x e − ∫e dx 1 [ ln ]e [ ]1 1 1 = x x − x = (e – e) – (1 · 0 – 1) = 1 (ln ) e V = ∫ π x dx u = (ln x)2 dv = dx du 2ln x dx 66. 2 1 = v = x x π ∫ e 2 e (ln x ) dx = π⎛ 2 e ⎞ 2 1 ⎜ ⎡ ⎤ ⎝ ⎣ x (ln x ) ⎦ − 2 ∫ ln x dx 1 1 ⎟ ⎠ e ⎡x x x x x ⎤ ⎣ ⎦ = π − − 2 1 (ln ) 2( ln ) 1 [ (ln ) 2 ln 2 ]e = π x x − x x + x = π[(e − 2e + 2e) − (0 − 0 + 2)] = π(e − 2) ≈ 2.26 Instructor's Resource Manual Section 7.2 427 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 17. 67. 3 –9 – 1 e x dx = e x ⎛ dx ⎞ ⎜ ⎟ 9 – / 3 9 – / 3 0 0 –9[e x ] – 9 9 ∫ 0 ∫ – /3 ⎝ 3 ⎠ 9= = + ≈ 8.55 3 e 68. 9 – / 3 2 9 –2 / 3 V = ∫ π(3e x ) dx = 9π∫ e x dx 0 0 9 – 3 – 2 = π⎛ ⎞ e x ⎛ dx ⎞ ⎜ ⎟ ⎜ ⎟ 9 –2 / 3 0 – 27 π [ e x ] – 27 π 27 π 42.31 2 2 2 ∫ –2 / 3 9 ⎝ 2 ⎠ ⎝ 3 ⎠ = = + ≈ 0 6 e 69. / 4 / 4 / 4 (x cos x – x sin x)dx x cos x dx – x sin x dx π π π ∫ = ∫ ∫ 0 0 0 4 4 0 0 xsin x sin x dx ⎛ π π ⎞ = ⎜ ⎡⎣ ⎤⎦ ⎟ ⎝ ⎠ − ∫ [ ] 4 4 xπ −⎜ ⎛ − x cos x π ∫ π + cos x dx ⎞ ⎟ ⎝ 0 0 ⎠ [ x sin x cos x x cos x – sin ] / 4 0 = + + 2 –1 = ≈ 0.11 4 π Use Problems 60 and 61 for ∫ x sin x dx and ∫ x cos x dx. V x x dx π ⎛ ⎞ = π ⎜ ⎟ 70. 2 ⎝ ⎠ ∫ 2 sin2 0 dv = x dx u = x sin 2 v = x du = dx –2cos 2 2 2 0 0 ⎛ ⎡ ⎤ π π ⎞ = π⎜ ⎢ ⎥ + ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ V x x x dx ∫ 2 –2 cos 2cos 2 2 2 2 ⎛ π ⎞ = 2 π⎜ 4 π + ⎡ 4sin x ⎤ ⎢ ⎥ ⎟ = 8 π ⎜ ⎝ ⎣ 2 ⎦ ⎟ 0 ⎠ ln 2 ln e e ∫ x dx = ∫ x dx u = ln x dv = dx du 1 dx 71. 2 1 1 = v = x x ( ) 1 1 1 1 2 ln 2 [ ln ] 2 [ ] 2 e x dx ⎛ x x e e dx⎞ e x e ⎜ − ⎟ ∫ = ∫ = − = ⎝ ⎠ ∫ e x ln x 2 dx = 2 ∫ e x ln x dx 1 1 u = ln x dv = x dx du = 1 dx 1 2 x v = x 2 e e e x xdx x x xdx ⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 2 ln 2 1 ln – 1 e ⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ = + ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 2 1 – 1 1 ( 1) 2 4 2 ∫ 2 ∫ 2 2 2 2 2 1 1 1 e x e 1 428 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 18. ∫e x 2 dx u = (ln x)2 dv = dx du 2ln x dx 1 (ln ) 2 1 = v = x x 1 (ln ) 1 [ (ln ) ] – 2 ln 2 2 ∫ e x 2 dx = ⎛ ⎜ x x 2 e e 1 ∫ x dx ⎞ ⎟ = 1( e –2) 1 ⎝ 1 ⎠ 2 1 2 2 2( 1) 1 e e x + + = = 2 4 1 ( –2) 2– 2 e e y = = 2 4 72. a. u = cot x dv = csc2 x dx du = – csc2 x dx v = –cot x 2 2 2 ∫ ∫ ∫ ∫ x xdx x x xdx x xdx x C x xdx x C cot csc = − cot − cot csc 2 cot csc 2 = − cot 2 + cot csc 2 = − 1 cot 2 + 2 b. u = csc x dv = cot x csc x dx du = –cot x csc x dx v = –csc x 2 2 2 ∫ ∫ ∫ ∫ x xdx x x xdx x xdx x C x xdx x C cot csc = − csc − cot csc 2 cot csc 2 = − csc 2 + cot csc 2 = − 1 csc 2 + 2 c. – 1 cot2 – 1 (csc2 –1) x = x – 1 csc2 1 2 2 = x + 2 2 73. a. p(x) = x3 − 2x g(x) = ex All antiderivatives of g(x) = ex ∫(x3 − 2x)exdx = (x3 − 2x)ex − (3x2 − 2)ex + 6xex − 6ex + C b. p(x) = x2 − 3x +1 g(x) = sin x G1(x) = −cos x G2 (x) = −sin x G3(x) = cos x ∫(x2 − 3x +1)sin x dx = (x2 − 3x +1)(−cos x) − (2x − 3)(−sin x) + 2cos x + C Instructor's Resource Manual Section 7.2 429 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 19. 74. a. We note that the nth arch extends from x = 2π (n −1) to x =π (2n −1) , so the area of the nth arch is ( ) sin n (2 − 1) 2 ( − 1) A n x xdx π = ∫ . Using integration by parts: n π u = x dv = sin xdx du = dx v =− cos x A n x xdx x x xdx x x x n n n n n n n n n n (2 − 1) (2 − 1) (2 − 1) (2 − 1) (2 − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) π [ ] π π [ ] π [ ] π π π π π π ( ) sin cos cos cos sin = ∫ = − − ∫ − = − + = − − − + − − +[ − − − ] [ ] n n n n n n )) (2 1) cos( (2 1)) 2 ( 1) cos(2 ( 1)) sin( (2 1)) sin(2 ( 1 π π π π π π [ ] = −π (2n −1)(−1) + 2π (n −1)(1) + 0 − 0 =π (2n −1) + (2n − 2) . So A(n) = (4n − 3)π b. 3 2 V 2 x sin x dx π = π∫ 2 π u = x2 dv = sin x dx du = 2x dx v = –cos x 2 3 3 π π π π ⎛ ⎡ ⎤ ⎞ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ = π + ∫ 2 2 3 V 2 –x cos x 2x cos x dx 2 2 2 2 9 4 2x cos x dx π ⎛ ⎞ ⎜ ⎝ π ⎟ ⎠ = π π + π + ∫ u = 2x dv = cos x dx du = 2 dx v = sin x 2 3 3 2 2 V 2 13 [2xsin x] – 2sin x π π ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = π π + π ∫ π ( 2 3 ) 2 2 13 [2cos x]2 2 (13 – 4) π = π π + π = π π ≈ 781 75. u = f(x) dv = sin nx dx du = f ′(x)dx v 1 cos nx n = − π π −π −π ⎡ ⎡ ⎤ ′ ⎤ = ⎢ ⎢− ⎥ + ⎥ π ⎣ ⎣ ⎦ ⎦ ∫ 1 1 cos( ) ( ) 1 cos( ) ( ) an nx f x nx f x dx n n Term 1 Term 2 Term 1 = 1 cos(n π )( f ( −π ) − f ( π )) =± 1 ( f ( −π ) − f ( π )) n n Since f ′(x) is continuous on [–∞ ,∞ ], it is bounded. Thus, cos(nx) f (x)dx π π ∫ ′ is bounded so – a 1 ⎡± f π lim n = lim ⎢⎣ ( ( −π ) − f ( π )) + ∫ cos( nx ) f ′ ( x ) dx ⎤ ⎥⎦ = 0. n n π n →∞ →∞ −π 76. 1 G n n n n n n [( + 1)( + 2) ⋅⋅⋅ ( + )] n 1 n [ ] n n = n n 1/ 1 1 1 2 1 = ⎡⎛ ⎢⎜ + ⎞⎛ ⎟⎜ + ⎟…⎜ ⎞ ⎛ + ⎞⎤ ⎣⎝ n ⎠⎝ n ⎠ ⎝ n ⎟⎥ ⎠⎦ ln Gn 1 ln 1 1 1 2 1 n ⎛ ⎞ ⎡⎛ ⎞⎛ ⎜ ⎟ = + + ⎞ ⎟…⎜ ⎛ + ⎞⎤ ⎝ n ⎠ n ⎢⎜ n ⎟⎜ ⎣⎝ ⎠⎝ n ⎠ ⎝ n ⎠⎦ ⎟⎥ 1 ln 1 1 ln 1 2 ln 1 n n n n n ⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎤ = ⎢ ⎜ + ⎟ + ⎜ + ⎟ + ⋅⋅⋅+ ⎜ + ⎟⎥ ⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ G xdx ⎛ ⎞ 2 ⎜ ⎟ = ∫ = ⎝ ⎠ 1 lim ln n ln 2ln 2 –1 n →∞ n G e e lim n 2ln 2–1 4 –1 4 n ⎛ ⎞ = = = ⎜ ⎟ ⎝ ⎠ →∞ n e 430 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 20. 77. The proof fails to consider the constants when integrating . 1t The symbol ( ) 1 t dt ∫ is a family of functions, all of who whom have derivative . 1t We know that any two of these functions will differ by a constant, so it is perfectly correct (notationally) to write ∫(1 t )dt = ∫(1 t )dt +1 [ ( 1 cos 7 2 sin 7 ) 3] 5 ( 1 cos7 2 sin 7 ) (–7 1 sin 7 7 2 cos 7 ) d e x C x C x C e x C x C x e x C x C x dx 78. 