SlideShare ist ein Scribd-Unternehmen logo
1 von 6
Downloaden Sie, um offline zu lesen
TALAT Lecture 2301

                        Design of Members

               Axial force and bending moment


   Example 9.1 : Tension force and bending moment

                                   6 pages

                               Advanced Level

    prepared by Torsten Höglund, Royal Institute of Technology, Stockholm




Date of Issue: 1999
 EAA - European Aluminium Association



TALAT 2301 – Example 9.1                1
Example 9.1. Tension force and bending moment

Dimensions and material properties

                 Flange height:                   h        200 . mm
                 Flange depth:                    b        140 . mm
                 Web thickness:                   tw        12 . mm
                 Flange thickness:                tf       6 . mm
                 Length:                          L        2 .m
                 Width of web plate:
                 bw        h      2 .t f          b w = 188 mm


[1] Table 3.2b Alloy: EN AW-6082 T6 EP/O t > 5 mm
                                    newton                           newton
                 f 0.2      260 .                     fu     310 .
                                             2                             2
                                        mm                            mm


[1] (5.4), (5.5) f o      f 0.2                       fa     fu

                          fo
[1] (5.6)        fv
                                                      f v = 150 MPa
                           3
                 E       70000 . MPa                  G      27000 . MPa



                 Partial safety factors:                   γ M11.10                    γ M2 1.25


Moment and force
                 Axial tension force and excentricity                                              N Ed     140 . kN              exc    114.286 . mm
                 Bending moment                                                                    M y.Ed       N Ed . exc        M y.Ed = 16 kNm
                 Web-flange corner radius                                                          r   4 . mm

                 S.I. units                      kN 1000 . newton                                  kNm kN . m                     MPa 1000000 . Pa


Classification of the cross section in bending. Effective thickness
                            bw                                                             250 . MPa
Web              β w 0.40 .                       β w 6.267
                                                     =                             ε                                                      ε = 0.981
                            tw                                                                fo

                 β 1w 9 . ε                           β 2w 13 . ε                      β 3w 18 . ε
[1] Tab. 5.1
                 class w          if β w β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1
                                       >                                                                                                  class w = 1
[1] 5.4.5
                                  β w                        29            198
Local buckling: ρ cw if                      18 , 1.0 ,                                       t w.ef      if class w 4 , t w . ρ cwt w
                                                                                                                                  ,       ρ cw 1
                                                                                                                                              =
                                    ε                       β w         β w
                                                                                       2

                                                             ε             ε                                                              t w.ef = 12.0 mm



TALAT 2301 – Example 9.1                                                       2
Flanges                 b      tw
               β f                                β 1f             2.5 . ε                β 2f 4 . ε             β 3f 5 . ε                      β = 21.333
                                                                                                                                                   f
[1] 5.4.3                    tf

[1] Tab. 5.1   class f        if β > β 1f , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1
                                    f                                                                                                            class f = 4
[1] 5.4.5
                               β f                           29                 198
Local buckling: ρ cf if                      18 , 1.0 ,                                                                                          ρ cf 0.915
                                                                                                                                                    =
                                  ε                         β f                β f
                                                                                          2

                                                             ε                  ε
               t f.ef       if class f 4 , t f . ρ cft f
                                                    ,                                                                                            t f.ef = 5.49 mm

               Classification of the total cross-section:
               class        if class f > class w , class f , class w                                                                             class = 4


Cross weld
[1] Tab. 5.2   HAZ softening factor                                                             ρ haz 0.65
               Effective thickness, flange                                                      t f.haz ρ haz . t f           t f.haz = 3.9 mm
               t f.ef       if t f.ef < t f.haz , t f.ef , t f.haz                                                            t f.ef = 3.9 mm

               Effective thickness, web                                                         t w.haz         .t
                                                                                                            ρ haz f           t w.haz = 3.9 mm

               t w.ef        if t w.ef < t w.haz , t w.ef , t w.haz                                                           t w.ef = 3.9 mm


