SlideShare ist ein Scribd-Unternehmen logo
1 von 22
Downloaden Sie, um offline zu lesen
1
EXEMPLES OF SIMULATION WITH THE ACM MODEL
This document shows some examples of simulation using the ACM model. It is divided in
two parts: the first one shows the transistor characteristics and the second shows some simple
circuits which illustrate the capability of the model. All the simulations were done with SMASH.
1. Transistor characteristics
1.1 Output characteristics
The figures below show the drain current and the logarithm of the output conductance
versus the drain voltage for a NMOS transistor with W/L=10µ/0.8µ.
• Netlist for simulation of example 1.1
File: idvd.nsx
**********************
* ID x VD - ACM model
**********************
M52 D G S 0 ACM W=10u L=0.8u
File: idvd.pat
***********************************
*ID x VD - ACM Model - DC Analysis
***********************************
.PARAM VGB = 1
VDB D 0 DC 5
VGB G 0 DC 'VGB'
VSB S 0 DC 0
* ACM model parameters
*----------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.685 GAMMA=0.77 XJ=0.25E-6
+ THETA=0.083 UCRIT=2.6E6 SIGMA=3e-15
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.DC LIN VDB 0 5 10m
.PARAMSWEEP VGB 1 3 1
.TRACE DC ID(M52) MIN=-2.6458598E-004
.TRACE DC {LOGGD52 = LOG(IN(M52.GDS))}
2
ID(M52)
DC simulation: idvd.nsx ; single ; 12/8/97 ; 16:08:26
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-200uA
0A
200uA
400uA
600uA
800uA
1mA
1.2mA
1.4mA
1.6mA
1.8mA
2mA
2.2mA
2.4mA
2.6mA
2.8mA
Fig.1 - ID x VD characteristic of a NMOS transistor
LOGGD52
DC simulation: idvd.nsx ; single ; 12/8/97 ; 16:11:32
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-5
-4.8
-4.6
-4.4
-4.2
-4
-3.8
-3.6
-3.4
-3.2
-3
-2.8
-2.6
-2.4
-2.2
Fig. 2 - The output conductance of a NMOS transistor versus VD
1.2 Drain current in weak inversion
3
This plot shows the logarithm of the drain current versus the gate voltage for a NMOS
transistor, in the saturation region, with W/L=10µ/0.8µ.
• Netlist for simulation of example 1.2
File: idvge.nsx
**********************
* ID x VG - ACM model
**********************
M52 G G S 0 ACM W=10u L=0.8u
File: idvge.pat
***********************************
*ID x VG - ACM Model
***********************************
VGB G 0 DC 2
VSB S 0 DC 'VSB'
* ACM model parameters
*----------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.053 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.PARAM VSB = 0
.PARAMSWEEP VSB 0 2 1
.DC LIN VGB 0 5 10m
.TRACE DC {LOGID52 = LOG(ID(M52))}
4
LOGID52
DC simulation: idvge.nsx ; single ; 12/8/97 ; 16:16:38
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
Fig.3 - ID x VG of a NMOS transistor
1.3 Gate and source transconductances
Figures 4 and 5 show the ratios gmg/ID and gms/ID, in the saturation region, versus the gate
voltage, respectively. The ratio gmg/ID in the linear region is shown in figure 6. The transistor is the
same as in the previous examples.
• Netlist for simulation of example 1.3
File: idvge.nsx
**********************
* ID x VG - ACM model
**********************
M52 D G S 0 ACM W=10u L=0.8u
File: idvge.pat
***********************************
*ID x VG - ACM Model - DC Analysis
***********************************
*VDB D 0 DC 5
VDB D 0 DC 10m
VGB G 0 DC 2
VSB S 0 DC 'VSB'
5
* ACM model parameters
*----------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.053 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.PARAM VSB = 0
.PARAMSWEEP VSB 0 2 1
.TRACE DC {GMG_ON_ID = IN(M52.GM) / ID(M52)}
.TRACE DC {GMS_ON_ID = IN(M52.GMS) / ID(M52)}
.DC LIN VGB 0 5 10m
GMG_ON_ID
DC simulation: idvge.nsx ; all ; 11/7/97 ; 13:12:29
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Fig. 4 - gmg/ID in the saturation region
6
GMS_ON_ID
DC simulation: idvge.nsx ; all ; 11/7/97 ; 13:14:43
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
0
4
8
12
16
20
24
28
32
36
40
Fig. 5 - gms/ID in the saturation region
GMG_ON_ID
DC simulation: idvge.nsx ; all ; 11/7/97 ; 13:26:01
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-2
0
2
4
6
8
10
12
14
16
18
20
22
24
26
Fig. 6 - gmg/ID in the linear region
7
1.4 Intrinsic charges
The charges at the gate, source, drain and bulk terminals versus VG are shown below, for a
NMOS transistor with W/L=10µ/0.8µ.
• Netlist for simulation of example 1.4
File: qvg.nsx
**********************
* Charges x VG - ACM model
**********************
M52 G G S 0 ACM W=10u L=0.8u
File: qvg.pat
********************************************
*Charges x VG - ACM Model
********************************************
VDB D 0 DC 2
VGB G 0 DC 0
VSB S 0 DC 0
* ACM model parameters
*----------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.DC LIN VGB 0 5 10m
.TRACE DC {QG = IN(M52.QG)} {QS = IN(M52.QS)} {QB =
IN(M52.QB)} {QD = IN(M52.QD)}
8
QG
QS
QB
QD
DC simulation: capvg.nsx ; all ; 9/7/97 ; 15:41:27
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-16f
-12f
-8f
-4f
0
4f
8f
12f
16f
20f
24f
28f
32f
36f
Fig. 7 - Intrinsic charges of a NMOS transistor
1.5 Intrinsic (trans)capacitances
The nine independent intrinsic (trans)capacitances versus VG are shown in the plots below
