SlideShare ist ein Scribd-Unternehmen logo
1 von 29
Downloaden Sie, um offline zu lesen
Arthur CHARPENTIER, Distortion in actuarial sciences
Distorting ... in actuarial sciences
Arthur Charpentier
Université Rennes 1
arthur.charpentier@univ-rennes1.fr
http ://freakonometrics.blog.free.fr/
Montréal Seminar of Actuarial and Financial Mathematics, McGill, November
2010.
1
Arthur CHARPENTIER, Distortion in actuarial sciences
1 Decision theory and distorted risk measures
Consider a preference ordering among risks, such that
1. is distribution based, i.e. if X Y , ∀ ˜X
L
= X ˜Y
L
= Y , then ˜X ˜Y ; hence,
we can write FX FY
2. is total, reflexive and transitive,
3. is continuous, i.e. ∀FX, FY and FZ such that FX FY FZ, ∃λ, µ ∈ (0, 1)
such that
λFX + (1 − λ)FZ FY µFX + (1 − µ)FZ.
4. satisfies an independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1),
FX FY =⇒ λFX + (1 − λ)FZ λFY + (1 − λ)FZ.
5. satisfies an ordering axiom, ∀X and Y constant (i.e.
P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y.
2
Arthur CHARPENTIER, Distortion in actuarial sciences
Théorème1
Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly
increasing and unique (up to an increasing affine transformation) such that ∀FX and FY :
FX FY ⇔
R
u(x)dFX(x) ≤
R
u(x)dFY (x)
⇔ E[u(X)] ≤ E[u(Y )].
But if we consider an alternative to the independence axiom
4’. satisfies an dual independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1),
FX FY =⇒ [λF−1
X + (1 − λ)F−1
Z ]−1
[λF−1
Y + (1 − λ)F−1
Z ]−1
.
we (Yaari (1987)) obtain a dual representation theorem,
Théorème2
Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly
increasing such that ∀FX and FY :
FX FY ⇔
R
g(FX(x))dx ≤
R
g(FY (x))dx
3
Arthur CHARPENTIER, Distortion in actuarial sciences
Standard axioms required on risque measures R : X → R,
– law invariance, X
L
= Y =⇒ R(X) = R(Y )
– increasing X ≥ Y =⇒ R(X) ≥ R(Y ),
– translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k,
– homogeneity ∀λ ∈ R+, R(λX) = λ · R(X),
– subadditivity R(X + Y ) ≤ R(X) + R(Y ),
– convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ).
– additivity for comonotonic risks ∀X and Y comonotonic,
R(X + Y ) = R(X) + R(Y ),
– maximal correlation (w.r.t. measure µ) ∀X,
R(X) = sup {E(X · U) where U ∼ µ}
– strong coherence ∀X and Y , sup{R( ˜X + ˜Y )} = R(X) + R(Y ), where ˜X
L
= X
and ˜Y
L
= Y .
4
Arthur CHARPENTIER, Distortion in actuarial sciences
Proposition1
If R is a monetary convex fonction, then the three statements are equivalent,
– R is strongly coherent,
– R is additive for comonotonic risks,
– R is a maximal correlation measure.
Proposition2
A coherente risk measure R is additive for comonotonic risks if and only if there exists a
decreasing positive function φ on [0, 1] such that
R(X) =
1
0
φ(t)F−1
(1 − t)dt
where F(x) = F(X ≤ x).
see Kusuoka (2001), i.e. R is a spectral risk measure.
5
Arthur CHARPENTIER, Distortion in actuarial sciences
Definition1
A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1.
For positive risks,
Definition1
Given distortion function g, Wang’s risk measure, denoted Rg, is
Rg (X) =
∞
0
g (1 − FX(x)) dx =
∞
0
g FX(x) dx (1)
Proposition1
Wang’s risk measure can be defined as
Rg (X) =
1
0
F−1
X (1 − α) dg(α) =
1
0
VaR[X; 1 − α] dg(α). (2)
6
Arthur CHARPENTIER, Distortion in actuarial sciences
More generally (risks taking value in R)
Definition2
We call distorted risk measure
R(X) =
1
0
F−1
(1 − u)dg(u)
where g is some distortion function.
Proposition3
R(X) can be written
R(X) =
+∞
0
g(1 − F(x))dx −
0
−∞
[1 − g(1 − F(x))]dx.
