SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
y = cos x
                                                   e.g. y = (x + 3)2 (x − 1)2
                                                                                                                         1
 Copyright itute.com 2006
                                                                                                                         0            π         2π
Free download & print from www.itute.com                      –3          0             1
Do not reproduce by other means
                                                                                                                        –1
Mathematical Methods 3,4                           e.g. y = (x + 2 )3 (x − 1)                               y = tan x
Summary sheets
Distance between two points
                                                              –2                0               1                         0           π         2π
=   (x2 − x1 )2 + ( y2 − y1 )2
               x +x y +y 
Mid-point =  1 2 , 1 2                           e.g. y = (x + 2)4
                2         2                                                                               Modulus functions
Parallel lines, m1 = m2                                                                                             x, x ≥ 0
                                                                                                            y= x =
Perpendicular lines,                                                                                               − x , x < 0
                               1                                                  –2              0
 m1m2 = −1      or    m2 = −                                                                                Transformations of y = f (x )
                               m1
                                                   Examples of power functions:                             (1) Vertical dilation (dilation away from the
Graphs of polynomial functions in                                                                           x-axis, dilation parallel to the y-axis) by
                                                                1
factorised form:                                   y = x −1  y =                                          factor k.     y = kf (x )
Quadratics e.g. y = (x + 1)(x − 3)                              x
                                                                                                            (2) Horizontal dilation (dilation away from
                                                                                0                           the y-axis, dilation parallel to the x-axis) by
                                                                                                                    1
                                                                                                            factor . y = f (nx )
                                                                                                                    n
           –1      0                   3
                                                                                                            (3) Reflection in the x-axis. y = − f (x )
                                                   y = x −2                                                 (4) Reflection in the y-axis. y = f (− x )
e.g. y = (x − 3)2
                                                       1                                                  (5) Vertical translation (translation parallel
                                                   y = 2
                                                                                                          to the y-axis) by c units.
                                                      x 
                                                                                                                 y = f (x ) ± c , + up, – down.
                                                                                            0
                 0      3                                1
                                                                                                            (6) Horizontal translation (translation
Cubics e.g. y = 3(x + 1)(x − 1)(x − 2 )            y=   x2
                                                                                                            parallel to the x-axis) by b units.
                                                                                                                 y = f (x ± b ) , + left, – right.
                                                   (y = x )                                                 *Always carry out translations last in
                                                                              0                             sketching graphs.
                                                                                                            Example 1 Sketch y = − 2(x − 1) + 2
                                                   Exponential functions:
          -1     0         1               2                                                                              2
                                                   y = a x where a = 2, e,10
                                                                                                                          0    1 2
e.g. y = (x + 1)2 (x − 1)
                                                                        10x         ex                2x
            –1         0                   1                                                                Example 2 Sketch y = 2 1 − x .
                                                                                                            Rewrite as y = 2 − (x − 1) .

                                                            1                                                                   2
                                                   asymptotic 0
e.g. y = (x + 1) 3
                                                                                                                                 0 1
                                                   Logarithmic functions:                                   Relations and functions:
                               –1          0       y = log a x where a = 2, e,10                            A relation is a set of ordered pairs (points).
                                                                                                            If no two ordered pairs have the same first
                                                                                            2x              element, then the relation is a function.
Quartics e.g. y = (x + 3)(x + 1)(x − 1)(x − 2 )                                              ex             *Use the vertical line test to determine
                                                                                                            whether a relation is a function.
                                                                                         10x                *Use the horizontal line test to determine
     –3         –1 0           1           2                       0      1                                 whether a function is one-to-one or many-to-
                                                               asymptotic                                   one.
                                                                                                            *The inverse of a relation is given by its
                                                                                                            reflection in the line y = x .
                                                                                                            *The inverse of a one-to-one function is a
e.g. y = (x + 3)2 (x − 1)(x − 2 )                  Trigonometric functions:                                 function and is denoted by f −1 . The inverse
                                                   y = sin x
                                                                                                            of a many-to-one function is not a function
                                                             1
                                                                                                            and therefore cannot be called inverse
          –3           0           1           2                   0                π                  2π   function, and f −1 cannot be used to denote
                                                                                                            the inverse.
                                                               –1
Factorisation of polynomials:                                                           Quadratic formula:                                     Index laws:

                                                                                                                                                                                       ( )
(1) Check for common factors first.                                                                            2
                                                                                        Solutions of ax + bx + c = 0 are                                              am                     n
(2) Difference of two squares,                                                                                                                 a ma n = a m+ n ,               = am−n , am       = a mn
                                                                                                                                                                      an
                 ( ) − 3 = (x − 3)(x + 3)
                                                                                                                           2
                                  2                                                                   − b ± b − 4ac
e.g. x 4 − 9 = x 2                        2            2               2                              x=                 .                                            1                          1
                                                                                                                                               (ab )n = a nbn ,               = a−n , am =
  (       3 )(x + 3 )(x + 3)
                                                                                                              2a
 = x−                                 2                                                                                                                                   n                      −m
                                                                                        Graphs of transformed trig. functions                                         a                      a
(3) Trinomials, by trial and error,                                                                          π                                          1               1
                                                                                        e.g. y = −2 cos 3 x −  + 1 , rewrite                 a 0 = 1, a 2                     =na
e.g. 2 x 2 − x − 1 = (2 x + 1)(x − 1)                                                                        2                                                  =   a,a n
(4) Difference of two cubes, e.g.                                                                                      π
                              (                            )
                                                                                                                                               Logarithm laws:
                                                                                        equation as y = −2 cos 3 x −  + 1 .
x3 − y 3 = (x − y ) x 2 + xy + y 2                                                                                      6                                                                               a
                                                                                                                                               log a + log b = log ab, log a − log b = log
                                                                   3                                                                                                                                      b
(5) Sum of two cubes, e.g. 8 + a =                                                      The graph is obtained by reflecting it in the
                              (
 23 + a3 = (2 + a ) 4 − 2a + a 2                       )                                x-axis, dilating it vertically so that its
                                                                                        amplitude becomes 2, dilating it horizontally          log ab = b log a, log
                                                                                                                                                                    1
                                                                                                                                                                    b
                                                                                                                                                                      = − log b, log a a = 1
(6) Grouping two and two,                                                                                             2π
e.g. x3 + 3x 2 + 3 x + 1 = x3 + 1 + 3 x 2 + 3 x(           ) (                      )   so that its period becomes
                                                                                                                       3
                                                                                                                           , translating       log1 = 0, log 0 = undef , log(neg ) = undef

         (
= (x + 1) x − x + 1 + 3 x(x + 1)
              2
                                  )                                                     upwards by 1 and right by
                                                                                                                               π
                                                                                                                                   .
                                                                                                                                               Change of base:

= (x + 1)(x                                )                                                                                   6                         log b x
              2
                  − x + 1 + 3x                                                                                                                 log a x =         ,
                                                                                                                                                         log b a
= (x + 1)(x+ 2 x + 1 = (x + 1)3
              2
                                      )                                                           3                                                        log e 7
(7) Grouping three and one,                                                                                                                    e.g. log 2 7 =      = 2.8 .
                                                                                                                                                           log e 2
e.g. x 2 − 2 x − y 2 + 1                                                                               π                               5π
                                                                                                  0                                            Exponential equations:
  (                   )
 = x 2 − 2 x + 1 − y 2 = (x − 1)2 − y 2                                                          –1
                                                                                                           6                            6
                                                                                                                                               e.g. 2e3 x = 5, e3 x = 2.5 , 3x = loge 2.5 ,
 = (x − 1 − y )(x − 1 + y )                                                                                                                            1
(8) Completing the square, e.g.                                                                                                                x=        loge 2.5
                                                                                                                                                       3
                     1   1
                                              2            2                            Solving trig. equations
x2 + x −1 = x2 + x +   −   −1                                                                                                              e.g. 2e 2 x − 3e x − 2 = 0 ,
                     2    2                                                                                   3
                                                               2               
                                                                                    2
                                                                                        e.g. Solve sin 2 x =
                                                                                                                2
                                                                                                                     , 0 ≤ x ≤ 2π .
                                                                                                                                                 ( ) − 3(e )− 2 = 0 ,
                                                                                                                                               2 ex
                                                                                                                                                        2         x
  
