SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Downloaden Sie, um offline zu lesen
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Civil & Geotechnical Engineering
Chk'd by

Date

Calc. by

Dr. C. Sachpazis

Date

23/02/2014

App'd by

Date

RAFT FOUNDATION DESIGN (BS8110 : PART 1 : 1997)
Asslabtop

A sedgetop

hslab

A sedgelink

hhcoreslab

hedge
A sslabbtm
hhcorethick
Asedgebtm

bedge
Soil and raft definition
Soil definition
Allowable bearing pressure;

2

qallow = 75.0 kN/m

Number of types of soil forming sub-soil;

Two or more types

Soil density;

Firm to loose

Depth of hardcore beneath slab;

hhcoreslab = 150 mm; (Dispersal allowed for bearing

pressure check)
Depth of hardcore beneath thickenings;

hhcorethick = 100 mm; (Dispersal allowed for bearing

pressure check)
3

Density of hardcore;

γhcore = 20.0 kN/m

Basic assumed diameter of local depression;

φdepbasic = 3500mm

Diameter under slab modified for hardcore;

φdepslab = φdepbasic - hhcoreslab = 3350 mm

Diameter under thickenings modified for hardcore;

φdepthick = φdepbasic - hhcorethick = 3400 mm

Raft slab definition
Max dimension/max dimension between joints;

lmax = 10.000 m

Slab thickness;

hslab = 250 mm

Concrete strength;

fcu = 40 N/mm

2

Poissons ratio of concrete;

ν = 0.2

Slab mesh reinforcement strength;

fyslab = 500 N/mm

2

1
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Civil & Geotechnical Engineering
Calc. by

Dr. C. Sachpazis

Chk'd by

Date

Date

23/02/2014

Partial safety factor for steel reinforcement;

App'd by

Date

γs = 1.15

From C&CA document ‘Concrete ground floors’ Table 5
Minimum mesh required in top for shrinkage;

A142;

Actual mesh provided in top;

A393 (Asslabtop = 393 mm2/m)

Mesh provided in bottom;

A393 (Asslabbtm = 393 mm /m)

Top mesh bar diameter;

φslabtop = 10 mm

2

Bottom mesh bar diameter;

φslabbtm = 10 mm

Cover to top reinforcement;

ctop = 20 mm

Cover to bottom reinforcement;

cbtm = 40 mm

Average effective depth of top reinforcement;

dtslabav = hslab - ctop - φslabtop = 220 mm

Average effective depth of bottom reinforcement;

dbslabav = hslab - cbtm - φslabbtm = 200 mm

Overall average effective depth;

dslabav = (dtslabav + dbslabav)/2 = 210 mm

Minimum effective depth of top reinforcement;

dtslabmin = dtslabav - φslabtop/2 = 215 mm

Minimum effective depth of bottom reinforcement;

dbslabmin = dbslabav - φslabbtm/2 = 195 mm

Edge beam definition
Overall depth;

hedge = 500 mm

Width;

bedge = 500 mm

Strength of main bar reinforcement;

fy = 500 N/mm

Strength of link reinforcement;

fys = 500 N/mm

Reinforcement provided in top;

4 T16 bars (Asedgetop = 804 mm )

Reinforcement provided in bottom;

3 T16 bars (Asedgebtm = 603 mm )

2
2
2

2

Link reinforcement provided;

2 T10 legs at 300 ctrs (Asv/sv = 0.524 mm)

Bottom cover to links;

cbeam = 40 mm

Effective depth of top reinforcement;

dedgetop = hedge - ctop - φslabtop - φedgelink - φedgetop/2 =

452 mm
Effective depth of bottom reinforcement;

dedgebtm = hedge - cbeam - φedgelink - φedgebtm/2 = 442

mm
Internal slab design checks
Basic loading
3

2

Slab self weight;

wslab = 24 kN/m × hslab = 6.0 kN/m

Hardcore;

whcoreslab = γhcore × hhcoreslab = 3.0 kN/m

2

Applied loading
Uniformly distributed dead load;
Uniformly distributed live load;

2

wDudl = 2.0 kN/m

2

wLudl = 5.0 kN/m

Internal slab bearing pressure check
Total uniform load at formation level;

wudl = wslab + whcoreslab + wDudl + wLudl = 16.0 kN/m

2

PASS - wudl <= qallow - Applied bearing pressure is less than allowable

2
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.

Civil & Geotechnical Engineering
Calc. by

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Dr. C. Sachpazis

Chk'd by

Date

Date

23/02/2014

App'd by

Date

Internal slab bending and shear check
Applied bending moments
Span of slab;

lslab = φdepslab + dtslabav = 3570 mm

Ultimate self weight udl;

wswult = 1.4 × wslab = 8.4 kN/m

Self weight moment at centre;

Mcsw = wswult × lslab × (1 + ν) / 64 = 2.0 kNm/m

Self weight moment at edge;

Mesw = wswult × lslab / 32 = 3.3 kNm/m

Self weight shear force at edge;

Vsw = wswult × lslab / 4 = 7.5 kN/m

2

2

2

Moments due to applied uniformly distributed loads
Ultimate applied udl;

2

wudlult = 1.4 × wDudl + 1.6 × wLudl = 10.8 kN/m
2

Moment at centre;

Mcudl = wudlult × lslab × (1 + ν) / 64 = 2.6 kNm/m

Moment at edge;

Meudl = wudlult × lslab / 32 = 4.3 kNm/m

Shear force at edge;

Vudl = wudlult × lslab / 4 = 9.6 kN/m

2

Resultant moments and shears
Total moment at edge;

MΣe = 7.6 kNm/m

Total moment at centre;

MΣc = 4.6 kNm/m

Total shear force;

VΣ = 17.1 kN/m

Reinforcement required in top
2

K factor;

Kslabtop = MΣe/(fcu × dtslabav ) = 0.004

Lever arm;

zslabtop = dtslabav × min(0.95, 0.5 + √(0.25 -

Kslabtop/0.9)) = 209.0 mm
Area of steel required for bending;

Asslabtopbend = MΣe/((1.0/γs) × fyslab × zslabtop) = 84

2

mm /m
2

Minimum area of steel required;

Asslabmin = 0.0013 × hslab = 325 mm /m

Area of steel required;

Asslabtopreq = max(Asslabtopbend, Asslabmin) = 325 mm /m

2

PASS - Asslabtopreq <= Asslabtop - Area of reinforcement provided in top to span local depressions is
adequate
Reinforcement required in bottom
2

K factor;

Kslabbtm = MΣc/(fcu × dbslabav ) = 0.003

Lever arm;

zslabbtm = dbslabav × min(0.95, 0.5 + √(0.25 -

Kslabbtm/0.9)) = 190.0 mm
Area of steel required for bending;

Asslabbtmbend = MΣc/((1.0/γs) × fyslab × zslabbtm) = 56

2

mm /m
Area of steel required;

Asslabbtmreq = max(Asslabbtmbend, Asslabmin) = 325

2

mm /m
PASS - Asslabbtmreq <= Asslabbtm - Area of reinforcement provided in bottom to span local
depressions is adequate
Shear check
2

Applied shear stress;

v = VΣ/dtslabmin = 0.080 N/mm

Tension steel ratio;

ρ = 100 × Asslabtop/dtslabmin = 0.183
3
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis

Civil & Geotechnical Engineering

Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.