5 5 5 + + = + + + 5 [(5 1 7 2 ) cos 7 (5 2 – 7 1)sin 7 ] = e x C + C x + C C x Thus, 5C1 + 7C2 = 4 and 5C2 – 7C1 = 6. Solving, 1 2 – 11 ; 29 37 37 C = C = 79. u = f(x) dv = dx du = f ′(x)dx v = x ( ) [ ( )] – ( ) b b b a a a ∫ f x dx = xf x ∫ xf ′ x dx Starting with the same integral, u = f(x) dv = dx du = f ′(x)dx v = x – a ( ) [( – ) ( )] – ( – ) ( ) b b b a a a ∫ f x dx = x a f x ∫ x a f ′ x dx 80. u = f ′(x) dv = dx du = f ′′(x)dx v = x – a ( )– ( ) ( ) b f b f a = ∫ f ′ x dx [( – ) ( )] – ( – ) ( ) b b a = x a f ′ x ∫ x a f ′′ x dx ( )( – ) – ( – ) ( ) b a a = f ′ b b a ∫ x a f ′′ x dx a Starting with the same integral, u = f ′(x) dv = dx du = f ′′(x)dx v = x – b ( ) ( ) ( ) [( – ) ( )] – ( – ) ( ) b b b f b − f a = ∫ f ′ x dx = x b f ′ x ∫ x b f ′′ x dx ( )( ) – ( – ) ( ) b a a a = f ′ a b − a ∫ x b f ′′ x dx a 81. Use proof by induction. n = 1: ( ) ( )( – ) ( – ) ( ) ( ) ( )( – ) [ ( )( – )] ( ) t t t f a + f ′ a t a + ∫ t x f ′′ x dx = f a + f ′ a t a + f ′ x t x + ∫ f ′ x dx a a a ( ) ( )( – ) – ( )( – ) [ ( )]t ( ) = f a + f ′ a t a f ′ a t a + f x a = f t Thus, the statement is true for n = 1. Note that integration by parts was used with u = (t – x), dv = f ′′(x)dx. Suppose the statement is true for n. n ( i ) n i t n f ( t ) f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 1) ( x ) dx = +Σ + ∫ 1 i n ! a ! i + = t n n a t x f x dx n Integrate ( – ) ( 1) ( ) + ∫ by parts. ! t x n dv dx u = f (n+1) (x) ( – ) ! n = du = f (n+2) (x) t x n v – ( – ) + 1 ( n 1)! = + 1 1 n n + t t t n + n n n a a + ⎡ + ⎤ + t x f x dx t x f x t x f x dx n n n ( – ) ( 1) ( ) – ( – ) ( 1) ( ) ( – ) ( 2) ( ) ∫ ∫ = ⎢ ⎥ + ⎢⎣ + ⎥⎦ + ! ( 1)! ( 1)! a Instructor's Resource Manual Section 7.2 431 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 21. n + 1 t n + 1 n n t a f a t x f x dx n n ( – ) ( 1) ( ) ( – ) ( 2) ( ) ( 1)! ( 1)! = + + + ∫ + a + Thus n ( i ) n + 1 t n + 1 i n n f ( t ) f ( a ) f ( a ) ( t – a ) ( t – a ) f ( a ) ( t – x ) f ( x ) dx + + Σ ∫ ( 1) ( 2) = + + + 1 + + i n n ! ( 1)! a ( 1)! i = n + 1 ( i ) t n + 1 i n f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 2) ( x ) dx + Σ ∫ = + + 1 i n ! a ( 1)! i + = Thus, the statement is true for n + 1. 82. a. 1 1 1 B(α , β ) = ∫ xα − (1− x)β − dx where α ≥ 1,β ≥ 1 0 x = 1 – u, dx = –du 1 1 1 0 1 1 0 1 ∫ xα − (1− x)β − dx = ∫ (1− u)α − (u)β − (−du) 1 1 1 = ∫ (1− u)α − uβ − du = B(β , α ) 0 Thus, B(α, β) = B(β, α). b. 1 1 1 B(α , β ) = ∫ xα − (1− x)β − dx 0 u = xα −1 dv = (1− x)β −1dx du = (α −1) xα −2dx v = − 1 (1 − x)β β 1 ⎡ − ⎤ − − − − = ⎢− − ⎥ + − = − ⎣ ⎦ ( , ) 1 (1 ) 1 (1 ) 1 (1 ) α β α α β α α β 1 1 2 1 2 ∫ ∫ B x x x x dx x x dx β β 0 β 0 0 1 B ( 1, 1) α β − α = − + α β β (*) Similarly, 1 1 1 0 B(α , β ) = ∫ xα − (1− x)β − dx u = (1− x)β −1 dv = xα −1dx du = −(β −1)(1− x)β −2 dx v 1 xα α = 1 1 1 2 0 0 B( , ) 1 xα (1 x)β β 1 xα (1 x)β dx β − 1 α β − β − x(1 x)dx 1 B( 1, 1) = ⎡ − − ⎤ + − − − ⎢⎣ ⎥⎦ ∫ 1 2 α β α α = ∫ − = + − α 0 α α β c. Assume that n ≤ m. Using part (b) n times, ( ) n n n B n m B n m B n m − 1 − 1 ( − 2) ( , ) = ( − 1, + 1) = ( − 2, + 2) m mm ( 1) ( n ) n ( n ) + 1 ( 2) 3 2 1 − − − …⋅ ⋅ = … = + − ( ) B m n (1, 1). m m m m n ( 1) 2 ( 2) + + … + − 1 2 11 0 0 (1, 1) (1 ) 1 [(1 ) ] 1 B m n x m n dx x m n + − = − + − = − − + − = ∫ + − + − m n m n 1 1 Thus, ( ) ( ) ( ) ( ) ( 1 ( 2) 3 2 1 1)!( 1)! ( 1)!( 1)! B n m ( , ) n n n n m n m − − − …⋅ ⋅ − − − − = = = m m m m n m n m n n m ( + 1) + 2 … ( + − 2) + − 1 ( + − 1)! ( + − 1)! If n m, then ( 1)!( 1)! B n m B m n ( , ) ( , ) n m − − n m ( 1)! = = + − by the above reasoning. 432 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 22. 83. u = f(t) dv = f ′′(t)dt du = f ′(t)dt v = f ′(t) ( ) ( ) [ ( ) ( )] – [ ( )]2 b b b a a a ∫ f ′′ t f t dt = f t f ′ t ∫ f ′ t dt = f ( b ) f ′ ( b ) − f ( a ) f ′ ( a ) − ∫ b [ f ′ ( t )]2 dt b [ ( )]2 a = −∫ f ′ t dt a [ ( )]2 0, so [ ( )]2 0 b f ′ t ≥ − ∫ f ′ t ≤ . a 84. ∫ x ⎛ ⎜ ∫ t f ( z ) dz ⎞ ⎟ dt 0 ⎝ 0 ⎠ u = ∫ t f ( z ) dz dv = dt 0 du = f(t)dt v = t ∫ x ⎛⎜ x ∫ t f ( z ) dz ⎞⎟ dt = ⎡⎢t ∫ t f ( z ) dz⎤⎥ – ∫ x t f ( t ) dt ⎝ ⎠ ⎣ ⎦ 0 0 0 0 0 0 0 ( ) – ( ) x x = ∫ x f z dz ∫ t f t dt By letting z = t, ( ) ( ) , x x ∫ x f z dz = ∫ x f t dt so 0 0 ∫ x ⎛⎜ ∫ t f ( z ) dz ⎞⎟ dt = ∫ x x f ( t ) dt – ∫ x t f ( t ) dt 0 ⎝ 0 ⎠ 0 0 0 ( – ) ( ) x = ∫ x t f t dt ( ) ... x t tn I f tn dtn dt dt = ∫ ∫ ⋅⋅⋅∫ − be the iterated integral. Note that for i ≥ 2, the limits of integration of the 85. Let 1 1 0 0 0 2 1 integral with respect to ti are 0 to ti−1 so that any change of variables in an outer integral affects the limits, and hence the variables in all interior integrals. We use induction on n, noting that the case n = 2 is solved in the previous problem. Assume we know the formula for n −1, and we want to show it for n. I x t 1 t 2 tn − 1 f ( tn ) dtn ... dt dt dt t 1 t 2 tn − 2 F ( tn ) dtn ... dt dt dt = ∫ ∫ ∫ ⋅⋅⋅∫ = ∫ ∫ ⋅⋅⋅∫ − − where ( ) 1 ( ) 0 0 0 0 3 2 1 0 0 0 1 1 3 2 1 tn − = ∫ . F tn f tn dn − 1 0 By induction, 1 2 ! I x F t x t n dt ( ) ( )( ) 2 − = − − ∫ ( ) 1 ( ) 1 0 0 1 1 1 n t dv x t n− = − u = F t = ∫ f tn dtn , ( ) 2 1 1 1 v x t n − = − − ( ) du = f t1 dt1 , ( ) 1 1 n − t = x ⎧⎪⎡ ⎤ ⎪⎫ = ⎨⎢− − ⎥ + − ⎬ − ⎩⎪⎣ − ⎦ − ⎪⎭ = − 1 1 1 2 ! 1 1 1 ( )( ) ( 1)! ( ) ( ) ( ) ( )( ) 1 n t x n − − 1 1 ∫ 1 ∫ I x t f t dt f t x t dt n n 1 0 0 1 1 1 n n n t 1 0 − 1 x n f t x t dt ∫ 0 1 1 1 n = − . (note: that the quantity in square brackets equals 0 when evaluated at the given limits) Instructor’s Resource Manual Section 7.3 433 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 23. 86. Proof by induction. n = 1: u = P1(x) dv = exdx du x) = dP1(dx v = ex dx exP (x)dx exP (x) – ex dP (x) dx exP (x) – dP (x) exdx ∫ = ∫ 1 1 1 1 dx exP (x) – ex dP (x) = ∫ 1 1 dx 1 dx = Note that dP1(x) dx is a constant. Suppose the formula is true for n. By using integration by parts with u = Pn+1(x) and dv = exdx, dP x 1 x ( ) x ( ) – x n n n + ∫ + = + ∫ Note that n 1( ) dP x e P x dx e P x e dx 1 1 ( ) dx + is a polynomial of degree n, so dx ⎡ ⎛ ⎞⎤ = − ⎢ − ⎜ ⎟⎥ = − − ⎢⎣ ⎝ ⎠⎥⎦ n j n j + 1 ( ) ( ) ( ) e P x dx e P x e d dP ( x ) d P x e P x e x x x j n x x j n n n j n j ∫ Σ Σ 1 1 + + ( ) ( ) ( 1) 1 1 1 1 1 + + + + dx dx dx j j 0 0 = = n j 1 d P x + = + Σ − x x j n n j 1 e P x e 1 ( ) ( 1) 1 ( ) j + dx + = n 1 j x j n d P x 1 + = Σ − 0 ( ) ( 1) + j j e dx = 87. j 4 4 2 x x e dx e d x x (3 2 ) (–1) (3 2 ) ∫ 4 + 2 x = x Σ j = 0 dx = ex[3x4 + 2x2 –12x3 – 4x + 36x2 + 4 – 72x + 72] = ex (3x4 –12x3 + 38x2 – 76x + 76) + j j 7.3 Concepts Review 1. 