[1] Fig. 5.6   Extent of HAZ i web (MIG-weld)                                         t1        0.5 . t w   tf                                   t 1 = 9 mm

               b haz         if t 1 > 6 . mm , if t 1 > 12 . mm , if t 1 > 25 . mm , 40 . mm , 35 . mm , 30 . mm , 20 . mm                       b haz = 30 mm



Bending moment resistance

[1] 5.6.2      Elastic modulus of gross cross sectionWel:

                            2 .b .t f                 2 .t f .t w                               A gr = 3.936 . 10 mm
                                                                                                                  3     2
               A gr                           h

                          1. . 3
                                                        tw . h           2 .t f                 I gr = 2.246 . 10 mm
                                                                                      3                           7    4
               I gr         bh                    b
                         12
                            I gr . 2
                                                                                                W el = 2.246 . 10 mm
                                                                                                                  5     3
               W el
                               h
               Plastic modulus
                              1.
                                      b .h                tw . h             2 .t f             W ple = 2.69 . 10 mm
                                         2                                            2                           5     3
               W ple                              b
                              4

                                                            W
               Elastic modulus of the effective cross section effe:

               t f = 6 mm                       t f.ef = 3.9 mm                               t w = 12 mm        t w.ef = 3.9 mm


               Allowing for local buckling and HAZ:
                                             b. t f                    b haz . t w                                                     A effe = 3.399 . 10 mm
                                                                                                                                                         3      2
               A effe         A gr                        t f.ef                                t w.ef




TALAT 2301 – Example 9.1                                                                  3
Shift of gravity centre:

                                             h         tf                                 h          b haz         1
                e ef     b. t f     t f.ef .                  b haz . t w        t w.ef .     tf             .                      e ef = 14.038 mm
                                             2         2                                  2           2          A effe

                Second moment of area with respect to centre of gross cross section:
                                                                      2          3                                                                     2
                                                       h      tf           b haz                                                h         b haz
                I effe   I gr     b. t f      t f.ef .                            . t
                                                                                      w   t w.ef     b haz . t w       t w.ef .      tf
                                                       2          2            12                                               2          2

                                                                                                                           I effe = 1.816 . 10 mm
                                                                                                                                               7           4

                Second moment of area with respect to centre of effective cross section:
                                       e ef . A effe                                                                       I effe = 1.749 . 10 mm
                                           2                                                                                                   7           4
                I effe   I effe

                              I effe
                                                                                                                           W effe = 1.533 . 10 mm
                                                                                                                                                   5           3
                W effe
                           h
                                  e ef
                           2
                                                                                                    W effe
[1] Tab. 5.3    Shape factor α for welded, class 4 cross-section                              α                            α = 0.683
                                                                                                     W el

                Design moment and axial force resistance of the cross sectionM y,Rd and NRd)
                                                                             (

                           f o . α . W el                             f o . A effe
[1] (5.14)      M y.Rd                                     N Rd                                   M y.Rd = 36.2 kNm              N Rd = 803.4 kN
                                γ M1                                      γ M1


Section check
[1] (5.42a-c)   Class 4 cross section:                                          η 0 1         γ 0      1            ξ 0      1
                         η0                    γ0
                 N Ed             M y.Ed
[1] (5.40)                                          = 0.616
                 N Rd             M y.Rd




TALAT 2301 – Example 9.1                                                   4
Lateral-torsional buckling
[1] 5.9.4.3
                                                                            2 .b .t f           h .t w
                                                                                3                        3
                                                                                                                            I z = 2.773 . 10 mm
                                                                                                                                             6     4
                 Lateral stiffness constant                          Iz
                                                                                 12               12
                                                                                      t f .I z
                                                                                          2
                                                                                 h
                                                                                                                            I w = 2.609 . 10
                                                                                                                                             10        6
[1] Figure J.2   Varping constant:                                   Iw                                                                           mm
                                                                                        4
                                                                            2 .b .t f           h .t w
                                                                                        3                3
                                                                                                                            I t = 1.354 . 10 mm
                                                                                                                                             5     4
                 Torsional constant:                                 It
                                                                                            3
                 Length                                                                                                     L=2 m

[1] H.1.2        Moment relation                                     ψ     1                                                 ψ =1