for a NMOS transistor with W/L=10µ/0.8µ.
• Netlist for simulation of example 1.5
File: capvg.nsx
**********************
* Capacitances x VG - ACM model
**********************
M52 G G S 0 ACM W=10u L=0.8u
File: capvg.pat
********************************************
*Capacitances x VG - ACM Model
********************************************
VDB D 0 DC 2
VGB G 0 DC 0
VSB S 0 DC 0
* ACM model parameters
9
*----------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.DC LIN VGB 0 5 10m
.TRACE DC {CGS = IN(M52.CGS) / 115E - 15} {CGD = IN(M52.CGD)
/ 115E - 15} {CGB = IN(M52.CGB) / 115E - 15} {CBD = IN(M52.CBD) /
115E - 15} {CBS = IN(M52.CBS) / 115E - 15}
.TRACE DC {CSB = IN(M52.CSB) / 115E - 15} {CSS = IN(M52.CSS)
/ 115E - 15} {CSD = IN(M52.CSD) / 115E - 15} {CSG = IN(M52.CSG) /
115E - 15}
CGS
CGD
CGB
CBD
CBS
DC simulation: capvg.nsx ; all ; 9/7/97 ; 15:47:00
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-4m
0
4m
8m
12m
16m
20m
24m
28m
32m
36m
40m
44m
48m
52m
CGS
CGB
CBS
CGD
CBD
VS=0V
VD=2V
10
CSB
CSS
CSD
CSG
DC simulation: capvg.nsx ; single ; 9/7/97 ; 15:51:34
Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
-12m
-8m
-4m
0
4m
8m
12m
16m
20m
24m
28m
32m
36m
40m
Fig.8 - The nine independent (trans)capacitances of a NMOS transistor
2. The MOS capacitor
The figure below shows the simulation of the gate capacitance versus VG of a NMOS
transistor with the source, drain and bulk terminals tied together. The dimensions are W=10µm
and L=5µm.
• Netlist for simulation of example 2
File: capmos.nsx
**********************
*MOS capacitor
**********************
M52 D G S 0 ACM W=10u L=5u
File: capmos.pat
***********************************
* MOS capacitor
***********************************
VGB G 0 0
VDB D 0 0
CSS
CSG
CSB
CSD
VS=0V
VD=2V
11
VSB S 0 0
* ACM model parameters
*----------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.TRACE DC {CGG52/COX = IN(M52.CGG) / 115E - 15}
.DC VGB -2 5 0.01
CGG52/COX
DC simulation: capmos.nsx ; single ; 9/7/97 ; 17:36:19
Scaling:-1.5 -1 -500m 0 500m 1 1.5 2 2.5 3 3.5 4 4.5
280m
320m
360m
400m
440m
480m
520m
560m
600m
640m
680m
720m
760m
800m
840m
880m
920m
Fig. 9 - The MOS capacitance versus VG
3. DC simulation of series-parallel connected MOSFET’s
The DC simulation of a square composite transistor (series-parallel association) [2],
showed in figure 10, was performed. Figure 11 shows the dc output characteristics of the
composite transistor and of a unit transistor. The currents are almost coincident in the linear
region. Figure 12 shows a comparison between the dc output characteristic of the same array of
transistors and a single transistor described by the macromodel (NS=4 and NP=4).
12
G
D
S
Fig.10 - Series-parallel connected transistors. The dimensions of each transistor is W=10µm and
L=2µ
• Netlist for simulation of example 3
File: spa.nsx
********************************
*Series-parallel association
********************************
M11 D G X1 0 ACM W=10u L=2.0u
M21 X1 G X2 0 ACM W=10u L=2.0u
M31 X2 G X3 0 ACM W=10u L=2.0u
M41 X3 G S 0 ACM W=10u L=2.0u
M12 D G X1 0 ACM W=10u L=2.0u
M22 X1 G X2 0 ACM W=10u L=2.0u
M32 X2 G X3 0 ACM W=10u L=2.0u
M42 X3 G S 0 ACM W=10u L=2.0u
M13 D G X1 0 ACM W=10u L=2.0u
M23 X1 G X2 0 ACM W=10u L=2.0u
M33 X2 G X3 0 ACM W=10u L=2.0u
M43 X3 G S 0 ACM W=10u L=2.0u
M14 D G X1 0 ACM W=10u L=2.0u
M24 X1 G X2 0 ACM W=10u L=2.0u
M34 X2 G X3 0 ACM W=10u L=2.0u
M44 X3 G S 0 ACM W=10u L=2.0u
*Macromodel
M3 D G 0 0 ACM W=10u L=2.0u NS=4 NP=4
*Unit transistor
M4 D G 0 0 ACM W=10u L=2.0u
13
File: spa.pat
VDB D 0 5
VGB G 0 'VGB'
VSB S 0 0
*ACM MODEL PARAMETERS
*-----------------------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77 SIGMA=3e-15
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.TRACE DC {ID = ID(M11) + ID(M12) + ID(M13) + ID(M14)}
ID(M3) MIN=0.0000000E+000 MAX=2.4000000E-006
.PARAM VGB=1
.DC LIN VDB 0 1 10m
.PARAMSWEEP VGB 0.75 0.8 0.05
ID
ID(M4)
DC simulation: spa.nsx ; all ; 12/8/97 ; 16:26:39
Scaling:100m 200m 300m 400m 500m 600m 700m 800m 900m
-200n
0
200n
400n
600n
800n
1u
1.2u
1.4u
1.6u
1.8u
2u
2.2u
2.4u
Fig. 11 - The dc output characteristics of the composite transistor and of a unit transistor
14
ID
ID(M3)
DC simulation: spa.nsx ; all ; 12/8/97 ; 16:28:46
Scaling:100m 200m 300m 400m 500m 600m 700m 800m 900m
-200n
0
200n
400n
600n
800n
1u
1.2u
1.4u
1.6u
1.8u
2u
2.2u
2.4u
Fig. 12 - The dc output characteristics of the composite transistor and of a single transistor with
the unit dimensions and NS=NP=4
4. Tests for charge conservation
4.1 A charge pumping circuit
The first test to verify charge conservation was performed in the charge pumping circuit
shown in figure 13, where a 5V pulse train is applied to the gate and the voltage at drain (source)
was measured. As the model conserves charge the voltage at the drain (source) rises and return to
zero for each input pulse. Figure 6 shows the simulation results
Composite transistor
Macromodel
VG=0.75V
VG=0.80V
15
G
S D
1.6pF 1.6pF
0
5 W
L
m
m
=
100
15
µ
µ
COX≅3.3pF
Fig. 13 - Charge pumping circuit for charge conservation test