=  x2
  
  
         +x+
                      1
                       −
                      4
                       
                                      5
                                      4
                                           
                                          =x +
                                           
                                           
                                                       1
                                                        
                                                       2
                                                        
                                                                   −
                                                                    
                                                                          2
                                                                            5   
                                                                                
                                                                                
                                                                                        ∴ 0 ≤ 2 x ≤ 4π ,
                                                                                              π 2π π              2π
                                                                                                                                               (2e + 1)(e − 2) = 0 , since 2e
                                                                                                                                                   x          x                          x
                                                                                                                                                                                             +1 ≠ 0 ,
                                                                               
                                                                                        2x = ,       , + 2π ,          + 2π                         x                     x
                                                                                                                                               ∴ e − 2 = 0 , e = 2 , x = loge 2 .
                                                                                              3 3 3               3
         1   5            
                x + 1 + 5 
= x +
          −                                                                                 π π 7π 4π
        2 2        2   2 
                                                                                       ∴x = , ,          ,     .                              Equations involving log:
                                                                                            6 3 6 3                                        e.g. loge (1 − 2 x ) + 1 = 0 , loge (1 − 2 x ) = −1 ,
(9) Factor theorem,                                                                              x            x
                                                                                        e.g. sin = 3 cos , 0 ≤ x ≤ 2π .                                                                      1 1
e.g. P(x ) = x3 − 3x 2 + 3 x − 1                                                                 2            2                                1 − 2 x = e −1 , 2 x = 1 − e −1 , x =          1 −  .
                                                                                                                                                                                             2 e
P(− 1) = (− 1)3 − 3(− 1)2 + 3(− 1) − 1 ≠ 0                                                            sin
                                                                                                          x
                                                                                                                                               e.g. log10 (x − 1) = 1 − log10 (2 x − 1)
                                                                                             x            2 = 3 , tan x = 3 ,
P(1) = 13 − 3(1)2 + 3(1) − 1 = 0                                                        0 ≤ ≤π,
                                                                                                          x                                    log10 (x − 1) + log10 (2 x − 1) = 1
                                                                                             2                              2
∴ (x − 1) is a factor.                                                                                cos
                                                                                                          2                                    log10 (x − 1)(2 x − 1) = 1 , (x − 1)(2 x − 1) = 10 ,
Long division:                                                                             x π              2π
                                                                                        ∴ = , ∴x =               .                             2 x 2 − 3x − 9 = 0 , (2 x + 3)(x − 3) = 0 ,
                          x2 − 2x + 1                                                      2 3               3                                         3
      x − 1)x3 − 3 x 2 + 3 x − 1                                                                                                               x = − , 3 . 3 is the only solution because
                                                                                                                                                       2
           (
         − x3 − x 2               )                                                     Exact values for trig. functions:
                                                                                                                                               x=−
                                                                                                                                                            3
                                                                                                                                                              makes the log equation undefined.
                  − 2 x 2 + 3x                                                            xo     x                 sin x       cos x   tan x                2
                  (
              − − 2x2 + 2 x                   )                                           0
                                                                                         30
                                                                                                0
                                                                                                π/6
                                                                                                                      0
                                                                                                                     1/2
                                                                                                                                  1
                                                                                                                                √3/2
                                                                                                                                          0
                                                                                                                                        1/√3   Equation of inverse:
                         x −1                                                                                                                  Interchange x and y in the equation to obtain
                                                                                         45     π/4                 1/√2        1/√2      1
                      − (x − 1)                                                          60     π/3                 √3/2         1/2     √3
                                                                                                                                               the equation of the inverse. If possible
                                                                                                                                               express y in terms of x.
                            0                                                            90     π/2                   1           0    undef
                          (
∴ P(x ) = (x − 1) x 2 − 2 x + 1 = (x − 1)3         )                                    120    2π/3                 √3/2        –1/2    –√3
                                                                                                                                               e.g. y = 2(x − 1)2 + 1 , x = 2( y − 1)2 + 1 ,
                                                                                                                                                                                x −1
                                                                                        135    3π/4                 1/√2       –1/√2     –1    2( y − 1)2 = x − 1 , ( y − 1)2 =      ,
Remainder theorem:                                                                      150    5π/6                  1/2       –√3/2   –1/√3                                      2
e.g. when P (x ) = x3 − 3 x 2 + 3 x − 1 is                                              180     π                     0          –1       0            x −1
                                                                                        210    7π/6                 –1/2       –√3/2    1/√3   y=±           +1 .
divided by x + 2 , the remainder is                                                                                                                      2
                                                                                        225    5π/4                –1/√2       –1/√2      1
 P (− 2) = (− 2)3 − 3(− 2)2 + 3(− 2) − 1 = −11                                          240    4π/3                –√3/2        –1/2     √3    e.g. y = −
                                                                                                                                                             2
                                                                                                                                                                +4, x = −
                                                                                                                                                                            2
                                                                                                                                                                               +4 ,
When it is divided by 2 x − 3 , the remainder                                                                                                              x −1           y −1
                                                                                        270    3π/2                  –1           0    undef
     3 1                                                                              300    5π/3                –√3/2         1/2    –√3                      2              2
is P  = .                                                                                                                                    x−4= −               , y −1 = −     ,
     2 8                                                                              315    7π/4                –1/√2        1/√2     –1                    y −1            x−4
                                                                                        330 11π/6                  –1/2        √3/2    –1/√3                 2
                                                                                                                                               y=−              +1 .
                                                                                        360 2π                      0           1        0                  x−4
e.g. y = −2e x −1 + 1 , x = −2e y −1 + 1 ,           Differentiation rules:                               The approx. change in a function is
                                                     The product rule: For the multiplication of          = f (a + h ) − f (a ) = hf ′(a ) ,
                            1− x
2e y −1 = 1 − x , e y −1 =        ,                  two functions, y = u (x )v(x ) , e.g.                e.g. find the approx. change in cos x when x
                              2
                                                     y = x 2 sin 2 x , let u = x 2 , v = sin 2 x ,                               π
              1− x                 1− x                                                               changes from                   to 1.6. Let f (x ) = cos x ,
 y − 1 = loge          , y = log e       +1.     dy       du      dv                                                         2
               2                    2               =v       +u                                                                                   π
                                                     dx       dx      dx                                  then f ′(x ) = − sin x . Let a =                , then
e.g. y = − loge (1 − 2 x ) − 1 ,                                        ( )
                                                      = (sin 2 x )(2 x ) + x 2 (2 cos 2 x )
                                                                                                                             π
                                                                                                                                                      2
                                                                                                                                                             π
x = − loge (1 − 2 y ) − 1 ,                           = 2 x(sin 2 x + x cos 2 x )                          f ′(a ) = − sin       = −1 and h = 1.6 −                = 0.03
                                                                                                                             2                                2
                                                     The quotient rule: For the division of
loge (1 − 2 y ) = −(x + 1) , 1 − 2 y = e − ( x +1)                        u (x )             log e x      Change in cos x = hf ′(a ) = 0.03×− 1 = −0.03
                                                     functions, y =              , e.g. y =          ,
                           1
                           2
                               (
2 y = 1 − e − ( x +1) , y = 1 − e − ( x +1) .)                            v(x )                  x        Rate of change:
                                                                                                                             dy
                                                                                                                             dx
                                                                                                                                 is the rate of change of
                                                               du         dv
The binomial theorem:                                        v      −u                                                               dx
                                                      dy        dx        dx
                                                          =                                               y with respect to x. v =      , velocity is the
e.g. Expand (2 x − 1)4                                dx           v2                                                                dt
= 4C0 (2 x )4 (− 1)0 + 4C1 (2 x )3 (− 1)1                                                                 rate of change of position x with respect to
                                                        (x ) 1  − (loge x )(1)
                                                                                                                     dv
+ 4C2 (2 x )2 (− 1)2 + 4C3 (2 x )1 (− 1)3                     x                       1 − log e x         time t. a =     , acceleration a is the rate of
                                                      =   2                       =              .                   dt
                                                                   x                      x2
+ 4C4 (2 x )0 (− 1)4 = ......                        The chain rule: For composite functions,
                                                                                                          change of velocity v with respect to t.
e.g. Find the coefficient of x2 in the
                                                     y = f (u ( x) ) , e.g. y = e cos x .                 Average rate of change: Given y = f (x ) ,
expansion of (2 x − 3)5 .
                                                                                    dy dy du              when x = a , y = f (a ) , when x = b ,
                                                     Let u = cos x , y = eu ,         =  ×
The required term is 5C3 (2 x )2 (− 3)3                                             dx du dx              y = f (b ) , the average rate of change of y
         ( )
= 10 4 x 2 (− 27 ) = −1080 x 2 .                        ( )( sin x) = −e
                                                     = eu    −             cos x
                                                                                   sin x .                with respect to x =
                                                                                                                                ∆y
                                                                                                                                     =
                                                                                                                                        f (b ) − f (a )
                                                                                                                                                        .
∴ the coefficient of x2 is –1080.                                                        dy                                     ∆x          b−a
                                                     Finding stationary points: Let          = 0 and
                                                                                         dx
Differentiation rules:                               solve for x and then y, the coordinates of the       Deducing the graph of gradient function
                                 dy                                                                       from the graph of a function
     y = f (x )                     = f ' (x )       stationary point.
                                                                                                          f(x)
                                 dx                  Nature of stationary point at x = a :
                                                                                                                          •
ax n                        anx n −1                          Local       Local        Inflection
                                                                                                                        •
                                                              max.        min.         point
a(x + c )n                  an(x + c )n −1            x<a      dy          dy           dy
                                                                                                            0                                     x
                                                                   >0          <0           > 0 , (< 0)
a(bx + c )n                 abn(bx + c )n −1                   dx          dx           dx
                                                      x=a      dy          dy           dy
a sin x                     a cos x                                =0          =0           =0                    o
                                                               dx          dx           dx
a sin (x + c )              a cos(x + c )             x>a      dy          dy           dy                f’(x)
a sin (bx + c )             ab cos(bx + c )                        <0          >0           > 0 , (< 0)
                                                               dx          dx           dx                        o     o
a cos x                     −a sin x                 Equation of tangent and normal at x = a :
                                                                                                                                     •
a cos(x + c )               − a sin (x + c )         1) Find the y coordinate if it is not given.           0           o                                               x
                                                                                     dy
a cos(bx + c )              − ab sin (bx + c )       2) Gradient of tangent mT =         at x = a .                                      •
                                                                                     dx
a tan x                     a sec 2 x                3) Use y − y1 = mT (x − x1 ) to find equation        Deducing the graph of function from the
a tan (x + c )              a sec (x + c )
                                     2               of tangent.                                          graph of anti-derivative function