                                                                                            1.4 . ψ          0.52 . ψ
                                                                                                                        2
[1] H.1.2(6)     C1 - constant                                       C1        1.88                                          C1=1

                                                                                                                             G = 2.7 . 10 MPa
                                                                                                                                         4
                 Shear modulus

                          C 1 .π .E .I z I w        L .G .I t
                                2                    2
[1] H.1.3(3)     M cr                   .                                                    Wy          W el                M cr = 62.517 kN . m
                                                      2.
                                                           E .I z
                                 2        Iz
                               L                 π


                           α .W y .f o
[1] 5.6.6.3(3)   λ LT                                                                                                        λ LT 0.799
                                                                                                                                =
                               M cr

[1] 5.6.6.3(2)   α LT if ( class> 2 , 0.2 , 0.1 )                                                                            α LT 0.2
                                                                                                                                 =

                 λ 0LT if ( class> 2 , 0.4 , 0.6 )                                                                           λ 0LT 0.4
                                                                                                                                 =

                 φ LT 0.5 . 1      α LT . λ LT
                                                                                      2
[1] 5.6.6.3(1)                                              λ 0LT          λ LT                                              φ LT 0.859
                                                                                                                                =
                                      1
                 χ LT                                                                                                        χ LT = 0.851
                                             2               2
                          φ LT        φ LT          λ LT


                 Design moment and axial force resistance of the cross section HAZ)
                                                                             (no

                                f .W                                f o . A gr
[1] (5.14)       M c.Rd        . o el
                            χ LT                      N Rd                                          M c.Rd = 45.2 kNm            N Rd = 930.3 kN
                                 γ M1                                γ M1




TALAT 2301 – Example 9.1                                            5
Lateral-torsional buckling check
[1] 5.9.3.1   ψ vec 0.8               W com       W el
                                                                        A gr = 3.936 . 10 mm
                                                                                        3      2
                       M y.Ed              N Ed
[1] (5.38)    σ com.Ed             ψ vec .
                       W com               A gr                         N Ed = 140 kN

              σ com.Ed= 42.8 MPa                                        M y.Ed = 16 kNm

[1] (5.39)    M eff.Ed   W com . σ com.Ed                               M eff.Ed = 9.61 kNm

                                                                        M c.Rd = 45.196 kNm


                                                  M eff.Ed < M c.Rd   OK!




TALAT 2301 – Example 9.1                             6

Weitere ähnliche Inhalte

Ähnlich wie TALAT Lecture 2301: Design of Members Example 9.1: Tension force and bending moment

TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated forceTALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated forceCORE-Materials
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam01008828934
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steelAygMA
 
10-design of singly reinforced beams
10-design of singly reinforced beams10-design of singly reinforced beams
10-design of singly reinforced beamsyadipermadi
 

Ähnlich wie TALAT Lecture 2301: Design of Members Example 9.1: Tension force and bending moment (9)

TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.7: Axial force resistance of ...
 
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
 
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.1: Axial force resistance of ...
 
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated forceTALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
TALAT Lecture 2301: Design of Members Example 7.1: Concentrated force
 
Analysis of T-Beam
Analysis of T-BeamAnalysis of T-Beam
Analysis of T-Beam
 
Fatigue behavior of welded steel
Fatigue behavior of welded steelFatigue behavior of welded steel
Fatigue behavior of welded steel
 
SCREW
 SCREW SCREW
SCREW
 
10-design of singly reinforced beams
10-design of singly reinforced beams10-design of singly reinforced beams
10-design of singly reinforced beams
 
Folien sfps 4
Folien sfps 4Folien sfps 4
Folien sfps 4
 

Mehr von CORE-Materials

Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite MaterialsCORE-Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming TechniquesCORE-Materials
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performanceCORE-Materials
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscopeCORE-Materials
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscopeCORE-Materials
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscopeCORE-Materials
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimenCORE-Materials
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniquesCORE-Materials
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electronsCORE-Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumCORE-Materials
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumCORE-Materials
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumCORE-Materials
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsCORE-Materials
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumCORE-Materials
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumCORE-Materials
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...CORE-Materials
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsCORE-Materials
 

