SlideShare ist ein Scribd-Unternehmen logo
1 von 62
Stream Morphology
Investigation
Manual
ENVIRONMENTAL SCIENCE
Made ADA compliant by
NetCentric Technologies using
the CommonLook® software
STREAM MORPHOLOGY
Overview
Students will construct a physical scale model of a stream
system
to help understand how streams and rivers shape the solid earth
(i.e., the landscape). Students will perform several experiments
to determine streamflow properties under different conditions.
They will apply the scientific method, testing their own
scenarios
regarding human impacts to river systems.
Outcomes
• Design a stream table model to analyze the different
characteristics of streamflow.
• Explain the effects of watersheds on the surrounding
environment in terms of the biology, water quality, and
economic
importance of streams.
• Identify different stream features based on their geological
formation due to erosion and deposition.
• Develop an experiment to test how human actions can
modify
stream morphology in ways that may, in turn, impact riparian
ecosystems.
Time Requirements
Preparation ...................................................................... 5
minutes,
then let sit
overnight
Activity 1: Creating a Stream Table ................................ 60
minutes
Activity 2: Scientific Method: Modeling Human Impacts
on Stream Ecosystems .................................. 45 minutes
2 Carolina Distance Learning
Key
Personal protective
equipment
(PPE)
goggles gloves apron
follow
link to
video
photograph
results and
submit
stopwatch
required
warning corrosion flammable toxic environment health hazard
Key
Personal protective
equipment
(PPE)
goggles gloves apron
follow
link to
video
photograph
results and
submit
stopwatch
required
warning corrosion flammable toxic environment health hazard
Table of Contents
2 Overview
2 Outcomes
2 Time Requirements
3 Background
9 Materials
10 Safety
10 Preparation
10 Activity 1
12 Activity 2
13 Submission
13 Disposal and Cleanup
14 Lab Worksheet
18 Lab Questions
Background
A watershed is an area of land that drains
any form of precipitation into the earth’s water
bodies (see Figure 1). The entire land area that
forms this connection of atmospheric water to
the water on Earth, whether it is rain flowing into
a lake or snow soaking into the groundwater, is
considered a watershed.
Water covers approximately 70% of the earth’s
surface. However, about two-thirds of all water
is impaired to some degree, with less than
1% being accessible, consumable freshwater.
Keeping watersheds pristine is the leading
method for providing clean drinking water to
communities, and it is a high priority worldwide.
However, with increased development and
people flocking toward waterfront regions to live,
downstream communities are becoming increas-
ingly polluted every day.
From small streams to large rivers (hereafter
considered “streams”), streamflow is a vital
part of understanding the formation of water
and landmasses within a watershed. Under-
standing the flow of a stream can help to deter-
mine when and how much water reaches other
areas of a watershed. For example, one of the
leading causes of pollution in most waterways
across the United States is excessive nutrient
and sediment overloading from runoff from
the landmasses surrounding these waterways.
Nutrients such as phosphorus and nitrogen
are prevalent in fertilizers that wash off lawns
and farms into surrounding sewer and water
systems. This process can cause the overpro-
duction of algae, which are further degraded
by bacteria. These bacteria then take up the
surrounding oxygen for respiration and kill
multiple plants and organisms. A comprehen-
sive understanding of the interaction between
streams and the land as they move downstream
to other areas of a watershed can help prevent
pollution. One example is to build a riparian
buffer—a group of plants grown along parts of
a stream bank that are able to trap pollutants
and absorb excessive nutrients; this lessens the
effects of nutrient overloading in the streambed.
(A riparian ecosystem is one that includes a
stream and the life along its banks.)
Sediment, which is easily moved by bodies of
water, has a negative effect on water quality. It
can clog fish gills and cause suffocation, and the
water quality can be impaired by becoming very
cloudy because of high sediment flow. This can
create problems for natural vegetation growth
by obstructing light and can prevent animals
continued on next page
www.carolina.com/distancelearning 3
Figure 1.
Snow
Rainfall
Precipitation
Overland
flows
Underground
sources
STREAM MORPHOLOGY
Background continued
from visibly finding their prey. Erosion also has
considerable effects on stream health. Erosion,
or the moving of material (soil, rock, or sand)
from the earth to another location, is caused by
actions such as physical and chemical weath-
ering (see Figure 2). These processes loosen
rocks and other materials and can move these
sediments to other locations through bodies
of water. Once these particles reach their final
destination, they are considered to be depos-
ited. Deposition is also an important process
because where the sediment particles end up
can greatly impact the shape of the land and
how water is distributed throughout the system
(see Figure 2). Erosion and deposition can occur
multiple times along the length of a stream and
can vary because of extreme weather, such
as flooding or high wind. Over time, these two
processes can completely reshape an area,
causing the topography, or physical features, of
an entire watershed to be altered. Depending on
weather conditions, a streambed can be altered
quite quickly. Faster moving water tends to
erode more sediment than it deposits. Deposi-
tion usually occurs in slower moving water. With
less force acting on the sediment, it falls out
of suspension and builds up on the bottom or
sides of the streambed.
Sediments are deposited throughout the length
of a stream as bars, generally in the middle of
a channel, or as floodplains, which are more
ridgelike areas of land along the edges of the
stream. Bars generally consist of gravel or sand-
size particles, whereas floodplains are made of
more fine-grained material. Deltas (see Figure
3) and alluvial fans (see Figure 4) are sediment
deposits that occur because of flowing water
continued on next page
4 Carolina Distance Learning
Figure 2. Figure 3.
Erosion Deposition
and are considered more permanent struc-
tures because of their longevity. They are both
fan-shaped accumulations of sediment that
form when the stream shape changes. Deltas
form in continuous, flowing water at the mouth
of streams, whereas alluvial fans only form in
streams that flow intermittently (when it rains
or when snow melts). Alluvial fans are usually
composed of larger particles and will form in
canyons and valleys as water accumulates in
these regions. The fan shape of both deposits
is easy to spot from a distance, because they
are formed due to the sand settling out on the
bottom of the streams.
Streamflow Characteristics
Discharge, or the amount of water that flows
past a given location of a stream (per second),
is a very important characteristic of stream-
flow. Discharge and velocity (the speed of
the water moving in the stream) are both vital
to the shaping of streambeds. Within stream
ecosystems, there are microhabitats (smaller
habitats making up larger habitats) that have
different discharges and velocities. The type
of microhabitat depends on the width of that
part of the stream, the shape of the streambed,
and many other physical factors. In areas that
contain riffles, water quickly splashes over
shallow, rocky areas, which are easily observed
in sunny areas (see Figure 5). Deeper pools of
slower moving water also form on the outside
of the bends of the streams, as shown in Figure
5. Runs, which are deeper than riffles but have
a moderate current, connect riffles and pools
throughout the stream. The source of a stream
continued on next page
www.carolina.com/distancelearning 5
Figure 4.
Figure 5.
PoolRiffles
STREAM MORPHOLOGY
Background continued
is where it begins, while the mouth of a stream is
where it discharges into a lake or an ocean.
Flow rate is very helpful for engineers and
scientists who study the impacts of a stream
on organisms, surrounding land, and even
recreational uses such as boating and fishing.
The speed of the water in specific areas helps
to determine the composition of the substrate
in that area of the streambed, i.e., whether the
material is more clay, sand, mud, or gravel.
Particle sizes of different sediments are shaped
and deposited throughout various areas of a
stream, depending on these factors.
Most streams have specific physical features
that show periodicity or consistency in regular
intervals. Meanders can occur in a streambed
because of gravity. Water erodes sediment to
the outside of a stream and deposits sediment
along the opposite bank, forming a natural
weaving or “snaking” pattern. This pattern can
form in any depth of water and along any type
of terrain. Sinuosity is the measure of how
curvy a stream is. This is a helpful measurement
when determining the flow rates of streams
because it can show how the curves affect the
water velocity. In major rivers and very broad
valleys, meanders can be separated from the
main body of a river, leaving a U-shaped water
body known as an oxbow lake (see Figure 6).
These lake formations can become an entirely
new ecosystem with food and shelter for some
organisms, such as amphibians, to thrive in.
continued on next page
6 Carolina Distance Learning
Figure 6.
Oxbow Lake Formation
continued on next page
www.carolina.com/distancelearning 7
Another feature important for streamflow is the
difference in elevation, or the relief of a stream
as it flows downstream. Streams start at a
higher elevation than where they end up; this
causes the discharge and velocity at the source
versus that at the mouth of the stream to be
quite different, depending on the meandering
of the stream and the type of deposition and
erosion that occurs. The gradient is another
important factor of stream morphology. This
is a measure of the slope of the stream over
a particular distance (the relief over the total
distance of the stream). For a kayaker who
wants to know how fast he/she can paddle
down a particular stream, knowing the difference
in elevation (relief) is important over a particular
area; however, knowing the slope of this partic-
ular area will give the kayaker a more accurate
prediction. With erosion and deposition occur-
ring at different rates and at different parts of the
stream, knowing the gradient is a very important
part of determining streamflow for the kayaker.
Groundwater is also affected by changes in
the stream shape and flow. Water infiltrates the
ground in recharge zones. If streams are contin-
uously flowing over these areas, the ground is
able to stay saturated. Most streams are peren-
nial, meaning they flow all year. However, a
drought or an extreme weather event may lower
the stream level. This can lower the ground-
water level, which then allows the stream to only
sustain flow when it rises to a level above the
water table. With the small amount of available
freshwater on Earth, it is vital that our ground-
water sources stay pristine.
Biotic and Economic Impacts of Streams
Not only are streams a major source of clean
freshwater for humans, but they are also a
hotspot for diversity and life. There is great biotic
variability between the different microhabitats
(e.g., riffles, pools, and runs) of a stream. Riffles,
in particular, have a high biodiversity because of
the constant movement of water and replenish-
ment of oxygen throughout. Pools usually have
fewer and more hardy organisms in their slower,
deeper moving waters where less oxygen is
available. There are also a multitude of plant
and animal species living around streams. From
a stream in a backyard to the 1,500-mile-long
Colorado River, streams have thousands of
types of birds, insects, and plants that live near
them because they are nutrient-rich with clean
freshwater. Sometimes nutrient spiraling can
occur in these streams. Nutrient spiraling is the
periodic chemical cycling of nutrients throughout
different depths of the streams. This process
recycles nutrients and allows life to thrive at all
depths and regions of different-size streams.
Streams can also have significant economic
impacts on a region. Streams are a channel for
fishing and transportation, two of the largest
industries in the world. Because of all the
commercial boating operations that occur world-
wide in these channels, it is vital to understand
the formation and flow patterns of streams so
that they are clear and navigable. Fishing for
human consumption is another large, worldwide
industry that depends on stream health; keeping
streams pristine and understanding how they
form are of utmost importance in sustaining this
top food industry. Recreational activities such
as kayaking, sportfishing, and boating all shape
areas where streams and rivers are prevalent as
well.
STREAM MORPHOLOGY
Background continued
All acts that happen on land affect the water
quality downstream. Through creating a model
stream table in this lab, one can predict large,
system-wide effects. Many land features and
physical parts of a streambed can affect the flow
of water within a watershed. Houses along a
streambed or numerous large rocks can cause
the streamflow to change directions. If any of
these factors cause erosion or deposition in
an area of the stream, microhabitats can be
created. These factors can affect the stream on
a larger scale, creating changes in flow speeds
and widths of the streambeds.
The Importance of Scaling and the Use of the
Scientific Method
When a stream table model is created, a large-
scale depiction of a streambed is being reduced
to a smaller scale so that the effects of different
stream properties on the surrounding environ-
ment can be demonstrated. While the stream
table made in this lab is not a to-size stream
and landscape, the same processes can be
more easily observed at a scaled-down size.
Scientists frequently create models to simplify
complex processes for easier understanding.
For example, to physically observe something
that is too big, such as the distance between
each planet in the solar system, the spatial
distance can be scaled to create a solar system
model. By changing the distance between each
planet from kilometers to centimeters, this large
system is now more feasibly observed. Similarly,
the stream model allows us to physically view
different scenarios of a streambed and analyze
different stream properties. Mathematical
equations are also used frequently to observe
data to predict future conditions, such as in
meteorological models. Ultimately, models can
be very important tools for predicting future
events and analyzing processes that occur
in a system.
When one creates a model, many different
outcomes for the same type of setup can be
possible. In this case, multiple variations of
similar-size streambeds will be designed to
evaluate different stream features and their
impacts on the surrounding ecosystem. When
performing any type of scientific evalua-
tion, the scientific method is very useful in
obtaining accurate results. This method involves
performing experiments and recording observa-
tions to answer a question of interest.
Although the exact step names and sequences
sometimes vary a bit from source to source,
in general, the scientific method begins with
a scientist making observations about some
phenomenon and then asking a question. Next,
a scientist proposes a hypothesis—a “best
guess” based upon available information as to
what the answer to the question will be. The
scientist then designs an experiment to test the
hypothesis. Based on the experimental results,
the scientist then either accepts the hypothesis
(if it matches what happened) or rejects it (if it
doesn’t). A rejected hypothesis is not a failure; it
is helpful information that can point the way to
a new hypothesis and experiment. Finally, the
scientist communicates the findings to the world
through presenting at a peer-reviewed academic
conference and/or publishing in a scholarly
journal like Science or Nature, for example.
continued on next page
8 Carolina Distance Learning
www.carolina.com/distancelearning 9
When creating stream table models, we are
trying to understand how different factors can
affect streamflow. A few very important steps
from the scientific method are required. The first
is forming a testable hypothesis, or an educated
prediction, of what you expect to observe
based on what you have learned about stream
morphology thus far. In Activity 1, the steps are
already listed, so the main goal is to compare
the two differences in stream reliefs. However,
in Activity 2, the goal is to alter a different vari-
able and predict what will happen to several
stream features in this new situation. In general,
when recording these observations to test a
hypothesis, it is important to repeat the tests.
To obtain valid results, you need to have similar
results over multiple attempts to ensure consis-
tency in the findings and to show that what you
are discovering is not by chance but is instead
replicated each time the experiment is run. While
multiple trials are not required in this lab experi-
ment, if you feel particularly less than confident
with your results from doing only one trial run in
Activity 1 or 2, feel free to do multiple trials to
test for validity.
Materials
Needed but not supplied:
• Tray or cookie sheet (or something similar)
• 2–3 lb bag of play sand (not construction sand
or any other type of sand or soil) or, if that is
unavailable, substitute with 1 lb bag (or more)
of plain cornmeal (not self-rising)
• Single-use cup that can have a hole poked in it
(e.g., plastic yogurt cup, foam cup)
• Small piece of foam (such as from a foam cup),
about the size of a grain of rice
• Cup, such as a glass, mug, or plastic cup
• Paper clip, skewer, or thumbtack (to poke a
hole in the single-use cup)
• 2 books, one approximately twice as thick as
the other
• Ruler (There is a ruler in the Equipment Kit if
you have already received it, or you can print
one at a website such as printable-ruler.net.)
• Tap water
• 2 Plastic bags (to cover the books or objects
you don’t want to get wet)
• Stopwatch (or cell phone with a timer)
• Digital camera or mobile device capable of
taking photos
• Piece of string
• Marker
https://printable-ruler.net
STREAM MORPHOLOGY
continued on next page
10 Carolina Distance Learning
Safety
Wear your safety
goggles, gloves, and
lab apron for the dura-
tion of this investigation.
Read all the instructions for these laboratory
activities before beginning. Follow the instruc-
tions closely, and observe established laboratory
safety practices, including the use of appropriate
personal protective equipment (PPE).
Do not eat, drink, or chew gum while performing
these activities. Wash your hands with soap and
water before and after performing the activities.
Clean the work area with soap and water after
completing the investigation. Keep pets and chil-
dren away from lab materials and equipment.
Preparation
Note: This investigation is best performed
outdoors or in an area in which it is easy to
clean up wet sand/cornmeal and water. Do
not dump any of the sand/cornmeal and
water mixture down the sink, because it can
cause clogging.
1. Read through the activities.
2. Obtain all materials.
3. Pour the sand or cornmeal in one, even layer
on the tray or cookie sheet.
4. Pour water slowly over the sand/cornmeal
until it is completely saturated. Pour off any
excess water outside.
5. With your hands, rub the sand/cornmeal so
it is flat, and let it dry overnight in the tray/
cookie sheet.
6. Using the paper clip, skewer, or thumbtack,