1 cos2 2 x dx + ∫ 2. ∫(1– sin2 x) cos x dx 3. ∫sin2 x(1– sin2 x) cos x dx 4. cos mx cos nx = 1 [cos( m+ n ) x + cos( m− n ) x ] 2 Problem Set 7.3 ∫ x dx = ∫ x dx 1 – 1 cos 2 2 2 1. sin2 1– cos 2 2 = ∫ dx ∫ x dx = 1 x – 1 sin 2 x +C 2 4 2. u = 6x, du = 6 dx sin4 6 1 sin4 ∫ x dx = ∫ u du 6 1 1– cos 2 2 6 2 = ⎛ u ⎞ du ⎜ ⎟ ⎝ ⎠ ∫ 1 (1– 2cos 2 cos2 2 ) 24 = ∫ u + u du 1 – 1 2cos 2 1 (1 cos 4 ) 24 24 48 = ∫ du ∫ u du + ∫ + u du 3 – 1 2cos 2 1 4cos 4 48 24 192 = ∫ du ∫ u du + ∫ u du 3 (6 ) – 1 sin12 1 sin 24 48 24 192 = x x + x +C = 3 x – 1 sin12 x + 1 sin 24 x +C 8 24 192 434 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 24. 3. ∫sin3 x dx = ∫sin x(1− cos2 x)dx = ∫sin x dx − ∫sin x cos2 x dx cos 1 cos3 = − x + x +C 3 4. ∫cos3 x dx = = ∫cos x(1− sin2 x)dx = ∫cos x dx − ∫cos x sin2 x dx = sin x − 1 sin3 x + C 3 5. / 2 5 / 2 2 2 π π ∫ = ∫ cos θ dθ (1– sin θ ) cosθ dθ 0 0 / 2 2 4 0 = ∫ + (1– 2sin θ sin θ ) cosθ dθ π / 2 ⎡ π = sin – 2 sin 3 + 1 sin 5 ⎤ ⎢⎣ ⎥⎦ 1– 2 1 – 0 8 θ θ θ 0 3 5 = ⎛ + ⎞ = ⎜ ⎟ ⎝ ⎠ 3 5 15 6. π / 2 π sin 6 = / 2 ⎛ 1– cos 2 θ ⎞ 3 0 0 ⎜ ⎟ ⎝ ⎠ ∫ ∫ d d θ θ θ 2 1 / 2 (1– 3cos 2 3cos 2 2 – cos 3 2 ) 8 0 = ∫ + θ θ θ dθ π 1 π / 2 3 π / 2 3 π / 2 2 1 π – 2cos 2 cos 2 – / 2 cos 3 2 8 0 16 0 8 0 8 0 = ∫ ∫ + ∫ ∫ dθ θ dθ θ θ dθ 1[ 3 3 1 cos 4 θ ] – [sin 2 ] – 1 (1– sin 2 ) cos 2 8 16 8 2 8 π π π ⎛ + ⎞ π = + ⎜ ⎟ / 2 / 2 / 2 / 2 2 0 0 0 0 ⎝ ⎠ ∫ ∫ d d θ θ θ θ θ θ 1 π 3 π / 2 3 π / 2 π 4cos 4 – 1 / 2 π 2cos 2 1 / 2 sin 2 2 2cos 2 8 2 16 0 64 0 16 0 16 0 = ⋅ + ∫ + ∫ ∫ + ∫ ⋅ dθ θ dθ θ dθ θ θ dθ θ π θ π θ π π π = + + + 5 3 3 [sin 4 ] – 1 [sin 2 ] 1 [sin 2 ] / 2 / 2 3 / 2 0 0 0 16 32 64 16 48 π 32 = 7. ∫sin5 4x cos2 4x dx = ∫(1– cos2 4x)2 cos2 4x sin 4x dx = ∫(1– 2cos2 4x + cos4 4x) cos2 4x sin 4x dx = ∫ x x + x x dx – 1 cos3 4 1 cos5 4 – 1 cos7 4 – 1 (cos2 4 – 2cos4 4 cos6 4 )(–4sin 4 ) 4 = x + x x +C 12 10 28 8. ∫(sin3 2t) cos 2tdt = ∫(1– cos2 2t)(cos 2t)1/ 2 sin 2t dt – 1 [(cos 2 )1/ 2 – (cos 2 )5/ 2 ](–2sin 2 ) = ∫ t t t dt 2 – 1 (cos 2 )3/ 2 1 (cos 2 )7 / 2 3 7 = t + t +C 9. ∫cos3 3θ sin–2 3θ dθ = ∫(1– sin2 3θ )sin–2 3θ cos3θ dθ 1 (sin 2 3 1)3cos3 = ∫ − θ − θ dθ 3 – 1 csc3 – 1 sin 3 3 3 = θ θ +C 10. ∫sin1/ 2 2z cos3 2z dz = ∫(1– sin2 2z)sin1/ 2 2z cos 2z dz = ∫ z z z dz 1 sin3/ 2 2 – 1 sin7 / 2 2 1 (sin1/ 2 2 – sin5/ 2 2 )2cos 2 2 = z z +C 3 7 Instructor’s Resource Manual Section 7.3 435 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 25. 11. 2 2 t t dt t t dt ∫ sin4 + 3 cos4 3 = ∫ ⎛ 1– cos 6 ⎞ ⎛ 1 cos 6 ⎞ 1 ⎜ ⎟ ⎜ ⎟ (1– 2cos2 6 cos4 6 ) ⎝ 2 ⎠ ⎝ 2 ⎠ = ∫ t + t dt 16 = 1 ∫ ⎡⎢ 1– (1 + cos12 t ) + 1 (1 + cos12 t )2 ⎤⎥ dt – 1 cos12 1 (1 2cos12 cos2 12 ) 16 ⎣ 4 ⎦ = ∫ t dt + ∫ + t + t dt 16 64 – 1 12cos12 1 1 12cos12 1 (1 cos 24 ) 192 64 384 128 = ∫ t dt + ∫ dt + ∫ t dt + ∫ + t dt – 1 sin12 1 1 sin12 1 1 sin 24 = t + t + t + t + t +C 3 – 1 sin12 1 sin 24 192 64 384 128 3072 = t t + t +C 128 384 3072 12. 3 ∫ cos6 sin2 d = ∫ ⎛ 1 + cos 2 θ ⎞ ⎛ 1– cos 2 θ ⎞ ⎜ ⎟ ⎜ ⎟ d 1 (1 2cos 2 – 2cos3 2 – cos4 2 ) ⎝ ⎠ ⎝ ⎠ = ∫ + θ θ θ dθ θ θ θ θ 2 2 16 1 1 2cos 2 – 1 (1– sin2 2 ) cos 2 – 1 (1 cos 4 )2 16 16 8 64 = ∫ dθ + ∫ θ dθ ∫ θ θ dθ ∫ + θ dθ 1 1 2cos 2 – 1 2cos 2 1 2sin2 2 cos 2 – 1 (1 2cos 4 cos2 4 ) 16 16 16 16 64 = ∫ dθ + ∫ θ dθ ∫ θ dθ + ∫ θ θ dθ ∫ + θ + θ dθ 1 1 sin2 2 2cos 2 – 1 – 1 4cos 4 – 1 (1 cos8 ) 16 16 64 128 128 = ∫ dθ + ∫ θ ⋅ θ dθ ∫ dθ ∫ θ dθ ∫ + θ dθ = 1 1 sin3 2 1 1 sin 4 1 1 sin8 16 48 64 128 128 1024 θ + θ − θ − θ − θ − θ +C 5 1 sin3 2 – 1 sin 4 – 1 sin8 128 48 128 1024 = θ + θ θ θ + C 13. sin 4 cos5 1 [sin 9 sin( )] 1 (sin 9 sin ) ∫ y y dy = ∫ y + −y dy = ∫ y − y dy 2 2 1 1 cos9 cos 1 cos 1 cos9 2 9 2 18 = ⎛⎜ − y + y ⎞⎟ +C = y − y +C ⎝ ⎠ ∫ y y dy = ∫ y + − y dy 1 sin 5 1 sin( 3 ) 14. cos cos 4 1 [cos5 cos( 3 )] 2 = y − − y +C 1 sin 5 1 sin 3 10 6 = y + y +C 10 6 15. 2 w w dw w w dw ∫ sin4 ⎛ ⎞ cos2 ⎛ ⎞ = ∫ ⎛ 1– cos ⎞ ⎛ 1 + cos ⎞ 1 ⎜ (1– cos – cos2 cos3 ) ⎝ 2 ⎟ ⎜ ⎠ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ = ∫ w w+ w dw 8 = 1 ∫ ⎡⎢ 1– cos w – 1 (1 + cos 2 w ) + (1– sin2 w ) cos w⎤⎥ dw 1 1 – 1 cos 2 – sin2 cos 8 ⎣ 2 ⎦ = ∫ ⎡⎢ w w w⎤⎥dw 8 ⎣ 2 2 ⎦ 1 – 1 sin 2 – 1 sin3 16 32 24 = w w w+C sin 3 sin 1 cos 4 cos 2 16. [ ] ∫ ∫ t t dt = − t − t dt 2 ( ) 1 ∫ cos 4 ∫ cos 2 2 1 1 sin 4 1 sin 2 2 4 2 1 sin 4 1 sin 2 8 4 tdt tdt = − − = − ⎛ − ⎞ + ⎜ ⎟ t t C ⎝ ⎠ t tC = − + + 436 Section 7.3 Instructor's Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 26. 17. 2 ∫ x cos x sin xdx u = x du = 1 dx dv = 2 x x dx v = − x − x dx = − x cos sin (cos ) ( sin ) 1 cos 2 3 cos t = x 3 ∫ Thus 2 ∫ x x xdx x x xdx cos sin = ( 1 cos 3 ) ∫ (1)( 1 cos 3 ) 3 3 1 cos ∫ cos 3 1 cos ∫ cos (1 sin ) 3 − − − = ⎡− x 3 x + 3 ⎣ xdx ⎤ ⎦ = ⎡− x 3 ⎣ x + x − 2 xdx ⎤ ⎦ = ⎡ ⎤ ⎢− + − ⎥ = ⎣ ⎦ ⎡− + − ⎤ + ⎢⎣ ⎥⎦ 1 cos 3 ∫ (cos cos sin 2 ) 3 1 cos sin 1 sin 3 3 x x x x xdx t sin x 3 3 = x x x x C 18. 3 ∫ x sin x cos xdx u = x du = 1 dx dv = sin 3 x cos x dx v = (sin x ) (cos xdx ) = 1 sin x 3 4 sin t = x 4 ∫ Thus 3 ∫ x x xdx x x xdx sin cos = (1 sin 4 ) ∫ (1)(1 sin 4 ) 4 4 1 sin ∫ (sin ) 4 1 sin 1 ∫ (1 cos 2 ) 4 4 − = 4 2 2 ⎡ ⎣ x x − x dx ⎤ ⎦ = ⎡ 4 2 ⎤ ⎢⎣ x x − − x dx ⎥⎦ = 1 sin 1 (1 2cos 2 cos 2 ) 4 4 1 sin 1 1 sin 2 1 (1 cos 4 ) 4 4 4 8 1 sin 3 1 sin 2 1 sin 4 4 8 4 32 ⎡ ⎢⎣ x 4 x − ∫ − x + 2 xdx ⎤ ⎥⎦ = ⎡ ⎢⎣ x 4 x − x + x − ∫ + xdx ⎤ ⎥⎦ = ⎡ 4 ⎤ ⎢⎣ x x − x + x − x ⎥⎦ + C 19. 4 ( 2 )( 2 ) ∫ ∫ x dx x x dx tan tan tan = = ∫ ( 2 ) 2 − = ∫ ( − ) = ∫ − ∫ − = − + + x x dx x x xdx x x dx x dx x x x C tan (sec 1) tan 2 sec 2 tan 2 tan 2 sec 2 (sec 2 1) 1 tan 3 tan 3 20. 4 ( 2 )( 2 ) ∫ ∫ ∫ ( 2 2 2 ) x dx x x dx x x dx cot = cot cot cot (csc 1) ( ) 2 2 = − ∫ ∫ ∫ x x xdx x x dx x dx x x x C cot csc cot cot csc (csc 1) 1 cot cot 3 = − = 2 2 − 2 − = − 3 + + + 21. tan 3 x ( )( 2 ) x x dx x x dx x x C ∫ ∫ tan tan tan sec 1 1 tan ln cos 2 = = − ( )( 2 ) 2 = + + 22. 