7
Arthur CHARPENTIER, Distortion in actuarial sciences
risk measures R distortion function g
VaR g (x) = I[x ≥ p]
Tail-VaR g (x) = min {x/p, 1}
PH g (x) = xp
Dual Power g (x) = 1 − (1 − x)
1/p
Gini g (x) = (1 + p) x − px2
exponential transform g (x) = (1 − px
) / (1 − p)
Table 1 – Standard risk measures, p ∈ (0, 1).
8
Arthur CHARPENTIER, Distortion in actuarial sciences
Here, it looks like risk measures can be seen as R(X) = Eg◦P(X).
Remark1
Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e.
Q([a, +∞)) = g(P([a, +∞))).
Since g is increasing on [0, 1] Q is a capacity.
Example1
Consider function g(x) = xk
. The PH - proportional hazard - risk measure is
R(X; k) =
1
0
F−1
(1 − u)kuk−1
du =
∞
0
[F(x)]k
dx
If k is an integer [F(x)]k
is the survival distribution of the minimum over k values.
Definition2
The Esscher risk measure with parameter h > 0 is Es[X; h], defined as
Es[X; h] =
E[X exp(hX)]
MX(h)
=
d
dh
ln MX(h).
9
Arthur CHARPENTIER, Distortion in actuarial sciences
2 Archimedean copulas
Definition3
Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that
φ−1
is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k
[φ−1
](k)
(t) ≥ 0 for all t. Define
the inverse (or quasi-inverse if φ(0) < ∞) as
φ−1
(t) =



φ−1
(t) for 0 ≤ t ≤ φ(0)
0 for φ(0) < t < ∞.
The function
C(u1, · · · , un) = φ−1
(φ(u1) + · · · + φ(ud)), u1, · · · , un ∈ [0, 1],
is a copula, called an Archimedean copula, with generator φ.
Let Φd denote the set of generators in dimension d.
Example2
The independent copula C⊥
is an Archimedean copula, with generator φ(t) = − log t.
10
Arthur CHARPENTIER, Distortion in actuarial sciences
The upper Fréchet-Hoeffding copula, defined as the minimum componentwise,
M(u) = min{u1, · · · , ud}, is not Archimedean (but can be obtained as the limit of
some Archimedean copulas).
Set λ(t) = exp[−φ(t)] (the multiplicative generator), then
C(u1, ..., ud) = λ−1
(λ(u1) · · · λ(ud)), ∀u1, ..., ud ∈ [0, 1],
which can be written
C(u1, ..., ud) = λ−1
(Cp
erp[λ(u1), . . . , λ(ud)]), ∀u1, ..., ud ∈ [0, 1],
Note that it is possible to get an interpretation of that distortion of the
independence.
A large subclass of Archimedean copula in dimension d is the class of
Archimedean copulas obtained using the frailty approach.
Consider random variables X1, · · · , Xd conditionally independent, given a latent
factor Θ, a positive random variable, such that P (Xi ≤ xi|Θ) = Gi (x)
Θ
where
Gi denotes a baseline distribution function.
11
Arthur CHARPENTIER, Distortion in actuarial sciences
The joint distribution function of X is given by
FX (x1, · · · , xd) = E (P (X1 ≤ x1, · · · , Xd ≤ Xd|Θ))
= E
d
i=1
P (Xi ≤ xi|Θ) = E
d
i=1
Gi (xi)
Θ
= E
d
i=1
exp [−Θ (− log Gi (xi))] = ψ −
d
i=1
log Gi (xi) ,
where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively
by
Fi(xi) = P(Xi ≤ xi) = ψ (− log Gi (xi)) ,
the copula of X is
C (u) = FX F−1
1 (u1) , · · · , F−1
d (ud) = ψ ψ−1
(u) + · · · + ψ−1
(ud)
This copula is an Archimedean copula with generator φ = ψ−1
(see e.g. Clayton
(1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details).
12
Arthur CHARPENTIER, Distortion in actuarial sciences
3 Hierarchical Archimedean copulas
It is possible to look at C(u1, · · · , ud) defined as
φ−1
1 [φ1[φ−1
2 (φ2[· · · φ−1
d−1[φd−1(u1) + φd−1(u2)] + · · · + φ2(ud−1))] + φ1(ud)]
where φi are generators. C is a copula if φi ◦ φ−1
i−1 is the inverse of a Laplace
transform.
This copula is said to be a fully nested Archimedean (FNA) copula.
