SlideShare ist ein Scribd-Unternehmen logo
1 von 10
IL TEOREMA DI PITAGORA OO7 al Quadrato Carolina Peretti & Valentina Carli
Si racconta, ma è leggenda, che Pitagora abbia scoperto il suo teorema mentre stava aspettando di essere ricevuto da Policrate. Seduto in un grande salone del palazzo del tiranno di Samo, Pitagora si mise ad osservare le piastrelle quadrate del pavimento. Se avesse tagliato in due una piastrella lungo una diagonale, avrebbe ottenuto due triangoli rettangoli uguali.  Inoltre l'area del quadrato costruito sulla diagonale di uno dei due triangoli rettangoli risultava il doppio dell'area di una piastrella. Questo quadrato risultava infatti composto da quattro mezze piastrelle, cioè da due piastrelle. Ma i quadrati costruiti sugli altri lati del triangolo corrispondevano ognuno all'area di una piastrella.
In altre parole il quadrato costruito sull'ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti. Questo risultava evidente nel caso della piastrella quadrata, cioè di un triangolo rettangolo isoscele: Ma poteva essere vero, si chiese Pitagora, anche nel caso generale, con cateti di lunghezza diversa?
Studiando meglio la figura ottenuta dall'osservazione delle piastrelle, Pitagora si accorse che il quadrato formato da quattro piastrelle si poteva scomporre in quattro triangoli rettangoli equivalenti e in un quadrato il cui lato era uguale alla lunghezza dell'ipotenusa di uno dei triangoli. Non fu quindi difficile passare al caso generale di quattro triangoli rettangoli qualsiasi, non più isosceli per i quali, come vedremo, vale ancora il teorema.
      In realtà la storia del teorema è molto più complessa e le sue origini, come abbiamo già detto, risalgono almeno ad un migliaio di anni prima che Pitagora si dedicasse allo studio dei triangoli rettangoli. Per avviare la nostra indagine sul teorema partiamo dalla formulazione che ne diede Euclide:        In ogni triangolo rettangolo il quadrato del lato opposto all'angolo retto è uguale ai quadrati dei lati che contengono l'angolo retto.
Se lo riscriviamo in termini più moderni abbiamo l'enunciato riportato generalmente nei testi scolastici:                                                 In ogni triangolo rettangolo il quadrato dell'ipotenusa (oppure: l'area del quadrato costruito sull'ipotenusa) è equivalente alla somma dei quadrati dei due cateti (oppure: alla somma delle aree dei quadrati costruiti sui due cateti).  Se c indica la lunghezza dell'ipotenusa e a e b quelle dei due cateti possiamo scrivere il teorema in forma algebrica:  Il teorema di Pitagora era noto un tempo come "il ponte degli asini", il ponte che riusciva a superare soltanto chi dimostrava di possedere sufficienti attitudini per il pensiero astratto e per un metodo deduttivo da applicare a procedimenti matematici quali erano quelli proposti dai pitagorici.
Il teorema di Pitagora era noto un tempo come "il ponte degli asini", il ponte che riusciva a superare soltanto chi dimostrava di possedere sufficienti attitudini per il pensiero astratto e per un metodo deduttivo da applicare a procedimenti matematici quali erano quelli proposti dai pitagorici.
Ecco come Einstein ricorda il suo primo incontro con il teorema:        Avevo 12 anni quando un mio vecchio zio mi enunciò il teorema di Pitagora e dopo molti sforzi riuscii a dimostrarlo. E’ stata un’esperienza meravigliosa scoprire come l’uomo sia in grado di raggiungere un tale livello di certezza e di chiarezza nel puro pensiero. E sono stati i Greci per primi ad indicarcene la possibilità, con la geometria.  Vediamo una delle dimostrazioni più semplici, quella che generalmente si trova sui testi scolastici e che riprende il ragionamento che Pitagora potrebbe aver fatto osservando le piastrelle quadrate nel palazzo di Policrate.
Dato il triangolo rettangolo ABC , di cateti a, b e ipotenusa c, costruiamo due quadrati equivalenti, che abbiano come lato la somma dei due cateti, a + b . Scomponiamo il primo di questi quadrati nei due quadrati costruiti sui cateti e nei quattro triangoli di figura, equivalenti al triangolo dato.  Scomponiamo poi il secondo quadrato nel quadrato costruito sull'ipotenusa e negli stessi quattro triangoli. Se ai due quadrati grandi togliamo i quattro triangoli uguali, otteniamo due parti equivalenti, con la stessa area: i quadrati costruiti sui cateti e il quadrato costruito sull'ipotenusa.
ThEeNd