a tan (bx + c )
                                                                                             1
                            ab sec 2 (bx + c )       4) Find gradient of normal mN = −           .        ∫ f(x)dx+ c
                                                                                            mT
     x                           x
ae                          ae                       5) Use y − y1 = m N (x − x1 ) to find equation                                      •
     x+c
ae                          ae x + c                 of the normal.                                                                  •
                                                     Linear approximation:                                  0                                                           x
ae bx + c                   abe bx + c               To find the approx. value of a function, use
a log e x                   a                         f (a + h ) ≈ f (a ) + hf ′(a ) , e.g. find the
                            x                        approx. value of 25.1 . Let f (x ) = x ,
                                                                                                                  o
a log e bx                  a                                        1
                            x                        then f ′(x ) =     . Let a = 25 and h = 0.1 ,        f(x)
                                                                    2 x                                           o     o
a log e (x + c )              a
                                                     then f (a + h ) = 25.1 , f (a ) = 25 = 5 ,
                            x+c                                                                             0           o            •                                  x
                                                                  1
a log e b(x + c )             a                       f ′(a ) =      = 0.1 .
                                                                2 25                                                                     •
                            x+c
                                                     ∴ 25.1 ≈ 5 + 0.1 × 0.1 = 5.01
a log e (bx + c )             ab
                            bx + c
Anti-differentiation (indefinite integrals):                                  Estimate area by left (or right) rectangles                  Graphics calculator :
                                                                                                                                           Pr ( X = a ) = binompdf (n, p, a )
               f (x )
                                                     ∫ f (x)dx                           Left                           Right              Pr ( X ≤ a ) = binomcdf (n, p, a )
ax n for n ≠ −1                                a n +1
                                                    x                              a b                 a b                                 Pr ( X < a ) = binomcdf (n, p, a − 1)
                                             n +1                             Area between two curves:                                     Pr ( X ≥ a ) = 1 − binomcdf (n, p, a − 1)
a (x + c )n , n ≠ −1                           a
                                                    (x + c )n +1                                        y = g (x )                         Pr ( X > a ) = 1 − binomcdf (n, p, a )
                                             n +1                                                              y = f (x )                  Pr (a ≤ X ≤ b ) = binomcdf (n, p, b )
a (bx + c )n , n ≠ −1                            a
                                                       (bx + c )n +1                 a          0          b                                                 −binomcdf (n, p, a − 1)
                                             (n + 1)b                                                                                      Probability density functions f (x ) for
a                                            a log e x , x > 0                                                                             x ∈ [a, b] .     y      y = f (x )
x                                            a log e (− x ) , x < 0           Firstly find the x-coordinates of the
  a                                          a log e (x + c )                 intersecting points, a, b, then evaluate
                                                                                     b                                                                 a          c      b        x
x+c
  a                                          a
                                               log e (bx + c )
                                                                              A=
                                                                                    ∫ [ f (x) − g (x)]dx . Always the function
                                                                                     a
                                                                                                                                           For f (x ) to be a probability density
                                                                              above minus the function below.                              function, f (x ) > 0 and
bx + c                                       b                                                                                                                                  b
                                                                              For three intersecting points:
ae x                                         ae x                                                                                          Pr (a < X < b ) =
                                                                                                                                                                            ∫ f (x)dx = 1.
                                                                                                                                                                                a
ae x + c                                     ae x + c                                                                     y = f (x )                                c                                        b