poke a hole in the side of the single-use cup,
1 cm up from the bottom of the cup.
ACTIVITY 1
ACTIVITY
A Creating a Stream Table
In this activity, you will be measuring different
factors (see Step 5) for two different stream
models: one where the streambed is tilted at a
steeper angle and another where the streambed
is tilted at a shallower one. Propose four sepa-
rate hypotheses for which of the two streambed
angles (steeper or shallower) will have the
highest values for sinuosity, velocity, relief, and
gradient. Briefly state why you feel that way.
Complete this information in the “Hypotheses”
section of the Lab Worksheet.
1. Bring the tray outside. Place the thicker book
in a plastic bag. Place the tray on one end of
the book so it is tilted (see Figure 7).
2. Fill the cup without a hole in it with tap water
and slowly pour the water into the single-use
cup. Ensure that the single-use cup is right
above the higher end of the tray.
Note: Store extra tap water on-site if more
water is needed to form a stream.
3. Let the water trickle out of the hole in the
single-use cup down the sand/cornmeal.
Observe how the water forms a “stream”
in the table. Stop pouring after a small
streamflow has formed down the table.
Poking a Hole in a Cup to Create a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973740372001
Figure 7. Tray Thicker
book
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
www.carolina.com/distancelearning 11
iii. Now, divide the curvy distance by the
straight distance. Note: If there is no
curvy distance (if the stream forms
straight down the table), then the
sinuosity is 1.
How to Measure the Sinuosity of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973736251001
b. Velocity = distance traveled (cm)/time to
travel (s) (recorded in cm/s)
Obtain the small piece of foam (about
the size of a grain of rice). Hold the
single-use cup over the raised edge of the
stream table, allow water to flow out of the
hole, and drop the piece of foam into the
top of the stream. Time how long it takes
(in seconds) for the piece of foam to float
downstream. Divide the curvy distance by
this time.
How to Measure the Velocity of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973739032001
c. Relief = highest elevation (cm) − lowest
elevation (cm) (recorded in cm)
Measure the elevation change from the
beginning to the end of the stream. Use
the ruler to measure the highest point of
the incline to the ground for the highest
elevation and measure the bottom part
of the tray to the ground for the lowest
elevation.
4. On a blank sheet of paper, carefully
sketch what the formed stream looks
like. Clearly label where erosion and deposition
have occurred along the streambed. Take a
photograph of your completed drawing and
another photograph of your actual stream
table. In the stream table photograph, include
a strip of paper with your name and the date
written on it. You will be uploading both
photographs to your lab report.
5. Use the instructions below to calculate the
values for the different physical stream features
in the “Calculations” section of the Lab
Worksheet. Record these values in Data Table
1 of the “Observations/Data Tables” section of
the Lab Worksheet.
a. Sinuosity = curvy distance (cm)/straight
distance (cm) (no units)
i. Use a piece of string to measure the
distance from the mouth to the source
of the stream along the curve (curvy
distance). Once you have used the string
to trace the stream, hold each end of the
string, straighten it, lay it flat, and mark
where the two ends of the stream were.
Use a ruler to measure this distance
between the marks (the curvy distance).
ii. Use a ruler to measure the distance
straight down the stream from the mouth
to the source of the stream (no curve—
straight distance).
continued on next page
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
Note: In Activity 1, the heights of the source
of the streams were altered to observe how
streamflow and streambed formation were
affected. In Activity 2, use your streamflow
knowledge to design an experiment by
altering a different characteristic. You will
record the same calculations for your new
experimental setup.
ACTIVITY
ACTIVITY 1 continued
How to Measure the Relief of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973740399001
d. Gradient = relief (cm)/total distance (cm)
(rise/run) (no units)
Measure the slope of the stream; divide
the relief by the total distance (calculated
in Steps c and a). Note: If the stream is
curvy, this distance is the curvy distance;
if it is not, then this distance is the straight
distance.
How to Measure the Gradient of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973742678001
6. Gently pour the excess water from the stream
table into the grass, and flatten the sand/
cornmeal out where the stream formed,
making a uniform layer.
7. Repeat Steps 1–6 with the thinner book to
obtain a more gradual stream formation.
8. While not required, if you feel particularly less
than confident with your results from doing
only one trial run, feel free to do multiple trials
to test for validity.
ACTIVITY 2
A Scientific Method: Modeling
Human Impacts on Stream
Ecosystems
1. Design a procedure similar to Activity 1.
Choose one height to test the trials and
change a different variable to analyze the
same calculations for stream movement
and formation throughout the streambed.
Choose a variable to change that models how
humans might modify a stream channel for
good or for ill. Activities such as pre-digging
a stream, adding a dam or other features
along the streambed, or adding plants along
these areas are all common factors that
can be altered within a streambed. Feel
free to implement additional materials from
your surroundings, such as using a rock to
represent a dam, for example.
2. Hypothesize whether each of the four
calculations (sinuosity, velocity, relief, and
gradient) will increase, decrease, or stay the
same, and include your reasoning in your
choices. Record this in the “Hypotheses”
section in your Lab Worksheet.
12 Carolina Distance Learning
continued on next page
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
www.carolina.com/distancelearning 13
3. Test your new experimental design
by using the same procedure as in
Activity 1. On a blank sheet of paper, carefully
sketch what the formed stream looks like.
Clearly label where erosion and deposition
have occurred along the streambed. Take a
photograph of your completed drawing …
Running head: NAME OF LAB
1
Running head: NAME OF LAB
3
Name of Lab
Your Name
SCI 207: Our Dependence Upon the Environment
Instructor’s Name
Date
*This template will enable you to produce a polished Lab
Report. Simply complete each section below, pasting in all
your completed data tables, graphs, and photographs where
indicated. Before you submit your Lab Report, it is
recommended that you run it through Turnitin, using the student
folder, to ensure protection from accidental plagiarism. Please
delete this purple text, and all the instructions below, before
submitting your final report.
Title of Lab Goes Here
Introduction
Background paragraph: Provide background on the lab topic,
explaining the key concepts covered in the lab and defining (in
your own words) important terms relating to the lab. Explain
why the lab topic is important to scientists. Using APA format,
cite at least two outside credible sources (sources other than
textbook or lab manual) in your statement. Your background
paragraph should be 5-7 original, substantive sentences long.
Objectives paragraph:In 4-5 sentences, explain the purpose of
this lab. What is it intended to examine or test?
Hypotheses paragraph: State your hypotheses for this lab. Be
sure to cover all the lab activities, one at a time. For each
hypothesis, explain why you originally thought that would
happen.
Note: Do not mention the actual results of the lab here – they go
later in the report.
For additional help in writing your Introduction section, refer to
the Ashford Writing Center Resource, Introductions and
Conclusions.
Materials and Methods
Using your own words, describe what you did in each of the lab
activities. Answers should enable a lab report reader to repeat
the lab just as you did it – a process known as replication.
Clearly explain any measurements you made (including the
measurement units).
Results
Data Tables: Copy and paste each of your completed data tables
here, in order (Weeks One, Two, Four, and Five Labs only).
Observations: Provide your observations for each lab activity
here, in order (Week Three Lab only)
Graphs: Paste your graphshere (Week Four Lab only). Include a
numbered figure caption below each one, in APA format.
Photographs: Paste your photographs here, in the order they
were taken in the lab. Include numbered figure captions below
each one, in APA format.
For additional help with the data tables and images, refer to the
Ashford Writing Center resource, Tables, Images, and
Appendices.
Discussion
Accept or reject hypotheses paragraph: Based upon the results
of each lab activity, explain whether you accepted or rejected
each of your hypotheses, and why.
Follow these steps:
· Restate your original hypothesis for the lab activity.
· Communicate the results of the lab. Then,
· Compare your hypothesis to the results of the lab and decide
whether to accept your hypothesis or reject it.
· State if your hypothesis is supported or not, and explain with
evidence.
· Move on to the next lab activity and repeat the process.
What I have learned paragraph: What important new things have
you learned from this lab? Use at least one credible outside
source (not the lab manual or textbook) to answer this question.
Cite the source using APA format. Answers should be 5-7
original, substantive sentences in length.
Sources of error paragraph: What challenges did you encounter
when completing this lab? (Identify at least one.) How might
those challenges that you experienced have affected the
accuracy of the results that you obtained?
Future research paragraph: Based upon what you learned in this
lab, what new questions do you have about the topic of this lab?
In a few sentences, how might you design a new lab activity to
answer those questions?
References
List the references that you cited in your report, in APA format
and alphabetically by author’s last name. If you did not actually
cite the source somewhere in your paper, do not include it.
For additional help in formatting your resources section, refer
to the Ashford Writing Center’s resource for Formatting your
Reference List.
22
Lab Worksheet
Hypotheses:
Activity 1
Sinuosity Hypothesis:
Velocity Hypothesis:
Relief Hypothesis:
Gradient Hypothesis:
Activity 2
Sinuosity Hypothesis:
Velocity Hypothesis:
Relief Hypothesis:
Gradient Hypothesis:
Observations/Data Tables:
Data Table 1.
Trial
Sinuosity
Velocity
(cm/s)
Relief
(cm)
Gradient
Thicker Book
1
2
3
Thinner Book
1
2
3
Data Table 2.
Variable changed:
Book thickness used:
Trial
Sinuosity
Velocity
(cm/s)
Relief
(cm)
Gradient
1
2
3
Calculations:
Activity 1.
Sinuosity:
Curvy distance (cm) / Straight distance (cm) = sinuosity (no
units)
___________ / ____________ =
Both the curvy and straight distances are measurements taken
from the stream formation in the stream table. Please refer to
Activity 1 for more details.
Velocity
Distance traveled (cm) / Time it takes to travel (s) = Velocity
(cm/s)
___________ / ____________ =
The distance it takes a small piece of paper to travel
downstream divided by how long it takes to get downstream is
the velocity. Refer to Activity 1 for more details.
Relief
Highest elevation (cm) – Lowest elevation (cm) = Relief (cm)
___________ - ____________ =
By subtracting the highest elevation of the stream and the
lowest elevation of the stream from each other, the relief can be
calculated. Please refer to Activity 1 for more details.
Gradient
Relief (cm) / Total distance (cm) = Gradient (no units)
___________ / ____________ =
By dividing the relief by the total distance of the stream, the
gradient can be calculated. Please refer to Activity 1 for more
details.
ACTIVITY 2
Sinuosity
Curvy distance (cm) / Straight distance (cm) = sinuosity (no
units)
___________ / ____________ =
Both the curvy and straight distances are measurements taken
from the stream formation in the stream table. Please refer to
Activity 1 for more details.
Velocity
Distance traveled (cm) / Time it takes to travel (s) = Velocity
(cm/s)
___________ / ____________ =
The distance it takes a small piece of paper to travel
downstream divided by how long it takes to get downstream is
the velocity. Refer to Activity 1 for more details.
Relief
Highest elevation (cm) – Lowest elevation (cm) = Relief (cm)
___________ - ____________ =
By subtracting the highest elevation of the stream and the
lowest elevation of the stream from each other, the relief can be
calculated. Please refer to Activity 1 for more details.
Gradient
Relief (cm) / Total distance (cm) = Gradient (no units)
___________ / ____________ =
By dividing the relief by the total distance of the stream, the
gradient can be calculated. Please refer to Activity 1 for more
details.
©2015 Carolina Biological Supply Company
Stream Morphology
Investigation
Manual
ENVIRONMENTAL SCIENCE
Made ADA compliant by
NetCentric Technologies using
the CommonLook® software
STREAM MORPHOLOGY
Overview
Students will construct a physical scale model of a stream
system
to help understand how streams and rivers shape the solid earth
(i.e., the landscape). Students will perform several experiments
to determine streamflow properties under different conditions.
They will apply the scientific method, testing their own
scenarios
regarding human impacts to river systems.
Outcomes
• Design a stream table model to analyze the different
characteristics of streamflow.
• Explain the effects of watersheds on the surrounding
environment in terms of the biology, water quality, and
economic
importance of streams.
• Identify different stream features based on their geological
formation due to erosion and deposition.
• Develop an experiment to test how human actions can
modify
stream morphology in ways that may, in turn, impact riparian
ecosystems.
Time Requirements
Preparation ...................................................................... 5
minutes,
then let sit
overnight
Activity 1: Creating a Stream Table ................................ 60
minutes
Activity 2: Scientific Method: Modeling Human Impacts
on Stream Ecosystems .................................. 45 minutes
2 Carolina Distance Learning
Key
Personal protective
equipment
(PPE)
goggles gloves apron
follow
link to
video
photograph
results and
submit
stopwatch
required
warning corrosion flammable toxic environment health hazard
Key
Personal protective
equipment
(PPE)
goggles gloves apron
follow
link to
video
photograph
results and
submit
stopwatch
required
warning corrosion flammable toxic environment health hazard
Table of Contents
2 Overview
2 Outcomes
2 Time Requirements
3 Background
9 Materials
10 Safety
10 Preparation
10 Activity 1
12 Activity 2
13 Submission
13 Disposal and Cleanup
14 Lab Worksheet
18 Lab Questions
Background
A watershed is an area of land that drains
any form of precipitation into the earth’s water
bodies (see Figure 1). The entire land area that
forms this connection of atmospheric water to
the water on Earth, whether it is rain flowing into
a lake or snow soaking into the groundwater, is
considered a watershed.
Water covers approximately 70% of the earth’s
surface. However, about two-thirds of all water
is impaired to some degree, with less than
1% being accessible, consumable freshwater.
Keeping watersheds pristine is the leading
method for providing clean drinking water to
communities, and it is a high priority worldwide.
However, with increased development and
people flocking toward waterfront regions to live,
downstream communities are becoming increas-
ingly polluted every day.
From small streams to large rivers (hereafter
considered “streams”), streamflow is a vital
part of understanding the formation of water
and landmasses within a watershed. Under-
standing the flow of a stream can help to deter-
mine when and how much water reaches other
areas of a watershed. For example, one of the
leading causes of pollution in most waterways
across the United States is excessive nutrient
and sediment overloading from runoff from
the landmasses surrounding these waterways.
Nutrients such as phosphorus and nitrogen
are prevalent in fertilizers that wash off lawns
and farms into surrounding sewer and water
systems. This process can cause the overpro-
duction of algae, which are further degraded
by bacteria. These bacteria then take up the
surrounding oxygen for respiration and kill
multiple plants and organisms. A comprehen-
sive understanding of the interaction between
streams and the land as they move downstream
to other areas of a watershed can help prevent
pollution. One example is to build a riparian
buffer—a group of plants grown along parts of
a stream bank that are able to trap pollutants
and absorb excessive nutrients; this lessens the
effects of nutrient overloading in the streambed.
(A riparian ecosystem is one that includes a
stream and the life along its banks.)
Sediment, which is easily moved by bodies of
water, has a negative effect on water quality. It
can clog fish gills and cause suffocation, and the
water quality can be impaired by becoming very
cloudy because of high sediment flow. This can
create problems for natural vegetation growth
by obstructing light and can prevent animals
continued on next page
www.carolina.com/distancelearning 3
Figure 1.
Snow
Rainfall
Precipitation
Overland
flows
Underground
sources
STREAM MORPHOLOGY
Background continued
from visibly finding their prey. Erosion also has
considerable effects on stream health. Erosion,
or the moving of material (soil, rock, or sand)
from the earth to another location, is caused by
actions such as physical and chemical weath-
ering (see Figure 2). These processes loosen
rocks and other materials and can move these
sediments to other locations through bodies
of water. Once these particles reach their final
destination, they are considered to be depos-
ited. Deposition is also an important process
because where the sediment particles end up
can greatly impact the shape of the land and
how water is distributed throughout the system
(see Figure 2). Erosion and deposition can occur
multiple times along the length of a stream and
can vary because of extreme weather, such
as flooding or high wind. Over time, these two
processes can completely reshape an area,
causing the topography, or physical features, of
an entire watershed to be altered. Depending on
weather conditions, a streambed can be altered
quite quickly. Faster moving water tends to
erode more sediment than it deposits. Deposi-
tion usually occurs in slower moving water. With
less force acting on the sediment, it falls out
of suspension and builds up on the bottom or
sides of the streambed.
Sediments are deposited throughout the length
of a stream as bars, generally in the middle of
a channel, or as floodplains, which are more
ridgelike areas of land along the edges of the
stream. Bars generally consist of gravel or sand-
size particles, whereas floodplains are made of
more fine-grained material. Deltas (see Figure
3) and alluvial fans (see Figure 4) are sediment
deposits that occur because of flowing water
continued on next page
4 Carolina Distance Learning
Figure 2. Figure 3.
Erosion Deposition
and are considered more permanent struc-
tures because of their longevity. They are both
fan-shaped accumulations of sediment that
form when the stream shape changes. Deltas
form in continuous, flowing water at the mouth
of streams, whereas alluvial fans only form in
streams that flow intermittently (when it rains
or when snow melts). Alluvial fans are usually