• Netlist for simulation of example 4.1
File: cpump.nsx
**********************
* Charge pump
**********************
M52 D G S B ACM W=100u L=15u
CS S 0 1.6p
CD D 0 1.6p
File: cpump.pat
***********************************
* Charge pump
***********************************
VBB B 0 0
VIN G 0 PULSE 0 5 0n 1n 1n 10n 22n
* ACM MODEL parameters
*--------------------------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.TRACE TRAN V(D) MIN=-1.8058931E-001 MAX=1.9864824E+000
.EPS 1u 100m 1n
.H 1n 1f 1n 250m 2
.TRAN 1n 100n 0
.METHOD TRAP
16
V(D)
Transient analysis: cpump.nsx ; all ; 9/7/97 ; 16:02:53
Scaling:10n 20n 30n 40n 50n 60n 70n 80n 90n
-100mV
0V
100mV
200mV
300mV
400mV
500mV
600mV
700mV
800mV
900mV
1V
1.1V
1.2V
1.3V
1.4V
1.5V
1.6V
1.7V
1.8V
1.9V
Fig. 14 - Simulation result of the charge pumping circuit
4.2 A sample and hold circuit
The second test has been performed in the sample-hold circuit shown in figure 15
G
S D
2.5pF
0
5
5V
W
L
m
m
=
100
15
µ
µ
COX≅3.3pF
Fig. 15 - Sample and hold circuit for charge conservation test
17
• Netlist for simulation of example 4.2
File: shold.nsx
**********************
* Sample-hold
**********************
M52 D G S B ACM W=100u L=15u
CD D 0 2.5p
File: shold.pat
***********************************
* Sample-hold
***********************************
VBB B 0 0
VIN G 0 PULSE 0 5 0 1n 1n 20n 42n
VS S 0 5
* ACM MODEL parameters
*--------------------------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.TRACE TRAN V(D) MIN=-3.3183785E-001 MAX=3.6502164E+000
.EPS 1u 100m 1n
.H 1n 1f 1n 250m 2
.TRAN 1n 360n 0
.METHOD TRAP
18
V(D)
Transient analysis: shold.nsx ; all ; 9/7/97 ; 16:06:27
Scaling:20n 40n 60n 80n 100n 120n 140n 160n 180n 200n 220n 240n 260n 280n 300n 320n 340n
-200mV
0V
200mV
400mV
600mV
800mV
1V
1.2V
1.4V
1.6V
1.8V
2V
2.2V
2.4V
2.6V
2.8V
3V
3.2V
3.4V
Fig 16 Simulation result of the sample-hold circuit
5. Switched circuits
5.1 A switched capacitor filter
The simulation of a switched capacitor circuit (figure 17)shows that the model can predict
well the charge transfer from capacitor C1 to C2.
2.5pF
W
L
m
m
=
100
15
µ
µ
COX≅3.3pF
20pF
φa φb
5V
C1 C2
3 6
Fig. 17 - Switched capacitor filter
• Netlist for simulation of example 5.1
19
File: scap.nsx
**********************
*Swithed capacitor
**********************
M52A 1 A 3 0 ACM W=100u L=15u
M52B 3 B 6 0 ACM W=100u L=15u
C3 3 0 2.5p
C6 6 0 20p
File: scap.pat
***********************************
* Switched capacitor
***********************************
V1 1 0 5
VA A 0 PULSE 0 5 1u 1n 1n 10u 28u
VB B 0 PULSE 0 5 15u 1u 1u 10u 28u
* ACM MODEL parameters
*--------------------------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.TRACE TRAN V(3) MIN=-3.4734861E-001 MAX=3.8208347E+000
.TRACE TRAN V(6) MIN=-3.4078692E-001 MAX=3.7486561E+000
.EPS 1u 100m 1n
.H 750n 1f 7.5u 250m 2
.TRAN 10p 750u 0
.METHOD BE
20
V(3)
V(6)
Transient analysis: scap.nsx ; all ; 9/7/97 ; 16:10:33
Scaling:50u 100u 150u 200u 250u 300u 350u 400u 450u 500u 550u 600u 650u 700u
0V
500mV
1V
1.5V
2V
2.5V
3V
3.5V
0V
500mV
1V
1.5V
2V
2.5V
3V
3.5V
Fig 18 - Simulation results of the switched capacitor circuit
5.2 A discrete time parametric amplifier
The model also predicts well the behavior of the discrete time parametric amplifier of [1]
(figure 19).
+
_
+
_
+
_
v in/2
v in/2 V B = 2 V
+
_
v out
W
L
m
m
=
1 0 0
1 5
µ
µ
W
L
m
m
=
1 0 0
1 5
µ
µ
V S B
V S B
φ
φ
φ
V S B
t1 t2
Fig. 19 - The parametric amplifier
21
• Netlist for simulation of example 5.2
File: pamp.nsx
**********************************************
* Parametric amplifier - Tsividis and Suyama
* ISCAS - 97 - Hong-Kong
**********************************************
M1 S G1 S 0 ACM W=100u L=15u
M2 S G2 S 0 ACM W=100u L=15u
* SWITCHES
MS1 IN1 CK G1 0 ACM W=1u L=1u
MS2 IN2 CK G2 0 ACM W=1u L=1u
File: pamp.pat
***********************************
* Parametric amplifier - Tsividis and Suyama
* ISCAS - 97 - Hong-Kong
***********************************
VCK CK 0 PULSE 0 5 0u 10n 10n 500n 2.02u
VSB S 0 PULSE 0 5 1u 10n 10n 500n 2.02u
VIN1 IN1 IN0 SIN(0 50m 20k 0 0 0 )
VIN2 IN0 IN2 SIN(0 50m 20k 0 0 0 )
VB IN0 0 2
* ACM MODEL parameters
*--------------------------------------
.MODEL ACM NMOS LEVEL=10
+ TOX=150.12E-10 UO=552.2 PHI=0.64
+ VTO=0.69 GAMMA=0.77
+ THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6
+ LAMBDA=0.25 LETA=0.44 WETA=0.26
+ PB=0.675 DL=-0.42E-6 DW=-0.1E-6
.TRACE TRAN {VIN = V(IN1) - V(IN2)} {VOUT = V(G1) - V(G2)}
.EPS 1u 100m 1n
.H 1n 1f 1n 250m 2
.TRAN 100n 100u 0
.METHOD BE
22
VIN
VOUT
Transient analysis: pamp.nsx ; single ; 9/7/97 ; 17:19:05
Scaling:10u 20u 30u 40u 50u 60u 70u 80u 90u
-600m
-500m
-400m
-300m
-200m
-100m
0
100m
200m
300m
400m
500m
Fig 20 - Simulation results of the parametric amplifier
Reference
[1] Y. Tsividis and K. Suyama, Strange ways to use the MOSFET, Proceedings of IEEE-
ISCAS, Hong-Kong, June 1997.
[2] C. Galup-Montoro, M.C. Schneider and I.J.B. Loss, Series-parallel association of FET’s for
high gain and high frequency applications, IEEE Journal of Solid-state Circuits, vol. 29, no. 9,
pp. 1094-1101, September 1994.