ae   bx + c                                  a bx + c
                                                e
                                                                                                                        y = g (x )         Pr ( X < c ) =
                                                                                                                                                                   ∫ f (x)dx , Pr(X > c) = ∫ f (x)dx
                                                                                                                                                                    a                                    c
                                             b                                  a                b         0        c                      Normal distributions are continuous prob.
a sin x                                      − a cos x                                                                                     distributions. The graph of a normal dist. has
                                                                                     b                          c
a sin (x + c )                               − a cos(x + c )
                                                                                    ∫ [ f (x) − g (x)]dx       ∫ [g (x) − f (x )]dx
                                                                                                                                           a bell shape and the area under the graph
                                                                              A=                           +
                                                                                                                                           represents probability. Total area = 1.
a sin (bx + c )
                                                                                     a                          b
                                                a
                                             − cos(bx + c )
                                                b
                                                                              Discrete probability distributions:                              (               )
                                                                                                                                            N 1 µ1 , σ 2 , N 2 µ 2 , σ 2 .  (                )
                                                                              In general, in the form of a table,
a cos x                                      a sin x                               x          x1      x2        x3                ......                                1                    2       µ1 < µ 2
a cos(x + c )                                a sin (x + c )
                                                                              Pr ( X = x )      p1             p2       p3        ......
a cos(bx + c )                               a                                                                                                     0               µ1                   µ2               X
                                               sin (bx + c )                   p1 , p2 , p3 ,... have values from 0 to 1 and
                                             b
                                                                              p1 + p2 + p3 + ... = 1 .                                         (           2
                                                                                                                                                               )
                                                                                                                                           N1 µ , σ 1 , N 2 µ , σ 2         (           2
                                                                                                                                                                                            ).
Definite integrals:                                                           µ = E ( X ) = x1 p1 + x2 p2 + x3 p3 + ...                                                     1                        σ1 < σ 2
               π                                                          π
                                                                              Var ( X ) = x1 p1 + x2 p2 + x3 p3 + ... − µ 2
                                                                                           2       2       2                                                                    2
                          π             π  2
e.g.
           ∫
           0
               2   cos x − dx = sin  x − 
                          3             3  0                            σ = sd ( X ) = Var ( X )
                                                                                                                                                       0                                                     X
      π π           π                                                     If random variable Y = aX + b ,
= sin  −  − sin  0 −                                                                                                                   The standard normal distribution:
      2 3           3                                                      E (Y ) = aE ( X ) + b , Var (Y ) = a 2 × Var ( X )          has µ = 0 and σ = 1 . N (0,1)
                                                                              and sd (Y ) = a × sd ( X ) .
           π  π  1+ 3
= sin  − sin  −  =          .                                               95% probability interval : (µ − 2δ , µ + 2δ )                                                                      µ   σ   2
     6        3         2
                                                                                                                     Pr ( A ∩ B )
Properties of definite integrals:                                             Conditional prob: Pr A B =       ( )      Pr (B )
                                                                                                                                  .
       b                             b
1)
  ∫ kf (x)dx = k ∫ f (x)dx
       a                             a
                                                                              Binomial distributions are examples of
                                                                              discrete prob. distributions. Sampling with
                                                                                                                                                                                    0                            Z
       b                                     b                    b                                                                        Graphics calculator: Finding probability,
2) [ f (x ) ± g (x )]dx = f (x )dx ± g (x )dx
  ∫                      ∫          ∫
                                                                              replacement has a binomial distribution.
       a                                 a                       a            Number of trials = n. In a single trial, prob.               Pr ( X < a ) = normalcdf (− E 99, a, µ , σ )
       b                     c                      b                         of success = p, prob. of failure = q = 1- p.                 Pr ( X > a ) = normalcdf (a, E 99, µ , σ )
  ∫    a         ∫          ∫
3) f (x )dx = f (x )dx + f (x )dx ,
                             a                   c
                                                                              The random variable X is the number of
                                                                              successes in the n trials. The binomial dist.
                                                                                                                                           Pr (a < X < b ) = normalcdf (a, b, µ , σ )
                                         b                            a                                                                    Finding quantile, e.g. given Pr ( X < x ) = 0.7
                                                                              is Pr ( X = x )= n C x p x q n− x , x = 0,1,2,... with
                         ∫           ∫
where a < c < b . 4) f (x )dx = − f (x )dx
                                         a                            b                                                                    x = invNorn(0.7, µ , σ ) .
       b                         a                           a                 µ = np and σ = npq = np(1 − p ) .                           Given Pr ( X > x ) = 0.7 , then
  ∫    a           ∫             b∫
4) f (x )dx = − f (x )dx , 5) f (x )dx = 0.
                                                         a
                                                                              ** Effects of increasing n on the graph of a                 Pr ( X < x ) = 1 − 0.7 = 0.3 and
Area ‘under’ curve:                                                           binomial distribution. (1) more points                       x = invNorm(0.3, µ , σ ) .
                                                                              (2) lower probability for each x value
                                                                              (3) becoming symmetrical , bell shape.                                                        X −µ
                                                         b                                                                                 To find µ and/or σ, use Z =                to
                        y = f (x )               A=
                                                        ∫ f (x)dx
                                                         a
                                                                              ** Effects of changing p on the graph of a
                                                                              binomial distribution. (1) bell shape when
                                                                                                                                                                             σ
                                                                                                                                           convert X to Z first, e.g. find µ given σ = 2
  a                0      b                                                    p = 0.5 (2) positively skewed if p < 0.5                                                     4−µ
                           y = f (x )                                                                                                      and Pr ( X < 4) = 0.8 . Pr  Z <        = 0.8 ,
                                                                              (3) negatively skewed if p > 0.5                                                                2 
 a c 0                   b                                                        p = 0.5        p < 0.5           p > 0.5                   4−µ
                                             c                    b
                                                                                                                                           ∴       = invNorm(0.8) = 0.8416 ,
                                                                                                                                               2
                                         ∫
                                 A = − f (x )dx +
                                         a                       ∫ f (x)dx
                                                                  c                                                                        ∴ µ = 2.3168 .

Weitere ähnliche Inhalte

Was ist angesagt?

Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers IMatthew Leingang
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsNigel Simmons
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svmsesejun
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...MarcelloSantosChaves
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingGabriel Peyré
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定Kosei ABE
 
Top School in Delhi NCR
Top School in Delhi NCRTop School in Delhi NCR
Top School in Delhi NCREdhole.com
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!A Jorge Garcia
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and divisionNigel Simmons
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IIguestf32826
 
CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10fungfung Chen
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsMatthew Leingang
 
Quantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion CotaescuQuantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion CotaescuSEENET-MTP
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수Youngman Choe
 
Application of laplace(find k)
Application of  laplace(find k)Application of  laplace(find k)
Application of laplace(find k)Hazirah Fiyra
 

Was ist angesagt? (20)

Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Beam theory
Beam theoryBeam theory
Beam theory
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 
X2 T05 06 Partial Fractions
X2 T05 06 Partial FractionsX2 T05 06 Partial Fractions
X2 T05 06 Partial Fractions
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Datamining 6th Svm
Datamining 6th SvmDatamining 6th Svm
Datamining 6th Svm
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 
Mesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic SamplingMesh Processing Course : Geodesic Sampling
Mesh Processing Course : Geodesic Sampling
 
近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定近似ベイズ計算によるベイズ推定
近似ベイズ計算によるベイズ推定
 
Top School in Delhi NCR
Top School in Delhi NCRTop School in Delhi NCR
Top School in Delhi NCR
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
X2 T04 03 cuve sketching - addition, subtraction,  multiplication and divisionX2 T04 03 cuve sketching - addition, subtraction,  multiplication and division
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers IILesson 28: Lagrange Multipliers II
Lesson 28: Lagrange Multipliers II
 
CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10CG OpenGL Shadows + Light + Texture -course 10
CG OpenGL Shadows + Light + Texture -course 10
 
Lesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential FunctionsLesson 13: Derivatives of Logarithmic and Exponential Functions
Lesson 13: Derivatives of Logarithmic and Exponential Functions
 
Quantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion CotaescuQuantum fields on the de sitter spacetime - Ion Cotaescu
Quantum fields on the de sitter spacetime - Ion Cotaescu
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
110218 [아꿈사발표자료] taocp#1 1.2.9. 생성함수
 
Application of laplace(find k)
Application of  laplace(find k)Application of  laplace(find k)
Application of laplace(find k)
 
Test
TestTest
Test
 

Ähnlich wie iTute Notes MM

Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guideakabaka12
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)Nigel Simmons
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)Nigel Simmons
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+NotesMatthew Leingang
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial ProcessesSSA KPI
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
sol page 104 #1,2,3.
sol page 104 #1,2,3.sol page 104 #1,2,3.
sol page 104 #1,2,3.Garden City
 
Exp&log graphs it worksheet
Exp&log graphs it worksheetExp&log graphs it worksheet
Exp&log graphs it worksheetbryan
 
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...zabidah awang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Ch 6.1 & 6.2 Slope of Parallel and Perpendicular Lines
Ch 6.1 & 6.2 Slope of Parallel and Perpendicular LinesCh 6.1 & 6.2 Slope of Parallel and Perpendicular Lines
Ch 6.1 & 6.2 Slope of Parallel and Perpendicular Linesmdicken
 
Regression Theory
Regression TheoryRegression Theory
Regression TheorySSA KPI
 
Advanced Functions Unit 1
Advanced Functions Unit 1Advanced Functions Unit 1
Advanced Functions Unit 1leefong2310
 

Ähnlich wie iTute Notes MM (20)

Emat 213 study guide
Emat 213 study guideEmat 213 study guide
Emat 213 study guide
 
X2 T07 03 addition, subtraction, multiplication & division (2011)
X2 T07 03 addition, subtraction,  multiplication & division (2011)X2 T07 03 addition, subtraction,  multiplication & division (2011)
X2 T07 03 addition, subtraction, multiplication & division (2011)
 
X2 t07 03 addition, subtraction, multiplication & division (2012)
X2 t07 03 addition, subtraction,  multiplication & division (2012)X2 t07 03 addition, subtraction,  multiplication & division (2012)
X2 t07 03 addition, subtraction, multiplication & division (2012)
 
0205 ch 2 day 5
0205 ch 2 day 50205 ch 2 day 5
0205 ch 2 day 5
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 
Cross product
Cross productCross product
Cross product
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
Figures
FiguresFigures
Figures
 
Pc12 sol c03_cp
Pc12 sol c03_cpPc12 sol c03_cp
Pc12 sol c03_cp
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
sol page 104 #1,2,3.
sol page 104 #1,2,3.sol page 104 #1,2,3.
sol page 104 #1,2,3.
 