composed of larger particles and will form in
canyons and valleys as water accumulates in
these regions. The fan shape of both deposits
is easy to spot from a distance, because they
are formed due to the sand settling out on the
bottom of the streams.
Streamflow Characteristics
Discharge, or the amount of water that flows
past a given location of a stream (per second),
is a very important characteristic of stream-
flow. Discharge and velocity (the speed of
the water moving in the stream) are both vital
to the shaping of streambeds. Within stream
ecosystems, there are microhabitats (smaller
habitats making up larger habitats) that have
different discharges and velocities. The type
of microhabitat depends on the width of that
part of the stream, the shape of the streambed,
and many other physical factors. In areas that
contain riffles, water quickly splashes over
shallow, rocky areas, which are easily observed
in sunny areas (see Figure 5). Deeper pools of
slower moving water also form on the outside
of the bends of the streams, as shown in Figure
5. Runs, which are deeper than riffles but have
a moderate current, connect riffles and pools
throughout the stream. The source of a stream
continued on next page
www.carolina.com/distancelearning 5
Figure 4.
Figure 5.
PoolRiffles
STREAM MORPHOLOGY
Background continued
is where it begins, while the mouth of a stream is
where it discharges into a lake or an ocean.
Flow rate is very helpful for engineers and
scientists who study the impacts of a stream
on organisms, surrounding land, and even
recreational uses such as boating and fishing.
The speed of the water in specific areas helps
to determine the composition of the substrate
in that area of the streambed, i.e., whether the
material is more clay, sand, mud, or gravel.
Particle sizes of different sediments are shaped
and deposited throughout various areas of a
stream, depending on these factors.
Most streams have specific physical features
that show periodicity or consistency in regular
intervals. Meanders can occur in a streambed
because of gravity. Water erodes sediment to
the outside of a stream and deposits sediment
along the opposite bank, forming a natural
weaving or “snaking” pattern. This pattern can
form in any depth of water and along any type
of terrain. Sinuosity is the measure of how
curvy a stream is. This is a helpful measurement
when determining the flow rates of streams
because it can show how the curves affect the
water velocity. In major rivers and very broad
valleys, meanders can be separated from the
main body of a river, leaving a U-shaped water
body known as an oxbow lake (see Figure 6).
These lake formations can become an entirely
new ecosystem with food and shelter for some
organisms, such as amphibians, to thrive in.
continued on next page
6 Carolina Distance Learning
Figure 6.
Oxbow Lake Formation
continued on next page
www.carolina.com/distancelearning 7
Another feature important for streamflow is the
difference in elevation, or the relief of a stream
as it flows downstream. Streams start at a
higher elevation than where they end up; this
causes the discharge and velocity at the source
versus that at the mouth of the stream to be
quite different, depending on the meandering
of the stream and the type of deposition and
erosion that occurs. The gradient is another
important factor of stream morphology. This
is a measure of the slope of the stream over
a particular distance (the relief over the total
distance of the stream). For a kayaker who
wants to know how fast he/she can paddle
down a particular stream, knowing the difference
in elevation (relief) is important over a particular
area; however, knowing the slope of this partic-
ular area will give the kayaker a more accurate
prediction. With erosion and deposition occur-
ring at different rates and at different parts of the
stream, knowing the gradient is a very important
part of determining streamflow for the kayaker.
Groundwater is also affected by changes in
the stream shape and flow. Water infiltrates the
ground in recharge zones. If streams are contin-
uously flowing over these areas, the ground is
able to stay saturated. Most streams are peren-
nial, meaning they flow all year. However, a
drought or an extreme weather event may lower
the stream level. This can lower the ground-
water level, which then allows the stream to only
sustain flow when it rises to a level above the
water table. With the small amount of available
freshwater on Earth, it is vital that our ground-
water sources stay pristine.
Biotic and Economic Impacts of Streams
Not only are streams a major source of clean
freshwater for humans, but they are also a
hotspot for diversity and life. There is great biotic
variability between the different microhabitats
(e.g., riffles, pools, and runs) of a stream. Riffles,
in particular, have a high biodiversity because of
the constant movement of water and replenish-
ment of oxygen throughout. Pools usually have
fewer and more hardy organisms in their slower,
deeper moving waters where less oxygen is
available. There are also a multitude of plant
and animal species living around streams. From
a stream in a backyard to the 1,500-mile-long
Colorado River, streams have thousands of
types of birds, insects, and plants that live near
them because they are nutrient-rich with clean
freshwater. Sometimes nutrient spiraling can
occur in these streams. Nutrient spiraling is the
periodic chemical cycling of nutrients throughout
different depths of the streams. This process
recycles nutrients and allows life to thrive at all
depths and regions of different-size streams.
Streams can also have significant economic
impacts on a region. Streams are a channel for
fishing and transportation, two of the largest
industries in the world. Because of all the
commercial boating operations that occur world-
wide in these channels, it is vital to understand
the formation and flow patterns of streams so
that they are clear and navigable. Fishing for
human consumption is another large, worldwide
industry that depends on stream health; keeping
streams pristine and understanding how they
form are of utmost importance in sustaining this
top food industry. Recreational activities such
as kayaking, sportfishing, and boating all shape
areas where streams and rivers are prevalent as
well.
STREAM MORPHOLOGY
Background continued
All acts that happen on land affect the water
quality downstream. Through creating a model
stream table in this lab, one can predict large,
system-wide effects. Many land features and
physical parts of a streambed can affect the flow
of water within a watershed. Houses along a
streambed or numerous large rocks can cause
the streamflow to change directions. If any of
these factors cause erosion or deposition in
an area of the stream, microhabitats can be
created. These factors can affect the stream on
a larger scale, creating changes in flow speeds
and widths of the streambeds.
The Importance of Scaling and the Use of the
Scientific Method
When a stream table model is created, a large-
scale depiction of a streambed is being reduced
to a smaller scale so that the effects of different
stream properties on the surrounding environ-
ment can be demonstrated. While the stream
table made in this lab is not a to-size stream
and landscape, the same processes can be
more easily observed at a scaled-down size.
Scientists frequently create models to simplify
complex processes for easier understanding.
For example, to physically observe something
that is too big, such as the distance between
each planet in the solar system, the spatial
distance can be scaled to create a solar system
model. By changing the distance between each
planet from kilometers to centimeters, this large
system is now more feasibly observed. Similarly,
the stream model allows us to physically view
different scenarios of a streambed and analyze
different stream properties. Mathematical
equations are also used frequently to observe
data to predict future conditions, such as in
meteorological models. Ultimately, models can
be very important tools for predicting future
events and analyzing processes that occur
in a system.
When one creates a model, many different
outcomes for the same type of setup can be
possible. In this case, multiple variations of
similar-size streambeds will be designed to
evaluate different stream features and their
impacts on the surrounding ecosystem. When
performing any type of scientific evalua-
tion, the scientific method is very useful in
obtaining accurate results. This method involves
performing experiments and recording observa-
tions to answer a question of interest.
Although the exact step names and sequences
sometimes vary a bit from source to source,
in general, the scientific method begins with
a scientist making observations about some
phenomenon and then asking a question. Next,
a scientist proposes a hypothesis—a “best
guess” based upon available information as to
what the answer to the question will be. The
scientist then designs an experiment to test the
hypothesis. Based on the experimental results,
the scientist then either accepts the hypothesis
(if it matches what happened) or rejects it (if it
doesn’t). A rejected hypothesis is not a failure; it
is helpful information that can point the way to
a new hypothesis and experiment. Finally, the
scientist communicates the findings to the world
through presenting at a peer-reviewed academic
conference and/or publishing in a scholarly
journal like Science or Nature, for example.
continued on next page
8 Carolina Distance Learning
www.carolina.com/distancelearning 9
When creating stream table models, we are
trying to understand how different factors can
affect streamflow. A few very important steps
from the scientific method are required. The first
is forming a testable hypothesis, or an educated
prediction, of what you expect to observe
based on what you have learned about stream
morphology thus far. In Activity 1, the steps are
already listed, so the main goal is to compare
the two differences in stream reliefs. However,
in Activity 2, the goal is to alter a different vari-
able and predict what will happen to several
stream features in this new situation. In general,
when recording these observations to test a
hypothesis, it is important to repeat the tests.
To obtain valid results, you need to have similar
results over multiple attempts to ensure consis-
tency in the findings and to show that what you
are discovering is not by chance but is instead
replicated each time the experiment is run. While
multiple trials are not required in this lab experi-
ment, if you feel particularly less than confident
with your results from doing only one trial run in
Activity 1 or 2, feel free to do multiple trials to
test for validity.
Materials
Needed but not supplied:
• Tray or cookie sheet (or something similar)
• 2–3 lb bag of play sand (not construction sand
or any other type of sand or soil) or, if that is
unavailable, substitute with 1 lb bag (or more)
of plain cornmeal (not self-rising)
• Single-use cup that can have a hole poked in it
(e.g., plastic yogurt cup, foam cup)
• Small piece of foam (such as from a foam cup),
about the size of a grain of rice
• Cup, such as a glass, mug, or plastic cup
• Paper clip, skewer, or thumbtack (to poke a
hole in the single-use cup)
• 2 books, one approximately twice as thick as
the other
• Ruler (There is a ruler in the Equipment Kit if
you have already received it, or you can print
one at a website such as printable-ruler.net.)
• Tap water
• 2 Plastic bags (to cover the books or objects
you don’t want to get wet)
• Stopwatch (or cell phone with a timer)
• Digital camera or mobile device capable of
taking photos
• Piece of string
• Marker
https://printable-ruler.net
STREAM MORPHOLOGY
continued on next page
10 Carolina Distance Learning
Safety
Wear your safety
goggles, gloves, and
lab apron for the dura-
tion of this investigation.
Read all the instructions for these laboratory
activities before beginning. Follow the instruc-
tions closely, and observe established laboratory
safety practices, including the use of appropriate
personal protective equipment (PPE).
Do not eat, drink, or chew gum while performing
these activities. Wash your hands with soap and
water before and after performing the activities.
Clean the work area with soap and water after
completing the investigation. Keep pets and chil-
dren away from lab materials and equipment.
Preparation
Note: This investigation is best performed
outdoors or in an area in which it is easy to
clean up wet sand/cornmeal and water. Do
not dump any of the sand/cornmeal and
water mixture down the sink, because it can
cause clogging.
1. Read through the activities.
2. Obtain all materials.
3. Pour the sand or cornmeal in one, even layer
on the tray or cookie sheet.
4. Pour water slowly over the sand/cornmeal
until it is completely saturated. Pour off any
excess water outside.
5. With your hands, rub the sand/cornmeal so
it is flat, and let it dry overnight in the tray/
cookie sheet.
6. Using the paper clip, skewer, or thumbtack,
poke a hole in the side of the single-use cup,
1 cm up from the bottom of the cup.
ACTIVITY 1
ACTIVITY
A Creating a Stream Table
In this activity, you will be measuring different
factors (see Step 5) for two different stream
models: one where the streambed is tilted at a
steeper angle and another where the streambed
is tilted at a shallower one. Propose four sepa-
rate hypotheses for which of the two streambed
angles (steeper or shallower) will have the
highest values for sinuosity, velocity, relief, and
gradient. Briefly state why you feel that way.
Complete this information in the “Hypotheses”
section of the Lab Worksheet.
1. Bring the tray outside. Place the thicker book
in a plastic bag. Place the tray on one end of
the book so it is tilted (see Figure 7).
2. Fill the cup without a hole in it with tap water
and slowly pour the water into the single-use
cup. Ensure that the single-use cup is right
above the higher end of the tray.
Note: Store extra tap water on-site if more
water is needed to form a stream.
3. Let the water trickle out of the hole in the
single-use cup down the sand/cornmeal.
Observe how the water forms a “stream”
in the table. Stop pouring after a small
streamflow has formed down the table.
Poking a Hole in a Cup to Create a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973740372001
Figure 7. Tray Thicker
book
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740372001
www.carolina.com/distancelearning 11
iii. Now, divide the curvy distance by the
straight distance. Note: If there is no
curvy distance (if the stream forms
straight down the table), then the
sinuosity is 1.
How to Measure the Sinuosity of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973736251001
b. Velocity = distance traveled (cm)/time to
travel (s) (recorded in cm/s)
Obtain the small piece of foam (about
the size of a grain of rice). Hold the
single-use cup over the raised edge of the
stream table, allow water to flow out of the
hole, and drop the piece of foam into the
top of the stream. Time how long it takes
(in seconds) for the piece of foam to float
downstream. Divide the curvy distance by
this time.
How to Measure the Velocity of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973739032001
c. Relief = highest elevation (cm) − lowest
elevation (cm) (recorded in cm)
Measure the elevation change from the
beginning to the end of the stream. Use
the ruler to measure the highest point of
the incline to the ground for the highest
elevation and measure the bottom part
of the tray to the ground for the lowest
elevation.
4. On a blank sheet of paper, carefully
sketch what the formed stream looks
like. Clearly label where erosion and deposition
have occurred along the streambed. Take a
photograph of your completed drawing and
another photograph of your actual stream
table. In the stream table photograph, include
a strip of paper with your name and the date
written on it. You will be uploading both
photographs to your lab report.
5. Use the instructions below to calculate the
values for the different physical stream features
in the “Calculations” section of the Lab
Worksheet. Record these values in Data Table
1 of the “Observations/Data Tables” section of
the Lab Worksheet.
a. Sinuosity = curvy distance (cm)/straight
distance (cm) (no units)
i. Use a piece of string to measure the
distance from the mouth to the source
of the stream along the curve (curvy
distance). Once you have used the string
to trace the stream, hold each end of the
string, straighten it, lay it flat, and mark
where the two ends of the stream were.
Use a ruler to measure this distance
between the marks (the curvy distance).
ii. Use a ruler to measure the distance
straight down the stream from the mouth
to the source of the stream (no curve—
straight distance).
continued on next page
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973736251001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973739032001
Note: In Activity 1, the heights of the source
of the streams were altered to observe how
streamflow and streambed formation were
affected. In Activity 2, use your streamflow
knowledge to design an experiment by
altering a different characteristic. You will
record the same calculations for your new
experimental setup.
ACTIVITY
ACTIVITY 1 continued
How to Measure the Relief of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973740399001
d. Gradient = relief (cm)/total distance (cm)
(rise/run) (no units)
Measure the slope of the stream; divide
the relief by the total distance (calculated
in Steps c and a). Note: If the stream is
curvy, this distance is the curvy distance;
if it is not, then this distance is the straight
distance.
How to Measure the Gradient of a
Stream
https://players.brightcove.
net/17907428001/HJ2y9UNi_default/
index.html?videoId=5973742678001
6. Gently pour the excess water from the stream
table into the grass, and flatten the sand/
cornmeal out where the stream formed,
making a uniform layer.
7. Repeat Steps 1–6 with the thinner book to
obtain a more gradual stream formation.
8. While not required, if you feel particularly less
than confident with your results from doing
only one trial run, feel free to do multiple trials
to test for validity.
ACTIVITY 2
A Scientific Method: Modeling
Human Impacts on Stream
Ecosystems
1. Design a procedure similar to Activity 1.
Choose one height to test the trials and
change a different variable to analyze the
same calculations for stream movement
and formation throughout the streambed.
Choose a variable to change that models how
humans might modify a stream channel for
good or for ill. Activities such as pre-digging
a stream, adding a dam or other features
along the streambed, or adding plants along
these areas are all common factors that
can be altered within a streambed. Feel
free to implement additional materials from
your surroundings, such as using a rock to
represent a dam, for example.
2. Hypothesize whether each of the four
calculations (sinuosity, velocity, relief, and
gradient) will increase, decrease, or stay the
same, and include your reasoning in your
choices. Record this in the “Hypotheses”
section in your Lab Worksheet.
12 Carolina Distance Learning
continued on next page
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973740399001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
ndex.html?videoId=5973742678001
www.carolina.com/distancelearning 13
3. Test your new experimental design
by using the same procedure as in
Activity 1. On a blank sheet of paper, carefully
sketch what the formed stream looks like.
Clearly label where erosion and deposition
have occurred along the streambed. Take a
photograph of your completed drawing …
Stream MorphologyInvestigation ManualENVIRONMENTAL SCI.docx