Weitere ähnliche Inhalte

Was ist angesagt?

Was ist angesagt? (19)

Original Mosfet IRF7493TRPBF IRF7493 F7493 7493 SOP-8 New IR
Original Mosfet IRF7493TRPBF IRF7493 F7493 7493 SOP-8 New IROriginal Mosfet IRF7493TRPBF IRF7493 F7493 7493 SOP-8 New IR
Original Mosfet IRF7493TRPBF IRF7493 F7493 7493 SOP-8 New IR
 
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New FairchildOriginal N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
Original N-CHANNEL Mosfet FQPF10N60 10N60 10A 600V TO-220F New Fairchild
 
Original Mosfet 4N90C FQP4N90C FQP4N90 900V 4A TO-220 New
Original Mosfet 4N90C FQP4N90C FQP4N90 900V 4A TO-220 NewOriginal Mosfet 4N90C FQP4N90C FQP4N90 900V 4A TO-220 New
Original Mosfet 4N90C FQP4N90C FQP4N90 900V 4A TO-220 New
 
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
Original N-Channel Power MOSFET IRF1010EPBF IRF1010 1010 60V 84A TO-220 New I...
 
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New FairchildOriginal Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
 
Original N Channel Mosfet FDA59N25 59N25 59A 250V TO-3P New
Original N Channel Mosfet FDA59N25 59N25 59A 250V TO-3P NewOriginal N Channel Mosfet FDA59N25 59N25 59A 250V TO-3P New
Original N Channel Mosfet FDA59N25 59N25 59A 250V TO-3P New
 
Original N P-CHANNEL ENHANCEMENT Mosfet AP4506GEH 4506GEH 4506 TO-252 New Adv...
Original N P-CHANNEL ENHANCEMENT Mosfet AP4506GEH 4506GEH 4506 TO-252 New Adv...Original N P-CHANNEL ENHANCEMENT Mosfet AP4506GEH 4506GEH 4506 TO-252 New Adv...
Original N P-CHANNEL ENHANCEMENT Mosfet AP4506GEH 4506GEH 4506 TO-252 New Adv...
 
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F MagnachipOriginal N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
Original N-CHANNEL MOSFET MDF11N65B 11N65 11A 650V TO-220F Magnachip
 
Original N-Channel Mosfet STU432S STU432 432 TO-252 New SamHop Microelectronics
Original N-Channel Mosfet STU432S STU432 432 TO-252 New SamHop MicroelectronicsOriginal N-Channel Mosfet STU432S STU432 432 TO-252 New SamHop Microelectronics
Original N-Channel Mosfet STU432S STU432 432 TO-252 New SamHop Microelectronics
 
Khb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheetKhb 7d0n65f2 datasheet
Khb 7d0n65f2 datasheet
 
Original N-Channel Mosfet FQU13N10LTU 13N10 100V 10A TO-251 New ON Semiconduc...
Original N-Channel Mosfet FQU13N10LTU 13N10 100V 10A TO-251 New ON Semiconduc...Original N-Channel Mosfet FQU13N10LTU 13N10 100V 10A TO-251 New ON Semiconduc...
Original N-Channel Mosfet FQU13N10LTU 13N10 100V 10A TO-251 New ON Semiconduc...
 
Original Dual N-Channel Mosfet CEG8205A 8205A 8205 20V 6A SSOP-6 New
Original Dual N-Channel Mosfet CEG8205A 8205A 8205 20V 6A SSOP-6 NewOriginal Dual N-Channel Mosfet CEG8205A 8205A 8205 20V 6A SSOP-6 New
Original Dual N-Channel Mosfet CEG8205A 8205A 8205 20V 6A SSOP-6 New
 
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New FairchildOriginal N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
Original N-Channel Mosfet FQPF5N50C 5N50C 500V 3A TO-220F New Fairchild
 
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
Original Mosfet IRFB18N50KPBF IRFB18N50K FB18N50K 18N50K 500V 17A TO-220 New ...
 
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD GP6NC60 6N60 600V 15A TO-220 New STMicroelectronics
 
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronicsOriginal IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
Original IGBT STGP6NC60HD 6N60 600V 15A TO-220 New STMicroelectronics
 
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon TechnologiesOriginal N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
Original N-Channel Mosfet IRFZ24N IRFZ24 TO-220 New Infineon Technologies
 
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
Original N-channel MOSFET MMF70R900P 70R900P 70R900 750V 5A TO-220 New MagnaC...
 