Exp&log graphs it worksheet
Exp&log graphs it worksheetExp&log graphs it worksheet
Exp&log graphs it worksheet
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Notes 4-8
Notes 4-8Notes 4-8
Notes 4-8
 
Ch 6.1 & 6.2 Slope of Parallel and Perpendicular Lines
Ch 6.1 & 6.2 Slope of Parallel and Perpendicular LinesCh 6.1 & 6.2 Slope of Parallel and Perpendicular Lines
Ch 6.1 & 6.2 Slope of Parallel and Perpendicular Lines
 
Regression Theory
Regression TheoryRegression Theory
Regression Theory
 
Advanced Functions Unit 1
Advanced Functions Unit 1Advanced Functions Unit 1
Advanced Functions Unit 1
 

Mehr von coburgmaths

Wedderburn College Newsletter 28th March 2012
Wedderburn College Newsletter 28th March 2012Wedderburn College Newsletter 28th March 2012
Wedderburn College Newsletter 28th March 2012coburgmaths
 
2011 Whole School Action Plan Curriculum PD Presentation
2011 Whole School Action Plan Curriculum PD Presentation2011 Whole School Action Plan Curriculum PD Presentation
2011 Whole School Action Plan Curriculum PD Presentationcoburgmaths
 
Ultranet booklet session 2
Ultranet booklet session 2Ultranet booklet session 2
Ultranet booklet session 2coburgmaths
 
Ultranet booklet
Ultranet bookletUltranet booklet
Ultranet bookletcoburgmaths
 
PoLT Student Perceptions Survey
PoLT Student Perceptions SurveyPoLT Student Perceptions Survey
PoLT Student Perceptions Surveycoburgmaths
 
PoLT Student Learning Surveying
PoLT Student Learning SurveyingPoLT Student Learning Surveying
PoLT Student Learning Surveyingcoburgmaths
 
Acu pd session c
Acu pd session cAcu pd session c
Acu pd session ccoburgmaths
 
Acu pd session b
Acu pd session bAcu pd session b
Acu pd session bcoburgmaths
 
Acu pd session a
Acu pd session aAcu pd session a
Acu pd session acoburgmaths
 
Multi modal think board placemat
Multi modal think board placematMulti modal think board placemat
Multi modal think board placematcoburgmaths
 
Multi modal think board details
Multi modal think board detailsMulti modal think board details
Multi modal think board detailscoburgmaths
 
Thinking and working mathematically
Thinking and working mathematically  Thinking and working mathematically
Thinking and working mathematically coburgmaths
 
Staff reflections assessment
Staff reflections assessmentStaff reflections assessment
Staff reflections assessmentcoburgmaths
 
e5 Ultranet PD Observations - Assessment
e5 Ultranet PD Observations - Assessmente5 Ultranet PD Observations - Assessment
e5 Ultranet PD Observations - Assessmentcoburgmaths
 
Numeracy PD July 2010
Numeracy PD July 2010Numeracy PD July 2010
Numeracy PD July 2010coburgmaths
 
Worked solutions review assignment
Worked solutions review assignmentWorked solutions review assignment
Worked solutions review assignmentcoburgmaths
 
Linear equations part i
Linear equations part iLinear equations part i
Linear equations part icoburgmaths
 

Mehr von coburgmaths (20)

Wedderburn College Newsletter 28th March 2012
Wedderburn College Newsletter 28th March 2012Wedderburn College Newsletter 28th March 2012
Wedderburn College Newsletter 28th March 2012
 
2011 Whole School Action Plan Curriculum PD Presentation
2011 Whole School Action Plan Curriculum PD Presentation2011 Whole School Action Plan Curriculum PD Presentation
2011 Whole School Action Plan Curriculum PD Presentation
 
Ultranet booklet session 2
Ultranet booklet session 2Ultranet booklet session 2
Ultranet booklet session 2
 
Ultranet booklet
Ultranet bookletUltranet booklet
Ultranet booklet
 
PoLT Student Perceptions Survey
PoLT Student Perceptions SurveyPoLT Student Perceptions Survey
PoLT Student Perceptions Survey
 
PoLT Student Learning Surveying
PoLT Student Learning SurveyingPoLT Student Learning Surveying
PoLT Student Learning Surveying
 
Acu pd session c
Acu pd session cAcu pd session c
Acu pd session c
 
Acu pd session b
Acu pd session bAcu pd session b
Acu pd session b
 
Acu pd session a
Acu pd session aAcu pd session a
Acu pd session a
 
Acu pd readings
Acu pd readingsAcu pd readings
Acu pd readings
 
Multi modal think board placemat
Multi modal think board placematMulti modal think board placemat
Multi modal think board placemat
 
Multi modal think board details
Multi modal think board detailsMulti modal think board details
Multi modal think board details
 
Thinking and working mathematically
Thinking and working mathematically  Thinking and working mathematically
Thinking and working mathematically
 
Staff reflections assessment
Staff reflections assessmentStaff reflections assessment
Staff reflections assessment
 
e5 Ultranet PD Observations - Assessment
e5 Ultranet PD Observations - Assessmente5 Ultranet PD Observations - Assessment
e5 Ultranet PD Observations - Assessment
 
Numeracy PD July 2010
Numeracy PD July 2010Numeracy PD July 2010
Numeracy PD July 2010
 
Worked solutions review assignment
Worked solutions review assignmentWorked solutions review assignment
Worked solutions review assignment
 
Linear equations part i
Linear equations part iLinear equations part i
Linear equations part i
 
Sam maths pres
Sam maths presSam maths pres
Sam maths pres
 
Kim Solving
Kim SolvingKim Solving
Kim Solving
 

Kürzlich hochgeladen

Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...anamikaraghav4
 
VIP Call Girls Asansol Ananya 8250192130 Independent Escort Service Asansol
VIP Call Girls Asansol Ananya 8250192130 Independent Escort Service AsansolVIP Call Girls Asansol Ananya 8250192130 Independent Escort Service Asansol
VIP Call Girls Asansol Ananya 8250192130 Independent Escort Service AsansolRiya Pathan
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...ritikasharma
 
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...anamikaraghav4
 
Call Girl Nashik Amaira 7001305949 Independent Escort Service Nashik
Call Girl Nashik Amaira 7001305949 Independent Escort Service NashikCall Girl Nashik Amaira 7001305949 Independent Escort Service Nashik
Call Girl Nashik Amaira 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...
Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...
Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...aamir
 
Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...
Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...
Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...aamir
 
Call Girls in Barasat | 7001035870 At Low Cost Cash Payment Booking
Call Girls in Barasat | 7001035870 At Low Cost Cash Payment BookingCall Girls in Barasat | 7001035870 At Low Cost Cash Payment Booking
Call Girls in Barasat | 7001035870 At Low Cost Cash Payment Bookingnoor ahmed
 
↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...
↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...
↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...noor ahmed
 
↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...noor ahmed
 
Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...
Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...
Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...Riya Pathan
 
↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...noor ahmed
 
↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...noor ahmed
 
2k Shot Call girls Laxmi Nagar Delhi 9205541914
2k Shot Call girls Laxmi Nagar Delhi 92055419142k Shot Call girls Laxmi Nagar Delhi 9205541914
2k Shot Call girls Laxmi Nagar Delhi 9205541914Delhi Call girls
 
Book Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near Me
Book Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near MeBook Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near Me
Book Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near Meanamikaraghav4
 
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls In Goa 9316020077 Goa Call Girl By Indian Call Girls Goa
Call Girls In Goa  9316020077 Goa  Call Girl By Indian Call Girls GoaCall Girls In Goa  9316020077 Goa  Call Girl By Indian Call Girls Goa
Call Girls In Goa 9316020077 Goa Call Girl By Indian Call Girls Goasexy call girls service in goa
 
(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...
(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...
(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...Riya Pathan
 
Call Girl Nashik Saloni 7001305949 Independent Escort Service Nashik
Call Girl Nashik Saloni 7001305949 Independent Escort Service NashikCall Girl Nashik Saloni 7001305949 Independent Escort Service Nashik
Call Girl Nashik Saloni 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 

Kürzlich hochgeladen (20)

Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
Call Girls Service Bantala - Call 8250192130 Rs-3500 with A/C Room Cash on De...
 