3 ( )( 2 ) ∫ ∫ ∫ ∫ ∫ t dt t t dt t t dt t tdt tdt cot 2 = cot 2 cot 2 ( cot 2 )( csc 2 2 1 ) cot 2 csc 2 cot 2 1 cot 2 1 ln sin 2 4 2 = − = 2 − = − 2 − + t t C Instructor’s Resource Manual Section 7.3 437 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 27. θ ⎛ ⎞ θ ⎜ ⎟ ⎝ ⎠ ∫ 23. tan5 2 d u du d ⎛θ ⎞ θ = ⎜ 2 ⎟ ; = ⎝ ⎠ 2 θ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ 5 5 ∫ ∫ d udu tan 2 tan ( )( ) ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ u u du u udu udu u u du u u du u udu u udu u 2 tan sec 1 2 tan sec 2 tan 2 tan sec 2 tan sec 1 2 tan sec 2 tan sec 2 tan du 1 tan tan 2ln cos 2 2 2 2 = − = − = − ( − ) = − + 3 2 3 2 3 3 2 2 3 2 2 θ θ θ = 4 ⎛ ⎞ − 2 ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ − + 2 C θ ⎝ ⎠ ⎝ ⎠ 24. ∫cot5 2t dt u = 2t;du = 2dt cot 2 1 cot 5 5 ∫ ∫ t dt u du 2 1 ∫ ( cot 3 u )( cot 2 udu ) 1 ∫ ( cot 3 u )( csc 2 1 ) du 2 2 1 ∫ ( cot )( csc ) 1 ∫ cot 2 2 1 ∫ ( cot )( csc ) 1 ∫ ( cot )( csc 1 ) 2 2 1 ∫ ( cot )( csc ) 1 ∫ ( cot )( csc ) 1 ∫ cot 2 2 2 1 cot 1 cot 1 ln sin 8 4 2 1 cot 2 1 c 8 4 = = − 3 2 3 u udu udu = − 3 2 2 u u du u u du = − − 3 2 2 u u du u u du u = − + 4 2 = − + + + 4 u u u C t = = − + ot2 2 1 ln sin 2 t + t +C 2 25. − 3 4 ( − 3 )( 2 )( 2 ) ∫ ∫ x xdx x x x dx tan sec tan sec sec = = + = + = − + + ( 3 )( 2 )( 2 ) ∫ ∫ ∫ x x x dx x x x x dx x x C − tan 1 tan sec tan sec dx tan sec 1 tan ln tan 2 3 2 1 2 − − ( ) 2 − 26. − 3/ 2 4 ( − 3/ 2 )( 2 )( 2 ) ∫ ∫ x xdx x x x tan sec tan sec sec = = + = + = − + + ( 3/ 2 )( 2 )( 2 ) ∫ ∫ ∫ x x x dx x x dx x x dx x x C − tan 1 tan sec tan sec tan sec 2 tan 2 tan 3/2 2 1/2 2 1/ 2 3/ 2 3 − − 438 Section 7.3 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 28. 27. ∫ tan3 x sec2 x dx Let u = tan x . Then du = sec2 x dx . tan3 sec2 3 1 4 1 tan4 ∫ x x dx = ∫ u du = u +C = x +C 4 4 28. 3 − 1/2 2 − 3/2 ∫ ∫ x xdx x x x xdx tan sec tan sec (sec tan ) = = − = − = + + ( 2 )( − 3/ 2 )( ) ∫ ∫ ∫ x x x x dx x x x dx x x x dx x x C sec 1 sec sec tan sec 1/ 2 sec tan sec − 3/ 2 sec tan 2 sec 2sec 3 ( ) ( ) 3/ 2 − 1/ 2 29. ∫ cos cos = 1 ∫ (cos[( + ) ] + cos[( − ) ]) 1 1 sin[( ) ] 1 sin[( ) ] mx nx dx m n x m n x dx π π π π 2 – – = ⎡ m + n x + m − n x ⎤ 2 ⎢⎣ m + n m − n ⎥⎦ π −π = 0 for m ≠ n, since sin kπ = 0 for all integers k. 30. If we let u x π = then du dx L π = . Making the substitution and changing the limits as necessary, we get L m π x n π x dx L mu nu du L L L π cos cos cos cos 0 L π ∫ = ∫ = (See Problem 29 − π − (x sin x) dx π ∫ π + 2 2 31. 2 0 (x 2x sin x sin x) dx π x dx x x dx x dx π π π π = π∫ + + 2 0 = π∫ + π∫ + ∫ − 2 sin (1 cos2) 2 0 0 0 π π 1 2 sin cos 1 sin 2 3 2 2 ⎡ 3 ⎤ π π = π ⎡ ⎤ ⎢⎣ x ⎥⎦ + π [ x − x x ] + x − x 0 ⎢⎣ ⎥⎦ 0 0 = π + π + π − + π − − 1 4 5 2 57.1437 1 4 π 2 (0 0) ( 0 0) 3 2 = π + π ≈ 3 2 Use Formula 40 with u = x for ∫ x sin x dx 32. / 2 2 2 V 2 x sin (x )dx π = π∫ 0 u = x2 , du = 2x dx / 2 / 2 / 2 2 2 0 0 0 π π ⎡ ⎤π π = π = π = π ⎢ ⎥ = ≈ ⎣ ⎦ ∫ ∫ V u du u du u u sin 1– cos 2 1 – 1 sin 2 2.4674 2 2 4 4 33. a. 1 f (x)sin(mx)dx π π −π ∫ N ⎛ ⎞ 1 sin( ) sin( ) a nx mxdx π −π ∫ Σ = ⎜⎜ ⎟⎟ π ⎝ ⎠ 1 n n = N 1 sin( )sin( ) = π Σ ∫ 1 a nx mxdx π n n −π = From Example 6, 0 if ∫ ⎧ ≠ sin( nx )sin( mx ) dx = ⎨so every term in the sum is 0 except for when n = m. ⎩ π if = If m N, there is no term where n = m, while if m ≤ N, then n = m occurs. When n = m an π sin(nx)sin(mx) dx am n m n m π −π ∫ = π so when m ≤ N, −π 1 π f ( x )sin( mx ) dx 1 am am ∫ = ⋅ ⋅π = . π −π π Instructor’s Resource Manual Section 7.3 439 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 29. b. 1 f 2 (x)dx π π −π ∫ N N ⎛ ⎞⎛ ⎞ 1 sin( ) sin( ) a nx a mx dx π −π ∫ Σ Σ = π ⎜⎜ n ⎟⎟⎜⎜ m ⎟⎟ ⎝ ⎠⎝ ⎠ n m 1 1 = = N N 1 sin( )sin( ) a a nx mxdx π = Σ n Σ ∫ πm n m 1 1 −π = = From Example 6, the integral is 0 except when m = n. When m = n, we obtain Σ Σ 2 . πN N 1 ( ) a a π = a = = n n n n n 1 1 34. a. Proof by induction x = x n = 1: cos cos 2 2 Assume true for k ≤ n. n ⎡ ⎤ x x x x x x x x + + cos cos cos cos cos 1 cos 3 cos 2 –1 1 cos ⋅ = ⎢ + + + ⎥ n n n n n n n 1 –1 1 2 4 2 2 2 2 2 2 2 ⎢⎣ ⎥⎦ Note that k x x k x k x + + + cos cos 1 1 cos 2 1 cos 2 –1 , 2n 2n 2 2n 2n ⎛ ⎞⎛ ⎞ ⎡ + ⎤ ⎜ ⎟⎜ = 1 ⎟ ⎢ + ⎥ ⎝ ⎠⎝ ⎠ ⎣ 1 1 ⎦ so 1 n n + ⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎢ + + + ⎥ ⎜ ⎟ = ⎢ + + + ⎥ ⎢⎣ ⎥⎦ ⎝ ⎠ ⎢⎣ ⎥⎦ cos 1 cos 3 cos 2 –1 cos 1 1 cos 1 cos 3 cos 2 –1 1 x x x x x x x n n n n n n n n n 1 –1 1 1 1 + + + + 2 2 2 2 2 2 2 2 2 n n ⎡ ⎤ ⎡ ⎤ ⎢ + + + ⎥ = ⎢ + + + ⎥ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ x x x x x x x lim cos 1 cos 3 cos 2 –1 1 1 lim cos 1 cos 3 cos 2 –1 b. –1 –1 n n n n n n n n n n →∞ x →∞ 2 2 2 2 2 2 2 2 1 cos x t dt x = ∫ 0 1 ∫ x cos t dt = 1 [sin t ] x = sin x x x x c. 0 0 x + x = we see that since 35. Using the half-angle identity cos 1 cos , 2 2 π π = = cos cos 2 2 4 2 2 2 π π + + = = = 2 2 1 2 2 cos cos , 8 4 2 2 2 2 π π + + + + = = = etc. 2 2 1 2 2 2 cos cos , 16 8 2 2 Thus, 2 2 + 2 2 + 2 + 2 ⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ ⋅ ⋅ cos 2 cos 2 cos 2 2 2 2 = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎠ ⎝ 4 ⎠ ⎝ 8 ⎠ ( ) 2 2 2 2 π π π π ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ sin 2 lim cos cos cos n 2 4 2n = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ π ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ →∞ π 2 440 Section 7.3 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 30. π π ∫ π − = ∫ − + 36. Since (k − sin x)2 = (sin x − k)2 , the volume of S is 2 2 2 (k sin x) π (k 2k sin x sin x) dx 0 0 k dx k xdx xdx π π π π x k x 2 k cos x x 1 sin 2 π = π π + π π + π ⎡ − ⎤ ⎢⎣ ⎥⎦ 2 = π ∫ − π∫ + ∫ − 2 [ ] [ ] 2 0 0 0 2 sin (1 cos2) 2 0 0 0 2 2 π π 2 2 2 ( 1 1) ( 0) 2 2 4 k k k k = π + π − − + π − = π − π + 2 2 Let 2 π = π − π + then f ′(k) = 2π2k − 4π and f ′(k) = 0 when k = 2 . ( ) 2 2 4 , 2 f k k k π The critical points of f(k) on 0 ≤ k ≤ 1 are 0, 2 , π 1. 2 2 2 (0) 4.93, 2 4 8 0.93, (1) 2 4 2.24 π ⎛ ⎞ π π = ≈ ⎜ ⎟ = − + ≈ = π − π + ≈ ⎝ π ⎠ f f f 2 2 2 a. S has minimum volume when k = 2 . π b. S has maximum volume when k = 0. 7.4 Concepts Review 1. x – 3 2. 2 sin t 3. 2 tan t 4. 