Weitere ähnliche Inhalte

Ähnlich wie Stream MorphologyInvestigation ManualENVIRONMENTAL SCI.docx

Puget Puget sound restoration 424 final
Puget Puget sound restoration 424 finalPuget Puget sound restoration 424 final
Puget Puget sound restoration 424 final
jketchu
 
Kathlyn Jacobe
Kathlyn JacobeKathlyn Jacobe
Kathlyn Jacobe
kathjacobe
 
Power point presentation
Power point presentationPower point presentation
Power point presentation
Mark Zaldua
 
Power Point Presentation
Power Point PresentationPower Point Presentation
Power Point Presentation
Mark Zaldua
 
Fluvial Process And Related Land Forms
Fluvial Process And Related Land Forms Fluvial Process And Related Land Forms
Fluvial Process And Related Land Forms
sileshi
 
Coastal environments
Coastal environmentsCoastal environments
Coastal environments
carolmdooley
 
Chapter 1 occurrence of groundwater
Chapter 1  occurrence of groundwaterChapter 1  occurrence of groundwater
Chapter 1 occurrence of groundwater
Usama Waly
 
Power point presentation
Power point presentationPower point presentation
Power point presentation
magdaongmarilyn
 

Ähnlich wie Stream MorphologyInvestigation ManualENVIRONMENTAL SCI.docx (20)

Groundwater Quality from Basaltic Aquifers, Dr. S. K. Vadagbalkar, Associat...
  Groundwater Quality from Basaltic Aquifers, Dr. S. K. Vadagbalkar, Associat...  Groundwater Quality from Basaltic Aquifers, Dr. S. K. Vadagbalkar, Associat...
Groundwater Quality from Basaltic Aquifers, Dr. S. K. Vadagbalkar, Associat...
 
Puget Puget sound restoration 424 final
Puget Puget sound restoration 424 finalPuget Puget sound restoration 424 final
Puget Puget sound restoration 424 final
 
Geological action of river
Geological action of riverGeological action of river
Geological action of river
 
River
RiverRiver
River
 
Earth's Hydrosphere :)
Earth's Hydrosphere :)Earth's Hydrosphere :)
Earth's Hydrosphere :)
 
Earth's Hydrosphere and Water Pollution
Earth's Hydrosphere and Water PollutionEarth's Hydrosphere and Water Pollution
Earth's Hydrosphere and Water Pollution
 
Kathlyn Jacobe
Kathlyn JacobeKathlyn Jacobe
Kathlyn Jacobe
 
Rivers
RiversRivers
Rivers
 
Hydrology
HydrologyHydrology
Hydrology
 
Power point presentation
Power point presentationPower point presentation
Power point presentation
 
Power Point Presentation
Power Point PresentationPower Point Presentation
Power Point Presentation
 
Aquatic ecosystems freshwater
Aquatic ecosystems  freshwaterAquatic ecosystems  freshwater
Aquatic ecosystems freshwater
 
Fluvial Process And Related Land Forms
Fluvial Process And Related Land Forms Fluvial Process And Related Land Forms
Fluvial Process And Related Land Forms
 
What is the river discharge and what factors
What is the river discharge and what factorsWhat is the river discharge and what factors
What is the river discharge and what factors
 
Coastal environments
Coastal environmentsCoastal environments
Coastal environments
 
Ground water| Facts of Ground water
Ground water| Facts of Ground waterGround water| Facts of Ground water
Ground water| Facts of Ground water
 
Fluvial morphology
Fluvial morphologyFluvial morphology
Fluvial morphology
 
Chapter 1 occurrence of groundwater
Chapter 1  occurrence of groundwaterChapter 1  occurrence of groundwater
Chapter 1 occurrence of groundwater
 
ENV 101 Ch08 lecture ppt_a
ENV 101 Ch08 lecture ppt_aENV 101 Ch08 lecture ppt_a
ENV 101 Ch08 lecture ppt_a
 
Power point presentation
Power point presentationPower point presentation
Power point presentation
 

Mehr von cpatriciarpatricia

Stress and Healthcare Workers Productivity at Lexington Medical .docx
Stress and Healthcare Workers Productivity at Lexington Medical .docxStress and Healthcare Workers Productivity at Lexington Medical .docx
Stress and Healthcare Workers Productivity at Lexington Medical .docx
cpatriciarpatricia
 
StrengthsWeaknessesOpportunitiesThreatsSkillsK.docx
StrengthsWeaknessesOpportunitiesThreatsSkillsK.docxStrengthsWeaknessesOpportunitiesThreatsSkillsK.docx
StrengthsWeaknessesOpportunitiesThreatsSkillsK.docx
cpatriciarpatricia
 
Strengths-based nursing (SBN) is an approach to care in which eigh.docx
Strengths-based nursing (SBN) is an approach to care in which eigh.docxStrengths-based nursing (SBN) is an approach to care in which eigh.docx
Strengths-based nursing (SBN) is an approach to care in which eigh.docx
cpatriciarpatricia
 
Strengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docx
Strengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docxStrengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docx
Strengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docx
cpatriciarpatricia
 
Street Sense Media uses a range of creative platforms to spotl.docx
Street Sense Media uses a range of creative platforms to spotl.docxStreet Sense Media uses a range of creative platforms to spotl.docx
Street Sense Media uses a range of creative platforms to spotl.docx
cpatriciarpatricia
 
Stratification and Prejudice in Current EventsThe purpose of t.docx
Stratification and Prejudice in Current EventsThe purpose of t.docxStratification and Prejudice in Current EventsThe purpose of t.docx
Stratification and Prejudice in Current EventsThe purpose of t.docx
cpatriciarpatricia
 
Street CodeConsider this quote from Robert Sampson and William J.docx
Street CodeConsider this quote from Robert Sampson and William J.docxStreet CodeConsider this quote from Robert Sampson and William J.docx
Street CodeConsider this quote from Robert Sampson and William J.docx
cpatriciarpatricia
 
Strengths and Barriers to Program Implementation As you de.docx
Strengths and Barriers to Program Implementation As you de.docxStrengths and Barriers to Program Implementation As you de.docx
Strengths and Barriers to Program Implementation As you de.docx
cpatriciarpatricia
 