Weitere ähnliche Inhalte

Was ist angesagt? (7)

Slideslez7 stoici
Slideslez7 stoiciSlideslez7 stoici
Slideslez7 stoici
 
I quadrati magici
I quadrati magiciI quadrati magici
I quadrati magici
 
Il teorema di_pitagora_nella_storia
Il teorema di_pitagora_nella_storiaIl teorema di_pitagora_nella_storia
Il teorema di_pitagora_nella_storia
 
Irrazionale.slides
Irrazionale.slidesIrrazionale.slides
Irrazionale.slides
 
Logica
LogicaLogica
Logica
 
Appunti sulla crisi dei fondamenti della matematica
Appunti sulla crisi dei fondamenti della matematicaAppunti sulla crisi dei fondamenti della matematica
Appunti sulla crisi dei fondamenti della matematica
 
Pi carriero pepe-chito
Pi carriero pepe-chitoPi carriero pepe-chito
Pi carriero pepe-chito
 

Andere mochten auch (9)

Geometria - quadrato rettangolo triangolo cerchio teorema pitagora
Geometria - quadrato rettangolo triangolo cerchio teorema  pitagoraGeometria - quadrato rettangolo triangolo cerchio teorema  pitagora
Geometria - quadrato rettangolo triangolo cerchio teorema pitagora
 
Teorema di pitagora
Teorema di pitagoraTeorema di pitagora
Teorema di pitagora
 
Teorema di pitagora
Teorema di pitagoraTeorema di pitagora
Teorema di pitagora
 
Il teorema di pitagora è intorno a noi
Il teorema di pitagora è intorno a noiIl teorema di pitagora è intorno a noi
Il teorema di pitagora è intorno a noi
 
Teorema di Pitagora (Airy): descrizione
Teorema di Pitagora (Airy): descrizioneTeorema di Pitagora (Airy): descrizione
Teorema di Pitagora (Airy): descrizione
 
Teorema pitagora triangoliangoli453060_mathubi
Teorema pitagora triangoliangoli453060_mathubiTeorema pitagora triangoliangoli453060_mathubi
Teorema pitagora triangoliangoli453060_mathubi
 
Il teorema di pitagora è intorno a noi
Il teorema di pitagora è intorno a noiIl teorema di pitagora è intorno a noi
Il teorema di pitagora è intorno a noi
 
Il teorema di pitagora è intorno a noi
Il teorema di pitagora è intorno a noiIl teorema di pitagora è intorno a noi
Il teorema di pitagora è intorno a noi
 
La vita di Pitagora
La vita di PitagoraLa vita di Pitagora
La vita di Pitagora
 

Ähnlich wie Il teorema di pitagora

Pitagora da Policrate
Pitagora da PolicratePitagora da Policrate
Pitagora da Policrate
localtello
 
Progetto interdisciplinare
Progetto interdisciplinareProgetto interdisciplinare
Progetto interdisciplinare
lavoriscuola
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Fausto Intilla
 
BREVE STORIA DELL'ARCOBALENO
BREVE STORIA DELL'ARCOBALENOBREVE STORIA DELL'ARCOBALENO
BREVE STORIA DELL'ARCOBALENO
Università degli Studi di Genova
 
Le coniche, un po' di storia e......
Le coniche, un po' di storia e......Le coniche, un po' di storia e......
Le coniche, un po' di storia e......
Rosangela Mapelli
 

Ähnlich wie Il teorema di pitagora (20)

La matematica in Grecia
La matematica in GreciaLa matematica in Grecia
La matematica in Grecia
 
Pitagora da Policrate
Pitagora da PolicratePitagora da Policrate
Pitagora da Policrate
 