2 sec t Problem Set 7.4 1. u = x +1, u2 = x +1, 2u du = dx ∫ x x +1dx = ∫(u2 –1)u(2u du) = ∫(2u4 – 2u2 )du 2 5 – 2 3 = u u +C 5 3 2 ( 1)5 / 2 – 2 ( 1)3/ 2 5 3 = x + x + + C 2. u = 3 x + π, u3 = x + π, 3u2du = dx ∫ x3 x + πdx = ∫(u3 – π)u(3u2du) = ∫(3u6 – 3πu3)du 3 7 – 3 π 4 u u C = + 7 4 3 7 / 3 3 π ( )– ( )4 / 3 7 4 x x C = +π +π + 3. u = 3t + 4, u2 = 3t + 4, 2u du = 3 dt 1 2 2 3 3 2 ( 4) 2 ( –4) t dt u − u du u du t u ∫ = ∫ = ∫ 3 + 4 9 2 3 – 8 27 9 = u u +C 2 (3 4)3/ 2 – 8 (3 4)1/ 2 27 9 = t + t + + C 4. u = x + 4, u2 = x + 4, 2u du = dx 2 2 2 2 3 ( – 4) 3( – 4)2 x + x u + dx u u du x u ∫ = ∫ + 4 = 2∫(u4 – 5u2 + 4)du 2 5 – 10 3 8 = u u + u + C 5 3 2 ( 4)5/ 2 – 10 ( 4)3/ 2 8( 4)1/ 2 5 3 = x + x + + x + +C 5. u = t , u2 = t, 2u du = dt dt 2u du 2 u e e du t e u e u e 2 2 2 1 1 1 + − ∫ = ∫ = ∫ + + + 2 –2 e du du 2 2 1 1 + ∫ ∫ u e = = 2[u] 2 1 – 2e ⎡⎣ln u + e ⎤⎦ 2 1 = 2( 2 –1) – 2e[ln( 2 + e) – ln(1+ e)] ⎛ 2 + ⎞ 2 2 – 2 – 2 ln e e = ⎜⎜ ⎝ 1 + e ⎟⎟ ⎠ 6. u = t , u2 = t, 2u du = dt t dt u u du t u 1 1 0 0 2 (2 ) ∫ = ∫ + + 1 1 1 2 1 2 0 2 0 2 u du u du u u + − 2 2 1 1 + + ∫ ∫ 1 1 0 0 2 = = 1 1 2 – 2 1 ∫ du ∫ du 1 –1 1 + 1 u = = 2[u]0 – 2[tan u]0 π 2 – 2 tan–11 2 – 0.4292 = = ≈ 2 Instructor’s Resource Manual Section 7.4 441 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 31. 7. u = (3t + 2)1/ 2 , u2 = 3t + 2, 2u du = 3dt (3 2)3/ 2 1 ( 2 – 2) 3 2 t t + dt = u u ⎛⎜ u du ⎞⎟ ∫ ∫ 3 ⎝ 3 ⎠ 2 ( 6 – 2 4 ) 2 7 4 5 9 63 45 = ∫ u u du = u − u +C = 2 (3 t + 2)7 / 2 – 4 (3 t + 2)5 / 2 +C 63 45 8. u = (1– x)1/ 3, u3 = 1– x, 3u2du = –dx ∫ x(1– x)2 / 3dx = ∫(1– u3)u2 (–3u2 )du 3 ( 7 – 4 ) 3 8 3 5 = ∫ u u du = u − u +C 8 5 3 (1– )8/ 3 – 3 (1– )5 / 3 8 5 = x x +C 9. x = 2 sin t, dx = 2 cos t dt 4 – 2 2cos (2cos ) x dx t t dt x 2sin t ∫ = ∫ 1– sin2 2 = ∫ = 2∫csct dt – 2∫sin t dt sin = 2ln csct − cot t + 2cos t + C t dt t 2 2ln 2 4 – x 4 – x2 C = + + x − 10. x = 4sin t, dx = 4cos t dt 2 2 x dx t t dt ∫ = ∫ 16 – x 2 cos t = 16∫sin2 t dt = 8∫(1– cos 2t)dt = 8t – 4sin 2t +C = 8t −8sin t cos t +C 16 sin cos 2 = 8sin–1 ⎛ x ⎞ – x 16 – x ⎜ ⎟ +C 4 2 ⎝ ⎠ 11. x = 2 tan t, dx = 2sec2 t dt 2 dx 2sec t dt 1 cos t dt ∫ = = ( x 2 + 4) 3/2 ∫ 2 ∫ (4sec t ) 3/2 4 1 sin 4 = t + C x C x = + 4 2 + 4 12. t = sec x, dt = sec x tan x dx x π Note that 0 . 2 ≤ t2 –1 = tan x = tan x 3 sec–1(3) 2 2 2 / 3 2 dt sec x tan x dx ∫ = ∫ t t –1 π sec x tan x sec–1(3) / 3 = ∫ cos x dx π sec–1(3) 1 x − π [sin ] / 3 sin[sec (3)] sin π 3 = = − sin cos 1 1 3 2 2 – 3 0.0768 ⎡ = − ⎛ ⎞⎤ ⎢ ⎜ − = ≈ ⎣ ⎝ 3 ⎟⎥ ⎠⎦ 2 3 2 13. t = sec x, dt = sec x tan x dx π ≤ π x Note that . 2 t2 –1 = tan x = – tan x –3 2 sec–1(–3) –2 3 2 / 3 3 t –1 dt – tan x sec x tan x dx t π sec x ∫ = ∫ sec–1(–3) sec–1(–3) 2 2 /3 2 /3 – sin 1 cos 2 – 1 = = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ∫ ∫ x dx x dx π π 2 2 sec–1(–3) π 2 /3 1 sin 2 – 1 4 2 = ⎡ ⎤ ⎢⎣ x x ⎥⎦ sec–1(–3) = ⎡ ⎢⎣ x x ⎤ ⎥⎦ 2 /3 – 2 – 1 sec–1(–3) π 3 x0.151252 1 sin cos – 1 2 2 π = + + ≈ 9 2 8 3 14. t = sin x, dt = cos x dx t dt x dx t ∫ = ∫ = –cos x + C 2 sin 1– = – 1– t2 +C 15. z = sin t, dz = cos t dt z dz t dt z 2 –3 (2sin – 3) 1– ∫ = ∫ 2 = –2 cos t – 3t + C = –2 1– z2 – 3sin–1 z +C 442 Section 7.4 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 32. 16. x = π tan t, dx = πsec2 t dt π x –1 dx ( 2 tan t –1)sect dt x ∫ = ∫ π 2 + π 2 = π2 ∫ tan t sect dt – ∫sect dt = π2 sect – ln sect + tan t +C = π x2 + π2 − ln 1 x2 + π2 + x + C π π x 1 dx x π π − ∫ 0 2 2 + π ⎡ π x 2 + π 2 ⎤ = ⎢π x 2 + π 2 – ln + x ⎥ ⎢ π π ⎥ ⎣ ⎦ 0 = [ 2π2 – ln( 2 +1)] – [π2 − ln1] = ( 2 –1)π2 – ln( 2 +1) ≈ 3.207 17. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 u = x + 1, du = dx dx du ∫ = ∫ u = 2 tan t, du = 2sec2 t dt 2 2 5 2 4 x x u + + + du sec t dt ln sec t tan t C u ∫ ∫ = = + + 2 1 4 + 2 u u C 1 + ln 4 = + + 2 2 2 x x x C 1 + 2 + 5 + + ln 1 = + 2 = ln x2 + 2x + 5 + x +1 +C 18. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 u = x + 2, du = dx dx du ∫ = ∫ u = tan t, du = sec2 t dt 2 4 5 2 1 x x u + + + du t dt t t C u ∫ ∫ 2 sec ln sec tan 1 = = + + + dx u 2 u C 2 ln 1 x x 4 5 = + + + + + ∫ = ln x2 + 4x + 5 + x + 2 +C 19. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 u = x + 1, du = dx x dx u du 3 3– 3 2 5 4 ∫ = ∫ 2 2 x x u + + + u du du u u ∫ ∫ 3 –3 2 2 4 4 = + + (Use the result of Problem 17.) = 3 u2 + 4 – 3ln u2 + 4 + u +C = 3 x2 + 2x + 5 – 3ln x2 + 2x + 5 + x +1 +C 20. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 u = x + 2, du = dx 2 x –1 2 u − dx 5 du x 4 x 5 u 1 ∫ = ∫ 2 2 + + + u du du u u 2 – 5 = ∫ ∫ 2 + 1 2 + 1 (Use the result of Problem 18.) = 2 u2 +1 – 5ln u2 +1 + u +C = 2 x2 + 4x + 5 – 5ln x2 + 4x + 5 + x + 2 +C 21. 5 − 4x − x2 = 9 − (4 + 4x + x2 ) = 9 − (x + 2)2 u = x + 2, du = dx ∫ 5 – 4x – x2 dx =∫ 9 – u2 du u = 3 sin t, du = 3 cos t dt 9 2 9 cos2 9 (1 cos 2 ) ∫ − u du = ∫ t dt = ∫ + t dt 2 9 1sin 2 2 2 = ⎛⎜ t + t ⎞⎟ +C ⎝ ⎠ 9( sin cos ) 2 = t + t t +C = ⎛ u ⎞ + u u +C ⎜ ⎟ 9 sin–1 1 9 – 2 2 3 2 ⎝ ⎠ x x x x C 9 sin–1 2 2 5 – 4 – 2 2 3 2 ⎛ + ⎞ + = ⎜ ⎟ + + ⎝ ⎠ 22. 16 + 6x – x2 = 25 − (9 − 6x + x2 ) = 25 – (x – 3)2 u = x – 3, du = dx dx du x x u ∫ = ∫ u = 5 sin t, du = 5 cos t 16 + 6 – 2 25 – 2 du dt t C u = ⎛ u ⎞ +C ⎜ ⎟ ∫ ∫ sin–1 25 2 = = + − 5 ⎝ ⎠ = sin–1 ⎛ x – 3 ⎞ ⎜ ⎟ +C 5 ⎝ ⎠ Instructor’s Resource Manual Section 7.4 443 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 33. 23. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 u = x – 2, du = dx dx du x x u ∫ = ∫ 4 – 2 4 – 2 u = 2 sin t, du = 2 cos t dt du dt t C u = ⎛ u ⎞ +C ⎜ ⎟ ∫ ∫ sin–1 4 2 = = + − 2 ⎝ ⎠ = sin–1 ⎛ x – 2 ⎞ ⎜ ⎟ +C 2 ⎝ ⎠ 24. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 u = x – 2, du = dx x u + dx 2 du x x u ∫ = ∫ 2 2 4 – 4– u du du u u – – 2 = ∫ + ∫ 4 – 2 4 – 2 (Use the result of Problem 23.) – 4 – 2 2sin–1 = u + ⎛ u ⎞ +C ⎜ ⎟ 2 ⎝ ⎠ = – 4 x – x 2 + 2sin–1 ⎛ x – 2 ⎞ ⎜ ⎟ + C 2 ⎝ ⎠ 25. x2 + 2x + 2 = x2 + 2x +1+1 = (x +1)2 +1 u = x + 1, du = dx x dx u du 2 + 1 2 –1 2 2 1 ∫ = 2 ∫ + + 2 + x x u u du du u u 2 – 1 1 = ∫ 2 ∫ + 2 + = ln u2 +1 – tan–1 u +C = ln (x2 + 2x + 2)− tan−1(x +1) +C 26. x2 – 6x +18 = x2 – 6x + 9 + 9 = (x – 3)2 + 9 u = x – 3, du = dx x dx u du 2 –1 2 5 –6 18 9 ∫ = 2 ∫ + 2 + x x u + 2 u du 5 du u u + + ∫ ∫ ln ( 2 9) 5 tan 1 = + 2 2 9 9 = u + + − ⎛ u ⎞ +C ⎜ ⎟ 3 3 ⎝ ⎠ ln ( 2 6 18) 5 tan 1 3 = x − x + + − ⎛ x − ⎞ +C ⎜ ⎟ 3 3 ⎝ ⎠ 27. 