Mehr von CORE-Materials (20)

Drawing Processes
Drawing ProcessesDrawing Processes
Drawing Processes
 
Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming Techniques
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performance
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscope
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscope
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscope
 
Electron diffraction
Electron diffractionElectron diffraction
Electron diffraction
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimen
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniques
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electrons
 
Durability of Materials
Durability of MaterialsDurability of Materials
Durability of Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on Aluminium
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of Aluminium
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion Coatings
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of Aluminium
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
 

Kürzlich hochgeladen

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 

Kürzlich hochgeladen (20)

Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 

TALAT Lecture 2301: Design of Members Example 9.1: Tension force and bending moment

  • 1. TALAT Lecture 2301 Design of Members Axial force and bending moment Example 9.1 : Tension force and bending moment 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 9.1 1
  • 2. Example 9.1. Tension force and bending moment Dimensions and material properties Flange height: h 200 . mm Flange depth: b 140 . mm Web thickness: tw 12 . mm Flange thickness: tf 6 . mm Length: L 2 .m Width of web plate: bw h 2 .t f b w = 188 mm [1] Table 3.2b Alloy: EN AW-6082 T6 EP/O t > 5 mm newton newton f 0.2 260 . fu 310 . 2 2 mm mm [1] (5.4), (5.5) f o f 0.2 fa fu fo [1] (5.6) fv f v = 150 MPa 3 E 70000 . MPa G 27000 . MPa Partial safety factors: γ M11.10 γ M2 1.25 Moment and force Axial tension force and excentricity N Ed 140 . kN exc 114.286 . mm Bending moment M y.Ed N Ed . exc M y.Ed = 16 kNm Web-flange corner radius r 4 . mm S.I. units kN 1000 . newton kNm kN . m MPa 1000000 . Pa Classification of the cross section in bending. Effective thickness bw 250 . MPa Web β w 0.40 . β w 6.267 = ε ε = 0.981 tw fo β 1w 9 . ε β 2w 13 . ε β 3w 18 . ε [1] Tab. 5.1 class w if β w β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1 > class w = 1 [1] 5.4.5 β w 29 198 Local buckling: ρ cw if 18 , 1.0 , t w.ef if class w 4 , t w . ρ cwt w , ρ cw 1 = ε β w β w 2 ε ε t w.ef = 12.0 mm TALAT 2301 – Example 9.1 2
  • 3. Flanges b tw β f β 1f 2.5 . ε β 2f 4 . ε β 3f 5 . ε β = 21.333 f [1] 5.4.3 tf [1] Tab. 5.1 class f if β > β 1f , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1 f class f = 4 [1] 5.4.5 β f 29 198 Local buckling: ρ cf if 18 , 1.0 , ρ cf 0.915 = ε β f β f 2 ε ε t f.ef if class f 4 , t f . ρ cft f , t f.ef = 5.49 mm Classification of the total cross-section: class if class f > class w , class f , class w class = 4 Cross weld [1] Tab. 5.2 HAZ softening factor ρ haz 0.65 Effective thickness, flange t