Stm4433a
Stm4433aStm4433a
Stm4433a
 

Ähnlich wie Eda solutions tutorials_applications_notes_acm_examples

2013 06 tdr measurement and simulation of rg58 coaxial cable s-parameters_final
2013 06 tdr measurement and simulation  of rg58 coaxial cable s-parameters_final2013 06 tdr measurement and simulation  of rg58 coaxial cable s-parameters_final
2013 06 tdr measurement and simulation of rg58 coaxial cable s-parameters_final
Piero Belforte
 
Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5
tuanbk1
 
Sram leakage suppression by minimizing standby supply voltage
Sram leakage suppression by minimizing standby supply voltageSram leakage suppression by minimizing standby supply voltage
Sram leakage suppression by minimizing standby supply voltage
rsfdtd
 

Ähnlich wie Eda solutions tutorials_applications_notes_acm_examples (20)

final403
final403final403
final403
 
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V NewOriginal MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
Original MOSFET N-CHANNEL FQPF9N50C 9N50C 9N50 TO-220 9A 500V New
 
Original N-Channel Mosfet STP10NK70ZFP P10NK70ZFP 10NK70 700V 8.6A TO-220F Ne...
Original N-Channel Mosfet STP10NK70ZFP P10NK70ZFP 10NK70 700V 8.6A TO-220F Ne...Original N-Channel Mosfet STP10NK70ZFP P10NK70ZFP 10NK70 700V 8.6A TO-220F Ne...
Original N-Channel Mosfet STP10NK70ZFP P10NK70ZFP 10NK70 700V 8.6A TO-220F Ne...
 
Original N-Channel Mosfet STF9NK90Z F9NK90Z 8A 900V TO-220F New STMicroelectr...
Original N-Channel Mosfet STF9NK90Z F9NK90Z 8A 900V TO-220F New STMicroelectr...Original N-Channel Mosfet STF9NK90Z F9NK90Z 8A 900V TO-220F New STMicroelectr...
Original N-Channel Mosfet STF9NK90Z F9NK90Z 8A 900V TO-220F New STMicroelectr...
 
2013 06 tdr measurement and simulation of rg58 coaxial cable s-parameters_final
2013 06 tdr measurement and simulation  of rg58 coaxial cable s-parameters_final2013 06 tdr measurement and simulation  of rg58 coaxial cable s-parameters_final
2013 06 tdr measurement and simulation of rg58 coaxial cable s-parameters_final
 
STB10NK60Z.pdf
STB10NK60Z.pdfSTB10NK60Z.pdf
STB10NK60Z.pdf
 
Ece523 folded cascode design
Ece523 folded cascode designEce523 folded cascode design
Ece523 folded cascode design
 
Original N-CHANNEL MOSFET FDS4480 4480 40V SOP-8 New Fairchild
Original  N-CHANNEL MOSFET FDS4480 4480 40V SOP-8 New FairchildOriginal  N-CHANNEL MOSFET FDS4480 4480 40V SOP-8 New Fairchild
Original N-CHANNEL MOSFET FDS4480 4480 40V SOP-8 New Fairchild
 
Original N-Channel Mosfet STP9NK70Z 9NK70 700V 7.5A TO-220 New STMicroelectro...
Original N-Channel Mosfet STP9NK70Z 9NK70 700V 7.5A TO-220 New STMicroelectro...Original N-Channel Mosfet STP9NK70Z 9NK70 700V 7.5A TO-220 New STMicroelectro...
Original N-Channel Mosfet STP9NK70Z 9NK70 700V 7.5A TO-220 New STMicroelectro...
 
Design of two stage OPAMP
Design of two stage OPAMPDesign of two stage OPAMP
Design of two stage OPAMP
 
Original MOSFET P20NM60 20NM60 20N60C3 20N60 New
Original MOSFET P20NM60 20NM60 20N60C3 20N60 NewOriginal MOSFET P20NM60 20NM60 20N60C3 20N60 New
Original MOSFET P20NM60 20NM60 20N60C3 20N60 New
 
Lecture12.fm5
Lecture12.fm5Lecture12.fm5
Lecture12.fm5
 
Emmvee Crystal Off-grid Module:
Emmvee Crystal Off-grid Module:Emmvee Crystal Off-grid Module:
Emmvee Crystal Off-grid Module:
 
Sram leakage suppression by minimizing standby supply voltage
Sram leakage suppression by minimizing standby supply voltageSram leakage suppression by minimizing standby supply voltage
Sram leakage suppression by minimizing standby supply voltage
 
Conversor a d mcp3201
Conversor a d mcp3201Conversor a d mcp3201
Conversor a d mcp3201
 
CM4450 Diagrama-3395 manual de reparacion
CM4450 Diagrama-3395 manual de reparacionCM4450 Diagrama-3395 manual de reparacion
CM4450 Diagrama-3395 manual de reparacion
 
Original Mosfet13N60M2 13N60 STF13N60M2 11A 650V TO-220 New
Original Mosfet13N60M2 13N60 STF13N60M2 11A 650V TO-220 NewOriginal Mosfet13N60M2 13N60 STF13N60M2 11A 650V TO-220 New
Original Mosfet13N60M2 13N60 STF13N60M2 11A 650V TO-220 New
 
Original N-CHANNEL MOSFET GP8NC60KD 8NC60KD 8NC60 15A 600V TO-220 New STMicro...
Original N-CHANNEL MOSFET GP8NC60KD 8NC60KD 8NC60 15A 600V TO-220 New STMicro...Original N-CHANNEL MOSFET GP8NC60KD 8NC60KD 8NC60 15A 600V TO-220 New STMicro...
Original N-CHANNEL MOSFET GP8NC60KD 8NC60KD 8NC60 15A 600V TO-220 New STMicro...
 
Original N-CHANNEL MOSFET P3NK90ZF STD3NK90Z STP3NK90Z STP3NK90ZFP 900V - 4.1...
Original N-CHANNEL MOSFET P3NK90ZF STD3NK90Z STP3NK90Z STP3NK90ZFP 900V - 4.1...Original N-CHANNEL MOSFET P3NK90ZF STD3NK90Z STP3NK90Z STP3NK90ZFP 900V - 4.1...
Original N-CHANNEL MOSFET P3NK90ZF STD3NK90Z STP3NK90Z STP3NK90ZFP 900V - 4.1...
 