2 ⎛ ⎞ 1 0 2 1 2 5 ⎝ + + ⎠ ∫ V dx = π ⎜ ⎟ x x 2 ⎡ ⎤ 1 1 0 2 ∫ = π ⎢ ⎥ x ( 1) 4 dx ⎢⎣ + + ⎥⎦ x + 1 = 2 tan t, dx = 2sec2 t dt 1 2sec 4sec π ⎛ ⎞ / 4 2 tan (1/ 2) 2 ⎝ ⎠ ∫ V tdt = π –1 ⎜ ⎟ 2 t 1 t dt π π π π = ∫ –1 / 4 tan –1 (1/ 2) 2 8 sec dt t / 4 cos 2 tan (1/ 2) = ∫ 8 t dt π π ⎛ ⎞ = ⎜ + ⎟ / 4 tan (1/ 2) ∫ –1 ⎝ ⎠ 1 1cos 2 8 2 2 / 4 –1 π ⎡ ⎤π = ⎢ + ⎥ ⎣ ⎦ tan (1/ 2) 1 1sin 2 8 2 4 t t / 4 t t t π –1 tan (1/ 2) 1 1sin cos 8 2 2 π ⎡ ⎤ = ⎢ + ⎥ ⎣ ⎦ 1 – 1 tan–1 1 1 π π = ⎡⎛ + ⎞ ⎛ ⎢⎜ ⎟ ⎜ + ⎞⎤ 8 ⎣⎝ 8 4 ⎠ ⎝ 2 2 5 ⎠⎦ ⎟⎥ 1 – tan–1 1 0.082811 π ⎛ π ⎞ = ⎜ + ⎟ ≈ 16 10 4 2 ⎝ ⎠ 2 1 28. 1 + + ∫ 1 0 2 V xdx 0 2 x x 2 5 = π 2 x dx ∫ ( x + 1) + 4 1 1 0 2 0 2 = π x dx dx x x + 2 1 – 2 1 + + + + ∫ ∫ = π π ( 1) 4 ( 1) 4 1 1 x x 2 1 ln[( 1) 4] – 2 1 tan 1 ⎡ ⎡ = π + 2 + ⎤ π –1 ⎛ + ⎞⎤ ⎜ ⎣ ⎢ 2 ⎥ ⎦ ⎢ ⎣ 2 ⎝ 2 ⎠⎦ ⎟⎥ [ln8 – ln 5] – tan–11– tan–1 1 0 0 = π π ⎡ ⎤ ⎢⎣ 2 ⎥⎦ ln 8 – tan–1 1 0.465751 5 4 2 ⎛ π ⎞ = π⎜ + ⎟ ≈ ⎝ ⎠ 29. a. u = x2 + 9, du = 2x dx xdx du u C x u ∫ 2 ∫ + 1 ln 2 9 1 ln ( 2 9) 2 2 1 1ln = = + 9 2 2 = x + +C = x + +C b. x = 3 tan t, dx = 3sec2 t dt xdx t dt x ∫ ∫ tan = – ln cost +C 2 + 9 = ⎛ ⎞ ln 3 ln 3 = − + = − ⎜ ⎟ + C C 2 1 2 1 + ⎜ + ⎟ ⎝ ⎠ x x 9 9 = ln ⎛⎜ x 2 + 9 ⎞⎟ − ln 3 + C1 ⎝ ⎠ = ln ((x2 + 9)1/ 2 )+C 1 ln ( 2 9) = x + +C 2 444 Section 7.4 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 34. 30. u = 9 + x2 , u2 = 9 + x2 , 2u du = 2x dx 3 3 3 2 3 2 2 0 2 0 2 3 x dx x u − x dx 9 udu ∫ = ∫ = ∫ x x u 9 9 + + 3 2 ⎡ 3 2 ⎤ 3 2 u du u u 3 ∫ ≈ 5.272 ( 9) – 9 18 – 9 2 = − = ⎢ ⎥ = 3 3 ⎢⎣ ⎥⎦ 31. a. u = 4 – x2 , u2 = 4 – x2 , 2u du = –2x dx 2 2 2 x dx x x dx u du x x u 4 – 4 − – ∫ = ∫ = ∫ 2 2 4 – 2 2 2 u du du du u u 4 4 4 1 4 4 − + − − − ∫ ∫ ∫ 4 1 ln 2 = =− + u + u C u = − ⋅ + + 4 2 − 2 x x 2 C x − + ln 4 2 4 = − + − + 2 4 − − 2 b. x = 2 sin t, dx = 2 cos t dt 4 – 2 cos2 2 x dx t dt x sin t ∫ = ∫ (1– sin2 ) 2 = ∫ sin = 2∫csct dt – 2∫sin t dt = 2ln csct − cot t + 2cos t + C t dt t 2 − 2ln 2 4 x 4 x2 C = − + − + x x 2 − − 2ln 2 4 x 4 x2 C = + − + x To reconcile the answers, note that 2 2 2 2 x x x x − + − − ln 4 2 ln 4 2 − = 4 − − 2 4 − + 2 2 2 x − − ln ( 4 2) ( 4 x 2 2)( 4 x 2 2) = − + − − 2 2 2 2 x x (2 − 4 − ln ) ln (2 − 4 − ) = = 2 2 x x 4 4 − − − 2 ⎛ − − ⎞ − − = ⎜ ⎟ = 2 4 2 2 4 2 ln x 2ln x x x ⎜ ⎟ ⎝ ⎠ 32. The equation of the circle with center (–a, 0) is (x + a)2 + y2 = b2 , so y = ± b2 – (x + a)2 . By symmetry, the area of the overlap is four times the area of the region bounded by x = 0, y = 0, and y = b2 – (x + a)2 dx . A = 4 ∫ b – a b 2 –( x + a ) 2 dx 0 x + a = b sin t, dx = b cos t dt / 2 2 2 sin ( / ) A b tdt π = ∫ 4 cos –1 a b b tdt π 2 / 2 sin ( / ) = ∫ + 2 (1 cos 2 ) –1 a b b t t π / 2 = ⎡ + ⎤ ⎢⎣ ⎥⎦ 2 –1 a b 2 2 1 sin 2 sin ( / ) b t t tπ 2 /2 –1 2 [ sin cos ] a b sin ( / ) = + ⎡π ⎛ ⎛ a ⎞ a b 2 – a 2 ⎞⎤ = 2 b 2 ⎢ – ⎜ sin–1 ⎢ 2 ⎜ ⎜ ⎟ + ⎟⎥ ⎝ ⎝ b ⎠ b b ⎟⎥ ⎣ ⎠⎦ b2 – 2b2 sin–1 a – 2a b2 – a2 = π ⎛ ⎞ ⎜ ⎟ b ⎝ ⎠ 33. a. The coordinate of C is (0, –a). The lower arc of the lune lies on the circle given by the equation x2 + ( y + a)2 = 2a2 or y = ± 2a2 – x2 – a. The upper arc of the lune lies on the circle given by the equation x2 + y2 = a2 or y = ± a2 – x2 . – – 2 – – a a a a A = a 2 x 2 dx ⎛⎜ a 2 x 2 a ⎞⎟ dx ∫ ∫ – – ⎝ ⎠ – – 2 – 2 a a a a 2 2 2 2 2 = ∫ a x dx ∫ a x dx + a – – Note that 2 2 – a a ∫ a x dx is the area of a – semicircle with radius a, so 2 a 2 x 2 dx a a a ∫ = – For 2 2 π – . 2 2 – , a a ∫ a x dx let – x = 2a sin t, dx = 2a cos t dt 2 – 2 cos a a a 2 x 2 dx π / 4 a 2 2 tdt π ∫ = ∫ – –/ 4 2 π / 4 1 π / 4 (1 cos 2 ) 2 sin 2 – π /4 – π / 4 = a ∫ + tdt = a ⎡ ⎢⎣ t + t ⎤ 2 ⎥⎦ 2 2 a a π = + 2 2 2 – 2 2 2 2 2 2 π ⎛ π ⎞ = ⎜⎜ + ⎟⎟ + = A a a a a a ⎝ ⎠ Thus, the area of the lune is equal to the area of the square. Instructor’s Resource Manual Section 7.4 445 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 35. b. Without using calculus, consider the following labels on the figure. Area of the lune = Area of the semicircle of radius a at O + Area (ΔABC) – Area of the sector ABC. 1 2 2 – 1 ( 2 )2 2 2 2 ⎛ π ⎞ = π + ⎜ ⎟ A a a a ⎝ ⎠ 1 2 2 – 1 2 2 2 2 = πa + a πa = a Note that since BC has length 2a, the π measure of angle OCB is , 4 so the measure π of angle ACB is . 2 34. Using reasoning similar to Problem 33 b, the area is a a b a a b 1 1 (2 ) – – 1 2sin 2 2 2 1 – – sin . 2 π + ⎛ ⎞ ⎜ ⎟ 2 2 2 –1 2 ⎝ ⎠ a 2 a b 2 a 2 b 2 –1 a b b = π + 35. 2 – 2 dy – a x dx x = ; 2 – 2 y – a x dx x = ∫ x = a sin t, dx = a cos t dt cos cos2 – cos – y a t a t dt a t dt = ∫ = ∫ a sin t sin t 1– sin2 – (sin – csc ) a t dt a t t dt = ∫ = sin t ∫ = a (– cos t − ln csct − cot t ) +C 2 cos t = a – x 2 2 2 , csct = a , cot t = a – x a x x ⎛ − ⎞ = ⎜ − − ⎟ + 2 – 2 2 2 y a – a x ln a a x C ⎜ a x x ⎟ ⎝ ⎠ 2 2 a2 x2 a − a ln a − x C = − − − + x Since y = 0 when x = a, 0 = 0 – a ln 1 + C, so C = 0. 2 2 y – a2 x2 a ln a a – x x − = − − 7.5 Concepts Review 1. proper 2. –1 5 1 x x + + 3. a = 2; b = 3; c = –1 A B Cx + D x x x 4. + + –1 ( –1)2 2 + 1 Problem Set 7.5 1. 1 A B = + xx x x ( + 1) + 1 1 = A(x + 1) + Bx A = 1, B = –1 1 1 – 1 ( 1) 1 + + ∫ ∫ ∫ = ln x – ln x +1 + C dx = dx dx x x x x 2. 2 A B 2 = 2 = + 3 ( 3) 3 x x x x x x + + + 2 = A(x + 3) + Bx 2 , – 2 3 3 A = B = ∫ 2 ∫ ∫ + + 2 ln – 2 ln 3 3 3 dx dx B dx 2 = 2 1 – 2 3 3 3 3 x x x x = x x + + C A B 3 3 –1 ( 1)( –1) 1 –1 3. 2 = = + x x + x x + x 3 = A(x – 1) + B(x + 1) – 3 , 3 2 2 A = B = 3 – 3 1 3 1 –1 2 1 2 –1 ∫ 2 ∫ ∫ + – 3 ln 1 3 ln –1 dx = dx + dx x x x = x + + x + C 2 2 446 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 36. x x 5 5 5 4. 3 2 2 = = x x x x x x 2 + 6 2 ( + 3) 2 ( + 3) 3 A B x x = + + 5 ( 3) 2 = A x + + Bx 5 , – 5 6 6 A = B = x dx dx 5 5 1 – 5 1 ∫ = x 3 + x 2 ∫ x ∫ x + 5 ln – 5 ln 3 6 6 2 6 6 6 3 = x x + +C x x A B x x x x x x 5. 2 11 11 3 4 ( 4)( 1) 4 1 − − = = + + − + − + − x – 11 = A(x – 1) + B(x + 4) A =3, B = –2 x dx dx dx x x x x ∫ 2 ∫ ∫ + − + − = 3ln x + 4 − 2ln x −1 + C 11 3 1 2 1 3 4 4 1 − = − x x A B x x x x x x 6. 2 – 7 = – 7 = + – –12 ( – 4)( + 3) – 4 + 3 x – 7 = A(x + 3) + B(x – 4) – 3 , 10 7 7 A = B = x dx dx dx x x x x ∫ 2 ∫ ∫ + – 3 ln – 4 10 ln 3 – 7 = – 3 1 + 10 1 – –12 7 – 4 7 3 = x + x + +C 7 7 7. 