Calc. by

Dr. C. Sachpazis

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Chk'd by

Date

Date

23/02/2014

App'd by

Date

From BS8110-1:1997 - Table 3.8;
Design concrete shear strength;

vc = 0.490 N/mm

2

PASS - v <= vc - Shear capacity of the slab is adequate
Internal slab deflection check
Basic allowable span to depth ratio;

Ratiobasic = 26.0

Moment factor;

Mfactor = MΣc/dbslabav = 0.115 N/mm

Steel service stress;

fs = 2/3 × fyslab × Asslabbtmbend/Asslabbtm = 47.109

N/mm

2

2

2
2

MFslab = min(2.0, 0.55 + [(477N/mm - fs)/(120 ×

Modification factor;
2

(0.9N/mm + Mfactor))])
MFslab = 2.000
Modified allowable span to depth ratio;

Ratioallow = Ratiobasic × MFslab = 52.000

Actual span to depth ratio;

Ratioactual = lslab/ dbslabav = 17.850
PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate

Edge beam design checks
Basic loading
2

whcorethick = γhcore × hhcorethick = 2.0 kN/m

Hardcore;

3

wedge = 24 kN/m × hedge × bedge = 6.0 kN/m

Edge beam self weight;
Edge beam bearing pressure check
Effective bearing width of edge beam;

bbearing = bedge = 500 mm

Total uniform load at formation level;

wudledge = wDudl+wLudl+wedge/bbearing+whcorethick = 21.0

2

kN/m

PASS - wudledge <= qallow - Applied bearing pressure is less than allowable
Edge beam bending check
Divider for moments due to udl’s;

βudl = 10.0

Applied bending moments
Span of edge beam;

ledge = φdepthick + dedgetop = 3852 mm

Ultimate self weight udl;

wedgeult = 1.4 × wedge = 8.4 kN/m

Ultimate slab udl (approx);

wedgeslab = max(0 kN/m, 1.4×wslab×((φdepthick/2 × 3/4)-

bedge)) = 6.5 kN/m
2

Self weight and slab bending moment;

Medgesw = (wedgeult + wedgeslab) × ledge /βudl = 22.1 kNm

Self weight shear force;

Vedgesw = (wedgeult + wedgeslab) × ledge/2 = 28.7 kN

Moments due to applied uniformly distributed loads
Ultimate udl (approx);

wedgeudl = wudlult × φdepthick/2 × 3/4 = 13.8 kN/m

Bending moment;

Medgeudl = wedgeudl × ledge /βudl = 20.4 kNm

Shear force;

Vedgeudl = wedgeudl × ledge/2 = 26.5 kN

2

Resultant moments and shears
Total moment (hogging and sagging);

MΣedge = 42.6 kNm
4
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Civil & Geotechnical Engineering
Dr. C. Sachpazis

Maximum shear force;

Chk'd by

Date

Calc. by

Date

23/02/2014

App'd by

Date

VΣedge = 55.2 kN

Reinforcement required in top
Width of section in compression zone;

bedgetop = bedge = 500 mm

Average web width;

bw = bedge = 500 mm

K factor;

Kedgetop = MΣedge/(fcu × bedgetop × dedgetop ) = 0.010

Lever arm;

zedgetop = dedgetop × min(0.95, 0.5 + √(0.25 -

2

Kedgetop/0.9)) = 429 mm
Area of steel required for bending;
mm

Asedgetopbend = MΣedge/((1.0/γs) × fy × zedgetop) = 228

2
2

Minimum area of steel required;

Asedgetopmin = 0.0013 × 1.0 × bw × hedge = 325 mm

Area of steel required;

Asedgetopreq = max(Asedgetopbend, Asedgetopmin) = 325

mm

2

PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate
Reinforcement required in bottom
Width of section in compression zone;

bedgebtm = bedge + 0.1 × ledge = 885 mm

K factor;

Kedgebtm = MΣedge/(fcu × bedgebtm × dedgebtm ) = 0.006

Lever arm;

zedgebtm = dedgebtm × min(0.95, 0.5 + √(0.25 -

2

Kedgebtm/0.9)) = 420 mm
Area of steel required for bending;
mm

Asedgebtmbend = MΣedge/((1.0/γs) × fy × zedgebtm) = 233

2
2

Minimum area of steel required;

Asedgebtmmin = 0.0013 × 1.0 × bw × hedge = 325 mm

Area of steel required;

Asedgebtmreq = max(Asedgebtmbend, Asedgebtmmin) = 325

mm

2

PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is
adequate
Edge beam shear check
2

Applied shear stress;

vedge = VΣedge/(bw × dedgetop) = 0.244 N/mm

Tension steel ratio;

ρedge = 100 × Asedgetop/(bw × dedgetop) = 0.356

From BS8110-1:1997 - Table 3.8
Design concrete shear strength;

vcedge = 0.524 N/mm

2

2

vedge <= vcedge + 0.4N/mm - Therefore minimum links required
Link area to spacing ratio required;

2

Asv_upon_svreqedge = 0.4N/mm × bw/((1.0/γs) × fys) =

0.460 mm
Link area to spacing ratio provided;

2

Asv_upon_svprovedge = Nedgelink×π×φedgelink /(4×svedge)

= 0.524 mm
PASS - Asv_upon_svreqedge <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams
is adequate

5
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Civil & Geotechnical Engineering
Calc. by

Dr. C. Sachpazis

Chk'd by

Date

23/02/2014

Date

App'd by

Date

Corner design checks
Basic loading
Corner load number 1
Load type;

Line load in x direction

Dead load;

wDcorner1 = 9.6 kN/m

Live load;

wLcorner1 = 0.0 kN/m

Ultimate load;

wultcorner1 = 1.4 × wDcorner1 + 1.6 × wLcorner1 = 13.4

kN/m
Centroid of load from outside face of raft;

ycorner1 = 100 mm

Corner load number 2
Load type;

