SlideShare ist ein Scribd-Unternehmen logo
1 von 15
Downloaden Sie, um offline zu lesen
Application of Bayesian and Sparse Network
Models for Assessing Linkage Disequilibrium in
Animals and Plants
C-36-6

Gota Morota
Department of Animal Sciences
University of Wisconsin-Madison

Aug 30, 2012

1 / 16
Systems Genetics

Figure 1: Multi-dimensional gene network

Purpose of this study
• take the view that loci associate and interact together as a
network
• evaluate LD reflecting the biological nature that loci interact as
a complex system
2 / 16
IAMB algorithm
Incremental Association Markov Blanket (Tsamardinos et al. 2003)
1. Compute Markov Blankets (MB)
2. Compute Graph Structure
3. Orient Edges

Figure 2: The Markov Blanket of a node xi

3 / 16
Identifying the MB of a node
• Growing phase
• heuristic function:
f (X ; T |CMB ) = MI(X ; T |CMB )

=
cmb ∈CMB





P (CMB ) 




P (X , T |CMB )



P (X , T |CMB ) log

P (X |CMB )P (T |CMB ) 


x ∈X t ∈T

• conditional independence tests (Pearson’s χ2 test):

H0 : P (X , T |CMB ) = P (X |CMB ) · P (T |CMB ) (do not add X )
HA : P (X , T |CMB )

P (X |CMB ) · P (T |CMB ) (add X to the CMB)

• Shrinking phase
• conditional independence tests (Pearson’s χ2 test):
H0 : P (X , T |CMB − X )

P (X |CMB − X ) · P (T |CMB − X ) (keep X )

HA : P (X , T |CMB − X ) = P (X |CMB − X ) · P (T |CMB − X ) (remove X
4 / 16
Network Structure
Algorithm
Suppose Y ∈ MB (T ). Then T and Y are connected if they are
conditionally dependent given all subsets of the smaller of
MB (T ) − (Y ) and MB (Y ) − (T ).
Example:
• MB (T ) = (A , B , Y ), MB (Y ) = (C , D , E , F , T )
• since MB (T ) < MB (Y ), independence tests are conditional
on all subsets of MB (T ) − (Y ) = (A , B ).
• if any of the
CI(T , Y |{}), CI(T , Y |{A }), CI(T , Y |{B }), andCI(T , Y |{A , B })
imply conditional independence,
↓
• T and Y are considered separate (spouses)
• repeat for T ∈ S and Y ∈ MB (T ),
5 / 16
Materials
1. Data
• 4,898 Holstein bulls (USDA-ARS AIPL)
• 37,217 SNP markers (MAF > 0.025)
• milk protein yield

2. Missing genotypes imputation
• fastPHASE (Scheet and Stephens, 2006)

3. Select 15 SNPs
• Bayesian LASSO

4. uncover associations among a set of marker loci found to
have the strongest effects on milk protein yield

6 / 16
Results – Top 15 SNPs
IAMB algorithm

Pairwise LD among SNPs (r2)

J

d

A

c
b
a
Z

L

Y
X

M

N

W
V
U

F

T
S

B

K

G

R
Q
P

H

O
N

O

E

M
L
K
J

I

I
H
G
F
E

C

D
C
B

R2 Color Key

A
0

Figure 3: r 2

0.2

0.4

0.6

0.8

1

D
Figure 4: IAMB
7 / 16
Conclusion and Possible Improvements

• LD relationships are of a multivariate nature
• r 2 gives an incomplete description of LD

⇓
• undirected networks
• sparsity

8 / 16
Pairwise Binary Markov Networks
We estimate the Markov network parameters Θp ×p by maximizing
a log-likelihood.






f (x1 , ..., xp ) =
exp 



Ψ(Θ)
1

p

θj ,j xj +
j =1

1≤j <k ≤p






θj ,k xj xk 




(1)

where
xj ∈ {0, 1}

Ψ(Θ) =
x ∈0 , 1

(2)






exp 




p

θj ,j xj +
j =1

1 ≤j <k ≤p






θj ,k xj xk 




(3)

• the first term is a main effect of binary marker xj (node
potential)
• the second term corresponds to an“interaction effect” between
binary markers xj and xk (link potential)
• Ψ(Θ) is the normalization constant (partition function)
9 / 16
Ravikumar et al. (2010)
The pseudo-likelihood based on the local conditional likelihood
associated with each binary marker can be represented as
n

p
x

φi ,ij,j (1 − φi ,j )1−xi,j

l (Θ) =

(4)

i =1 j =1

where φi ,j is the conditional probability of xi ,j = 1 given all other
variables. Using a logistic link function,

φi ,j = P(xi ,j = 1|xi ,k , k j ; θj ,k , 1 ≤ k ≤ p )
exp(θj ,j + k j θj ,k xi ,k )
=
1 + exp(θj ,j + k j θj ,k xi ,k )

(5)
(6)

10 / 16
Ravikumar et al. (2010) (cont.)
• L1 regularized logistic regressions problem
• regressing each marker on the rest of the markers
• the network structure is recovered from the sparsity pattern of
the regression coefficients


 0


 ˆ−2
 β

 1




ˆ  .
 .
Θ= .