2 x x A B 3 − 13 3 − = 13 = + 3 10 ( 5)( 2) 5 2 x x x x x x + − + − + − 3x −13 = A(x − 2) + B(x + 5) A = 4, B = –1 ∫ x − dx 4 1 1 2 + − 3 13 3 10 x x + − ∫ ∫ dx dx = − x x 5 2 = 4ln x + 5 − ln x − 2 +C x x + π + π 8. = 2 – 3 2 2 ( – 2 )( – ) x x x x A B x x = + π + π π π – 2 – π π x +π = A(x −π ) + B(x − 2π ) A = 3, B = –2 x + π dx dx dx ∫ 2 π + π 2 ∫ ∫ π π = 3ln x – 2π – 2ln x – π + C 3 – 2 = x x x x – 3 2 – 2 – x x x x x x 2 21 2 21 2 9 – 5 (2 –1)( 5) 9. 2 + + = A B x x = + + + 2 –1 + 5 2x + 21 = A(x + 5) + B(2x – 1) A = 4, B = –1 x dx dx dx x x x x 2 21 4 – 1 2 9 – 5 2 –1 5 ∫ 2 ∫ ∫ + + = 2ln 2x –1 – ln x + 5 +C + = 10. 2 2 2 2 x x x x x x x x x 2 − − 20 2( + − 6)− 3 − 8 = 6 6 + − + − x x x 2 3 8 2 6 + = − + − x x x x x x 3 8 3 8 2 + + = A B x x = + + − + − 3 2 6 ( 3)( 2) + − 3x + 8 = A(x – 2) + B(x + 3) 1 , 14 5 5 A = B = 2 2 x x dx x x 2 20 6 − − + − ∫ 2 1 1 14 1 + − ∫ ∫ ∫ 2 1 ln 3 14 ln 2 dx dx dx = − − x x 5 3 5 2 = x − x + − x − +C 5 5 x x x x x x 17 – 3 17 – 3 3 – 2 (3 – 2)( 1) 11. 2 = A B x x = + + + 3 – 2 + 1 17x – 3 = A(x + 1) + B(3x – 2) A = 5, B = 4 x dx dx dx x x x x + + ∫ ∫ ∫ 5 ln 3 – 2 4ln 1 17 – 3 = 5 + 4 3 2 – 2 3 – 2 1 = x + x + +C 3 Instructor’s Resource Manual Section 7.5 447 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 37. 12. 2 x x 5 – 5 – = x x x x – ( 4) 4 ( – )( – 4) A B x x = + π + + π π – π – 4 5 – x = A(x – 4) + B(x – π ) 5 – π , 1 –4 4– A B = = π π ∫ 2 ∫ ∫ 5 – ln – 1 ln – 4 − π + + π π π π x dx dx dx 5 – 5 – π = 1 + 1 1 ( 4) 4 – 4 – 4 – – 4 x x x x x x C π = π + + π π – 4 4 – 13. 2 2 3 2 x x x x x x x x x x 2 + − 4 2 + − 4 = A B C x x x = + + − − + − 1 2 2 ( 1)( 2) + − 2x2 + x − 4 = A(x +1)(x − 2) + Bx(x − 2) + Cx(x +1) A = 2, B = –1, C = 1 2 3 2 2 x + x − 4 dx 2 dx 1 dx 1 dx x x x x x x ∫ = ∫ − ∫ + ∫ = 2ln x − ln x +1 + ln x − 2 + C − − + − 2 1 2 14. 7 2 2 – 3 x + x A B C = + + x x x x x x (2 –1)(3 + 2)( – 3) 2 –1 3 + 2 – 3 7x2 + 2x – 3 = A(3x + 2)(x – 3) + B(2x –1)(x – 3) +C(2x –1)(3x + 2) 1 , – 1 , 6 35 7 5 A = B = C = 7 2 2 – 3 1 1 1 1 6 1 – x + x dx dx dx dx ∫ = ∫ ∫ + ∫ + + 1 ln 2 –1 – 1 ln 3 2 6 ln – 3 70 21 5 x x x x x x (2 –1)(3 2)( – 3) 35 2 –1 7 3 2 5 – 3 = x x + + x +C 15. 2 2 x x x x x x x x x x 6 + 22 − 23 + − = 6 22 23 (2 1)( 2 6) (2 1)( 3)( 2) A B C x x x = + + − + − − + − 2 − 1 + 3 − 2 6x2 + 22x − 23 = A(x + 3)(x − 2) + B(2x −1)(x − 2) + C(2x −1)(x + 3) A = 2, B = –1, C = 3 2 x x dx dx dx dx x x x x x x 6 + 22 − 23 2 1 3 (2 1)( 6) 2 1 3 2 ∫ = ∫ − ∫ + ∫ = ln 2x −1 − ln x + 3 + 3ln x − 2 + C − 2 + − − + − 16. 3 2 3 2 x x x x x x 6 11 6 − + − − + − 4 28 56 32 3 2 3 2 ⎛ − + − ⎞ x x x x x x 1 6 11 6 4 7 14 8 = ⎜⎜ ⎟⎟ ⎝ − + − ⎠ 2 ⎛ − + ⎞ x x 1 1 3 2 4 7 14 8 = ⎜⎜ + ⎝ x 3 ⎟⎟ − x 2 + x − ⎠ ⎛ − − ⎞ x x x x x 1 1 ( 1)( 2) 4 ( 1)( 2)( 4) = ⎜ + ⎟ ⎝ − − − ⎠ 1 1 1 4 x 4 = ⎛ + ⎞ ⎜ − ⎟ ⎝ ⎠ 3 2 3 2 x x x dx x x x ∫ – 6 + 11 – 6 1 1 1 + 4 –28 56 –32 = ∫ dx + ∫ dx 1 1ln – 4 x 4 4 –4 = x + x +C 4 4 448 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 38. 17. 3 x x x –1 3 – 2 = + 2 2 x x x x –2 –2 + + 3 x –2 = 3 x –2 = A + B x 2 x x x x x – 2 ( 2)( –1) 2 –1 + + + 3x – 2 = A(x – 1) + B(x + 2) 8 , 1 3 3 A = B = 3 x dx ∫ ( 1) 8 1 1 1 x 2 + x – 2 ∫ x dx ∫ dx ∫ dx 1 2 – 8 ln 2 1 ln –1 + − = − + + x x 3 2 3 1 = x x + x + + x +C 2 3 3 18. 3 2 2 x x x x x x x x – 4 14 24 + + = + 5 6 ( 3)( 2) + + + + 14 x + 24 = A + B ( x 3)( x 2) x 3 x 2 + + + + 14x + 24 = A(x + 2) + B(x + 3) A = 18, B = –4 3 2 2 5 6 x x dx x x + + + ∫ ( 4) 18 – 4 ∫ x dx ∫ dx ∫ dx 1 2 4 18ln 3 – 4ln 2 + + x x 3 2 = − + = x − x + x + x + +C 2 19. 4 2 2 3 x x x x x x x x x 8 8 12 8 4 ( 2)( – 2) + + + = + − + 12 x 2 + 8 = A + B + C ( 2)( – 2) 2 – 2 x x + x x x + x 12x2 + 8 = A(x + 2)(x – 2) + Bx(x – 2) + Cx(x + 2) A = –2, B = 7, C = 7 4 2 3 x x dx x dx dx dx dx x x x x x + ∫ ∫ ∫ ∫ ∫ 1 2 – 2ln 7ln 2 7 ln – 2 8 8 – 2 1 7 1 7 1 – 4 2 – 2 + + = + + = x x + x + + x +C 2 20. 6 3 2 x x x x x x x x x x 4 4 4 16 68 272 4 – 4 – 4 + + + 3 2 = + + + + 3 2 3 2 2 x A B C 272 + 4 = + + x 2 ( x – 4) x x 2 x – 4 272x2 + 4 = Ax(x – 4) + B(x – 4) +Cx2 – 1 , –1, 1089 4 4 A = B = C = 6 3 3 2 x 4 x 4 dx x – 4 x ( 4 16 68) – 1 1 – 1 1089 1 + + ∫ 3 2 − ∫ ∫ ∫ ∫ x x x dx dx dx dx = + + + + 2 x x x 4 4 4 1 4 4 3 8 2 68 – 1 ln 1 1089 ln – 4 4 3 4 4 x x x x x x C = + + + + + + x x + 1 A B x x x 21. = + 2 2 ( 3) 3 ( 3) − − − x + 1 = A(x – 3) + B A = 1, B = 4 x dx dx dx x x x ∫ + 1 = ∫ 1 + ∫ 4 ln 3 4 − 2 − − 2 ( 3) 3 ( 3) x C = − − + 3 x − Instructor’s Resource Manual Section 7.5 449 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 39. x x A B 5 + 7 5 + 7 4 4 ( 2) 2 ( 2) 22. = = + 2 2 2 x x x x x + + + + + 5x + 7 = A(x + 2) + B A = 5, B = –3 x dx dx dx + + + + ∫ ∫ ∫ 5ln 2 3 5 + 7 = 5 − 3 4 4 2 ( 2) 2 2 x x x x x C = + + + 2 x + x x 3 + 2 3 + 2 3 3 1 ( 1) 23. = 3 2 3 A B C x x x = + + + + + + 1 ( 1)2 ( 1)3 x x x x + + + 3x + 2 = A(x +1)2 + B(x +1) +C A = 0, B = 3, C = –1 x dx dx dx C 3 + 2 3 1 3 1 3 3 1 ( 1) ( 1) 1 2( 1) + + + + + + + ∫ ∫ ∫ = − = − + + 3 2 2 3 2 x x x x x x x 24. 6 x A B C D E F G = + + + + + + ( x – 2)2 (1– x )5 x – 2 ( x – 2)2 1– x (1– x )2 (1– x )3 (1– x )4 (1– x )5 A = 128, B = –64, C = 129, D = –72, E = 30, F = –8, G = 1 6 2 5 2 2 3 4 5 ⎡ ⎤ x dx 128 – 64 129 – 72 30 8 1 dx ∫ ∫ = ⎢ + + − + ⎥ x x x x x x x x x ( – 2) (1– ) – 2 ( – 2) 1– (1– ) (1– ) (1– ) (1– ) ⎢⎣ ⎥⎦ 128ln – 2 64 –129ln 1– 72 15 8 1 x x C = + + − + − + 2 3 4 x x x x x – 2 1– (1– ) 3(1– ) 4(1– ) 25. 2 2 3 2 2 2 x x x x A B C x x x x x x x x 3 − 21 + 32 3 − 21 + 32 = = + + 8 16 ( 4) 4 ( 4) − + − − − 3x2 − 21x + 32 = A(x − 4)2 + Bx(x − 4) + Cx A = 2, B = 1, C = –1 2 3 2 2 x x dx dx dx dx x x x x x ∫ 3 − 21 + 32 = ∫ 2 + ∫ 1 − ∫ 1 2ln ln 4 1 − + − − 8 16 4 ( 4) x x C = + − + + 4 x − 26. 2 2 x x x x x x x x + 19 + 10 + 19 + = 10 2 4 5 3 3 (2 5) A B C D x x x x = + + + + + 2 3 2 + 5 A = –1, B = 3, C = 2, D = 2 2 x + 19 x + 10 ⎛ 1 3 2 2 ⎞ dx – dx 2 x 5 x x x x 2 x 5 – ln x – 3 – 1 ln 2x 5 C ∫ = 4 3 ∫ ⎜ + + + + ⎝ 2 3 + ⎟ ⎠ 2 = + + + x x 27. 