Line load in y direction

Dead load;

wDcorner2 = 9.6 kN/m

Live load;

wLcorner2 = 0.0 kN/m

Ultimate load;

wultcorner2 = 1.4 × wDcorner2 + 1.6 × wLcorner2 = 13.4

kN/m
Centroid of load from outside face of raft;

xcorner2 = 100 mm

Corner bearing pressure check
Total uniform load at formation level;

wudlcorner = wDudl+wLudl+wedge/bbearing+whcorethick = 21.0

2

kN/m

Net bearing press avail to resist line/point loads;

2

qnetcorner = qallow - wudlcorner = 54.0 kN/m

Total line/point loads
Total unfactored line load in x direction;

wΣlinex = 9.6 kN/m

Total ultimate line load in x direction;

wΣultlinex =13.4 kN/m

Total unfactored line load in y direction;

wΣliney = 9.6 kN/m

Total ultimate line load in y direction;

wΣultliney = 13.4 kN/m

Total unfactored point load;

wΣpoint = 0.0 kN

Total ultimate point load;

wΣultpoint = 0.0 kN

Length of side of sq reqd to resist line/point loads;

pcorner

2

=[wΣlinex+wΣliney+√((wΣlinex+wΣliney) +4×qnetcorner×wΣpoint)]/(2×qnetcorner)
pcorner = 356 mm
Bending moment about x-axis due to load/reaction eccentricity
Moment due to load 1 (x line);

Mx1 = max(0 kNm, wultcorner1 × pcorner × (pcorner/2 -

ycorner1)) = 0.4 kNm
Total moment about x axis;

MΣx = 0.4 kNm

Bending moment about y-axis due to load/reaction eccentricity
Moment due to load 2 (y line);

My2 = max(0 kNm, wultcorner2 × pcorner × (pcorner/2 -

xcorner2)) = 0.4 kNm
Total moment about y axis;

MΣy = 0.4 kNm

Check top reinforcement in edge beams for load/reaction eccentric moment
6
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.

Civil & Geotechnical Engineering
Calc. by

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Dr. C. Sachpazis

Chk'd by

Date

Date

23/02/2014

Max moment due to load/reaction eccentricity;

App'd by

Date

MΣ = max(MΣx, MΣy) = 0.4 kNm

Assume all of this moment is resisted by edge beam
From edge beam design checks away from corners
Moment due to edge beam spanning depression;

MΣedge = 42.6 kNm

Total moment to be resisted;

MΣcornerbp = MΣ + MΣedge = 42.9 kNm

Width of section in compression zone;

bedgetop = bedge = 500 mm

K factor;

Kcornerbp = MΣcornerbp/(fcu × bedgetop × dedgetop ) = 0.011

Lever arm;

zcornerbp = dedgetop × min(0.95, 0.5 + √(0.25 -

2

Kcornerbp/0.9)) = 429 mm
Ascornerbp = MΣcornerbp /((1.0/γs) × fy × zcornerbp) = 230

Total area of top steel required;
mm

2

PASS - Ascornerbp <= Asedgetop - Area of reinforcement provided to resist eccentric moment is
adequate
The allowable bearing pressure at the corner will not be exceeded
Corner beam bending check
Cantilever span of edge beam;

lcorner = φdepthick/√(2) + dedgetop/2 = 2630 mm

Moment and shear due to self weight
Ultimate self weight udl;

wedgeult = 1.4 × wedge = 8.4 kN/m

Average ultimate slab udl (approx);

wcornerslab = max(0 kN/m,1.4×wslab×(φdepthick/(√(2)×2)-

bedge)) = 5.9 kN/m
Self weight and slab bending moment;

2

Mcornersw = (wedgeult + wcornerslab) × lcorner /2 = 49.5

kNm
Self weight and slab shear force;

Vcornersw = (wedgeult + wcornerslab) × lcorner = 37.6 kN

Moment and shear due to udls
Maximum ultimate udl;

wcornerudl = ((1.4×wDudl)+(1.6×wLudl)) × φdepthick/√(2) =

26.0 kN/m
2

Bending moment;

Mcornerudl = wcornerudl × lcorner /6 = 29.9 kNm

Shear force;

Vcornerudl = wcornerudl × lcorner/2 = 34.1 kN

Moment and shear due to line loads in x direction
2

Bending moment;

Mcornerlinex = wΣultlinex × lcorner /2 = 46.5 kNm

Shear force;

Vcornerlinex = wΣultlinex × lcorner = 35.3 kN

Moment and shear due to line loads in y direction
2

Bending moment;

Mcornerliney = wΣultliney × lcorner /2 = 46.5 kNm

Shear force;

Vcornerliney = wΣultliney × lcorner = 35.3 kN

Total moments and shears due to point loads
Bending moment about x axis;

Mcornerpointx = 0.0 kNm

Bending moment about y axis;

Mcornerpointy = 0.0 kNm

Shear force;

Vcornerpoint = 0.0 kN

Resultant moments and shears
7
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Civil & Geotechnical Engineering
Chk'd by

Date

Calc. by

Dr. C. Sachpazis

Date

23/02/2014

Total moment about x axis;

App'd by

Date

MΣcornerx = Mcornersw+ Mcornerudl+ Mcornerliney+

Mcornerpointx = 125.9 kNm
Total shear force about x axis;

VΣcornerx = Vcornersw+ Vcornerudl+ Vcornerliney + Vcornerpoint

= 107.1 kN
Total moment about y axis;

MΣcornery = Mcornersw+ Mcornerudl+ Mcornerlinex+

Mcornerpointy = 125.9 kNm
Total shear force about y axis;

VΣcornery = Vcornersw+ Vcornerudl+ Vcornerlinex + Vcornerpoint

= 107.1 kN
Deflection of both edge beams at corner will be the same therefore design for average of these
moments and shears
Design bending moment;

MΣcorner = (MΣcornerx + MΣcornery)/2 = 125.9 kNm

Design shear force;

VΣcorner = (VΣcornerx + VΣcornery)/2 = 107.1 kN

Reinforcement required in top of edge beam
2

K factor;

Kcorner = MΣcorner/(fcu × bedgetop × dedgetop ) = 0.031

Lever arm;

zcorner = dedgetop × min(0.95, 0.5 + √(0.25 -

Kcorner/0.9)) = 429 mm
Area of steel required for bending;

Ascornerbend = MΣcorner/((1.0/γs) × fy × zcorner) = 674

2

mm
Minimum area of steel required;

Ascornermin = Asedgetopmin = 325 mm

Area of steel required;