 −(p −1)

ˆ
β

 1

 −p
 ˆ
β1

ˆ
β −1 ,
2
0

··· ,
··· ,

··· ,
0
ˆ−(p −1)
· · · , β p −2
ˆ p
· · · , β−−2
p
˜
Θ=

ˆ ˆ
Θ • ΘT

ˆ 1
β−−1
p
ˆ 2
β−−1
p

ˆp
β −1
ˆp
β −2
.
.
.
















··· ,




−(p −1) 

ˆp

0
β




−p
ˆ
β p −1
0

(7)

(8)
11 / 16
Materials
1. Data
• 599 inbred wheat lines (CIMMYT)
• 1447 Diversity Array Technology (DArT) binary markers
• mean grain yields

2. Select 30 SNPs
• Bayesian LASSO

3. Benchmark methods
• IAMB algorithm
• r2

12 / 16
lambda = CV

9

8

7

Bayesian Network

9

6

10

8

7

6

10

5

11

4
3

12

5

11

13

4
3

12
13

2

2

14

1

14

15

0

15

0

16

29

16

29

28

17
18

27
19

26
20

25
21

22

23

24

Figure 5: L1 regularization

1

28

17
18

27
19

26
20

25
21

22

23

24

Figure 6: IAMB
13 / 16
Summary
Interactions and associations among the cells and genes form a
complex biological system

⇓
• r 2 → association(m1, m2)|∅ (empty set)
• L1 regularized MN → association(m1, m2) | else

A final remark
• selecting tag SNPs unconditionally, as well as conditionally,
on other markers when the dimension of the data is high
• data generated from next generation sequence technologies

14 / 16
Acknowledgments

University of Wisconsin-Madison
• Daniel Gianola
• Guilherme Rosa

University College London
• Marco Scutari

• Kent Weigel
• Bruno Valente

15 / 16

Weitere ähnliche Inhalte

Was ist angesagt?

PR-272: Accelerating Large-Scale Inference with Anisotropic Vector Quantization
PR-272: Accelerating Large-Scale Inference with Anisotropic Vector QuantizationPR-272: Accelerating Large-Scale Inference with Anisotropic Vector Quantization
PR-272: Accelerating Large-Scale Inference with Anisotropic Vector QuantizationSunghoon Joo
 
Design and analysis of 2D repetitive pattern
Design and analysis of 2D repetitive patternDesign and analysis of 2D repetitive pattern
Design and analysis of 2D repetitive patternTaisuke Ohshima
 
March 17, 2015
March 17, 2015March 17, 2015
March 17, 2015khyps13
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBOYoonho Lee
 
10 mmd11 applied mathematics - june, july 2013
10 mmd11  applied mathematics - june, july 201310 mmd11  applied mathematics - june, july 2013
10 mmd11 applied mathematics - june, july 2013Dover Solutions India
 
Co clustering by-block_value_decomposition
Co clustering by-block_value_decompositionCo clustering by-block_value_decomposition
Co clustering by-block_value_decompositionAllenWu
 
Solving systems by substitution
Solving systems by substitutionSolving systems by substitution
Solving systems by substitutionjoannahstevens
 
Higher order polynomials_ppt_2
Higher order polynomials_ppt_2Higher order polynomials_ppt_2
Higher order polynomials_ppt_2katlovesharini
 
Fast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group TestingFast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group TestingRakuten Group, Inc.
 
Faster Practical Block Compression for Rank/Select Dictionaries
Faster Practical Block Compression for Rank/Select DictionariesFaster Practical Block Compression for Rank/Select Dictionaries
Faster Practical Block Compression for Rank/Select DictionariesRakuten Group, Inc.
 