Progetto interdisciplinare
Progetto interdisciplinareProgetto interdisciplinare
Progetto interdisciplinare
 
La quarta dimensione da vedere e tocccare
La quarta dimensione da vedere e tocccareLa quarta dimensione da vedere e tocccare
La quarta dimensione da vedere e tocccare
 
Progetto di matematica
Progetto di matematicaProgetto di matematica
Progetto di matematica
 
Archimede: solidi e paradosso meccanico
Archimede: solidi e paradosso meccanicoArchimede: solidi e paradosso meccanico
Archimede: solidi e paradosso meccanico
 
Sarcofago della grande piramide arca della alleanza- leonardo
Sarcofago della grande piramide  arca della alleanza- leonardoSarcofago della grande piramide  arca della alleanza- leonardo
Sarcofago della grande piramide arca della alleanza- leonardo
 
Mart, maths in art
Mart, maths in artMart, maths in art
Mart, maths in art
 
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
Dal metalinguaggio quantistico alle teorie quantistiche di confine - Fausto I...
 
La matematica nella divina commedia
La matematica nella divina commediaLa matematica nella divina commedia
La matematica nella divina commedia
 
BREVE STORIA DELL'ARCOBALENO
BREVE STORIA DELL'ARCOBALENOBREVE STORIA DELL'ARCOBALENO
BREVE STORIA DELL'ARCOBALENO
 
La sezione aurea
La sezione aureaLa sezione aurea
La sezione aurea
 
Generalizzazione teorema di pitagora
Generalizzazione teorema di pitagoraGeneralizzazione teorema di pitagora
Generalizzazione teorema di pitagora
 
sulle spalle dei giganti guida alla mostra
sulle spalle dei giganti guida alla mostrasulle spalle dei giganti guida alla mostra
sulle spalle dei giganti guida alla mostra
 
Le coniche, un po' di storia e......
Le coniche, un po' di storia e......Le coniche, un po' di storia e......
Le coniche, un po' di storia e......
 
Idee.accademiche.slides
Idee.accademiche.slidesIdee.accademiche.slides
Idee.accademiche.slides
 
Sezione.aurea
Sezione.aureaSezione.aurea
Sezione.aurea
 
Il lavoro svolto nel Pon i Pitagorici
Il lavoro svolto nel Pon i PitagoriciIl lavoro svolto nel Pon i Pitagorici
Il lavoro svolto nel Pon i Pitagorici
 
3.caduta deigravi
3.caduta deigravi3.caduta deigravi
3.caduta deigravi
 
Archimede def
Archimede defArchimede def
Archimede def
 

Kürzlich hochgeladen

Presentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informaticaPresentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informatica
nico07fusco
 
Nicola pisano aaaaaaaaaaaaaaaaaa(1).pptx
Nicola pisano aaaaaaaaaaaaaaaaaa(1).pptxNicola pisano aaaaaaaaaaaaaaaaaa(1).pptx
Nicola pisano aaaaaaaaaaaaaaaaaa(1).pptx
lorenzodemidio01
 
Adducchio.Samuel-Steve_Jobs.ppppppppppptx
Adducchio.Samuel-Steve_Jobs.ppppppppppptxAdducchio.Samuel-Steve_Jobs.ppppppppppptx
Adducchio.Samuel-Steve_Jobs.ppppppppppptx
sasaselvatico
 
case passive_GiorgiaDeAscaniis.pptx.....
case passive_GiorgiaDeAscaniis.pptx.....case passive_GiorgiaDeAscaniis.pptx.....
case passive_GiorgiaDeAscaniis.pptx.....
giorgiadeascaniis59
 

Kürzlich hochgeladen (20)

Scrittura seo e scrittura accessibile
Scrittura seo e scrittura accessibileScrittura seo e scrittura accessibile
Scrittura seo e scrittura accessibile
 
Aristotele, vita e opere e fisica...pptx
Aristotele, vita e opere e fisica...pptxAristotele, vita e opere e fisica...pptx
Aristotele, vita e opere e fisica...pptx
 