VIP Call Girls Asansol Ananya 8250192130 Independent Escort Service Asansol
VIP Call Girls Asansol Ananya 8250192130 Independent Escort Service AsansolVIP Call Girls Asansol Ananya 8250192130 Independent Escort Service Asansol
VIP Call Girls Asansol Ananya 8250192130 Independent Escort Service Asansol
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
 
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
Russian Call Girl South End Park - Call 8250192130 Rs-3500 with A/C Room Cash...
 
Call Girl Nashik Amaira 7001305949 Independent Escort Service Nashik
Call Girl Nashik Amaira 7001305949 Independent Escort Service NashikCall Girl Nashik Amaira 7001305949 Independent Escort Service Nashik
Call Girl Nashik Amaira 7001305949 Independent Escort Service Nashik
 
Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...
Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...
Dakshineswar Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Se...
 
Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...
Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...
Nayabad Call Girls ✔ 8005736733 ✔ Hot Model With Sexy Bhabi Ready For Sex At ...
 
Call Girls in Barasat | 7001035870 At Low Cost Cash Payment Booking
Call Girls in Barasat | 7001035870 At Low Cost Cash Payment BookingCall Girls in Barasat | 7001035870 At Low Cost Cash Payment Booking
Call Girls in Barasat | 7001035870 At Low Cost Cash Payment Booking
 
↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...
↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...
↑Top Model (Kolkata) Call Girls Sonagachi ⟟ 8250192130 ⟟ High Class Call Girl...
 
↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Behala ⟟ 8250192130 ⟟ High Class Call Girl In...
 
Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...
Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...
Low Rate Call Girls Gulbarga Anika 8250192130 Independent Escort Service Gulb...
 
↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Howrah ⟟ 8250192130 ⟟ High Class Call Girl In...
 
↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...
↑Top Model (Kolkata) Call Girls Rajpur ⟟ 8250192130 ⟟ High Class Call Girl In...
 
2k Shot Call girls Laxmi Nagar Delhi 9205541914
2k Shot Call girls Laxmi Nagar Delhi 92055419142k Shot Call girls Laxmi Nagar Delhi 9205541914
2k Shot Call girls Laxmi Nagar Delhi 9205541914
 
Call Girls Chirag Delhi Delhi WhatsApp Number 9711199171
Call Girls Chirag Delhi Delhi WhatsApp Number 9711199171Call Girls Chirag Delhi Delhi WhatsApp Number 9711199171
Call Girls Chirag Delhi Delhi WhatsApp Number 9711199171
 
Book Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near Me
Book Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near MeBook Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near Me
Book Call Girls in Panchpota - 8250192130 | 24x7 Service Available Near Me
 
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
VIP Call Girls Service Banjara Hills Hyderabad Call +91-8250192130
 
Call Girls In Goa 9316020077 Goa Call Girl By Indian Call Girls Goa
Call Girls In Goa  9316020077 Goa  Call Girl By Indian Call Girls GoaCall Girls In Goa  9316020077 Goa  Call Girl By Indian Call Girls Goa
Call Girls In Goa 9316020077 Goa Call Girl By Indian Call Girls Goa
 
(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...
(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...
(Dipika) Call Girls in Bangur ! 8250192130 ₹2999 Only and Free Hotel Delivery...
 
Call Girl Nashik Saloni 7001305949 Independent Escort Service Nashik
Call Girl Nashik Saloni 7001305949 Independent Escort Service NashikCall Girl Nashik Saloni 7001305949 Independent Escort Service Nashik
Call Girl Nashik Saloni 7001305949 Independent Escort Service Nashik
 