March 19, 2014
March 19, 2014March 19, 2014
March 19, 2014khyps13
 
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solutionSIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solutionKoji Asami
 

Was ist angesagt? (15)

PR-272: Accelerating Large-Scale Inference with Anisotropic Vector Quantization
PR-272: Accelerating Large-Scale Inference with Anisotropic Vector QuantizationPR-272: Accelerating Large-Scale Inference with Anisotropic Vector Quantization
PR-272: Accelerating Large-Scale Inference with Anisotropic Vector Quantization
 
Design and analysis of 2D repetitive pattern
Design and analysis of 2D repetitive patternDesign and analysis of 2D repetitive pattern
Design and analysis of 2D repetitive pattern
 
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFSMATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
MATHS SYMBOLS - #8 - LOGARITHMS, CHANGE of BASE - PROOFS
 
March 17, 2015
March 17, 2015March 17, 2015
March 17, 2015
 
Logarithms intro
Logarithms introLogarithms intro
Logarithms intro
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBO
 
10 mmd11 applied mathematics - june, july 2013
10 mmd11  applied mathematics - june, july 201310 mmd11  applied mathematics - june, july 2013
10 mmd11 applied mathematics - june, july 2013
 
Co clustering by-block_value_decomposition
Co clustering by-block_value_decompositionCo clustering by-block_value_decomposition
Co clustering by-block_value_decomposition
 
Solving systems by substitution
Solving systems by substitutionSolving systems by substitution
Solving systems by substitution
 
Higher order polynomials_ppt_2
Higher order polynomials_ppt_2Higher order polynomials_ppt_2
Higher order polynomials_ppt_2
 
Fast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group TestingFast Identification of Heavy Hitters by Cached and Packed Group Testing
Fast Identification of Heavy Hitters by Cached and Packed Group Testing
 
Faster Practical Block Compression for Rank/Select Dictionaries
Faster Practical Block Compression for Rank/Select DictionariesFaster Practical Block Compression for Rank/Select Dictionaries
Faster Practical Block Compression for Rank/Select Dictionaries
 
March 19, 2014
March 19, 2014March 19, 2014
March 19, 2014
 
The log rules
The log rulesThe log rules
The log rules
 
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solutionSIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
SIGNATE 国立国会図書館の画像データレイアウト認識 1st place solution
 

Andere mochten auch

Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...
Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...
Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...Gota Morota
 
Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...
Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...
Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...Gota Morota
 
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...Gota Morota
 
Whole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methodsWhole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methodsGota Morota
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheLeslie Samuel
 

Andere mochten auch (6)

Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...
Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...
Chapter 14 Computing: McCulloch, CE, Searle SR and Neuhaus, JM 2008. Generali...
 
Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...
Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...
Application of Bayesian and Sparse Network Models for Assessing Linkage Diseq...
 
Catalogo.pdf meridional
Catalogo.pdf meridionalCatalogo.pdf meridional
Catalogo.pdf meridional
 
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
Chapter 12 Application of Gibbs Sampling in Variance Component Estimation and...
 
Whole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methodsWhole-genome prediction of complex traits using kernel methods
Whole-genome prediction of complex traits using kernel methods
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
 

Ähnlich wie Application of Bayesian and Sparse Network Models for Assessing Linkage Disequilibrium in Animals and Plants

Integration of biological annotations using hierarchical modeling
Integration of biological annotations using hierarchical modelingIntegration of biological annotations using hierarchical modeling
Integration of biological annotations using hierarchical modelingUSC
 
Epidemic processes on switching networks
Epidemic processes on switching networksEpidemic processes on switching networks
Epidemic processes on switching networksNaoki Masuda
 
Reproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfishReproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfishtuxette
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)STAIR Lab, Chiba Institute of Technology
 
VahidAkbariTalk.pdf
VahidAkbariTalk.pdfVahidAkbariTalk.pdf
VahidAkbariTalk.pdfgrssieee
 
VahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdfVahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdfgrssieee
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
Conditional Random Fields
Conditional Random FieldsConditional Random Fields
Conditional Random Fieldslswing
 
A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...JuanPabloCarbajal3
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Fabian Pedregosa
 
Inria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCCInria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCCStéphanie Roger
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapterChristian Robert
 
Tensor Spectral Clustering
Tensor Spectral ClusteringTensor Spectral Clustering
Tensor Spectral ClusteringAustin Benson
 
Mimo system-order-reduction-using-real-coded-genetic-algorithm
Mimo system-order-reduction-using-real-coded-genetic-algorithmMimo system-order-reduction-using-real-coded-genetic-algorithm
Mimo system-order-reduction-using-real-coded-genetic-algorithmCemal Ardil
 
Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Toshiyuki Shimono
 

Ähnlich wie Application of Bayesian and Sparse Network Models for Assessing Linkage Disequilibrium in Animals and Plants (20)

MSSISS riBART 20160321
MSSISS riBART 20160321MSSISS riBART 20160321
MSSISS riBART 20160321
 
Integration of biological annotations using hierarchical modeling
Integration of biological annotations using hierarchical modelingIntegration of biological annotations using hierarchical modeling
Integration of biological annotations using hierarchical modeling
 
Epidemic processes on switching networks
Epidemic processes on switching networksEpidemic processes on switching networks
Epidemic processes on switching networks
 
Section6 stochastic
Section6 stochasticSection6 stochastic
Section6 stochastic
 
Reproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfishReproducibility and differential analysis with selfish
Reproducibility and differential analysis with selfish
 
Dycops2019
Dycops2019 Dycops2019
Dycops2019
 
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
Higher-order Factorization Machines(第5回ステアラボ人工知能セミナー)
 
VahidAkbariTalk.pdf
VahidAkbariTalk.pdfVahidAkbariTalk.pdf
VahidAkbariTalk.pdf
 
VahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdfVahidAkbariTalk_v3.pdf
VahidAkbariTalk_v3.pdf
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Conditional Random Fields
Conditional Random FieldsConditional Random Fields
Conditional Random Fields
 
A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
Inria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCCInria Tech Talk - La classification de données complexes avec MASSICCC
Inria Tech Talk - La classification de données complexes avec MASSICCC
 
Lgm saarbrucken
Lgm saarbruckenLgm saarbrucken
Lgm saarbrucken
 
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...Families of Triangular Norm Based Kernel Function and Its Application to Kern...
Families of Triangular Norm Based Kernel Function and Its Application to Kern...
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapter
 
Tensor Spectral Clustering
Tensor Spectral ClusteringTensor Spectral Clustering
Tensor Spectral Clustering
 
Mimo system-order-reduction-using-real-coded-genetic-algorithm
Mimo system-order-reduction-using-real-coded-genetic-algorithmMimo system-order-reduction-using-real-coded-genetic-algorithm
Mimo system-order-reduction-using-real-coded-genetic-algorithm
 
Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...
 

Kürzlich hochgeladen

TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024The Digital Insurer
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Principled Technologies
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 

Kürzlich hochgeladen (20)

TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 

Application of Bayesian and Sparse Network Models for Assessing Linkage Disequilibrium in Animals and Plants