Tosone Christian_Steve Jobsaaaaaaaa.pptx
Tosone Christian_Steve Jobsaaaaaaaa.pptxTosone Christian_Steve Jobsaaaaaaaa.pptx
Tosone Christian_Steve Jobsaaaaaaaa.pptx
 
discorso generale sulla fisica e le discipline.pptx
discorso generale sulla fisica e le discipline.pptxdiscorso generale sulla fisica e le discipline.pptx
discorso generale sulla fisica e le discipline.pptx
 
Quadrilateri e isometrie studente di liceo
Quadrilateri e isometrie studente di liceoQuadrilateri e isometrie studente di liceo
Quadrilateri e isometrie studente di liceo
 
Presentazioni Efficaci e lezioni di Educazione Civica
Presentazioni Efficaci e lezioni di Educazione CivicaPresentazioni Efficaci e lezioni di Educazione Civica
Presentazioni Efficaci e lezioni di Educazione Civica
 
Presentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informaticaPresentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informatica
 
CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...
CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...
CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...
 
LE ALGHE.pptx ..........................
LE ALGHE.pptx ..........................LE ALGHE.pptx ..........................
LE ALGHE.pptx ..........................
 
Nicola pisano aaaaaaaaaaaaaaaaaa(1).pptx
Nicola pisano aaaaaaaaaaaaaaaaaa(1).pptxNicola pisano aaaaaaaaaaaaaaaaaa(1).pptx
Nicola pisano aaaaaaaaaaaaaaaaaa(1).pptx
 
Storia-CarloMagno-TeccarelliLorenzo.pptx
Storia-CarloMagno-TeccarelliLorenzo.pptxStoria-CarloMagno-TeccarelliLorenzo.pptx
Storia-CarloMagno-TeccarelliLorenzo.pptx
 
Oppressi_oppressori.pptx................
Oppressi_oppressori.pptx................Oppressi_oppressori.pptx................
Oppressi_oppressori.pptx................
 
Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024
Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024
Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024
 
Descrizione Piccolo teorema di Talete.pptx
Descrizione Piccolo teorema di Talete.pptxDescrizione Piccolo teorema di Talete.pptx
Descrizione Piccolo teorema di Talete.pptx
 
Vuoi girare il mondo? educazione civica.
Vuoi girare il mondo? educazione civica.Vuoi girare il mondo? educazione civica.
Vuoi girare il mondo? educazione civica.
 
ProgettoDiEducazioneCivicaDefinitivo_Christian Tosone.pptx
ProgettoDiEducazioneCivicaDefinitivo_Christian Tosone.pptxProgettoDiEducazioneCivicaDefinitivo_Christian Tosone.pptx
ProgettoDiEducazioneCivicaDefinitivo_Christian Tosone.pptx
 
Una breve introduzione ad Elsa Morante, vita e opere
Una breve introduzione ad Elsa Morante, vita e opereUna breve introduzione ad Elsa Morante, vita e opere
Una breve introduzione ad Elsa Morante, vita e opere
 
Adducchio.Samuel-Steve_Jobs.ppppppppppptx
Adducchio.Samuel-Steve_Jobs.ppppppppppptxAdducchio.Samuel-Steve_Jobs.ppppppppppptx
Adducchio.Samuel-Steve_Jobs.ppppppppppptx
 
descrizioni della antica civiltà dei sumeri.pptx
descrizioni della antica civiltà dei sumeri.pptxdescrizioni della antica civiltà dei sumeri.pptx
descrizioni della antica civiltà dei sumeri.pptx
 
case passive_GiorgiaDeAscaniis.pptx.....
case passive_GiorgiaDeAscaniis.pptx.....case passive_GiorgiaDeAscaniis.pptx.....
case passive_GiorgiaDeAscaniis.pptx.....
 