Ascorner = max(Ascornerbend, Ascornermin) = 674 mm

2
2

PASS - Ascorner <= Asedgetop - Area of reinforcement provided in top of edge beams at corners is
adequate
Corner beam shear check
Average web width;

bw = bedge = 500 mm

Applied shear stress;

vcorner = VΣcorner/(bw × dedgetop) = 0.474 N/mm

Tension steel ratio;

ρcorner = 100 × Asedgetop/(bw × dedgetop) = 0.356

From BS8110-1:1997 - Table 3.8
Design concrete shear strength;

vccorner = 0.508 N/mm

2

2

2

vcorner <= vccorner + 0.4N/mm - Therefore minimum links required
Link area to spacing ratio required;

2

Asv_upon_svreqcorner = 0.4N/mm × bw/((1.0/γs) × fys)

= 0.460 mm
Link area to spacing ratio provided;

2

Asv_upon_svprovedge = Nedgelink×π×φedgelink /(4×svedge)

= 0.524 mm
PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams
at corners is adequate
Corner beam deflection check
Basic allowable span to depth ratio;

Ratiobasiccorner = 7.0

Moment factor;

Mfactorcorner = MΣcorner/(bedgetop × dedgetop ) = 1.232

N/mm

2

2

8
Raft Foundation Analysis & Design, In accordance
with BS8110 : Part 1-1997 and the recommended values.

Job Ref.

Section

Sheet no./rev. 1

Project:

GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info

Civil & Geotechnical Engineering
Calc. by

Dr. C. Sachpazis

23/02/2014

Date

App'd by

Date

fscorner = 2/3 × fy × Ascornerbend/Asedgetop = 279.448

Steel service stress;
N/mm

Chk'd by

Date

2
2

MFcorner=min(2.0,0.55+[(477N/mm -

Modification factor;
2

fscorner)/(120×(0.9N/mm +Mfactorcorner))])
MFcorner = 1.322
Modified allowable span to depth ratio;

Ratioallowcorner = Ratiobasiccorner × MFcorner = 9.255

Actual span to depth ratio;

Ratioactualcorner = lcorner/ dedgetop = 5.819

PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate

9

Weitere ähnliche Inhalte

Was ist angesagt?

Etabs example-rc building seismic load response-
Etabs example-rc building seismic load  response-Etabs example-rc building seismic load  response-
Etabs example-rc building seismic load response-
Bhaskar Alapati
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concrete
Jo Gijbels
 

Was ist angesagt? (20)

Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
T BEAM (ULTIMATE STRENGTH DESIGN)
T BEAM (ULTIMATE STRENGTH DESIGN)T BEAM (ULTIMATE STRENGTH DESIGN)
T BEAM (ULTIMATE STRENGTH DESIGN)
 
Etabs modeling - Design of slab according to EC2
Etabs modeling  - Design of slab according to EC2Etabs modeling  - Design of slab according to EC2
Etabs modeling - Design of slab according to EC2
 
One way slab load calculation
One way slab load calculation One way slab load calculation
One way slab load calculation
 
Design calculations of raft foundation
Design calculations of raft foundationDesign calculations of raft foundation
Design calculations of raft foundation
 
Tower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps designTower design-Chapter 2-pile caps design
Tower design-Chapter 2-pile caps design
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Concrete beam design
Concrete beam designConcrete beam design
Concrete beam design
 
Etabs example-rc building seismic load response-
Etabs example-rc building seismic load  response-Etabs example-rc building seismic load  response-
Etabs example-rc building seismic load response-
 
Shear wall and its design guidelines
Shear wall and its design guidelinesShear wall and its design guidelines
Shear wall and its design guidelines
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concrete
 
Etabs (atkins)
Etabs (atkins)Etabs (atkins)
Etabs (atkins)
 
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
 
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
21-Design of Simple Shear Connections (Steel Structural Design & Prof. Shehab...
 
Basement wall design
Basement wall designBasement wall design
Basement wall design
 
Pile cap design structural guide
Pile cap design   structural guidePile cap design   structural guide
Pile cap design structural guide
 
10. design of mat foundation
10. design of mat foundation10. design of mat foundation
10. design of mat foundation
 
Chapter 2 free vibration of single degree of freedom
Chapter 2 free vibration of single degree of freedomChapter 2 free vibration of single degree of freedom
Chapter 2 free vibration of single degree of freedom
 
seismic ubc -97
seismic ubc -97seismic ubc -97
seismic ubc -97
 

Andere mochten auch

Presentation on Mat Foundation
Presentation on Mat FoundationPresentation on Mat Foundation
Presentation on Mat Foundation
Tanvir Alam Khan
 
Building construction 1 experiencing construction
Building construction 1 experiencing constructionBuilding construction 1 experiencing construction
Building construction 1 experiencing construction
Jia Jun Chok
 
Flow Chart - One Way Joist Construction
Flow Chart - One Way Joist ConstructionFlow Chart - One Way Joist Construction
Flow Chart - One Way Joist Construction
Qamar Uz Zaman
 
Leksion 1 pilotat
Leksion 1 pilotatLeksion 1 pilotat
Leksion 1 pilotat
Paolo Xhezo
 
Pile foundation design
Pile foundation designPile foundation design
Pile foundation design
UTHM
 
Structure Reinforced Concrete
Structure Reinforced ConcreteStructure Reinforced Concrete
Structure Reinforced Concrete
Nik M Farid
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
Ivan Ferrer
 

Andere mochten auch (20)

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
Sachpazis: Strip Foundation Analysis and Design example (EN1997-1:2004)
 
Presentation on Mat Foundation
Presentation on Mat FoundationPresentation on Mat Foundation
Presentation on Mat Foundation
 
Raft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachRaft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approach
 
Foundation
FoundationFoundation
Foundation
 
Reinforced slab
Reinforced slabReinforced slab
Reinforced slab
 
types of Foundations with animated sketches
types of Foundations with animated sketchestypes of Foundations with animated sketches
types of Foundations with animated sketches
 
Estimating and-costing
Estimating and-costingEstimating and-costing
Estimating and-costing
 
Building construction 1 experiencing construction
Building construction 1 experiencing constructionBuilding construction 1 experiencing construction
Building construction 1 experiencing construction
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Flow Chart - One Way Joist Construction
Flow Chart - One Way Joist ConstructionFlow Chart - One Way Joist Construction
Flow Chart - One Way Joist Construction
 
Leksion 1 pilotat
Leksion 1 pilotatLeksion 1 pilotat
Leksion 1 pilotat
 
Mat foundation
Mat foundationMat foundation
Mat foundation
 
Raft foundations
Raft foundationsRaft foundations
Raft foundations
 
Pile foundation design
Pile foundation designPile foundation design
Pile foundation design
 
Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.Design of flat plate slab and its Punching Shear Reinf.
Design of flat plate slab and its Punching Shear Reinf.
 