Strengths 1. Large Enrollment 2. Flexible class schedules1. The.docx
Strengths 1. Large Enrollment 2. Flexible class schedules1. The.docxStrengths 1. Large Enrollment 2. Flexible class schedules1. The.docx
Strengths 1. Large Enrollment 2. Flexible class schedules1. The.docx
cpatriciarpatricia
 
Street artist Shepard Fairey, who was graduated from the Rhode I.docx
Street artist Shepard Fairey, who was graduated from the Rhode I.docxStreet artist Shepard Fairey, who was graduated from the Rhode I.docx
Street artist Shepard Fairey, who was graduated from the Rhode I.docx
cpatriciarpatricia
 
STRATEGYLeadershipLighting a fire under theniWhy urgen.docx
STRATEGYLeadershipLighting a fire under theniWhy urgen.docxSTRATEGYLeadershipLighting a fire under theniWhy urgen.docx
STRATEGYLeadershipLighting a fire under theniWhy urgen.docx
cpatriciarpatricia
 
STRATEGIESWhat can I do with this majorAREAS EMPLOYER.docx
STRATEGIESWhat can I do with this majorAREAS EMPLOYER.docxSTRATEGIESWhat can I do with this majorAREAS EMPLOYER.docx
STRATEGIESWhat can I do with this majorAREAS EMPLOYER.docx
cpatriciarpatricia
 
Strategies for ChangeWeek 7 The Hard Side of Change Management.docx
Strategies for ChangeWeek 7 The Hard Side of Change Management.docxStrategies for ChangeWeek 7 The Hard Side of Change Management.docx
Strategies for ChangeWeek 7 The Hard Side of Change Management.docx
cpatriciarpatricia
 
Strategic PlanningUnrestrictedthe managerial proc.docx
Strategic PlanningUnrestrictedthe managerial proc.docxStrategic PlanningUnrestrictedthe managerial proc.docx
Strategic PlanningUnrestrictedthe managerial proc.docx
cpatriciarpatricia
 
StrategicCompetitive PositionApple Inc. is known for its state-of.docx
StrategicCompetitive PositionApple Inc. is known for its state-of.docxStrategicCompetitive PositionApple Inc. is known for its state-of.docx
StrategicCompetitive PositionApple Inc. is known for its state-of.docx
cpatriciarpatricia
 
Strategies for Negotiation & Conflict Resolution Dr. Janice Ba.docx
Strategies for Negotiation & Conflict Resolution Dr. Janice Ba.docxStrategies for Negotiation & Conflict Resolution Dr. Janice Ba.docx
Strategies for Negotiation & Conflict Resolution Dr. Janice Ba.docx
cpatriciarpatricia
 
Strategic Review2015-2020Prepared by XYZ Consultants.docx
Strategic Review2015-2020Prepared by XYZ Consultants.docxStrategic Review2015-2020Prepared by XYZ Consultants.docx
Strategic Review2015-2020Prepared by XYZ Consultants.docx
cpatriciarpatricia
 

Mehr von cpatriciarpatricia (20)

Strict APA format 1 page and no references before 2015. Peer-reviewe.docx
Strict APA format 1 page and no references before 2015. Peer-reviewe.docxStrict APA format 1 page and no references before 2015. Peer-reviewe.docx
Strict APA format 1 page and no references before 2015. Peer-reviewe.docx
 
Stress and Healthcare Workers Productivity at Lexington Medical .docx
Stress and Healthcare Workers Productivity at Lexington Medical .docxStress and Healthcare Workers Productivity at Lexington Medical .docx
Stress and Healthcare Workers Productivity at Lexington Medical .docx
 
Stress and Chronic Illness- Choose and describe chronic illness su.docx
Stress and Chronic Illness- Choose and describe chronic illness su.docxStress and Chronic Illness- Choose and describe chronic illness su.docx
Stress and Chronic Illness- Choose and describe chronic illness su.docx
 
StrengthsWeaknessesOpportunitiesThreatsSkillsK.docx
StrengthsWeaknessesOpportunitiesThreatsSkillsK.docxStrengthsWeaknessesOpportunitiesThreatsSkillsK.docx
StrengthsWeaknessesOpportunitiesThreatsSkillsK.docx
 
Strengths-based nursing (SBN) is an approach to care in which eigh.docx
Strengths-based nursing (SBN) is an approach to care in which eigh.docxStrengths-based nursing (SBN) is an approach to care in which eigh.docx
Strengths-based nursing (SBN) is an approach to care in which eigh.docx
 
Strengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docx
Strengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docxStrengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docx
Strengths-to-Strategies, Curriculum Vitae, and Action PlanDue.docx
 
Street Sense Media uses a range of creative platforms to spotl.docx
Street Sense Media uses a range of creative platforms to spotl.docxStreet Sense Media uses a range of creative platforms to spotl.docx
Street Sense Media uses a range of creative platforms to spotl.docx
 
Strengths Paper Write a 2-page paper that identifies your top 5 str.docx
Strengths Paper Write a 2-page paper that identifies your top 5 str.docxStrengths Paper Write a 2-page paper that identifies your top 5 str.docx
Strengths Paper Write a 2-page paper that identifies your top 5 str.docx
 
Stratification and Prejudice in Current EventsThe purpose of t.docx
Stratification and Prejudice in Current EventsThe purpose of t.docxStratification and Prejudice in Current EventsThe purpose of t.docx
Stratification and Prejudice in Current EventsThe purpose of t.docx
 
Street CodeConsider this quote from Robert Sampson and William J.docx
Street CodeConsider this quote from Robert Sampson and William J.docxStreet CodeConsider this quote from Robert Sampson and William J.docx
Street CodeConsider this quote from Robert Sampson and William J.docx
 
Strengths and Barriers to Program Implementation As you de.docx
Strengths and Barriers to Program Implementation As you de.docxStrengths and Barriers to Program Implementation As you de.docx
Strengths and Barriers to Program Implementation As you de.docx
 
Strengths 1. Large Enrollment 2. Flexible class schedules1. The.docx
Strengths 1. Large Enrollment 2. Flexible class schedules1. The.docxStrengths 1. Large Enrollment 2. Flexible class schedules1. The.docx
Strengths 1. Large Enrollment 2. Flexible class schedules1. The.docx
 
Street artist Shepard Fairey, who was graduated from the Rhode I.docx
Street artist Shepard Fairey, who was graduated from the Rhode I.docxStreet artist Shepard Fairey, who was graduated from the Rhode I.docx
Street artist Shepard Fairey, who was graduated from the Rhode I.docx
 
STRATEGYLeadershipLighting a fire under theniWhy urgen.docx
STRATEGYLeadershipLighting a fire under theniWhy urgen.docxSTRATEGYLeadershipLighting a fire under theniWhy urgen.docx
STRATEGYLeadershipLighting a fire under theniWhy urgen.docx
 
STRATEGIESWhat can I do with this majorAREAS EMPLOYER.docx
STRATEGIESWhat can I do with this majorAREAS EMPLOYER.docxSTRATEGIESWhat can I do with this majorAREAS EMPLOYER.docx
STRATEGIESWhat can I do with this majorAREAS EMPLOYER.docx
 
Strategies for ChangeWeek 7 The Hard Side of Change Management.docx
Strategies for ChangeWeek 7 The Hard Side of Change Management.docxStrategies for ChangeWeek 7 The Hard Side of Change Management.docx
Strategies for ChangeWeek 7 The Hard Side of Change Management.docx
 
Strategic PlanningUnrestrictedthe managerial proc.docx
Strategic PlanningUnrestrictedthe managerial proc.docxStrategic PlanningUnrestrictedthe managerial proc.docx
Strategic PlanningUnrestrictedthe managerial proc.docx
 
StrategicCompetitive PositionApple Inc. is known for its state-of.docx
StrategicCompetitive PositionApple Inc. is known for its state-of.docxStrategicCompetitive PositionApple Inc. is known for its state-of.docx
StrategicCompetitive PositionApple Inc. is known for its state-of.docx
 
Strategies for Negotiation & Conflict Resolution Dr. Janice Ba.docx
Strategies for Negotiation & Conflict Resolution Dr. Janice Ba.docxStrategies for Negotiation & Conflict Resolution Dr. Janice Ba.docx
Strategies for Negotiation & Conflict Resolution Dr. Janice Ba.docx
 
Strategic Review2015-2020Prepared by XYZ Consultants.docx
Strategic Review2015-2020Prepared by XYZ Consultants.docxStrategic Review2015-2020Prepared by XYZ Consultants.docx
Strategic Review2015-2020Prepared by XYZ Consultants.docx
 

Kürzlich hochgeladen

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Kürzlich hochgeladen (20)

Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 

Stream MorphologyInvestigation ManualENVIRONMENTAL SCI.docx

  • 1. Stream Morphology Investigation Manual ENVIRONMENTAL SCIENCE Made ADA compliant by NetCentric Technologies using the CommonLook® software STREAM MORPHOLOGY Overview Students will construct a physical scale model of a stream system to help understand how streams and rivers shape the solid earth (i.e., the landscape). Students will perform several experiments to determine streamflow properties under different conditions. They will apply the scientific method, testing their own scenarios regarding human impacts to river systems. Outcomes • Design a stream table model to analyze the different characteristics of streamflow. • Explain the effects of watersheds on the surrounding environment in terms of the biology, water quality, and economic
  • 2. importance of streams. • Identify different stream features based on their geological formation due to erosion and deposition. • Develop an experiment to test how human actions can modify stream morphology in ways that may, in turn, impact riparian ecosystems. Time Requirements Preparation ...................................................................... 5 minutes, then let sit overnight Activity 1: Creating a Stream Table ................................ 60 minutes Activity 2: Scientific Method: Modeling Human Impacts on Stream Ecosystems .................................. 45 minutes 2 Carolina Distance Learning Key Personal protective equipment (PPE) goggles gloves apron follow link to video photograph results and
  • 3. submit stopwatch required warning corrosion flammable toxic environment health hazard Key Personal protective equipment (PPE) goggles gloves apron follow link to video photograph results and submit stopwatch required warning corrosion flammable toxic environment health hazard Table of Contents 2 Overview 2 Outcomes 2 Time Requirements 3 Background 9 Materials 10 Safety 10 Preparation
  • 4. 10 Activity 1 12 Activity 2 13 Submission 13 Disposal and Cleanup 14 Lab Worksheet 18 Lab Questions Background A watershed is an area of land that drains any form of precipitation into the earth’s water bodies (see Figure 1). The entire land area that forms this connection of atmospheric water to the water on Earth, whether it is rain flowing into a lake or snow soaking into the groundwater, is considered a watershed. Water covers approximately 70% of the earth’s surface. However, about two-thirds of all water is impaired to some degree, with less than 1% being accessible, consumable freshwater. Keeping watersheds pristine is the leading method for providing clean drinking water to communities, and it is a high priority worldwide. However, with increased development and people flocking toward waterfront regions to live, downstream communities are becoming increas- ingly polluted every day. From small streams to large rivers (hereafter considered “streams”), streamflow is a vital part of understanding the formation of water and landmasses within a watershed. Under- standing the flow of a stream can help to deter- mine when and how much water reaches other
  • 5. areas of a watershed. For example, one of the leading causes of pollution in most waterways across the United States is excessive nutrient and sediment overloading from runoff from the landmasses surrounding these waterways. Nutrients such as phosphorus and nitrogen are prevalent in fertilizers that wash off lawns and farms into surrounding sewer and water systems. This process can cause the overpro- duction of algae, which are further degraded by bacteria. These bacteria then take up the surrounding oxygen for respiration and kill multiple plants and organisms. A comprehen- sive understanding of the interaction between streams and the land as they move downstream to other areas of a watershed can help prevent pollution. One example is to build a riparian buffer—a group of plants grown along parts of a stream bank that are able to trap pollutants and absorb excessive nutrients; this lessens the effects of nutrient overloading in the streambed. (A riparian ecosystem is one that includes a stream and the life along its banks.) Sediment, which is easily moved by bodies of water, has a negative effect on water quality. It can clog fish gills and cause suffocation, and the water quality can be impaired by becoming very cloudy because of high sediment flow. This can create problems for natural vegetation growth by obstructing light and can prevent animals continued on next page www.carolina.com/distancelearning 3
  • 6. Figure 1. Snow Rainfall Precipitation Overland flows Underground sources STREAM MORPHOLOGY Background continued from visibly finding their prey. Erosion also has considerable effects on stream health. Erosion, or the moving of material (soil, rock, or sand) from the earth to another location, is caused by actions such as physical and chemical weath- ering (see Figure 2). These processes loosen rocks and other materials and can move these sediments to other locations through bodies of water. Once these particles reach their final destination, they are considered to be depos- ited. Deposition is also an important process because where the sediment particles end up can greatly impact the shape of the land and how water is distributed throughout the system (see Figure 2). Erosion and deposition can occur multiple times along the length of a stream and can vary because of extreme weather, such
  • 7. as flooding or high wind. Over time, these two processes can completely reshape an area, causing the topography, or physical features, of an entire watershed to be altered. Depending on weather conditions, a streambed can be altered quite quickly. Faster moving water tends to erode more sediment than it deposits. Deposi- tion usually occurs in slower moving water. With less force acting on the sediment, it falls out of suspension and builds up on the bottom or sides of the streambed. Sediments are deposited throughout the length of a stream as bars, generally in the middle of a channel, or as floodplains, which are more ridgelike areas of land along the edges of the stream. Bars generally consist of gravel or sand- size particles, whereas floodplains are made of more fine-grained material. Deltas (see Figure 3) and alluvial fans (see Figure 4) are sediment deposits that occur because of flowing water continued on next page 4 Carolina Distance Learning Figure 2. Figure 3. Erosion Deposition and are considered more permanent struc- tures because of their longevity. They are both fan-shaped accumulations of sediment that
  • 8. form when the stream shape changes. Deltas form in continuous, flowing water at the mouth of streams, whereas alluvial fans only form in streams that flow intermittently (when it rains or when snow melts). Alluvial fans are usually composed of larger particles and will form in canyons and valleys as water accumulates in these regions. The fan shape of both deposits is easy to spot from a distance, because they are formed due to the sand settling out on the bottom of the streams. Streamflow Characteristics Discharge, or the amount of water that flows past a given location of a stream (per second), is a very important characteristic of stream- flow. Discharge and velocity (the speed of the water moving in the stream) are both vital to the shaping of streambeds. Within stream ecosystems, there are microhabitats (smaller habitats making up larger habitats) that have different discharges and velocities. The type of microhabitat depends on the width of that part of the stream, the shape of the streambed, and many other physical factors. In areas that contain riffles, water quickly splashes over shallow, rocky areas, which are easily observed in sunny areas (see Figure 5). Deeper pools of slower moving water also form on the outside of the bends of the streams, as shown in Figure 5. Runs, which are deeper than riffles but have a moderate current, connect riffles and pools throughout the stream. The source of a stream continued on next page
  • 9. www.carolina.com/distancelearning 5 Figure 4. Figure 5. PoolRiffles STREAM MORPHOLOGY Background continued is where it begins, while the mouth of a stream is where it discharges into a lake or an ocean. Flow rate is very helpful for engineers and scientists who study the impacts of a stream on organisms, surrounding land, and even recreational uses such as boating and fishing. The speed of the water in specific areas helps to determine the composition of the substrate in that area of the streambed, i.e., whether the material is more clay, sand, mud, or gravel. Particle sizes of different sediments are shaped and deposited throughout various areas of a stream, depending on these factors. Most streams have specific physical features that show periodicity or consistency in regular intervals. Meanders can occur in a streambed because of gravity. Water erodes sediment to the outside of a stream and deposits sediment along the opposite bank, forming a natural
  • 10. weaving or “snaking” pattern. This pattern can form in any depth of water and along any type of terrain. Sinuosity is the measure of how curvy a stream is. This is a helpful measurement when determining the flow rates of streams because it can show how the curves affect the water velocity. In major rivers and very broad valleys, meanders can be separated from the main body of a river, leaving a U-shaped water body known as an oxbow lake (see Figure 6). These lake formations can become an entirely new ecosystem with food and shelter for some organisms, such as amphibians, to thrive in. continued on next page 6 Carolina Distance Learning Figure 6. Oxbow Lake Formation continued on next page www.carolina.com/distancelearning 7 Another feature important for streamflow is the difference in elevation, or the relief of a stream as it flows downstream. Streams start at a higher elevation than where they end up; this causes the discharge and velocity at the source versus that at the mouth of the stream to be quite different, depending on the meandering of the stream and the type of deposition and
  • 11. erosion that occurs. The gradient is another important factor of stream morphology. This is a measure of the slope of the stream over a particular distance (the relief over the total distance of the stream). For a kayaker who wants to know how fast he/she can paddle down a particular stream, knowing the difference in elevation (relief) is important over a particular area; however, knowing the slope of this partic- ular area will give the kayaker a more accurate prediction. With erosion and deposition occur- ring at different rates and at different parts of the stream, knowing the gradient is a very important part of determining streamflow for the kayaker. Groundwater is also affected by changes in the stream shape and flow. Water infiltrates the ground in recharge zones. If streams are contin- uously flowing over these areas, the ground is able to stay saturated. Most streams are peren- nial, meaning they flow all year. However, a drought or an extreme weather event may lower the stream level. This can lower the ground- water level, which then allows the stream to only sustain flow when it rises to a level above the water table. With the small amount of available freshwater on Earth, it is vital that our ground- water sources stay pristine. Biotic and Economic Impacts of Streams Not only are streams a major source of clean freshwater for humans, but they are also a hotspot for diversity and life. There is great biotic variability between the different microhabitats (e.g., riffles, pools, and runs) of a stream. Riffles,
  • 12. in particular, have a high biodiversity because of the constant movement of water and replenish- ment of oxygen throughout. Pools usually have fewer and more hardy organisms in their slower, deeper moving waters where less oxygen is available. There are also a multitude of plant and animal species living around streams. From a stream in a backyard to the 1,500-mile-long Colorado River, streams have thousands of types of birds, insects, and plants that live near them because they are nutrient-rich with clean freshwater. Sometimes nutrient spiraling can occur in these streams. Nutrient spiraling is the periodic chemical cycling of nutrients throughout different depths of the streams. This process recycles nutrients and allows life to thrive at all depths and regions of different-size streams. Streams can also have significant economic impacts on a region. Streams are a channel for fishing and transportation, two of the largest industries in the world. Because of all the commercial boating operations that occur world- wide in these channels, it is vital to understand the formation and flow patterns of streams so that they are clear and navigable. Fishing for human consumption is another large, worldwide industry that depends on stream health; keeping streams pristine and understanding how they form are of utmost importance in sustaining this top food industry. Recreational activities such as kayaking, sportfishing, and boating all shape areas where streams and rivers are prevalent as well.
  • 13. STREAM MORPHOLOGY Background continued All acts that happen on land affect the water quality downstream. Through creating a model stream table in this lab, one can predict large, system-wide effects. Many land features and physical parts of a streambed can affect the flow of water within a watershed. Houses along a streambed or numerous large rocks can cause the streamflow to change directions. If any of these factors cause erosion or deposition in an area of the stream, microhabitats can be created. These factors can affect the stream on a larger scale, creating changes in flow speeds and widths of the streambeds. The Importance of Scaling and the Use of the Scientific Method When a stream table model is created, a large- scale depiction of a streambed is being reduced to a smaller scale so that the effects of different stream properties on the surrounding environ- ment can be demonstrated. While the stream table made in this lab is not a to-size stream and landscape, the same processes can be more easily observed at a scaled-down size. Scientists frequently create models to simplify complex processes for easier understanding. For example, to physically observe something that is too big, such as the distance between each planet in the solar system, the spatial distance can be scaled to create a solar system model. By changing the distance between each planet from kilometers to centimeters, this large
  • 14. system is now more feasibly observed. Similarly, the stream model allows us to physically view different scenarios of a streambed and analyze different stream properties. Mathematical equations are also used frequently to observe data to predict future conditions, such as in meteorological models. Ultimately, models can be very important tools for predicting future events and analyzing processes that occur in a system. When one creates a model, many different outcomes for the same type of setup can be possible. In this case, multiple variations of similar-size streambeds will be designed to evaluate different stream features and their impacts on the surrounding ecosystem. When performing any type of scientific evalua- tion, the scientific method is very useful in obtaining accurate results. This method involves performing experiments and recording observa- tions to answer a question of interest. Although the exact step names and sequences sometimes vary a bit from source to source, in general, the scientific method begins with a scientist making observations about some phenomenon and then asking a question. Next, a scientist proposes a hypothesis—a “best guess” based upon available information as to what the answer to the question will be. The scientist then designs an experiment to test the hypothesis. Based on the experimental results, the scientist then either accepts the hypothesis (if it matches what happened) or rejects it (if it
  • 15. doesn’t). A rejected hypothesis is not a failure; it is helpful information that can point the way to a new hypothesis and experiment. Finally, the scientist communicates the findings to the world through presenting at a peer-reviewed academic conference and/or publishing in a scholarly journal like Science or Nature, for example. continued on next page 8 Carolina Distance Learning www.carolina.com/distancelearning 9 When creating stream table models, we are trying to understand how different factors can affect streamflow. A few very important steps from the scientific method are required. The first is forming a testable hypothesis, or an educated prediction, of what you expect to observe based on what you have learned about stream morphology thus far. In Activity 1, the steps are already listed, so the main goal is to compare the two differences in stream reliefs. However, in Activity 2, the goal is to alter a different vari- able and predict what will happen to several stream features in this new situation. In general, when recording these observations to test a hypothesis, it is important to repeat the tests. To obtain valid results, you need to have similar results over multiple attempts to ensure consis- tency in the findings and to show that what you are discovering is not by chance but is instead replicated each time the experiment is run. While
  • 16. multiple trials are not required in this lab experi- ment, if you feel particularly less than confident with your results from doing only one trial run in Activity 1 or 2, feel free to do multiple trials to test for validity. Materials Needed but not supplied: • Tray or cookie sheet (or something similar) • 2–3 lb bag of play sand (not construction sand or any other type of sand or soil) or, if that is unavailable, substitute with 1 lb bag (or more) of plain cornmeal (not self-rising) • Single-use cup that can have a hole poked in it (e.g., plastic yogurt cup, foam cup) • Small piece of foam (such as from a foam cup), about the size of a grain of rice • Cup, such as a glass, mug, or plastic cup • Paper clip, skewer, or thumbtack (to poke a hole in the single-use cup) • 2 books, one approximately twice as thick as the other • Ruler (There is a ruler in the Equipment Kit if you have already received it, or you can print one at a website such as printable-ruler.net.) • Tap water • 2 Plastic bags (to cover the books or objects
  • 17. you don’t want to get wet) • Stopwatch (or cell phone with a timer) • Digital camera or mobile device capable of taking photos • Piece of string • Marker https://printable-ruler.net STREAM MORPHOLOGY continued on next page 10 Carolina Distance Learning Safety Wear your safety goggles, gloves, and lab apron for the dura- tion of this investigation. Read all the instructions for these laboratory activities before beginning. Follow the instruc- tions closely, and observe established laboratory safety practices, including the use of appropriate personal protective equipment (PPE). Do not eat, drink, or chew gum while performing these activities. Wash your hands with soap and water before and after performing the activities. Clean the work area with soap and water after completing the investigation. Keep pets and chil- dren away from lab materials and equipment.
  • 18. Preparation Note: This investigation is best performed outdoors or in an area in which it is easy to clean up wet sand/cornmeal and water. Do not dump any of the sand/cornmeal and water mixture down the sink, because it can cause clogging. 1. Read through the activities. 2. Obtain all materials. 3. Pour the sand or cornmeal in one, even layer on the tray or cookie sheet. 4. Pour water slowly over the sand/cornmeal until it is completely saturated. Pour off any excess water outside. 5. With your hands, rub the sand/cornmeal so it is flat, and let it dry overnight in the tray/ cookie sheet. 6. Using the paper clip, skewer, or thumbtack, poke a hole in the side of the single-use cup, 1 cm up from the bottom of the cup. ACTIVITY 1 ACTIVITY A Creating a Stream Table In this activity, you will be measuring different factors (see Step 5) for two different stream models: one where the streambed is tilted at a steeper angle and another where the streambed