2 2 3 2 2 x x x x A BxC x x x x x x 2 –8 2 –8 + + + = = + 4 ( 4) 4 + + + A = –2, B = 4, C = 1 2 3 2 x x dx dx x dx x x x x 2 + – 8 –2 1 4 + 1 dx x dx dx x x x 2 1 2 2 1 + + ∫ ∫ ∫ ∫ = ∫ + ∫ + + 2 2 4 4 = − + + 4 4 = –2ln x + 2ln x 2 + 4 + 1 tan–1 ⎛ x ⎞ ⎜ ⎟ +C 2 2 ⎝ ⎠ 450 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 40. x x 3 + 2 3 + 2 ( 2) 16 ( 4 20) 28. = 2 2 A Bx + C x x x = + + + + + 2 4 20 x x x x x x + + 1 , – 1 , 13 10 10 5 A = B = C = x dx 3 + 2 ( 2) 16 ∫ + 2 + xx x 1 x 13 10 5 2 1 1 – + 10 4 20 1 1 14 1 10 5 ( 2) 16 + + ∫ ∫ 2 dx dx x x x = + x dx 1 2 4 20 4 20 + + ∫ ∫ 2 dx dx x x = + + + + ∫ x x − x x 1 ln 7 tan–1 2 10 10 4 ⎛ + ⎞ = + ⎜ ⎟ ⎝ ⎠ – 1 ln 2 4 20 20 x + x + +C 29. 2 x x A Bx C x x x x 2 –3 –36 + = + (2 − 1)( 2 + 9) 2 –1 2 + 9 A = –4, B = 3, C = 0 2 x x dx dx x dx x x x x 2 – 3 – 36 –4 1 3 (2 –1)( 9) 2 –1 9 ∫ = ∫ + ∫ –2ln 2 –1 3 ln 2 9 2 + 2 + = x + x + +C 2 1 1 x –16 (x 2)(x 2)(x 4) 30. = 4 2 − + + A B Cx + D x x x = + + – 2 + 2 2 + 4 1 , – 1 , 0, – 1 32 32 8 A = B = C = D = = x x + ⎛ x ⎞ +C ⎜ ⎟ + + ∫ ∫ ∫ ∫ 1 ln – 2 – 1 ln 2 – 1 tan–1 1 1 1 – 1 1 1 1 –16 32 – 2 32 2 8 4 dx = dx dx − dx 4 2 x x x x 32 32 16 2 ⎝ ⎠ 1 A B C D 31. = + + + 2 2 2 2 x x x x x x ( –1) ( + 4) –1 ( –1) + 4 ( + 4) – 2 , 1 , 2 , 1 125 25 125 25 A = B = C = D = 1 – 2 1 1 1 2 1 1 1 + + + ∫ ∫ ∫ ∫ ∫ – 2 ln –1 – 1 2 ln 4 – 1 dx = dx + dx + dx + dx 2 2 2 2 x x x x x x ( –1) ( 4) 125 –1 25 ( –1) 125 4 25 ( 4) x x C = + + + x x 125 25( –1) 125 25( + 4) 32. 3 2 2 x x x x x x x x x x – 8 –1 + = 1 + –7 7 –16 2 2 ( + 3)( –4 + 5) ( + 3)( − 4 + 5) 2 2 2 x x A Bx C –7 + 7 –16 + = + ( x 3)( x – 4 x 5) x 3 x – 4 x 5 + + + + – 50 , – 41, 14 A = B = C = 13 13 13 3 2 41 14 ⎡ ⎛ ⎞ + ⎤ = ⎢ ⎜ ⎟ + ⎥ + + ⎢⎣ ⎝ + ⎠ + ⎥⎦ x – 8 x –1 – x dx 1– 50 1 13 13 dx x x x x x x ∫ ∫ 2 2 ( 3)( – 4 5) 13 3 – 4 5 dx dx dx x dx 50 1 68 1 41 2 4 13 3 13 ( 2) 1 26 4 5 + − + − + ∫ ∫ ∫ ∫ – 50 ln 3 – 68 tan–1( – 2) – 41 ln 2 – 4 5 = − − − 2 2 − x x x x = x x + x x x + +C 13 13 26 Instructor’s Resource Manual Section 7.5 451 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 41. 33. x = sin t, dx = cos t dt 3 2 3 2 t t t dt x x dx t t t x x x (sin − 8sin − 1) cos − 8 − 1 (sin 3)(sin 4sin 5) ( 3)( 4 5) ∫ = 2 ∫ + − + + 2 − + 50 ln 3 68 tan 1( 2) 41 ln 2 4 5 13 13 26 = x − x + − − x − − x − x + + C which is the result of Problem 32. 3 2 t t t dt t t t t t C t t t (sin – 8sin –1) cos sin – 50 ln sin 3 – 68 tan –1 (sin – 2) – 41 ln sin 2 – 4sin 5 (sin 3)(sin – 4sin 5) 13 13 26 ∫ + 2 + = + + + 34. x = sin t, dx = cos t dt t dt dx x x x C t x cos 1 1 ln 2 1 ln 2 1 tan sin 16 16 32 32 16 2 = = − − + − − 1 ⎛ ⎞ ⎜ ⎟ + ∫ 4 ∫ − 4 − ⎝ ⎠ which is the result of Problem 30. t dt t t t C t cos 1 ln sin – 2 – 1 ln sin 2 – 1 tan sin sin –16 32 32 16 2 = + –1 ⎛ ⎞ ⎜ ⎟ + ∫ 4 ⎝ ⎠ 35. 3 2 2 2 2 2 x – 4 x + + = Ax B + Cx D x x x ( + 1) + 1 ( + 1) A = 1, B = 0, C = –5, D = 0 3 2 2 2 2 2 x – 4 x dx x dx 5 x dx x x x 1 ln 1 5 2 2( 1) ∫ = ∫ − ∫ 2 + + + ( 1) 1 ( 1) x C = + + + 2 x + 36. x = cos t, dx = –sin t dt 2 2 2 4 2 4 t t dt x dx (sin )(4cos –1) – 4 –1 ∫ = ∫ + + + + t t t x x x (cos )(1 2cos cos ) (1 2 ) 2 2 2 4 2 2 2 2 2 x x A BxC DxE 4 − 1 4 − 1 + + = = + + (1 2 ) ( 1) 1 ( 1) x x x x x x x x + + + + + A = –1, B = 1, C = 0, D = 5, E = 0 ⎡ ⎤ − ⎢− + + ⎥ = − + + + ⎢⎣ + + ⎥⎦ + x x dx x x C 1 5 ln 1 ln 1 5 ln cos 1 ln cos 1 5 ∫ 2 2 2 2 2 2 x x x x 1 ( 1) 2 2( 1) t t C = − + + + 2 2 2(cos t + 1) 37. 3 2 2 5 3 4 2 x x x x x x x x x xx x 2 + 5 + 16 (2 + 5 + 16) = 8 16 ( 8 16) + + + + 2 2 2 2 2 2 x x Ax B Cx D x x x 2 + 5 + 16 + + ( 4) 4 ( 4) = = + + + + A = 0, B = 2, C = 5, D = 8 3 2 5 3 2 2 2 x x x dx dx x dx x x x x x 2 + 5 + 16 2 5 + 8 dx x dx dx 2 5 8 4 ( 4) ( 4) ∫ = ∫ + ∫ + + + + 2 2 2 2 2 8 16 4 ( 4) + + + ∫ ∫ ∫ = + + x x x 8 , x + ∫ let x = 2 tan θ, dx = 2sec2θ dθ . To integrate 2 2 ( 4) dx 2 8 16sec θ ∫ dx = ∫ d cos2 1 1 cos 2 2 + 2 4 x ( 4) 16sec θ θ = θ dθ = ⎛⎜ + θ ⎞⎟ dθ ∫ ∫ ⎝ 2 2 ⎠ 1 1 sin 2 1 1 sin cos 2 4 2 2 x x C 1 tan 2 2 4 = θ + θ +C = θ + θ θ +C –1 = + + 2 x + 3 2 x x x dx x x x C x x x x x 2 5 16 tan – 5 1 tan x x C 3 tan 2 – 5 2 2 2( 4) ∫ –1 –1 –1 + + + + + + = + + + 5 3 2 2 8 16 2 2( 4) 2 2 4 = + + 2 x + 452 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 42. x x A B x x x x x x 38. 2 –17 = –17 = + –12 ( 4)( – 3) 4 – 3 + + + A = 3, B = –2 6 6 4 2 4 x dx dx x x x x –17 3 – 2 –12 4 – 3 = ⎛ ⎞ ⎜ + ⎟ + ⎝ ⎠ ∫ ∫ 6 4 = ⎡⎣3ln x + 4 – 2ln x – 3 ⎤⎦ = (3ln10 – 2ln 3) – (3ln8 – 2ln1) = 3ln10 – 2ln 3 – 3ln8 ≈ –1.53 39. u = sin θ, du = cos θ dθ cos θ 1 ∫ / 4 d ∫ 1/ 2 du 1/ 2 0 2 2 + 2 0 2 2 + 2 u u θ = (1– sin θ )(sin θ 1) (1– )( 1) π 1 + + ∫ 0 2 2 u u u (1 – )(1 )( 1) du = 1 A B Cu + D Eu + F = + + + 2 2 2 2 2 2 u u u u u u (1– )( + 1) 1– 1 + + 1 ( + 1) 1 , 1 , 0, 1 , 0, 1 8 8 4 2 A = B = C = D = E = F = 1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 1 0 2 2 2 0 0 0 2 0 2 2 − + − + + + ∫ ∫ ∫ ∫ ∫ du = du + du + du + du u u u u u u (1 )( 1) 8 1 8 1 4 1 2 ( 1) 1/ 2 ⎡ ⎛ ⎞⎤ = ⎢ – 1 ln 1– u + 1 ln 1 + u + 1 tan –1 u + 1 ⎜ tan –1 u + u ⎣ 8 8 4 4 ⎝ 2 ⎟⎥ + 1 ⎠⎦ 0 u 1/ 2 ⎡ + = 1 ln 1 u 1 ⎢ + tan –1 u + u ⎤ ⎥ ⎢⎣ 8 1 − u 2 4( u 2 + 1) ⎥⎦ 0 1 2 + ln 1 1 tan–1 1 1 0.65 8 2 1 2 2 6 2 = + + ≈ − 1 , u + ∫ let u = tan t.) (To integrate 2 2 ( 1) du x x x x x x 3 13 3 13 4 3 ( 3)( 1) 40. 2 + + = A B x x = + + + + + + 3 + 1 A = –2, B = 5 5 5 1 2 1 x dx x x x x 3 + 13 –2ln 3 5ln 1 4 3 ∫ = ⎡⎣ + + + ⎤⎦ = –2 ln 8 + 5 ln 6 + 2 ln 4 – 5 ln 2 = 5ln 3− 2ln 2 ≈ 4.11 + + 41. dy y(1 y) dt = − so that ∫ dy ∫ dt t C − a. Using partial fractions: 1 1 1 (1 ) y y = = + A B A y By 1 (1 − ) + (1 ) 1 (1 ) = + = ⇒ y y y y y y − − − ( ) 1 0 1, 0 1, 1 1 1 1 + − = + ⇒ = − = ⇒ = = ⇒ = + y (1 y ) y 1 y A B Ay y A B A A B − − ⎛ ⎞ ⎛ ⎞ y y y + = ⎜ + ⎟ = ⎝ − ⎠ ∫ ln ln(1 ) ln t C dy Thus: 1 1 1 y 1 y − − = ⎜ ⎟ ⎝ 1 − y ⎠ so that y e Ce y t C t = 1 = + 1 ( C1 ) C = e − y t e or 1 ( ) C t t e = + (0) 0.5, 0.5 1 or 1 y = = C = Since 1 1 C + y t e ; thus ( ) = + 1 t t e b. 3 3 (3) 0.953 y e = ≈ 1 e + Instructor’s Resource Manual Section 7.5 453 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.