Mat or raft foundation
Mat or raft foundationMat or raft foundation
Mat or raft foundation
 
Beam design
Beam designBeam design
Beam design
 
Structure Reinforced Concrete
Structure Reinforced ConcreteStructure Reinforced Concrete
Structure Reinforced Concrete
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
 

Ähnlich wie Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab with edge wall load example

RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
Kingsley Aboagye
 

Ähnlich wie Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab with edge wall load example (20)

Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Structural Design
Structural DesignStructural Design
Structural Design
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf
 
Precast driven pile 450 x450
Precast driven pile 450 x450Precast driven pile 450 x450
Precast driven pile 450 x450
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 

Mehr von Dr.Costas Sachpazis

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Dr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
Dr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Dr.Costas Sachpazis
 

Mehr von Dr.Costas Sachpazis (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 

Kürzlich hochgeladen

Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
amitlee9823
 
➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men 🔝jhansi🔝 Escorts S...
➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men  🔝jhansi🔝   Escorts S...➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men  🔝jhansi🔝   Escorts S...
➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men 🔝jhansi🔝 Escorts S...
amitlee9823
 
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
gajnagarg
 
Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...
Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...
Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...
nirzagarg
 
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
amitlee9823
 
➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men 🔝Kolkata🔝 Escorts...
➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men  🔝Kolkata🔝   Escorts...➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men  🔝Kolkata🔝   Escorts...
➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men 🔝Kolkata🔝 Escorts...
amitlee9823
 
➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men 🔝dehradun🔝 Escor...
➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men  🔝dehradun🔝   Escor...➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men  🔝dehradun🔝   Escor...
➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men 🔝dehradun🔝 Escor...
amitlee9823
 

Kürzlich hochgeladen (20)

Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
Call Girls Basavanagudi Just Call 👗 7737669865 👗 Top Class Call Girl Service ...
 
💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...
💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...
💫✅jodhpur 24×7 BEST GENUINE PERSON LOW PRICE CALL GIRL SERVICE FULL SATISFACT...
 
➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men 🔝jhansi🔝 Escorts S...
➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men  🔝jhansi🔝   Escorts S...➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men  🔝jhansi🔝   Escorts S...
➥🔝 7737669865 🔝▻ jhansi Call-girls in Women Seeking Men 🔝jhansi🔝 Escorts S...
 
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
VIP Model Call Girls Kalyani Nagar ( Pune ) Call ON 8005736733 Starting From ...
 
High Profile Escorts Nerul WhatsApp +91-9930687706, Best Service
High Profile Escorts Nerul WhatsApp +91-9930687706, Best ServiceHigh Profile Escorts Nerul WhatsApp +91-9930687706, Best Service
High Profile Escorts Nerul WhatsApp +91-9930687706, Best Service
 
call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
call girls in Kaushambi (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
 
Hingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRL
Hingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRLHingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRL
Hingoli ❤CALL GIRL 8617370543 ❤CALL GIRLS IN Hingoli ESCORT SERVICE❤CALL GIRL
 
8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available
8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available
8377087607, Door Step Call Girls In Kalkaji (Locanto) 24/7 Available
 
Hire 💕 8617697112 Meerut Call Girls Service Call Girls Agency
Hire 💕 8617697112 Meerut Call Girls Service Call Girls AgencyHire 💕 8617697112 Meerut Call Girls Service Call Girls Agency
Hire 💕 8617697112 Meerut Call Girls Service Call Girls Agency
 
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
Just Call Vip call girls dharamshala Escorts ☎️9352988975 Two shot with one g...
 
Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...
Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...
Nisha Yadav Escorts Service Ernakulam ❣️ 7014168258 ❣️ High Cost Unlimited Ha...
 
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Nagavara ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Gamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad IbrahimGamestore case study UI UX by Amgad Ibrahim
Gamestore case study UI UX by Amgad Ibrahim
 
➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men 🔝Kolkata🔝 Escorts...
➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men  🔝Kolkata🔝   Escorts...➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men  🔝Kolkata🔝   Escorts...
➥🔝 7737669865 🔝▻ Kolkata Call-girls in Women Seeking Men 🔝Kolkata🔝 Escorts...
 
WhatsApp Chat: 📞 8617697112 Call Girl Baran is experienced
WhatsApp Chat: 📞 8617697112 Call Girl Baran is experiencedWhatsApp Chat: 📞 8617697112 Call Girl Baran is experienced
WhatsApp Chat: 📞 8617697112 Call Girl Baran is experienced
 
Jordan_Amanda_DMBS202404_PB1_2024-04.pdf
Jordan_Amanda_DMBS202404_PB1_2024-04.pdfJordan_Amanda_DMBS202404_PB1_2024-04.pdf
Jordan_Amanda_DMBS202404_PB1_2024-04.pdf
 
Sweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptxSweety Planet Packaging Design Process Book.pptx
Sweety Planet Packaging Design Process Book.pptx
 
call girls in Vasundhra (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
call girls in Vasundhra (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...call girls in Vasundhra (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
call girls in Vasundhra (Ghaziabad) 🔝 >༒8448380779 🔝 genuine Escort Service 🔝...
 
➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men 🔝dehradun🔝 Escor...
➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men  🔝dehradun🔝   Escor...➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men  🔝dehradun🔝   Escor...
➥🔝 7737669865 🔝▻ dehradun Call-girls in Women Seeking Men 🔝dehradun🔝 Escor...
 