Bzx79
Bzx79Bzx79
Bzx79
 

Kürzlich hochgeladen

scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
Health
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Kürzlich hochgeladen (20)

scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

Eda solutions tutorials_applications_notes_acm_examples

  • 1. 1 EXEMPLES OF SIMULATION WITH THE ACM MODEL This document shows some examples of simulation using the ACM model. It is divided in two parts: the first one shows the transistor characteristics and the second shows some simple circuits which illustrate the capability of the model. All the simulations were done with SMASH. 1. Transistor characteristics 1.1 Output characteristics The figures below show the drain current and the logarithm of the output conductance versus the drain voltage for a NMOS transistor with W/L=10µ/0.8µ. • Netlist for simulation of example 1.1 File: idvd.nsx ********************** * ID x VD - ACM model ********************** M52 D G S 0 ACM W=10u L=0.8u File: idvd.pat *********************************** *ID x VD - ACM Model - DC Analysis *********************************** .PARAM VGB = 1 VDB D 0 DC 5 VGB G 0 DC 'VGB' VSB S 0 DC 0 * ACM model parameters *---------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.685 GAMMA=0.77 XJ=0.25E-6 + THETA=0.083 UCRIT=2.6E6 SIGMA=3e-15 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .DC LIN VDB 0 5 10m .PARAMSWEEP VGB 1 3 1 .TRACE DC ID(M52) MIN=-2.6458598E-004 .TRACE DC {LOGGD52 = LOG(IN(M52.GDS))}
  • 2. 2 ID(M52) DC simulation: idvd.nsx ; single ; 12/8/97 ; 16:08:26 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -200uA 0A 200uA 400uA 600uA 800uA 1mA 1.2mA 1.4mA 1.6mA 1.8mA 2mA 2.2mA 2.4mA 2.6mA 2.8mA Fig.1 - ID x VD characteristic of a NMOS transistor LOGGD52 DC simulation: idvd.nsx ; single ; 12/8/97 ; 16:11:32 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -5 -4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 Fig. 2 - The output conductance of a NMOS transistor versus VD 1.2 Drain current in weak inversion
  • 3. 3 This plot shows the logarithm of the drain current versus the gate voltage for a NMOS transistor, in the saturation region, with W/L=10µ/0.8µ. • Netlist for simulation of example 1.2 File: idvge.nsx ********************** * ID x VG - ACM model ********************** M52 G G S 0 ACM W=10u L=0.8u File: idvge.pat *********************************** *ID x VG - ACM Model *********************************** VGB G 0 DC 2 VSB S 0 DC 'VSB' * ACM model parameters *---------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.053 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .PARAM VSB = 0 .PARAMSWEEP VSB 0 2 1 .DC LIN VGB 0 5 10m .TRACE DC {LOGID52 = LOG(ID(M52))}
  • 4. 4 LOGID52 DC simulation: idvge.nsx ; single ; 12/8/97 ; 16:16:38 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 Fig.3 - ID x VG of a NMOS transistor 1.3 Gate and source transconductances Figures 4 and 5 show the ratios gmg/ID and gms/ID, in the saturation region, versus the gate voltage, respectively. The ratio gmg/ID in the linear region is shown in figure 6. The transistor is the same as in the previous examples. • Netlist for simulation of example 1.3 File: idvge.nsx ********************** * ID x VG - ACM model ********************** M52 D G S 0 ACM W=10u L=0.8u File: idvge.pat *********************************** *ID x VG - ACM Model - DC Analysis *********************************** *VDB D 0 DC 5 VDB D 0 DC 10m VGB G 0 DC 2 VSB S 0 DC 'VSB'
  • 5. 5 * ACM model parameters *---------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.053 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .PARAM VSB = 0 .PARAMSWEEP VSB 0 2 1 .TRACE DC {GMG_ON_ID = IN(M52.GM) / ID(M52)} .TRACE DC {GMS_ON_ID = IN(M52.GMS) / ID(M52)} .DC LIN VGB 0 5 10m GMG_ON_ID DC simulation: idvge.nsx ; all ; 11/7/97 ; 13:12:29 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Fig. 4 - gmg/ID in the saturation region
  • 6. 6 GMS_ON_ID DC simulation: idvge.nsx ; all ; 11/7/97 ; 13:14:43 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 0 4 8 12 16 20 24 28 32 36 40 Fig. 5 - gms/ID in the saturation region GMG_ON_ID DC simulation: idvge.nsx ; all ; 11/7/97 ; 13:26:01 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Fig. 6 - gmg/ID in the linear region
  • 7. 7 1.4 Intrinsic charges The charges at the gate, source, drain and bulk terminals versus VG are shown below, for a NMOS transistor with W/L=10µ/0.8µ. • Netlist for simulation of example 1.4 File: qvg.nsx ********************** * Charges x VG - ACM model ********************** M52 G G S 0 ACM W=10u L=0.8u File: qvg.pat ******************************************** *Charges x VG - ACM Model ******************************************** VDB D 0 DC 2 VGB G 0 DC 0 VSB S 0 DC 0 * ACM model parameters *---------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .DC LIN VGB 0 5 10m .TRACE DC {QG = IN(M52.QG)} {QS = IN(M52.QS)} {QB = IN(M52.QB)} {QD = IN(M52.QD)}