f.haz ρ haz . t f t f.haz = 3.9 mm t f.ef if t f.ef < t f.haz , t f.ef , t f.haz t f.ef = 3.9 mm Effective thickness, web t w.haz .t ρ haz f t w.haz = 3.9 mm t w.ef if t w.ef < t w.haz , t w.ef , t w.haz t w.ef = 3.9 mm [1] Fig. 5.6 Extent of HAZ i web (MIG-weld) t1 0.5 . t w tf t 1 = 9 mm b haz if t 1 > 6 . mm , if t 1 > 12 . mm , if t 1 > 25 . mm , 40 . mm , 35 . mm , 30 . mm , 20 . mm b haz = 30 mm Bending moment resistance [1] 5.6.2 Elastic modulus of gross cross sectionWel: 2 .b .t f 2 .t f .t w A gr = 3.936 . 10 mm 3 2 A gr h 1. . 3 tw . h 2 .t f I gr = 2.246 . 10 mm 3 7 4 I gr bh b 12 I gr . 2 W el = 2.246 . 10 mm 5 3 W el h Plastic modulus 1. b .h tw . h 2 .t f W ple = 2.69 . 10 mm 2 2 5 3 W ple b 4 W Elastic modulus of the effective cross section effe: t f = 6 mm t f.ef = 3.9 mm t w = 12 mm t w.ef = 3.9 mm Allowing for local buckling and HAZ: b. t f b haz . t w A effe = 3.399 . 10 mm 3 2 A effe A gr t f.ef t w.ef TALAT 2301 – Example 9.1 3
  • 4. Shift of gravity centre: h tf h b haz 1 e ef b. t f t f.ef . b haz . t w t w.ef . tf . e ef = 14.038 mm 2 2 2 2 A effe Second moment of area with respect to centre of gross cross section: 2 3 2 h tf b haz h b haz I effe I gr b. t f t f.ef . . t w t w.ef b haz . t w t w.ef . tf 2 2 12 2 2 I effe = 1.816 . 10 mm 7 4 Second moment of area with respect to centre of effective cross section: e ef . A effe I effe = 1.749 . 10 mm 2 7 4 I effe I effe I effe W effe = 1.533 . 10 mm 5 3 W effe h e ef 2 W effe [1] Tab. 5.3 Shape factor α for welded, class 4 cross-section α α = 0.683 W el Design moment and axial force resistance of the cross sectionM y,Rd and NRd) ( f o . α . W el f o . A effe [1] (5.14) M y.Rd N Rd M y.Rd = 36.2 kNm N Rd = 803.4 kN γ M1 γ M1 Section check [1] (5.42a-c) Class 4 cross section: η 0 1 γ 0 1 ξ 0 1 η0 γ0 N Ed M y.Ed [1] (5.40) = 0.616 N Rd M y.Rd TALAT 2301 – Example 9.1 4
  • 5. Lateral-torsional buckling [1] 5.9.4.3 2 .b .t f h .t w 3 3 I z = 2.773 . 10 mm 6 4 Lateral stiffness constant Iz 12 12 t f .I z 2 h I w = 2.609 . 10 10 6 [1] Figure J.2 Varping constant: Iw mm 4 2 .b .t f h .t w 3 3 I t = 1.354 . 10 mm 5 4 Torsional constant: It 3 Length L=2 m [1] H.1.2 Moment relation ψ 1 ψ =1 1.4 . ψ 0.52 . ψ 2 [1] H.1.2(6) C1 - constant C1 1.88 C1=1 G = 2.7 . 10 MPa 4 Shear modulus C 1 .π .E .I z I w L .G .I t 2 2 [1] H.1.3(3) M cr . Wy W el M cr = 62.517 kN . m 2. E .I z 2 Iz L π α .W y .f o [1] 5.6.6.3(3) λ LT λ LT 0.799 = M cr [1] 5.6.6.3(2) α LT if ( class> 2 , 0.2 , 0.1 ) α LT 0.2 = λ 0LT if ( class> 2 , 0.4 , 0.6 ) λ 0LT 0.4 = φ LT 0.5 . 1 α LT . λ LT 2 [1] 5.6.6.3(1) λ 0LT λ LT φ LT 0.859 = 1 χ LT χ LT = 0.851 2 2 φ LT φ LT λ LT Design moment and axial force resistance of the cross section HAZ) (no f .W f o . A gr [1] (5.14) M c.Rd . o el χ LT N Rd M c.Rd = 45.2 kNm N Rd = 930.3 kN γ M1 γ M1 TALAT 2301 – Example 9.1 5
  • 6. Lateral-torsional buckling check [1] 5.9.3.1 ψ vec 0.8 W com W el A gr = 3.936 . 10 mm 3 2 M y.Ed N Ed [1] (5.38) σ com.Ed ψ vec . W com A gr N Ed = 140 kN σ com.Ed= 42.8 MPa M y.Ed = 16 kNm [1] (5.39) M eff.Ed W com . σ com.Ed M eff.Ed = 9.61 kNm M c.Rd = 45.196 kNm M eff.Ed < M c.Rd OK! TALAT 2301 – Example 9.1 6