Il teorema di pitagora

  • 1. IL TEOREMA DI PITAGORA OO7 al Quadrato Carolina Peretti & Valentina Carli
  • 2. Si racconta, ma è leggenda, che Pitagora abbia scoperto il suo teorema mentre stava aspettando di essere ricevuto da Policrate. Seduto in un grande salone del palazzo del tiranno di Samo, Pitagora si mise ad osservare le piastrelle quadrate del pavimento. Se avesse tagliato in due una piastrella lungo una diagonale, avrebbe ottenuto due triangoli rettangoli uguali. Inoltre l'area del quadrato costruito sulla diagonale di uno dei due triangoli rettangoli risultava il doppio dell'area di una piastrella. Questo quadrato risultava infatti composto da quattro mezze piastrelle, cioè da due piastrelle. Ma i quadrati costruiti sugli altri lati del triangolo corrispondevano ognuno all'area di una piastrella.
  • 3. In altre parole il quadrato costruito sull'ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti. Questo risultava evidente nel caso della piastrella quadrata, cioè di un triangolo rettangolo isoscele: Ma poteva essere vero, si chiese Pitagora, anche nel caso generale, con cateti di lunghezza diversa?
  • 4. Studiando meglio la figura ottenuta dall'osservazione delle piastrelle, Pitagora si accorse che il quadrato formato da quattro piastrelle si poteva scomporre in quattro triangoli rettangoli equivalenti e in un quadrato il cui lato era uguale alla lunghezza dell'ipotenusa di uno dei triangoli. Non fu quindi difficile passare al caso generale di quattro triangoli rettangoli qualsiasi, non più isosceli per i quali, come vedremo, vale ancora il teorema.
  • 5. In realtà la storia del teorema è molto più complessa e le sue origini, come abbiamo già detto, risalgono almeno ad un migliaio di anni prima che Pitagora si dedicasse allo studio dei triangoli rettangoli. Per avviare la nostra indagine sul teorema partiamo dalla formulazione che ne diede Euclide: In ogni triangolo rettangolo il quadrato del lato opposto all'angolo retto è uguale ai quadrati dei lati che contengono l'angolo retto.
  • 6. Se lo riscriviamo in termini più moderni abbiamo l'enunciato riportato generalmente nei testi scolastici: In ogni triangolo rettangolo il quadrato dell'ipotenusa (oppure: l'area del quadrato costruito sull'ipotenusa) è equivalente alla somma dei quadrati dei due cateti (oppure: alla somma delle aree dei quadrati costruiti sui due cateti). Se c indica la lunghezza dell'ipotenusa e a e b quelle dei due cateti possiamo scrivere il teorema in forma algebrica: Il teorema di Pitagora era noto un tempo come "il ponte degli asini", il ponte che riusciva a superare soltanto chi dimostrava di possedere sufficienti attitudini per il pensiero astratto e per un metodo deduttivo da applicare a procedimenti matematici quali erano quelli proposti dai pitagorici.
  • 7. Il teorema di Pitagora era noto un tempo come "il ponte degli asini", il ponte che riusciva a superare soltanto chi dimostrava di possedere sufficienti attitudini per il pensiero astratto e per un metodo deduttivo da applicare a procedimenti matematici quali erano quelli proposti dai pitagorici.
  • 8. Ecco come Einstein ricorda il suo primo incontro con il teorema: Avevo 12 anni quando un mio vecchio zio mi enunciò il teorema di Pitagora e dopo molti sforzi riuscii a dimostrarlo. E’ stata un’esperienza meravigliosa scoprire come l’uomo sia in grado di raggiungere un tale livello di certezza e di chiarezza nel puro pensiero. E sono stati i Greci per primi ad indicarcene la possibilità, con la geometria. Vediamo una delle dimostrazioni più semplici, quella che generalmente si trova sui testi scolastici e che riprende il ragionamento che Pitagora potrebbe aver fatto osservando le piastrelle quadrate nel palazzo di Policrate.
  • 9. Dato il triangolo rettangolo ABC , di cateti a, b e ipotenusa c, costruiamo due quadrati equivalenti, che abbiano come lato la somma dei due cateti, a + b . Scomponiamo il primo di questi quadrati nei due quadrati costruiti sui cateti e nei quattro triangoli di figura, equivalenti al triangolo dato. Scomponiamo poi il secondo quadrato nel quadrato costruito sull'ipotenusa e negli stessi quattro triangoli. Se ai due quadrati grandi togliamo i quattro triangoli uguali, otteniamo due parti equivalenti, con la stessa area: i quadrati costruiti sui cateti e il quadrato costruito sull'ipotenusa.