iTute Notes MM

  • 1. y = cos x e.g. y = (x + 3)2 (x − 1)2 1  Copyright itute.com 2006 0 π 2π Free download & print from www.itute.com –3 0 1 Do not reproduce by other means –1 Mathematical Methods 3,4 e.g. y = (x + 2 )3 (x − 1) y = tan x Summary sheets Distance between two points –2 0 1 0 π 2π = (x2 − x1 )2 + ( y2 − y1 )2 x +x y +y  Mid-point =  1 2 , 1 2  e.g. y = (x + 2)4  2 2  Modulus functions Parallel lines, m1 = m2  x, x ≥ 0 y= x = Perpendicular lines, − x , x < 0 1 –2 0 m1m2 = −1 or m2 = − Transformations of y = f (x ) m1 Examples of power functions: (1) Vertical dilation (dilation away from the Graphs of polynomial functions in x-axis, dilation parallel to the y-axis) by  1 factorised form: y = x −1  y =  factor k. y = kf (x ) Quadratics e.g. y = (x + 1)(x − 3)  x (2) Horizontal dilation (dilation away from 0 the y-axis, dilation parallel to the x-axis) by 1 factor . y = f (nx ) n –1 0 3 (3) Reflection in the x-axis. y = − f (x ) y = x −2 (4) Reflection in the y-axis. y = f (− x ) e.g. y = (x − 3)2  1  (5) Vertical translation (translation parallel y = 2   to the y-axis) by c units.  x  y = f (x ) ± c , + up, – down. 0 0 3 1 (6) Horizontal translation (translation Cubics e.g. y = 3(x + 1)(x − 1)(x − 2 ) y= x2 parallel to the x-axis) by b units. y = f (x ± b ) , + left, – right. (y = x ) *Always carry out translations last in 0 sketching graphs. Example 1 Sketch y = − 2(x − 1) + 2 Exponential functions: -1 0 1 2 2 y = a x where a = 2, e,10 0 1 2 e.g. y = (x + 1)2 (x − 1) 10x ex 2x –1 0 1 Example 2 Sketch y = 2 1 − x . Rewrite as y = 2 − (x − 1) . 1 2 asymptotic 0 e.g. y = (x + 1) 3 0 1 Logarithmic functions: Relations and functions: –1 0 y = log a x where a = 2, e,10 A relation is a set of ordered pairs (points). If no two ordered pairs have the same first 2x element, then the relation is a function. Quartics e.g. y = (x + 3)(x + 1)(x − 1)(x − 2 ) ex *Use the vertical line test to determine whether a relation is a function. 10x *Use the horizontal line test to determine –3 –1 0 1 2 0 1 whether a function is one-to-one or many-to- asymptotic one. *The inverse of a relation is given by its reflection in the line y = x . *The inverse of a one-to-one function is a e.g. y = (x + 3)2 (x − 1)(x − 2 ) Trigonometric functions: function and is denoted by f −1 . The inverse y = sin x of a many-to-one function is not a function 1 and therefore cannot be called inverse –3 0 1 2 0 π 2π function, and f −1 cannot be used to denote the inverse. –1
  • 2. Factorisation of polynomials: Quadratic formula: Index laws: ( ) (1) Check for common factors first. 2 Solutions of ax + bx + c = 0 are am n (2) Difference of two squares, a ma n = a m+ n , = am−n , am = a mn an ( ) − 3 = (x − 3)(x + 3) 2 2 − b ± b − 4ac e.g. x 4 − 9 = x 2 2 2 2 x= . 1 1 (ab )n = a nbn , = a−n , am = ( 3 )(x + 3 )(x + 3) 2a = x− 2 n −m Graphs of transformed trig. functions a a (3) Trinomials, by trial and error,  π 1 1 e.g. y = −2 cos 3 x −  + 1 , rewrite a 0 = 1, a 2 =na e.g. 2 x 2 − x − 1 = (2 x + 1)(x − 1)  2 = a,a n (4) Difference of two cubes, e.g.  π ( ) Logarithm laws: equation as y = −2 cos 3 x −  + 1 . x3 − y 3 = (x − y ) x 2 + xy + y 2  6 a log a + log b = log ab, log a − log b = log 3 b (5) Sum of two cubes, e.g. 8 + a = The graph is obtained by reflecting it in the ( 23 + a3 = (2 + a ) 4 − 2a + a 2 ) x-axis, dilating it vertically so that its amplitude becomes 2, dilating it horizontally log ab = b log a, log 1 b = − log b, log a a = 1 (6) Grouping two and two, 2π e.g. x3 + 3x 2 + 3 x + 1 = x3 + 1 + 3 x 2 + 3 x( ) ( ) so that its period becomes 3 , translating log1 = 0, log 0 = undef , log(neg ) = undef ( = (x + 1) x − x + 1 + 3 x(x + 1) 2 ) upwards by 1 and right by π . Change of base: = (x + 1)(x ) 6 log b x 2 − x + 1 + 3x log a x = , log b a = (x + 1)(x+ 2 x + 1 = (x + 1)3 2 ) 3 log e 7 (7) Grouping three and one, e.g. log 2 7 = = 2.8 . log e 2 e.g. x 2 − 2 x − y 2 + 1 π 5π 0 Exponential equations: ( ) = x 2 − 2 x + 1 − y 2 = (x − 1)2 − y 2 –1 6 6 e.g. 2e3 x = 5, e3 x = 2.5 , 3x = loge 2.5 , = (x − 1 − y )(x − 1 + y ) 1 (8) Completing the square, e.g. x= loge 2.5 3 1 1 2 2 Solving trig. equations x2 + x −1 = x2 + x +   −   −1 e.g. 2e 2 x − 3e x − 2 = 0 , 2  2 3 2   2 e.g. Solve sin 2 x = 2 , 0 ≤ x ≤ 2π . ( ) − 3(e )− 2 = 0 , 2 ex 2 x  =  x2   +x+ 1 − 4  5 4  =x +   1  2  −   2 5    ∴ 0 ≤ 2 x ≤ 4π , π 2π π 2π (2e + 1)(e − 2) = 0 , since 2e x x x +1 ≠ 0 ,   2x = , , + 2π , + 2π x x ∴ e − 2 = 0 , e = 2 , x = loge 2 .  3 3 3 3 1 5    x + 1 + 5  = x +  −  π π 7π 4π  2 2  2 2   ∴x = , , , . Equations involving log:    6 3 6 3 e.g. loge (1 − 2 x ) + 1 = 0 , loge (1 − 2 x ) = −1 , (9) Factor theorem, x x e.g. sin = 3 cos , 0 ≤ x ≤ 2π . 1 1 e.g. P(x ) = x3 − 3x 2 + 3 x − 1 2 2 1 − 2 x = e −1 , 2 x = 1 − e −1 , x = 1 −  . 2 e P(− 1) = (− 1)3 − 3(− 1)2 + 3(− 1) − 1 ≠ 0 sin x e.g. log10 (x − 1) = 1 − log10 (2 x − 1) x 2 = 3 , tan x = 3 , P(1) = 13 − 3(1)2 + 3(1) − 1 = 0 0 ≤ ≤π, x log10 (x − 1) + log10 (2 x − 1) = 1 2 2 ∴ (x − 1) is a factor. cos 2 log10 (x − 1)(2 x − 1) = 1 , (x − 1)(2 x − 1) = 10 , Long division: x π 2π ∴ = , ∴x = . 2 x 2 − 3x − 9 = 0 , (2 x + 3)(x − 3) = 0 , x2 − 2x + 1 2 3 3 3 x − 1)x3 − 3 x 2 + 3 x − 1 x = − , 3 . 3 is the only solution because 2 ( − x3 − x 2 ) Exact values for trig. functions: x=− 3 makes the log equation undefined. − 2 x 2 + 3x xo x sin x cos x tan x 2 ( − − 2x2 + 2 x ) 0 30 0 π/6 0 1/2 1 √3/2 0 1/√3 Equation of inverse: x −1 Interchange x and y in the equation to obtain 45 π/4 1/√2 1/√2 1 − (x − 1) 60 π/3 √3/2 1/2 √3 the equation of the inverse. If possible express y in terms of x. 0 90 π/2 1 0 undef ( ∴ P(x ) = (x − 1) x 2 − 2 x + 1 = (x − 1)3 ) 120 2π/3 √3/2 –1/2 –√3 e.g. y = 2(x − 1)2 + 1 , x = 2( y − 1)2 + 1 , x −1 135 3π/4 1/√2 –1/√2 –1 2( y − 1)2 = x − 1 , ( y − 1)2 = , Remainder theorem: 150 5π/6 1/2 –√3/2 –1/√3 2 e.g. when P (x ) = x3 − 3 x 2 + 3 x − 1 is 180 π 0 –1 0 x −1 210 7π/6 –1/2 –√3/2 1/√3 y=± +1 . divided by x + 2 , the remainder is 2 225 5π/4 –1/√2 –1/√2 1 P (− 2) = (− 2)3 − 3(− 2)2 + 3(− 2) − 1 = −11 240 4π/3 –√3/2 –1/2 √3 e.g. y = − 2 +4, x = − 2 +4 , When it is divided by 2 x − 3 , the remainder x −1 y −1 270 3π/2 –1 0 undef 3 1 300 5π/3 –√3/2 1/2 –√3 2 2 is P  = . x−4= − , y −1 = − , 2 8 315 7π/4 –1/√2 1/√2 –1 y −1 x−4 330 11π/6 –1/2 √3/2 –1/√3 2 y=− +1 . 360 2π 0 1 0 x−4