  • 19. is tilted at a shallower one. Propose four sepa- rate hypotheses for which of the two streambed angles (steeper or shallower) will have the highest values for sinuosity, velocity, relief, and gradient. Briefly state why you feel that way. Complete this information in the “Hypotheses” section of the Lab Worksheet. 1. Bring the tray outside. Place the thicker book in a plastic bag. Place the tray on one end of the book so it is tilted (see Figure 7). 2. Fill the cup without a hole in it with tap water and slowly pour the water into the single-use cup. Ensure that the single-use cup is right above the higher end of the tray. Note: Store extra tap water on-site if more water is needed to form a stream. 3. Let the water trickle out of the hole in the single-use cup down the sand/cornmeal. Observe how the water forms a “stream” in the table. Stop pouring after a small streamflow has formed down the table. Poking a Hole in a Cup to Create a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973740372001 Figure 7. Tray Thicker book https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001
  • 20. https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 www.carolina.com/distancelearning 11 iii. Now, divide the curvy distance by the straight distance. Note: If there is no curvy distance (if the stream forms straight down the table), then the sinuosity is 1. How to Measure the Sinuosity of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973736251001 b. Velocity = distance traveled (cm)/time to travel (s) (recorded in cm/s) Obtain the small piece of foam (about the size of a grain of rice). Hold the single-use cup over the raised edge of the stream table, allow water to flow out of the hole, and drop the piece of foam into the top of the stream. Time how long it takes (in seconds) for the piece of foam to float downstream. Divide the curvy distance by this time.
  • 21. How to Measure the Velocity of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973739032001 c. Relief = highest elevation (cm) − lowest elevation (cm) (recorded in cm) Measure the elevation change from the beginning to the end of the stream. Use the ruler to measure the highest point of the incline to the ground for the highest elevation and measure the bottom part of the tray to the ground for the lowest elevation. 4. On a blank sheet of paper, carefully sketch what the formed stream looks like. Clearly label where erosion and deposition have occurred along the streambed. Take a photograph of your completed drawing and another photograph of your actual stream table. In the stream table photograph, include a strip of paper with your name and the date written on it. You will be uploading both photographs to your lab report. 5. Use the instructions below to calculate the values for the different physical stream features in the “Calculations” section of the Lab Worksheet. Record these values in Data Table 1 of the “Observations/Data Tables” section of the Lab Worksheet.
  • 22. a. Sinuosity = curvy distance (cm)/straight distance (cm) (no units) i. Use a piece of string to measure the distance from the mouth to the source of the stream along the curve (curvy distance). Once you have used the string to trace the stream, hold each end of the string, straighten it, lay it flat, and mark where the two ends of the stream were. Use a ruler to measure this distance between the marks (the curvy distance). ii. Use a ruler to measure the distance straight down the stream from the mouth to the source of the stream (no curve— straight distance). continued on next page https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i
  • 23. ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 Note: In Activity 1, the heights of the source of the streams were altered to observe how streamflow and streambed formation were affected. In Activity 2, use your streamflow knowledge to design an experiment by altering a different characteristic. You will record the same calculations for your new experimental setup. ACTIVITY ACTIVITY 1 continued How to Measure the Relief of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973740399001 d. Gradient = relief (cm)/total distance (cm) (rise/run) (no units) Measure the slope of the stream; divide the relief by the total distance (calculated in Steps c and a). Note: If the stream is curvy, this distance is the curvy distance; if it is not, then this distance is the straight distance. How to Measure the Gradient of a
  • 24. Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973742678001 6. Gently pour the excess water from the stream table into the grass, and flatten the sand/ cornmeal out where the stream formed, making a uniform layer. 7. Repeat Steps 1–6 with the thinner book to obtain a more gradual stream formation. 8. While not required, if you feel particularly less than confident with your results from doing only one trial run, feel free to do multiple trials to test for validity. ACTIVITY 2 A Scientific Method: Modeling Human Impacts on Stream Ecosystems 1. Design a procedure similar to Activity 1. Choose one height to test the trials and change a different variable to analyze the same calculations for stream movement and formation throughout the streambed. Choose a variable to change that models how humans might modify a stream channel for good or for ill. Activities such as pre-digging a stream, adding a dam or other features along the streambed, or adding plants along these areas are all common factors that can be altered within a streambed. Feel
  • 25. free to implement additional materials from your surroundings, such as using a rock to represent a dam, for example. 2. Hypothesize whether each of the four calculations (sinuosity, velocity, relief, and gradient) will increase, decrease, or stay the same, and include your reasoning in your choices. Record this in the “Hypotheses” section in your Lab Worksheet. 12 Carolina Distance Learning continued on next page https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001
  • 26. www.carolina.com/distancelearning 13 3. Test your new experimental design by using the same procedure as in Activity 1. On a blank sheet of paper, carefully sketch what the formed stream looks like. Clearly label where erosion and deposition have occurred along the streambed. Take a photograph of your completed drawing … Running head: NAME OF LAB 1 Running head: NAME OF LAB 3 Name of Lab Your Name SCI 207: Our Dependence Upon the Environment Instructor’s Name Date *This template will enable you to produce a polished Lab Report. Simply complete each section below, pasting in all your completed data tables, graphs, and photographs where indicated. Before you submit your Lab Report, it is recommended that you run it through Turnitin, using the student folder, to ensure protection from accidental plagiarism. Please delete this purple text, and all the instructions below, before submitting your final report. Title of Lab Goes Here Introduction
  • 27. Background paragraph: Provide background on the lab topic, explaining the key concepts covered in the lab and defining (in your own words) important terms relating to the lab. Explain why the lab topic is important to scientists. Using APA format, cite at least two outside credible sources (sources other than textbook or lab manual) in your statement. Your background paragraph should be 5-7 original, substantive sentences long. Objectives paragraph:In 4-5 sentences, explain the purpose of this lab. What is it intended to examine or test? Hypotheses paragraph: State your hypotheses for this lab. Be sure to cover all the lab activities, one at a time. For each hypothesis, explain why you originally thought that would happen. Note: Do not mention the actual results of the lab here – they go later in the report. For additional help in writing your Introduction section, refer to the Ashford Writing Center Resource, Introductions and Conclusions. Materials and Methods Using your own words, describe what you did in each of the lab activities. Answers should enable a lab report reader to repeat the lab just as you did it – a process known as replication. Clearly explain any measurements you made (including the measurement units). Results Data Tables: Copy and paste each of your completed data tables here, in order (Weeks One, Two, Four, and Five Labs only). Observations: Provide your observations for each lab activity here, in order (Week Three Lab only) Graphs: Paste your graphshere (Week Four Lab only). Include a numbered figure caption below each one, in APA format. Photographs: Paste your photographs here, in the order they were taken in the lab. Include numbered figure captions below each one, in APA format.
  • 28. For additional help with the data tables and images, refer to the Ashford Writing Center resource, Tables, Images, and Appendices. Discussion Accept or reject hypotheses paragraph: Based upon the results of each lab activity, explain whether you accepted or rejected each of your hypotheses, and why. Follow these steps: · Restate your original hypothesis for the lab activity. · Communicate the results of the lab. Then, · Compare your hypothesis to the results of the lab and decide whether to accept your hypothesis or reject it. · State if your hypothesis is supported or not, and explain with evidence. · Move on to the next lab activity and repeat the process. What I have learned paragraph: What important new things have you learned from this lab? Use at least one credible outside source (not the lab manual or textbook) to answer this question. Cite the source using APA format. Answers should be 5-7 original, substantive sentences in length. Sources of error paragraph: What challenges did you encounter when completing this lab? (Identify at least one.) How might those challenges that you experienced have affected the accuracy of the results that you obtained? Future research paragraph: Based upon what you learned in this lab, what new questions do you have about the topic of this lab? In a few sentences, how might you design a new lab activity to answer those questions? References List the references that you cited in your report, in APA format and alphabetically by author’s last name. If you did not actually cite the source somewhere in your paper, do not include it. For additional help in formatting your resources section, refer to the Ashford Writing Center’s resource for Formatting your
  • 29. Reference List. 22 Lab Worksheet Hypotheses: Activity 1 Sinuosity Hypothesis: Velocity Hypothesis: Relief Hypothesis: Gradient Hypothesis: Activity 2 Sinuosity Hypothesis:
  • 30. Velocity Hypothesis: Relief Hypothesis: Gradient Hypothesis: Observations/Data Tables: Data Table 1. Trial Sinuosity Velocity (cm/s) Relief (cm) Gradient Thicker Book 1
  • 32. Data Table 2. Variable changed: Book thickness used: Trial Sinuosity Velocity (cm/s) Relief (cm) Gradient 1
  • 34. Curvy distance (cm) / Straight distance (cm) = sinuosity (no units) ___________ / ____________ = Both the curvy and straight distances are measurements taken from the stream formation in the stream table. Please refer to Activity 1 for more details. Velocity Distance traveled (cm) / Time it takes to travel (s) = Velocity (cm/s) ___________ / ____________ = The distance it takes a small piece of paper to travel downstream divided by how long it takes to get downstream is the velocity. Refer to Activity 1 for more details. Relief Highest elevation (cm) – Lowest elevation (cm) = Relief (cm) ___________ - ____________ = By subtracting the highest elevation of the stream and the lowest elevation of the stream from each other, the relief can be calculated. Please refer to Activity 1 for more details. Gradient Relief (cm) / Total distance (cm) = Gradient (no units) ___________ / ____________ =
  • 35. By dividing the relief by the total distance of the stream, the gradient can be calculated. Please refer to Activity 1 for more details. ACTIVITY 2 Sinuosity Curvy distance (cm) / Straight distance (cm) = sinuosity (no units) ___________ / ____________ = Both the curvy and straight distances are measurements taken from the stream formation in the stream table. Please refer to Activity 1 for more details. Velocity Distance traveled (cm) / Time it takes to travel (s) = Velocity (cm/s) ___________ / ____________ = The distance it takes a small piece of paper to travel downstream divided by how long it takes to get downstream is the velocity. Refer to Activity 1 for more details. Relief
  • 36. Highest elevation (cm) – Lowest elevation (cm) = Relief (cm) ___________ - ____________ = By subtracting the highest elevation of the stream and the lowest elevation of the stream from each other, the relief can be calculated. Please refer to Activity 1 for more details. Gradient Relief (cm) / Total distance (cm) = Gradient (no units) ___________ / ____________ = By dividing the relief by the total distance of the stream, the gradient can be calculated. Please refer to Activity 1 for more details. ©2015 Carolina Biological Supply Company Stream Morphology Investigation Manual ENVIRONMENTAL SCIENCE Made ADA compliant by NetCentric Technologies using the CommonLook® software
  • 37. STREAM MORPHOLOGY Overview Students will construct a physical scale model of a stream system to help understand how streams and rivers shape the solid earth (i.e., the landscape). Students will perform several experiments to determine streamflow properties under different conditions. They will apply the scientific method, testing their own scenarios regarding human impacts to river systems. Outcomes • Design a stream table model to analyze the different characteristics of streamflow. • Explain the effects of watersheds on the surrounding environment in terms of the biology, water quality, and economic importance of streams. • Identify different stream features based on their geological formation due to erosion and deposition. • Develop an experiment to test how human actions can modify stream morphology in ways that may, in turn, impact riparian ecosystems. Time Requirements Preparation ...................................................................... 5 minutes, then let sit overnight
  • 38. Activity 1: Creating a Stream Table ................................ 60 minutes Activity 2: Scientific Method: Modeling Human Impacts on Stream Ecosystems .................................. 45 minutes 2 Carolina Distance Learning Key Personal protective equipment (PPE) goggles gloves apron follow link to video photograph results and submit stopwatch required warning corrosion flammable toxic environment health hazard Key Personal protective equipment (PPE) goggles gloves apron follow link to
  • 39. video photograph results and submit stopwatch required warning corrosion flammable toxic environment health hazard Table of Contents 2 Overview 2 Outcomes 2 Time Requirements 3 Background 9 Materials 10 Safety 10 Preparation 10 Activity 1 12 Activity 2 13 Submission 13 Disposal and Cleanup 14 Lab Worksheet 18 Lab Questions Background A watershed is an area of land that drains any form of precipitation into the earth’s water bodies (see Figure 1). The entire land area that forms this connection of atmospheric water to the water on Earth, whether it is rain flowing into
  • 40. a lake or snow soaking into the groundwater, is considered a watershed. Water covers approximately 70% of the earth’s surface. However, about two-thirds of all water is impaired to some degree, with less than 1% being accessible, consumable freshwater. Keeping watersheds pristine is the leading method for providing clean drinking water to communities, and it is a high priority worldwide. However, with increased development and people flocking toward waterfront regions to live, downstream communities are becoming increas- ingly polluted every day. From small streams to large rivers (hereafter considered “streams”), streamflow is a vital part of understanding the formation of water and landmasses within a watershed. Under- standing the flow of a stream can help to deter- mine when and how much water reaches other areas of a watershed. For example, one of the leading causes of pollution in most waterways across the United States is excessive nutrient and sediment overloading from runoff from the landmasses surrounding these waterways. Nutrients such as phosphorus and nitrogen are prevalent in fertilizers that wash off lawns and farms into surrounding sewer and water systems. This process can cause the overpro- duction of algae, which are further degraded by bacteria. These bacteria then take up the surrounding oxygen for respiration and kill multiple plants and organisms. A comprehen- sive understanding of the interaction between streams and the land as they move downstream
  • 41. to other areas of a watershed can help prevent pollution. One example is to build a riparian buffer—a group of plants grown along parts of a stream bank that are able to trap pollutants and absorb excessive nutrients; this lessens the effects of nutrient overloading in the streambed. (A riparian ecosystem is one that includes a stream and the life along its banks.) Sediment, which is easily moved by bodies of water, has a negative effect on water quality. It can clog fish gills and cause suffocation, and the water quality can be impaired by becoming very cloudy because of high sediment flow. This can create problems for natural vegetation growth by obstructing light and can prevent animals continued on next page www.carolina.com/distancelearning 3 Figure 1. Snow Rainfall Precipitation Overland flows Underground sources
  • 42. STREAM MORPHOLOGY Background continued from visibly finding their prey. Erosion also has considerable effects on stream health. Erosion, or the moving of material (soil, rock, or sand) from the earth to another location, is caused by actions such as physical and chemical weath- ering (see Figure 2). These processes loosen rocks and other materials and can move these sediments to other locations through bodies of water. Once these particles reach their final destination, they are considered to be depos- ited. Deposition is also an important process because where the sediment particles end up can greatly impact the shape of the land and how water is distributed throughout the system (see Figure 2). Erosion and deposition can occur multiple times along the length of a stream and can vary because of extreme weather, such as flooding or high wind. Over time, these two processes can completely reshape an area, causing the topography, or physical features, of an entire watershed to be altered. Depending on weather conditions, a streambed can be altered quite quickly. Faster moving water tends to erode more sediment than it deposits. Deposi- tion usually occurs in slower moving water. With less force acting on the sediment, it falls out of suspension and builds up on the bottom or sides of the streambed. Sediments are deposited throughout the length of a stream as bars, generally in the middle of
  • 43. a channel, or as floodplains, which are more ridgelike areas of land along the edges of the stream. Bars generally consist of gravel or sand- size particles, whereas floodplains are made of more fine-grained material. Deltas (see Figure 3) and alluvial fans (see Figure 4) are sediment deposits that occur because of flowing water continued on next page 4 Carolina Distance Learning Figure 2. Figure 3. Erosion Deposition and are considered more permanent struc- tures because of their longevity. They are both fan-shaped accumulations of sediment that form when the stream shape changes. Deltas form in continuous, flowing water at the mouth of streams, whereas alluvial fans only form in streams that flow intermittently (when it rains or when snow melts). Alluvial fans are usually composed of larger particles and will form in canyons and valleys as water accumulates in these regions. The fan shape of both deposits is easy to spot from a distance, because they are formed due to the sand settling out on the bottom of the streams. Streamflow Characteristics Discharge, or the amount of water that flows past a given location of a stream (per second),