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab with edge wall load example

  • 1. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Civil & Geotechnical Engineering Chk'd by Date Calc. by Dr. C. Sachpazis Date 23/02/2014 App'd by Date RAFT FOUNDATION DESIGN (BS8110 : PART 1 : 1997) Asslabtop A sedgetop hslab A sedgelink hhcoreslab hedge A sslabbtm hhcorethick Asedgebtm bedge Soil and raft definition Soil definition Allowable bearing pressure; 2 qallow = 75.0 kN/m Number of types of soil forming sub-soil; Two or more types Soil density; Firm to loose Depth of hardcore beneath slab; hhcoreslab = 150 mm; (Dispersal allowed for bearing pressure check) Depth of hardcore beneath thickenings; hhcorethick = 100 mm; (Dispersal allowed for bearing pressure check) 3 Density of hardcore; γhcore = 20.0 kN/m Basic assumed diameter of local depression; φdepbasic = 3500mm Diameter under slab modified for hardcore; φdepslab = φdepbasic - hhcoreslab = 3350 mm Diameter under thickenings modified for hardcore; φdepthick = φdepbasic - hhcorethick = 3400 mm Raft slab definition Max dimension/max dimension between joints; lmax = 10.000 m Slab thickness; hslab = 250 mm Concrete strength; fcu = 40 N/mm 2 Poissons ratio of concrete; ν = 0.2 Slab mesh reinforcement strength; fyslab = 500 N/mm 2 1
  • 2. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Civil & Geotechnical Engineering Calc. by Dr. C. Sachpazis Chk'd by Date Date 23/02/2014 Partial safety factor for steel reinforcement; App'd by Date γs = 1.15 From C&CA document ‘Concrete ground floors’ Table 5 Minimum mesh required in top for shrinkage; A142; Actual mesh provided in top; A393 (Asslabtop = 393 mm2/m) Mesh provided in bottom; A393 (Asslabbtm = 393 mm /m) Top mesh bar diameter; φslabtop = 10 mm 2 Bottom mesh bar diameter; φslabbtm = 10 mm Cover to top reinforcement; ctop = 20 mm Cover to bottom reinforcement; cbtm = 40 mm Average effective depth of top reinforcement; dtslabav = hslab - ctop - φslabtop = 220 mm Average effective depth of bottom reinforcement; dbslabav = hslab - cbtm - φslabbtm = 200 mm Overall average effective depth; dslabav = (dtslabav + dbslabav)/2 = 210 mm Minimum effective depth of top reinforcement; dtslabmin = dtslabav - φslabtop/2 = 215 mm Minimum effective depth of bottom reinforcement; dbslabmin = dbslabav - φslabbtm/2 = 195 mm Edge beam definition Overall depth; hedge = 500 mm Width; bedge = 500 mm Strength of main bar reinforcement; fy = 500 N/mm Strength of link reinforcement; fys = 500 N/mm Reinforcement provided in top; 4 T16 bars (Asedgetop = 804 mm ) Reinforcement provided in bottom; 3 T16 bars (Asedgebtm = 603 mm ) 2 2 2 2 Link reinforcement provided; 2 T10 legs at 300 ctrs (Asv/sv = 0.524 mm) Bottom cover to links; cbeam = 40 mm Effective depth of top reinforcement; dedgetop = hedge - ctop - φslabtop - φedgelink - φedgetop/2 = 452 mm Effective depth of bottom reinforcement; dedgebtm = hedge - cbeam - φedgelink - φedgebtm/2 = 442 mm Internal slab design checks Basic loading 3 2 Slab self weight; wslab = 24 kN/m × hslab = 6.0 kN/m Hardcore; whcoreslab = γhcore × hhcoreslab = 3.0 kN/m 2 Applied loading Uniformly distributed dead load; Uniformly distributed live load; 2 wDudl = 2.0 kN/m 2 wLudl = 5.0 kN/m Internal slab bearing pressure check Total uniform load at formation level; wudl = wslab + whcoreslab + wDudl + wLudl = 16.0 kN/m 2 PASS - wudl <= qallow - Applied bearing pressure is less than allowable 2
  • 3. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Civil & Geotechnical Engineering Calc. by Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Dr. C. Sachpazis Chk'd by Date Date 23/02/2014 App'd by Date Internal slab bending and shear check Applied bending moments Span of slab; lslab = φdepslab + dtslabav = 3570 mm Ultimate self weight udl; wswult = 1.4 × wslab = 8.4 kN/m Self weight moment at centre; Mcsw = wswult × lslab × (1 + ν) / 64 = 2.0 kNm/m Self weight moment at edge; Mesw = wswult × lslab / 32 = 3.3 kNm/m Self weight shear force at edge; Vsw = wswult × lslab / 4 = 7.5 kN/m 2 2 2 Moments due to applied uniformly distributed loads Ultimate applied udl; 2 wudlult = 1.4 × wDudl + 1.6 × wLudl = 10.8 kN/m 2 Moment at centre; Mcudl = wudlult × lslab × (1 + ν) / 64 = 2.6 kNm/m Moment at edge; Meudl = wudlult × lslab / 32 = 4.3 kNm/m Shear force at edge; Vudl = wudlult × lslab / 4 = 9.6 kN/m 2 Resultant moments and shears Total moment at edge; MΣe = 7.6 kNm/m Total moment at centre; MΣc = 4.6 kNm/m Total shear force; VΣ = 17.1 kN/m Reinforcement required in top 2 K factor; Kslabtop = MΣe/(fcu × dtslabav ) = 0.004 Lever arm; zslabtop = dtslabav × min(0.95, 0.5 + √(0.25 - Kslabtop/0.9)) = 209.0 mm Area of steel required for bending; Asslabtopbend = MΣe/((1.0/γs) × fyslab × zslabtop) = 84 2 mm /m 2 Minimum area of steel required; Asslabmin = 0.0013 × hslab = 325 mm /m Area of steel required; Asslabtopreq = max(Asslabtopbend, Asslabmin) = 325 mm /m 2 PASS - Asslabtopreq <= Asslabtop - Area of reinforcement provided in top to span local depressions is adequate Reinforcement required in bottom 2 K factor; Kslabbtm = MΣc/(fcu × dbslabav ) = 0.003 Lever arm; zslabbtm = dbslabav × min(0.95, 0.5 + √(0.25 - Kslabbtm/0.9)) = 190.0 mm Area of steel required for bending; Asslabbtmbend = MΣc/((1.0/γs) × fyslab × zslabbtm) = 56 2 mm /m Area of steel required; Asslabbtmreq = max(Asslabbtmbend, Asslabmin) = 325 2 mm /m PASS - Asslabbtmreq <= Asslabbtm - Area of reinforcement provided in bottom to span local depressions is adequate Shear check 2 Applied shear stress; v = VΣ/dtslabmin = 0.080 N/mm Tension steel ratio; ρ = 100 × Asslabtop/dtslabmin = 0.183 3