  • 1. Application of Bayesian and Sparse Network Models for Assessing Linkage Disequilibrium in Animals and Plants C-36-6 Gota Morota Department of Animal Sciences University of Wisconsin-Madison Aug 30, 2012 1 / 16
  • 2. Systems Genetics Figure 1: Multi-dimensional gene network Purpose of this study • take the view that loci associate and interact together as a network • evaluate LD reflecting the biological nature that loci interact as a complex system 2 / 16
  • 3. IAMB algorithm Incremental Association Markov Blanket (Tsamardinos et al. 2003) 1. Compute Markov Blankets (MB) 2. Compute Graph Structure 3. Orient Edges Figure 2: The Markov Blanket of a node xi 3 / 16
  • 4. Identifying the MB of a node • Growing phase • heuristic function: f (X ; T |CMB ) = MI(X ; T |CMB ) = cmb ∈CMB     P (CMB )     P (X , T |CMB )    P (X , T |CMB ) log  P (X |CMB )P (T |CMB )   x ∈X t ∈T • conditional independence tests (Pearson’s χ2 test): H0 : P (X , T |CMB ) = P (X |CMB ) · P (T |CMB ) (do not add X ) HA : P (X , T |CMB ) P (X |CMB ) · P (T |CMB ) (add X to the CMB) • Shrinking phase • conditional independence tests (Pearson’s χ2 test): H0 : P (X , T |CMB − X ) P (X |CMB − X ) · P (T |CMB − X ) (keep X ) HA : P (X , T |CMB − X ) = P (X |CMB − X ) · P (T |CMB − X ) (remove X 4 / 16
  • 5. Network Structure Algorithm Suppose Y ∈ MB (T ). Then T and Y are connected if they are conditionally dependent given all subsets of the smaller of MB (T ) − (Y ) and MB (Y ) − (T ). Example: • MB (T ) = (A , B , Y ), MB (Y ) = (C , D , E , F , T ) • since MB (T ) < MB (Y ), independence tests are conditional on all subsets of MB (T ) − (Y ) = (A , B ). • if any of the CI(T , Y |{}), CI(T , Y |{A }), CI(T , Y |{B }), andCI(T , Y |{A , B }) imply conditional independence, ↓ • T and Y are considered separate (spouses) • repeat for T ∈ S and Y ∈ MB (T ), 5 / 16
  • 6. Materials 1. Data • 4,898 Holstein bulls (USDA-ARS AIPL) • 37,217 SNP markers (MAF > 0.025) • milk protein yield 2. Missing genotypes imputation • fastPHASE (Scheet and Stephens, 2006) 3. Select 15 SNPs • Bayesian LASSO 4. uncover associations among a set of marker loci found to have the strongest effects on milk protein yield 6 / 16
  • 7. Results – Top 15 SNPs IAMB algorithm Pairwise LD among SNPs (r2) J d A c b a Z L Y X M N W V U F T S B K G R Q P H O N O E M L K J I I H G F E C D C B R2 Color Key A 0 Figure 3: r 2 0.2 0.4 0.6 0.8 1 D Figure 4: IAMB 7 / 16
  • 8. Conclusion and Possible Improvements • LD relationships are of a multivariate nature • r 2 gives an incomplete description of LD ⇓ • undirected networks • sparsity 8 / 16
  • 9. Pairwise Binary Markov Networks We estimate the Markov network parameters Θp ×p by maximizing a log-likelihood.      f (x1 , ..., xp ) = exp     Ψ(Θ) 1 p θj ,j xj + j =1 1≤j <k ≤p      θj ,k xj xk     (1) where xj ∈ {0, 1} Ψ(Θ) = x ∈0 , 1 (2)      exp     p θj ,j xj + j =1 1 ≤j <k ≤p      θj ,k xj xk     (3) • the first term is a main effect of binary marker xj (node potential) • the second term corresponds to an“interaction effect” between binary markers xj and xk (link potential) • Ψ(Θ) is the normalization constant (partition function) 9 / 16
  • 10. Ravikumar et al. (2010) The pseudo-likelihood based on the local conditional likelihood associated with each binary marker can be represented as n p x φi ,ij,j (1 − φi ,j )1−xi,j l (Θ) = (4) i =1 j =1 where φi ,j is the conditional probability of xi ,j = 1 given all other variables. Using a logistic link function, φi ,j = P(xi ,j = 1|xi ,k , k j ; θj ,k , 1 ≤ k ≤ p ) exp(θj ,j + k j θj ,k xi ,k ) = 1 + exp(θj ,j + k j θj ,k xi ,k ) (5) (6) 10 / 16
  • 11. Ravikumar et al. (2010) (cont.) • L1 regularized logistic regressions problem • regressing each marker on the rest of the markers • the network structure is recovered from the sparsity pattern of the regression coefficients   0    ˆ−2  β   1     ˆ  .  . Θ= .    −(p −1)  ˆ β   1   −p  ˆ β1 ˆ β −1 , 2 0 ··· , ··· , ··· , 0 ˆ−(p −1) · · · , β p −2 ˆ p · · · , β−−2 p ˜ Θ= ˆ ˆ Θ • ΘT ˆ 1 β−−1 p ˆ 2 β−−1 p ˆp β −1 ˆp β −2 . . .                ··· ,     −(p −1)   ˆp  0 β     −p ˆ β p −1 0 (7) (8) 11 / 16
  • 12. Materials 1. Data • 599 inbred wheat lines (CIMMYT) • 1447 Diversity Array Technology (DArT) binary markers • mean grain yields 2. Select 30 SNPs • Bayesian LASSO 3. Benchmark methods • IAMB algorithm • r2 12 / 16
  • 13. lambda = CV 9 8 7 Bayesian Network 9 6 10 8 7 6 10 5 11 4 3 12 5 11 13 4 3 12 13 2 2 14 1 14 15 0 15 0 16 29 16 29 28 17 18 27 19 26 20 25 21 22 23 24 Figure 5: L1 regularization 1 28 17 18 27 19 26 20 25 21 22 23 24 Figure 6: IAMB 13 / 16
  • 14. Summary Interactions and associations among the cells and genes form a complex biological system ⇓ • r 2 → association(m1, m2)|∅ (empty set) • L1 regularized MN → association(m1, m2) | else A final remark • selecting tag SNPs unconditionally, as well as conditionally, on other markers when the dimension of the data is high • data generated from next generation sequence technologies 14 / 16
  • 15. Acknowledgments University of Wisconsin-Madison • Daniel Gianola • Guilherme Rosa University College London • Marco Scutari • Kent Weigel • Bruno Valente 15 / 16