  • 8. 8 QG QS QB QD DC simulation: capvg.nsx ; all ; 9/7/97 ; 15:41:27 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -16f -12f -8f -4f 0 4f 8f 12f 16f 20f 24f 28f 32f 36f Fig. 7 - Intrinsic charges of a NMOS transistor 1.5 Intrinsic (trans)capacitances The nine independent intrinsic (trans)capacitances versus VG are shown in the plots below for a NMOS transistor with W/L=10µ/0.8µ. • Netlist for simulation of example 1.5 File: capvg.nsx ********************** * Capacitances x VG - ACM model ********************** M52 G G S 0 ACM W=10u L=0.8u File: capvg.pat ******************************************** *Capacitances x VG - ACM Model ******************************************** VDB D 0 DC 2 VGB G 0 DC 0 VSB S 0 DC 0 * ACM model parameters
  • 9. 9 *---------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .DC LIN VGB 0 5 10m .TRACE DC {CGS = IN(M52.CGS) / 115E - 15} {CGD = IN(M52.CGD) / 115E - 15} {CGB = IN(M52.CGB) / 115E - 15} {CBD = IN(M52.CBD) / 115E - 15} {CBS = IN(M52.CBS) / 115E - 15} .TRACE DC {CSB = IN(M52.CSB) / 115E - 15} {CSS = IN(M52.CSS) / 115E - 15} {CSD = IN(M52.CSD) / 115E - 15} {CSG = IN(M52.CSG) / 115E - 15} CGS CGD CGB CBD CBS DC simulation: capvg.nsx ; all ; 9/7/97 ; 15:47:00 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -4m 0 4m 8m 12m 16m 20m 24m 28m 32m 36m 40m 44m 48m 52m CGS CGB CBS CGD CBD VS=0V VD=2V
  • 10. 10 CSB CSS CSD CSG DC simulation: capvg.nsx ; single ; 9/7/97 ; 15:51:34 Scaling:400m 800m 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 -12m -8m -4m 0 4m 8m 12m 16m 20m 24m 28m 32m 36m 40m Fig.8 - The nine independent (trans)capacitances of a NMOS transistor 2. The MOS capacitor The figure below shows the simulation of the gate capacitance versus VG of a NMOS transistor with the source, drain and bulk terminals tied together. The dimensions are W=10µm and L=5µm. • Netlist for simulation of example 2 File: capmos.nsx ********************** *MOS capacitor ********************** M52 D G S 0 ACM W=10u L=5u File: capmos.pat *********************************** * MOS capacitor *********************************** VGB G 0 0 VDB D 0 0 CSS CSG CSB CSD VS=0V VD=2V
  • 11. 11 VSB S 0 0 * ACM model parameters *---------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .TRACE DC {CGG52/COX = IN(M52.CGG) / 115E - 15} .DC VGB -2 5 0.01 CGG52/COX DC simulation: capmos.nsx ; single ; 9/7/97 ; 17:36:19 Scaling:-1.5 -1 -500m 0 500m 1 1.5 2 2.5 3 3.5 4 4.5 280m 320m 360m 400m 440m 480m 520m 560m 600m 640m 680m 720m 760m 800m 840m 880m 920m Fig. 9 - The MOS capacitance versus VG 3. DC simulation of series-parallel connected MOSFET’s The DC simulation of a square composite transistor (series-parallel association) [2], showed in figure 10, was performed. Figure 11 shows the dc output characteristics of the composite transistor and of a unit transistor. The currents are almost coincident in the linear region. Figure 12 shows a comparison between the dc output characteristic of the same array of transistors and a single transistor described by the macromodel (NS=4 and NP=4).
  • 12. 12 G D S Fig.10 - Series-parallel connected transistors. The dimensions of each transistor is W=10µm and L=2µ • Netlist for simulation of example 3 File: spa.nsx ******************************** *Series-parallel association ******************************** M11 D G X1 0 ACM W=10u L=2.0u M21 X1 G X2 0 ACM W=10u L=2.0u M31 X2 G X3 0 ACM W=10u L=2.0u M41 X3 G S 0 ACM W=10u L=2.0u M12 D G X1 0 ACM W=10u L=2.0u M22 X1 G X2 0 ACM W=10u L=2.0u M32 X2 G X3 0 ACM W=10u L=2.0u M42 X3 G S 0 ACM W=10u L=2.0u M13 D G X1 0 ACM W=10u L=2.0u M23 X1 G X2 0 ACM W=10u L=2.0u M33 X2 G X3 0 ACM W=10u L=2.0u M43 X3 G S 0 ACM W=10u L=2.0u M14 D G X1 0 ACM W=10u L=2.0u M24 X1 G X2 0 ACM W=10u L=2.0u M34 X2 G X3 0 ACM W=10u L=2.0u M44 X3 G S 0 ACM W=10u L=2.0u *Macromodel M3 D G 0 0 ACM W=10u L=2.0u NS=4 NP=4 *Unit transistor M4 D G 0 0 ACM W=10u L=2.0u
  • 13. 13 File: spa.pat VDB D 0 5 VGB G 0 'VGB' VSB S 0 0 *ACM MODEL PARAMETERS *----------------------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 SIGMA=3e-15 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .TRACE DC {ID = ID(M11) + ID(M12) + ID(M13) + ID(M14)} ID(M3) MIN=0.0000000E+000 MAX=2.4000000E-006 .PARAM VGB=1 .DC LIN VDB 0 1 10m .PARAMSWEEP VGB 0.75 0.8 0.05 ID ID(M4) DC simulation: spa.nsx ; all ; 12/8/97 ; 16:26:39 Scaling:100m 200m 300m 400m 500m 600m 700m 800m 900m -200n 0 200n 400n 600n 800n 1u 1.2u 1.4u 1.6u 1.8u 2u 2.2u 2.4u Fig. 11 - The dc output characteristics of the composite transistor and of a unit transistor
  • 14. 14 ID ID(M3) DC simulation: spa.nsx ; all ; 12/8/97 ; 16:28:46 Scaling:100m 200m 300m 400m 500m 600m 700m 800m 900m -200n 0 200n 400n 600n 800n 1u 1.2u 1.4u 1.6u 1.8u 2u 2.2u 2.4u Fig. 12 - The dc output characteristics of the composite transistor and of a single transistor with the unit dimensions and NS=NP=4 4. Tests for charge conservation 4.1 A charge pumping circuit The first test to verify charge conservation was performed in the charge pumping circuit shown in figure 13, where a 5V pulse train is applied to the gate and the voltage at drain (source) was measured. As the model conserves charge the voltage at the drain (source) rises and return to zero for each input pulse. Figure 6 shows the simulation results Composite transistor Macromodel VG=0.75V VG=0.80V