  • 4. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Calc. by Dr. C. Sachpazis Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Chk'd by Date Date 23/02/2014 App'd by Date From BS8110-1:1997 - Table 3.8; Design concrete shear strength; vc = 0.490 N/mm 2 PASS - v <= vc - Shear capacity of the slab is adequate Internal slab deflection check Basic allowable span to depth ratio; Ratiobasic = 26.0 Moment factor; Mfactor = MΣc/dbslabav = 0.115 N/mm Steel service stress; fs = 2/3 × fyslab × Asslabbtmbend/Asslabbtm = 47.109 N/mm 2 2 2 2 MFslab = min(2.0, 0.55 + [(477N/mm - fs)/(120 × Modification factor; 2 (0.9N/mm + Mfactor))]) MFslab = 2.000 Modified allowable span to depth ratio; Ratioallow = Ratiobasic × MFslab = 52.000 Actual span to depth ratio; Ratioactual = lslab/ dbslabav = 17.850 PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate Edge beam design checks Basic loading 2 whcorethick = γhcore × hhcorethick = 2.0 kN/m Hardcore; 3 wedge = 24 kN/m × hedge × bedge = 6.0 kN/m Edge beam self weight; Edge beam bearing pressure check Effective bearing width of edge beam; bbearing = bedge = 500 mm Total uniform load at formation level; wudledge = wDudl+wLudl+wedge/bbearing+whcorethick = 21.0 2 kN/m PASS - wudledge <= qallow - Applied bearing pressure is less than allowable Edge beam bending check Divider for moments due to udl’s; βudl = 10.0 Applied bending moments Span of edge beam; ledge = φdepthick + dedgetop = 3852 mm Ultimate self weight udl; wedgeult = 1.4 × wedge = 8.4 kN/m Ultimate slab udl (approx); wedgeslab = max(0 kN/m, 1.4×wslab×((φdepthick/2 × 3/4)- bedge)) = 6.5 kN/m 2 Self weight and slab bending moment; Medgesw = (wedgeult + wedgeslab) × ledge /βudl = 22.1 kNm Self weight shear force; Vedgesw = (wedgeult + wedgeslab) × ledge/2 = 28.7 kN Moments due to applied uniformly distributed loads Ultimate udl (approx); wedgeudl = wudlult × φdepthick/2 × 3/4 = 13.8 kN/m Bending moment; Medgeudl = wedgeudl × ledge /βudl = 20.4 kNm Shear force; Vedgeudl = wedgeudl × ledge/2 = 26.5 kN 2 Resultant moments and shears Total moment (hogging and sagging); MΣedge = 42.6 kNm 4
  • 5. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Civil & Geotechnical Engineering Dr. C. Sachpazis Maximum shear force; Chk'd by Date Calc. by Date 23/02/2014 App'd by Date VΣedge = 55.2 kN Reinforcement required in top Width of section in compression zone; bedgetop = bedge = 500 mm Average web width; bw = bedge = 500 mm K factor; Kedgetop = MΣedge/(fcu × bedgetop × dedgetop ) = 0.010 Lever arm; zedgetop = dedgetop × min(0.95, 0.5 + √(0.25 - 2 Kedgetop/0.9)) = 429 mm Area of steel required for bending; mm Asedgetopbend = MΣedge/((1.0/γs) × fy × zedgetop) = 228 2 2 Minimum area of steel required; Asedgetopmin = 0.0013 × 1.0 × bw × hedge = 325 mm Area of steel required; Asedgetopreq = max(Asedgetopbend, Asedgetopmin) = 325 mm 2 PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate Reinforcement required in bottom Width of section in compression zone; bedgebtm = bedge + 0.1 × ledge = 885 mm K factor; Kedgebtm = MΣedge/(fcu × bedgebtm × dedgebtm ) = 0.006 Lever arm; zedgebtm = dedgebtm × min(0.95, 0.5 + √(0.25 - 2 Kedgebtm/0.9)) = 420 mm Area of steel required for bending; mm Asedgebtmbend = MΣedge/((1.0/γs) × fy × zedgebtm) = 233 2 2 Minimum area of steel required; Asedgebtmmin = 0.0013 × 1.0 × bw × hedge = 325 mm Area of steel required; Asedgebtmreq = max(Asedgebtmbend, Asedgebtmmin) = 325 mm 2 PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is adequate Edge beam shear check 2 Applied shear stress; vedge = VΣedge/(bw × dedgetop) = 0.244 N/mm Tension steel ratio; ρedge = 100 × Asedgetop/(bw × dedgetop) = 0.356 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vcedge = 0.524 N/mm 2 2 vedge <= vcedge + 0.4N/mm - Therefore minimum links required Link area to spacing ratio required; 2 Asv_upon_svreqedge = 0.4N/mm × bw/((1.0/γs) × fys) = 0.460 mm Link area to spacing ratio provided; 2 Asv_upon_svprovedge = Nedgelink×π×φedgelink /(4×svedge) = 0.524 mm PASS - Asv_upon_svreqedge <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams is adequate 5
  • 6. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Civil & Geotechnical Engineering Calc. by Dr. C. Sachpazis Chk'd by Date 23/02/2014 Date App'd by Date Corner design checks Basic loading Corner load number 1 Load type; Line load in x direction Dead load; wDcorner1 = 9.6 kN/m Live load; wLcorner1 = 0.0 kN/m Ultimate load; wultcorner1 = 1.4 × wDcorner1 + 1.6 × wLcorner1 = 13.4 kN/m Centroid of load from outside face of raft; ycorner1 = 100 mm Corner load number 2 Load type; Line load in y direction Dead load; wDcorner2 = 9.6 kN/m Live load; wLcorner2 = 0.0 kN/m Ultimate load; wultcorner2 = 1.4 × wDcorner2 + 1.6 × wLcorner2 = 13.4 kN/m Centroid of load from outside face of raft; xcorner2 = 100 mm Corner bearing pressure check Total uniform load at formation level; wudlcorner = wDudl+wLudl+wedge/bbearing+whcorethick = 21.0 2 kN/m Net bearing press avail to resist line/point loads; 2 qnetcorner = qallow - wudlcorner = 54.0 kN/m Total line/point loads Total unfactored line load in x direction; wΣlinex = 9.6 kN/m Total ultimate line load in x direction; wΣultlinex =13.4 kN/m Total unfactored line load in y direction; wΣliney = 9.6 kN/m Total ultimate line load in y direction; wΣultliney = 13.4 kN/m Total unfactored point load; wΣpoint = 0.0 kN Total ultimate point load; wΣultpoint = 0.0 kN Length of side of sq reqd to resist line/point loads; pcorner 2 =[wΣlinex+wΣliney+√((wΣlinex+wΣliney) +4×qnetcorner×wΣpoint)]/(2×qnetcorner) pcorner = 356 mm Bending moment about x-axis due to load/reaction eccentricity Moment due to load 1 (x line); Mx1 = max(0 kNm, wultcorner1 × pcorner × (pcorner/2 - ycorner1)) = 0.4 kNm Total moment about x axis; MΣx = 0.4 kNm Bending moment about y-axis due to load/reaction eccentricity Moment due to load 2 (y line); My2 = max(0 kNm, wultcorner2 × pcorner × (pcorner/2 - xcorner2)) = 0.4 kNm Total moment about y axis; MΣy = 0.4 kNm Check top reinforcement in edge beams for load/reaction eccentric moment 6