  • 44. is a very important characteristic of stream- flow. Discharge and velocity (the speed of the water moving in the stream) are both vital to the shaping of streambeds. Within stream ecosystems, there are microhabitats (smaller habitats making up larger habitats) that have different discharges and velocities. The type of microhabitat depends on the width of that part of the stream, the shape of the streambed, and many other physical factors. In areas that contain riffles, water quickly splashes over shallow, rocky areas, which are easily observed in sunny areas (see Figure 5). Deeper pools of slower moving water also form on the outside of the bends of the streams, as shown in Figure 5. Runs, which are deeper than riffles but have a moderate current, connect riffles and pools throughout the stream. The source of a stream continued on next page www.carolina.com/distancelearning 5 Figure 4. Figure 5. PoolRiffles STREAM MORPHOLOGY Background continued is where it begins, while the mouth of a stream is
  • 45. where it discharges into a lake or an ocean. Flow rate is very helpful for engineers and scientists who study the impacts of a stream on organisms, surrounding land, and even recreational uses such as boating and fishing. The speed of the water in specific areas helps to determine the composition of the substrate in that area of the streambed, i.e., whether the material is more clay, sand, mud, or gravel. Particle sizes of different sediments are shaped and deposited throughout various areas of a stream, depending on these factors. Most streams have specific physical features that show periodicity or consistency in regular intervals. Meanders can occur in a streambed because of gravity. Water erodes sediment to the outside of a stream and deposits sediment along the opposite bank, forming a natural weaving or “snaking” pattern. This pattern can form in any depth of water and along any type of terrain. Sinuosity is the measure of how curvy a stream is. This is a helpful measurement when determining the flow rates of streams because it can show how the curves affect the water velocity. In major rivers and very broad valleys, meanders can be separated from the main body of a river, leaving a U-shaped water body known as an oxbow lake (see Figure 6). These lake formations can become an entirely new ecosystem with food and shelter for some organisms, such as amphibians, to thrive in. continued on next page
  • 46. 6 Carolina Distance Learning Figure 6. Oxbow Lake Formation continued on next page www.carolina.com/distancelearning 7 Another feature important for streamflow is the difference in elevation, or the relief of a stream as it flows downstream. Streams start at a higher elevation than where they end up; this causes the discharge and velocity at the source versus that at the mouth of the stream to be quite different, depending on the meandering of the stream and the type of deposition and erosion that occurs. The gradient is another important factor of stream morphology. This is a measure of the slope of the stream over a particular distance (the relief over the total distance of the stream). For a kayaker who wants to know how fast he/she can paddle down a particular stream, knowing the difference in elevation (relief) is important over a particular area; however, knowing the slope of this partic- ular area will give the kayaker a more accurate prediction. With erosion and deposition occur- ring at different rates and at different parts of the stream, knowing the gradient is a very important part of determining streamflow for the kayaker.
  • 47. Groundwater is also affected by changes in the stream shape and flow. Water infiltrates the ground in recharge zones. If streams are contin- uously flowing over these areas, the ground is able to stay saturated. Most streams are peren- nial, meaning they flow all year. However, a drought or an extreme weather event may lower the stream level. This can lower the ground- water level, which then allows the stream to only sustain flow when it rises to a level above the water table. With the small amount of available freshwater on Earth, it is vital that our ground- water sources stay pristine. Biotic and Economic Impacts of Streams Not only are streams a major source of clean freshwater for humans, but they are also a hotspot for diversity and life. There is great biotic variability between the different microhabitats (e.g., riffles, pools, and runs) of a stream. Riffles, in particular, have a high biodiversity because of the constant movement of water and replenish- ment of oxygen throughout. Pools usually have fewer and more hardy organisms in their slower, deeper moving waters where less oxygen is available. There are also a multitude of plant and animal species living around streams. From a stream in a backyard to the 1,500-mile-long Colorado River, streams have thousands of types of birds, insects, and plants that live near them because they are nutrient-rich with clean freshwater. Sometimes nutrient spiraling can occur in these streams. Nutrient spiraling is the periodic chemical cycling of nutrients throughout different depths of the streams. This process
  • 48. recycles nutrients and allows life to thrive at all depths and regions of different-size streams. Streams can also have significant economic impacts on a region. Streams are a channel for fishing and transportation, two of the largest industries in the world. Because of all the commercial boating operations that occur world- wide in these channels, it is vital to understand the formation and flow patterns of streams so that they are clear and navigable. Fishing for human consumption is another large, worldwide industry that depends on stream health; keeping streams pristine and understanding how they form are of utmost importance in sustaining this top food industry. Recreational activities such as kayaking, sportfishing, and boating all shape areas where streams and rivers are prevalent as well. STREAM MORPHOLOGY Background continued All acts that happen on land affect the water quality downstream. Through creating a model stream table in this lab, one can predict large, system-wide effects. Many land features and physical parts of a streambed can affect the flow of water within a watershed. Houses along a streambed or numerous large rocks can cause the streamflow to change directions. If any of these factors cause erosion or deposition in an area of the stream, microhabitats can be created. These factors can affect the stream on
  • 49. a larger scale, creating changes in flow speeds and widths of the streambeds. The Importance of Scaling and the Use of the Scientific Method When a stream table model is created, a large- scale depiction of a streambed is being reduced to a smaller scale so that the effects of different stream properties on the surrounding environ- ment can be demonstrated. While the stream table made in this lab is not a to-size stream and landscape, the same processes can be more easily observed at a scaled-down size. Scientists frequently create models to simplify complex processes for easier understanding. For example, to physically observe something that is too big, such as the distance between each planet in the solar system, the spatial distance can be scaled to create a solar system model. By changing the distance between each planet from kilometers to centimeters, this large system is now more feasibly observed. Similarly, the stream model allows us to physically view different scenarios of a streambed and analyze different stream properties. Mathematical equations are also used frequently to observe data to predict future conditions, such as in meteorological models. Ultimately, models can be very important tools for predicting future events and analyzing processes that occur in a system. When one creates a model, many different outcomes for the same type of setup can be possible. In this case, multiple variations of
  • 50. similar-size streambeds will be designed to evaluate different stream features and their impacts on the surrounding ecosystem. When performing any type of scientific evalua- tion, the scientific method is very useful in obtaining accurate results. This method involves performing experiments and recording observa- tions to answer a question of interest. Although the exact step names and sequences sometimes vary a bit from source to source, in general, the scientific method begins with a scientist making observations about some phenomenon and then asking a question. Next, a scientist proposes a hypothesis—a “best guess” based upon available information as to what the answer to the question will be. The scientist then designs an experiment to test the hypothesis. Based on the experimental results, the scientist then either accepts the hypothesis (if it matches what happened) or rejects it (if it doesn’t). A rejected hypothesis is not a failure; it is helpful information that can point the way to a new hypothesis and experiment. Finally, the scientist communicates the findings to the world through presenting at a peer-reviewed academic conference and/or publishing in a scholarly journal like Science or Nature, for example. continued on next page 8 Carolina Distance Learning www.carolina.com/distancelearning 9
  • 51. When creating stream table models, we are trying to understand how different factors can affect streamflow. A few very important steps from the scientific method are required. The first is forming a testable hypothesis, or an educated prediction, of what you expect to observe based on what you have learned about stream morphology thus far. In Activity 1, the steps are already listed, so the main goal is to compare the two differences in stream reliefs. However, in Activity 2, the goal is to alter a different vari- able and predict what will happen to several stream features in this new situation. In general, when recording these observations to test a hypothesis, it is important to repeat the tests. To obtain valid results, you need to have similar results over multiple attempts to ensure consis- tency in the findings and to show that what you are discovering is not by chance but is instead replicated each time the experiment is run. While multiple trials are not required in this lab experi- ment, if you feel particularly less than confident with your results from doing only one trial run in Activity 1 or 2, feel free to do multiple trials to test for validity. Materials Needed but not supplied: • Tray or cookie sheet (or something similar) • 2–3 lb bag of play sand (not construction sand or any other type of sand or soil) or, if that is unavailable, substitute with 1 lb bag (or more) of plain cornmeal (not self-rising)
  • 52. • Single-use cup that can have a hole poked in it (e.g., plastic yogurt cup, foam cup) • Small piece of foam (such as from a foam cup), about the size of a grain of rice • Cup, such as a glass, mug, or plastic cup • Paper clip, skewer, or thumbtack (to poke a hole in the single-use cup) • 2 books, one approximately twice as thick as the other • Ruler (There is a ruler in the Equipment Kit if you have already received it, or you can print one at a website such as printable-ruler.net.) • Tap water • 2 Plastic bags (to cover the books or objects you don’t want to get wet) • Stopwatch (or cell phone with a timer) • Digital camera or mobile device capable of taking photos • Piece of string • Marker https://printable-ruler.net STREAM MORPHOLOGY continued on next page
  • 53. 10 Carolina Distance Learning Safety Wear your safety goggles, gloves, and lab apron for the dura- tion of this investigation. Read all the instructions for these laboratory activities before beginning. Follow the instruc- tions closely, and observe established laboratory safety practices, including the use of appropriate personal protective equipment (PPE). Do not eat, drink, or chew gum while performing these activities. Wash your hands with soap and water before and after performing the activities. Clean the work area with soap and water after completing the investigation. Keep pets and chil- dren away from lab materials and equipment. Preparation Note: This investigation is best performed outdoors or in an area in which it is easy to clean up wet sand/cornmeal and water. Do not dump any of the sand/cornmeal and water mixture down the sink, because it can cause clogging. 1. Read through the activities. 2. Obtain all materials. 3. Pour the sand or cornmeal in one, even layer on the tray or cookie sheet. 4. Pour water slowly over the sand/cornmeal
  • 54. until it is completely saturated. Pour off any excess water outside. 5. With your hands, rub the sand/cornmeal so it is flat, and let it dry overnight in the tray/ cookie sheet. 6. Using the paper clip, skewer, or thumbtack, poke a hole in the side of the single-use cup, 1 cm up from the bottom of the cup. ACTIVITY 1 ACTIVITY A Creating a Stream Table In this activity, you will be measuring different factors (see Step 5) for two different stream models: one where the streambed is tilted at a steeper angle and another where the streambed is tilted at a shallower one. Propose four sepa- rate hypotheses for which of the two streambed angles (steeper or shallower) will have the highest values for sinuosity, velocity, relief, and gradient. Briefly state why you feel that way. Complete this information in the “Hypotheses” section of the Lab Worksheet. 1. Bring the tray outside. Place the thicker book in a plastic bag. Place the tray on one end of the book so it is tilted (see Figure 7). 2. Fill the cup without a hole in it with tap water and slowly pour the water into the single-use cup. Ensure that the single-use cup is right
  • 55. above the higher end of the tray. Note: Store extra tap water on-site if more water is needed to form a stream. 3. Let the water trickle out of the hole in the single-use cup down the sand/cornmeal. Observe how the water forms a “stream” in the table. Stop pouring after a small streamflow has formed down the table. Poking a Hole in a Cup to Create a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973740372001 Figure 7. Tray Thicker book https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740372001 www.carolina.com/distancelearning 11 iii. Now, divide the curvy distance by the straight distance. Note: If there is no curvy distance (if the stream forms
  • 56. straight down the table), then the sinuosity is 1. How to Measure the Sinuosity of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973736251001 b. Velocity = distance traveled (cm)/time to travel (s) (recorded in cm/s) Obtain the small piece of foam (about the size of a grain of rice). Hold the single-use cup over the raised edge of the stream table, allow water to flow out of the hole, and drop the piece of foam into the top of the stream. Time how long it takes (in seconds) for the piece of foam to float downstream. Divide the curvy distance by this time. How to Measure the Velocity of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973739032001 c. Relief = highest elevation (cm) − lowest elevation (cm) (recorded in cm) Measure the elevation change from the beginning to the end of the stream. Use the ruler to measure the highest point of the incline to the ground for the highest elevation and measure the bottom part
  • 57. of the tray to the ground for the lowest elevation. 4. On a blank sheet of paper, carefully sketch what the formed stream looks like. Clearly label where erosion and deposition have occurred along the streambed. Take a photograph of your completed drawing and another photograph of your actual stream table. In the stream table photograph, include a strip of paper with your name and the date written on it. You will be uploading both photographs to your lab report. 5. Use the instructions below to calculate the values for the different physical stream features in the “Calculations” section of the Lab Worksheet. Record these values in Data Table 1 of the “Observations/Data Tables” section of the Lab Worksheet. a. Sinuosity = curvy distance (cm)/straight distance (cm) (no units) i. Use a piece of string to measure the distance from the mouth to the source of the stream along the curve (curvy distance). Once you have used the string to trace the stream, hold each end of the string, straighten it, lay it flat, and mark where the two ends of the stream were. Use a ruler to measure this distance between the marks (the curvy distance). ii. Use a ruler to measure the distance
  • 58. straight down the stream from the mouth to the source of the stream (no curve— straight distance). continued on next page https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973736251001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973739032001 Note: In Activity 1, the heights of the source of the streams were altered to observe how streamflow and streambed formation were affected. In Activity 2, use your streamflow knowledge to design an experiment by altering a different characteristic. You will record the same calculations for your new experimental setup.
  • 59. ACTIVITY ACTIVITY 1 continued How to Measure the Relief of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973740399001 d. Gradient = relief (cm)/total distance (cm) (rise/run) (no units) Measure the slope of the stream; divide the relief by the total distance (calculated in Steps c and a). Note: If the stream is curvy, this distance is the curvy distance; if it is not, then this distance is the straight distance. How to Measure the Gradient of a Stream https://players.brightcove. net/17907428001/HJ2y9UNi_default/ index.html?videoId=5973742678001 6. Gently pour the excess water from the stream table into the grass, and flatten the sand/ cornmeal out where the stream formed, making a uniform layer. 7. Repeat Steps 1–6 with the thinner book to obtain a more gradual stream formation. 8. While not required, if you feel particularly less than confident with your results from doing
  • 60. only one trial run, feel free to do multiple trials to test for validity. ACTIVITY 2 A Scientific Method: Modeling Human Impacts on Stream Ecosystems 1. Design a procedure similar to Activity 1. Choose one height to test the trials and change a different variable to analyze the same calculations for stream movement and formation throughout the streambed. Choose a variable to change that models how humans might modify a stream channel for good or for ill. Activities such as pre-digging a stream, adding a dam or other features along the streambed, or adding plants along these areas are all common factors that can be altered within a streambed. Feel free to implement additional materials from your surroundings, such as using a rock to represent a dam, for example. 2. Hypothesize whether each of the four calculations (sinuosity, velocity, relief, and gradient) will increase, decrease, or stay the same, and include your reasoning in your choices. Record this in the “Hypotheses” section in your Lab Worksheet. 12 Carolina Distance Learning continued on next page
  • 61. https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973740399001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 https://players.brightcove.net/17907428001/HJ2y9UNi_default/i ndex.html?videoId=5973742678001 www.carolina.com/distancelearning 13 3. Test your new experimental design by using the same procedure as in Activity 1. On a blank sheet of paper, carefully sketch what the formed stream looks like. Clearly label where erosion and deposition have occurred along the streambed. Take a photograph of your completed drawing …