  • 3. e.g. y = −2e x −1 + 1 , x = −2e y −1 + 1 , Differentiation rules: The approx. change in a function is The product rule: For the multiplication of = f (a + h ) − f (a ) = hf ′(a ) , 1− x 2e y −1 = 1 − x , e y −1 = , two functions, y = u (x )v(x ) , e.g. e.g. find the approx. change in cos x when x 2 y = x 2 sin 2 x , let u = x 2 , v = sin 2 x , π 1− x  1− x  changes from to 1.6. Let f (x ) = cos x , y − 1 = loge   , y = log e   +1. dy du dv 2  2   2  =v +u π dx dx dx then f ′(x ) = − sin x . Let a = , then e.g. y = − loge (1 − 2 x ) − 1 , ( ) = (sin 2 x )(2 x ) + x 2 (2 cos 2 x ) π 2 π x = − loge (1 − 2 y ) − 1 , = 2 x(sin 2 x + x cos 2 x ) f ′(a ) = − sin = −1 and h = 1.6 − = 0.03 2 2 The quotient rule: For the division of loge (1 − 2 y ) = −(x + 1) , 1 − 2 y = e − ( x +1) u (x ) log e x Change in cos x = hf ′(a ) = 0.03×− 1 = −0.03 functions, y = , e.g. y = , 1 2 ( 2 y = 1 − e − ( x +1) , y = 1 − e − ( x +1) .) v(x ) x Rate of change: dy dx is the rate of change of du dv The binomial theorem: v −u dx dy dx dx = y with respect to x. v = , velocity is the e.g. Expand (2 x − 1)4 dx v2 dt = 4C0 (2 x )4 (− 1)0 + 4C1 (2 x )3 (− 1)1 rate of change of position x with respect to (x ) 1  − (loge x )(1)   dv + 4C2 (2 x )2 (− 1)2 + 4C3 (2 x )1 (− 1)3 x 1 − log e x time t. a = , acceleration a is the rate of =   2 = . dt x x2 + 4C4 (2 x )0 (− 1)4 = ...... The chain rule: For composite functions, change of velocity v with respect to t. e.g. Find the coefficient of x2 in the y = f (u ( x) ) , e.g. y = e cos x . Average rate of change: Given y = f (x ) , expansion of (2 x − 3)5 . dy dy du when x = a , y = f (a ) , when x = b , Let u = cos x , y = eu , = × The required term is 5C3 (2 x )2 (− 3)3 dx du dx y = f (b ) , the average rate of change of y ( ) = 10 4 x 2 (− 27 ) = −1080 x 2 . ( )( sin x) = −e = eu − cos x sin x . with respect to x = ∆y = f (b ) − f (a ) . ∴ the coefficient of x2 is –1080. dy ∆x b−a Finding stationary points: Let = 0 and dx Differentiation rules: solve for x and then y, the coordinates of the Deducing the graph of gradient function dy from the graph of a function y = f (x ) = f ' (x ) stationary point. f(x) dx Nature of stationary point at x = a : • ax n anx n −1 Local Local Inflection • max. min. point a(x + c )n an(x + c )n −1 x<a dy dy dy 0 x >0 <0 > 0 , (< 0) a(bx + c )n abn(bx + c )n −1 dx dx dx x=a dy dy dy a sin x a cos x =0 =0 =0 o dx dx dx a sin (x + c ) a cos(x + c ) x>a dy dy dy f’(x) a sin (bx + c ) ab cos(bx + c ) <0 >0 > 0 , (< 0) dx dx dx o o a cos x −a sin x Equation of tangent and normal at x = a : • a cos(x + c ) − a sin (x + c ) 1) Find the y coordinate if it is not given. 0 o x dy a cos(bx + c ) − ab sin (bx + c ) 2) Gradient of tangent mT = at x = a . • dx a tan x a sec 2 x 3) Use y − y1 = mT (x − x1 ) to find equation Deducing the graph of function from the a tan (x + c ) a sec (x + c ) 2 of tangent. graph of anti-derivative function a tan (bx + c ) 1 ab sec 2 (bx + c ) 4) Find gradient of normal mN = − . ∫ f(x)dx+ c mT x x ae ae 5) Use y − y1 = m N (x − x1 ) to find equation • x+c ae ae x + c of the normal. • Linear approximation: 0 x ae bx + c abe bx + c To find the approx. value of a function, use a log e x a f (a + h ) ≈ f (a ) + hf ′(a ) , e.g. find the x approx. value of 25.1 . Let f (x ) = x , o a log e bx a 1 x then f ′(x ) = . Let a = 25 and h = 0.1 , f(x) 2 x o o a log e (x + c ) a then f (a + h ) = 25.1 , f (a ) = 25 = 5 , x+c 0 o • x 1 a log e b(x + c ) a f ′(a ) = = 0.1 . 2 25 • x+c ∴ 25.1 ≈ 5 + 0.1 × 0.1 = 5.01 a log e (bx + c ) ab bx + c
  • 4. Anti-differentiation (indefinite integrals): Estimate area by left (or right) rectangles Graphics calculator : Pr ( X = a ) = binompdf (n, p, a ) f (x ) ∫ f (x)dx Left Right Pr ( X ≤ a ) = binomcdf (n, p, a ) ax n for n ≠ −1 a n +1 x a b a b Pr ( X < a ) = binomcdf (n, p, a − 1) n +1 Area between two curves: Pr ( X ≥ a ) = 1 − binomcdf (n, p, a − 1) a (x + c )n , n ≠ −1 a (x + c )n +1 y = g (x ) Pr ( X > a ) = 1 − binomcdf (n, p, a ) n +1 y = f (x ) Pr (a ≤ X ≤ b ) = binomcdf (n, p, b ) a (bx + c )n , n ≠ −1 a (bx + c )n +1 a 0 b −binomcdf (n, p, a − 1) (n + 1)b Probability density functions f (x ) for a a log e x , x > 0 x ∈ [a, b] . y y = f (x ) x a log e (− x ) , x < 0 Firstly find the x-coordinates of the a a log e (x + c ) intersecting points, a, b, then evaluate b a c b x x+c a a log e (bx + c ) A= ∫ [ f (x) − g (x)]dx . Always the function a For f (x ) to be a probability density above minus the function below. function, f (x ) > 0 and bx + c b b For three intersecting points: ae x ae x Pr (a < X < b ) = ∫ f (x)dx = 1. a ae x + c ae x + c y = f (x ) c b ae bx + c a bx + c e y = g (x ) Pr ( X < c ) = ∫ f (x)dx , Pr(X > c) = ∫ f (x)dx a c b a b 0 c Normal distributions are continuous prob. a sin x − a cos x distributions. The graph of a normal dist. has b c a sin (x + c ) − a cos(x + c ) ∫ [ f (x) − g (x)]dx ∫ [g (x) − f (x )]dx a bell shape and the area under the graph A= + represents probability. Total area = 1. a sin (bx + c ) a b a − cos(bx + c ) b Discrete probability distributions: ( ) N 1 µ1 , σ 2 , N 2 µ 2 , σ 2 . ( ) In general, in the form of a table, a cos x a sin x x x1 x2 x3 ...... 1 2 µ1 < µ 2 a cos(x + c ) a sin (x + c ) Pr ( X = x ) p1 p2 p3 ...... a cos(bx + c ) a 0 µ1 µ2 X sin (bx + c ) p1 , p2 , p3 ,... have values from 0 to 1 and b p1 + p2 + p3 + ... = 1 . ( 2 ) N1 µ , σ 1 , N 2 µ , σ 2 ( 2 ). Definite integrals: µ = E ( X ) = x1 p1 + x2 p2 + x3 p3 + ... 1 σ1 < σ 2 π π Var ( X ) = x1 p1 + x2 p2 + x3 p3 + ... − µ 2 2 2 2 2  π   π  2 e.g. ∫ 0 2 cos x − dx = sin  x −   3   3  0 σ = sd ( X ) = Var ( X ) 0 X π π   π If random variable Y = aX + b , = sin  −  − sin  0 −  The standard normal distribution: 2 3  3 E (Y ) = aE ( X ) + b , Var (Y ) = a 2 × Var ( X ) has µ = 0 and σ = 1 . N (0,1) and sd (Y ) = a × sd ( X ) . π  π  1+ 3 = sin − sin  −  = . 95% probability interval : (µ − 2δ , µ + 2δ ) µ σ 2 6  3 2 Pr ( A ∩ B ) Properties of definite integrals: Conditional prob: Pr A B = ( ) Pr (B ) . b b 1) ∫ kf (x)dx = k ∫ f (x)dx a a Binomial distributions are examples of discrete prob. distributions. Sampling with 0 Z b b b Graphics calculator: Finding probability, 2) [ f (x ) ± g (x )]dx = f (x )dx ± g (x )dx ∫ ∫ ∫ replacement has a binomial distribution. a a a Number of trials = n. In a single trial, prob. Pr ( X < a ) = normalcdf (− E 99, a, µ , σ ) b c b of success = p, prob. of failure = q = 1- p. Pr ( X > a ) = normalcdf (a, E 99, µ , σ ) ∫ a ∫ ∫ 3) f (x )dx = f (x )dx + f (x )dx , a c The random variable X is the number of successes in the n trials. The binomial dist. Pr (a < X < b ) = normalcdf (a, b, µ , σ ) b a Finding quantile, e.g. given Pr ( X < x ) = 0.7 is Pr ( X = x )= n C x p x q n− x , x = 0,1,2,... with ∫ ∫ where a < c < b . 4) f (x )dx = − f (x )dx a b x = invNorn(0.7, µ , σ ) . b a a µ = np and σ = npq = np(1 − p ) . Given Pr ( X > x ) = 0.7 , then ∫ a ∫ b∫ 4) f (x )dx = − f (x )dx , 5) f (x )dx = 0. a ** Effects of increasing n on the graph of a Pr ( X < x ) = 1 − 0.7 = 0.3 and Area ‘under’ curve: binomial distribution. (1) more points x = invNorm(0.3, µ , σ ) . (2) lower probability for each x value (3) becoming symmetrical , bell shape. X −µ b To find µ and/or σ, use Z = to y = f (x ) A= ∫ f (x)dx a ** Effects of changing p on the graph of a binomial distribution. (1) bell shape when σ convert X to Z first, e.g. find µ given σ = 2 a 0 b p = 0.5 (2) positively skewed if p < 0.5  4−µ y = f (x ) and Pr ( X < 4) = 0.8 . Pr  Z <  = 0.8 , (3) negatively skewed if p > 0.5  2  a c 0 b p = 0.5 p < 0.5 p > 0.5 4−µ c b ∴ = invNorm(0.8) = 0.8416 , 2 ∫ A = − f (x )dx + a ∫ f (x)dx c ∴ µ = 2.3168 .