  • 7. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Civil & Geotechnical Engineering Calc. by Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Dr. C. Sachpazis Chk'd by Date Date 23/02/2014 Max moment due to load/reaction eccentricity; App'd by Date MΣ = max(MΣx, MΣy) = 0.4 kNm Assume all of this moment is resisted by edge beam From edge beam design checks away from corners Moment due to edge beam spanning depression; MΣedge = 42.6 kNm Total moment to be resisted; MΣcornerbp = MΣ + MΣedge = 42.9 kNm Width of section in compression zone; bedgetop = bedge = 500 mm K factor; Kcornerbp = MΣcornerbp/(fcu × bedgetop × dedgetop ) = 0.011 Lever arm; zcornerbp = dedgetop × min(0.95, 0.5 + √(0.25 - 2 Kcornerbp/0.9)) = 429 mm Ascornerbp = MΣcornerbp /((1.0/γs) × fy × zcornerbp) = 230 Total area of top steel required; mm 2 PASS - Ascornerbp <= Asedgetop - Area of reinforcement provided to resist eccentric moment is adequate The allowable bearing pressure at the corner will not be exceeded Corner beam bending check Cantilever span of edge beam; lcorner = φdepthick/√(2) + dedgetop/2 = 2630 mm Moment and shear due to self weight Ultimate self weight udl; wedgeult = 1.4 × wedge = 8.4 kN/m Average ultimate slab udl (approx); wcornerslab = max(0 kN/m,1.4×wslab×(φdepthick/(√(2)×2)- bedge)) = 5.9 kN/m Self weight and slab bending moment; 2 Mcornersw = (wedgeult + wcornerslab) × lcorner /2 = 49.5 kNm Self weight and slab shear force; Vcornersw = (wedgeult + wcornerslab) × lcorner = 37.6 kN Moment and shear due to udls Maximum ultimate udl; wcornerudl = ((1.4×wDudl)+(1.6×wLudl)) × φdepthick/√(2) = 26.0 kN/m 2 Bending moment; Mcornerudl = wcornerudl × lcorner /6 = 29.9 kNm Shear force; Vcornerudl = wcornerudl × lcorner/2 = 34.1 kN Moment and shear due to line loads in x direction 2 Bending moment; Mcornerlinex = wΣultlinex × lcorner /2 = 46.5 kNm Shear force; Vcornerlinex = wΣultlinex × lcorner = 35.3 kN Moment and shear due to line loads in y direction 2 Bending moment; Mcornerliney = wΣultliney × lcorner /2 = 46.5 kNm Shear force; Vcornerliney = wΣultliney × lcorner = 35.3 kN Total moments and shears due to point loads Bending moment about x axis; Mcornerpointx = 0.0 kNm Bending moment about y axis; Mcornerpointy = 0.0 kNm Shear force; Vcornerpoint = 0.0 kN Resultant moments and shears 7
  • 8. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Civil & Geotechnical Engineering Chk'd by Date Calc. by Dr. C. Sachpazis Date 23/02/2014 Total moment about x axis; App'd by Date MΣcornerx = Mcornersw+ Mcornerudl+ Mcornerliney+ Mcornerpointx = 125.9 kNm Total shear force about x axis; VΣcornerx = Vcornersw+ Vcornerudl+ Vcornerliney + Vcornerpoint = 107.1 kN Total moment about y axis; MΣcornery = Mcornersw+ Mcornerudl+ Mcornerlinex+ Mcornerpointy = 125.9 kNm Total shear force about y axis; VΣcornery = Vcornersw+ Vcornerudl+ Vcornerlinex + Vcornerpoint = 107.1 kN Deflection of both edge beams at corner will be the same therefore design for average of these moments and shears Design bending moment; MΣcorner = (MΣcornerx + MΣcornery)/2 = 125.9 kNm Design shear force; VΣcorner = (VΣcornerx + VΣcornery)/2 = 107.1 kN Reinforcement required in top of edge beam 2 K factor; Kcorner = MΣcorner/(fcu × bedgetop × dedgetop ) = 0.031 Lever arm; zcorner = dedgetop × min(0.95, 0.5 + √(0.25 - Kcorner/0.9)) = 429 mm Area of steel required for bending; Ascornerbend = MΣcorner/((1.0/γs) × fy × zcorner) = 674 2 mm Minimum area of steel required; Ascornermin = Asedgetopmin = 325 mm Area of steel required; Ascorner = max(Ascornerbend, Ascornermin) = 674 mm 2 2 PASS - Ascorner <= Asedgetop - Area of reinforcement provided in top of edge beams at corners is adequate Corner beam shear check Average web width; bw = bedge = 500 mm Applied shear stress; vcorner = VΣcorner/(bw × dedgetop) = 0.474 N/mm Tension steel ratio; ρcorner = 100 × Asedgetop/(bw × dedgetop) = 0.356 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vccorner = 0.508 N/mm 2 2 2 vcorner <= vccorner + 0.4N/mm - Therefore minimum links required Link area to spacing ratio required; 2 Asv_upon_svreqcorner = 0.4N/mm × bw/((1.0/γs) × fys) = 0.460 mm Link area to spacing ratio provided; 2 Asv_upon_svprovedge = Nedgelink×π×φedgelink /(4×svedge) = 0.524 mm PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams at corners is adequate Corner beam deflection check Basic allowable span to depth ratio; Ratiobasiccorner = 7.0 Moment factor; Mfactorcorner = MΣcorner/(bedgetop × dedgetop ) = 1.232 N/mm 2 2 8
  • 9. Raft Foundation Analysis & Design, In accordance with BS8110 : Part 1-1997 and the recommended values. Job Ref. Section Sheet no./rev. 1 Project: GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Civil & Geotechnical Engineering Calc. by Dr. C. Sachpazis 23/02/2014 Date App'd by Date fscorner = 2/3 × fy × Ascornerbend/Asedgetop = 279.448 Steel service stress; N/mm Chk'd by Date 2 2 MFcorner=min(2.0,0.55+[(477N/mm - Modification factor; 2 fscorner)/(120×(0.9N/mm +Mfactorcorner))]) MFcorner = 1.322 Modified allowable span to depth ratio; Ratioallowcorner = Ratiobasiccorner × MFcorner = 9.255 Actual span to depth ratio; Ratioactualcorner = lcorner/ dedgetop = 5.819 PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate 9