  • 15. 15 G S D 1.6pF 1.6pF 0 5 W L m m = 100 15 µ µ COX≅3.3pF Fig. 13 - Charge pumping circuit for charge conservation test • Netlist for simulation of example 4.1 File: cpump.nsx ********************** * Charge pump ********************** M52 D G S B ACM W=100u L=15u CS S 0 1.6p CD D 0 1.6p File: cpump.pat *********************************** * Charge pump *********************************** VBB B 0 0 VIN G 0 PULSE 0 5 0n 1n 1n 10n 22n * ACM MODEL parameters *-------------------------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .TRACE TRAN V(D) MIN=-1.8058931E-001 MAX=1.9864824E+000 .EPS 1u 100m 1n .H 1n 1f 1n 250m 2 .TRAN 1n 100n 0 .METHOD TRAP
  • 16. 16 V(D) Transient analysis: cpump.nsx ; all ; 9/7/97 ; 16:02:53 Scaling:10n 20n 30n 40n 50n 60n 70n 80n 90n -100mV 0V 100mV 200mV 300mV 400mV 500mV 600mV 700mV 800mV 900mV 1V 1.1V 1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V Fig. 14 - Simulation result of the charge pumping circuit 4.2 A sample and hold circuit The second test has been performed in the sample-hold circuit shown in figure 15 G S D 2.5pF 0 5 5V W L m m = 100 15 µ µ COX≅3.3pF Fig. 15 - Sample and hold circuit for charge conservation test
  • 17. 17 • Netlist for simulation of example 4.2 File: shold.nsx ********************** * Sample-hold ********************** M52 D G S B ACM W=100u L=15u CD D 0 2.5p File: shold.pat *********************************** * Sample-hold *********************************** VBB B 0 0 VIN G 0 PULSE 0 5 0 1n 1n 20n 42n VS S 0 5 * ACM MODEL parameters *-------------------------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .TRACE TRAN V(D) MIN=-3.3183785E-001 MAX=3.6502164E+000 .EPS 1u 100m 1n .H 1n 1f 1n 250m 2 .TRAN 1n 360n 0 .METHOD TRAP
  • 18. 18 V(D) Transient analysis: shold.nsx ; all ; 9/7/97 ; 16:06:27 Scaling:20n 40n 60n 80n 100n 120n 140n 160n 180n 200n 220n 240n 260n 280n 300n 320n 340n -200mV 0V 200mV 400mV 600mV 800mV 1V 1.2V 1.4V 1.6V 1.8V 2V 2.2V 2.4V 2.6V 2.8V 3V 3.2V 3.4V Fig 16 Simulation result of the sample-hold circuit 5. Switched circuits 5.1 A switched capacitor filter The simulation of a switched capacitor circuit (figure 17)shows that the model can predict well the charge transfer from capacitor C1 to C2. 2.5pF W L m m = 100 15 µ µ COX≅3.3pF 20pF φa φb 5V C1 C2 3 6 Fig. 17 - Switched capacitor filter • Netlist for simulation of example 5.1
  • 19. 19 File: scap.nsx ********************** *Swithed capacitor ********************** M52A 1 A 3 0 ACM W=100u L=15u M52B 3 B 6 0 ACM W=100u L=15u C3 3 0 2.5p C6 6 0 20p File: scap.pat *********************************** * Switched capacitor *********************************** V1 1 0 5 VA A 0 PULSE 0 5 1u 1n 1n 10u 28u VB B 0 PULSE 0 5 15u 1u 1u 10u 28u * ACM MODEL parameters *-------------------------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .TRACE TRAN V(3) MIN=-3.4734861E-001 MAX=3.8208347E+000 .TRACE TRAN V(6) MIN=-3.4078692E-001 MAX=3.7486561E+000 .EPS 1u 100m 1n .H 750n 1f 7.5u 250m 2 .TRAN 10p 750u 0 .METHOD BE
  • 20. 20 V(3) V(6) Transient analysis: scap.nsx ; all ; 9/7/97 ; 16:10:33 Scaling:50u 100u 150u 200u 250u 300u 350u 400u 450u 500u 550u 600u 650u 700u 0V 500mV 1V 1.5V 2V 2.5V 3V 3.5V 0V 500mV 1V 1.5V 2V 2.5V 3V 3.5V Fig 18 - Simulation results of the switched capacitor circuit 5.2 A discrete time parametric amplifier The model also predicts well the behavior of the discrete time parametric amplifier of [1] (figure 19). + _ + _ + _ v in/2 v in/2 V B = 2 V + _ v out W L m m = 1 0 0 1 5 µ µ W L m m = 1 0 0 1 5 µ µ V S B V S B φ φ φ V S B t1 t2 Fig. 19 - The parametric amplifier
  • 21. 21 • Netlist for simulation of example 5.2 File: pamp.nsx ********************************************** * Parametric amplifier - Tsividis and Suyama * ISCAS - 97 - Hong-Kong ********************************************** M1 S G1 S 0 ACM W=100u L=15u M2 S G2 S 0 ACM W=100u L=15u * SWITCHES MS1 IN1 CK G1 0 ACM W=1u L=1u MS2 IN2 CK G2 0 ACM W=1u L=1u File: pamp.pat *********************************** * Parametric amplifier - Tsividis and Suyama * ISCAS - 97 - Hong-Kong *********************************** VCK CK 0 PULSE 0 5 0u 10n 10n 500n 2.02u VSB S 0 PULSE 0 5 1u 10n 10n 500n 2.02u VIN1 IN1 IN0 SIN(0 50m 20k 0 0 0 ) VIN2 IN0 IN2 SIN(0 50m 20k 0 0 0 ) VB IN0 0 2 * ACM MODEL parameters *-------------------------------------- .MODEL ACM NMOS LEVEL=10 + TOX=150.12E-10 UO=552.2 PHI=0.64 + VTO=0.69 GAMMA=0.77 + THETA=0.083 UCRIT=2.6E6 XJ=0.25E-6 + LAMBDA=0.25 LETA=0.44 WETA=0.26 + PB=0.675 DL=-0.42E-6 DW=-0.1E-6 .TRACE TRAN {VIN = V(IN1) - V(IN2)} {VOUT = V(G1) - V(G2)} .EPS 1u 100m 1n .H 1n 1f 1n 250m 2 .TRAN 100n 100u 0 .METHOD BE
  • 22. 22 VIN VOUT Transient analysis: pamp.nsx ; single ; 9/7/97 ; 17:19:05 Scaling:10u 20u 30u 40u 50u 60u 70u 80u 90u -600m -500m -400m -300m -200m -100m 0 100m 200m 300m 400m 500m Fig 20 - Simulation results of the parametric amplifier Reference [1] Y. Tsividis and K. Suyama, Strange ways to use the MOSFET, Proceedings of IEEE- ISCAS, Hong-Kong, June 1997. [2] C. Galup-Montoro, M.C. Schneider and I.J.B. Loss, Series-parallel association of FET’s for high gain and high frequency applications, IEEE Journal of Solid-state Circuits, vol. 29, no. 9, pp. 1094-1101, September 1994.