E.g. in dimension d = 5, we get
φ−1
1 [φ1(φ−1
2 [φ2(φ−1
3 [φ3(φ−1
4 [φ4(u1) + φ4(u2)])
+ φ3(u3)]) + φ2(u4)]) + φ1(u5)].
It is also possible to consider partially nested Archimedean (PNA) copulas, e.g.
13
Arthur CHARPENTIER, Distortion in actuarial sciences
by coupling (U1, U2, U3), and (U4, U5),
φ−1
4 [φ4(φ−1
1 [φ1(φ−1
2 [φ2(u1) + φ2(u2)]) + φ1(u3)])
+ φ4(φ−1
3 [φ3(u4) + φ3(u5)])]
Again, it is a copula if φ2 ◦ φ−1
1 is the inverse of a Laplace transform, as well as
φ4 ◦ φ−1
1 and φ4 ◦ φ−1
3 .
14
Arthur CHARPENTIER, Distortion in actuarial sciences
U1 U2 U3 U4 U5
φ4
φ3
φ2
φ1
U1 U2 U3 U4 U5
φ2
φ1
φ3
φ4
Figure 1 – fully nested Archimedean copula, and partially nested Archimedean
copula.
15
Arthur CHARPENTIER, Distortion in actuarial sciences
It is also possible to consider
φ−1
3 [φ3(φ−1
1 [φ1(u1) + φ1(u2) + φ1(u3)])
+ φ3(φ−1
2 [φ2(u4) + φ2(u5)])].
if φ3 ◦ φ−1
1 andφ3 ◦ φ−1
2 are inverses of Laplace transform. Or
φ−1
3 [φ3(φ−1
1 [φ1(u1) + φ1(u2)] + φ3(u3)
+ φ3(φ−1
2 [φ2(u4) + φ2(u5)])].
16
Arthur CHARPENTIER, Distortion in actuarial sciences
U1 U2 U3 U4 U5
φ1
φ3
φ2
U1 U2 U3 U4 U5
φ1
φ3
φ2
Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif-
férentes.
17
Arthur CHARPENTIER, Distortion in actuarial sciences
Example3
If φi’s are Gumbel’s generators, with parameter θi, a sufficient condition for C to be a
FNA copula is that θi’s increasing. Similarly if φi’s are Clayton’s generators.
Again, an heuristic interpretation can be derived.
18
Arthur CHARPENTIER, Distortion in actuarial sciences
4 Distorting copulas
Genest & Rivest (2001) extended the concept of Archimedean copulas
introducing the multivariate probability integral transformation (Wang, Nelsen &
Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap
(2005) or Durante & Sempi (2005) called this the transformed copula). Consider
a copula C. Let h be a continuous strictly concave increasing function
[0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that
Dh (C) (u1, · · · , ud) = h−1
(C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1
is a copula. Those functions will be called distortion functions.
Example4
A classical example is obtained when h is a power function, and when the power is the
inverse of an integer, hn(x) = x1/n
, i.e.
Dhn
(C) (u, v) = Cn
(u1/n
, v1/n
), 0 ≤ u, v ≤ 1 and n ∈ N.
Then this copula is the survival copula of the componentwise maxima : the copula of
19
Arthur CHARPENTIER, Distortion in actuarial sciences
(max{X1, · · · , Xn}, max{Y1, · · · , Yn}) is Dhn
(C), where {(X1, Y1), · · · , (Xn, Yn)}
is an i.i.d. sample, and the (Xi, Yi)’s have copula C.
A max-stable copula is a copula C such that ∀n ∈ N,
Cn
(u
1/n
1 , · · · , u
1/n
d ) = C(u1, · · · , ud).
Example5
Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define
C(u, v) = φ−1
(φ(u) + φ(v)) = Dexp[−φ](C⊥
). This function is an Archimedean copula.
In the bivariate case, h need not be differentiable, and concavity is a sufficient
condition.
Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1]
such that h (0) = 0 and h (1) = 1, C ∈ C,
Dh (C) (u1, · · · , ud) = h−1
(C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1
is a copula, called distorted copula.
Hd-copulas will be functions Dh (C) for some distortion function h and some
20
Arthur CHARPENTIER, Distortion in actuarial sciences
copula C.
d-increasingness of function Dh (C) is obtained when h ∈ Hd, i.e. h is continuous,
with h (0) = 0 and h (1) = 1, and such that h(k)
(x) ≤ 0 for all x ∈ (0, 1) and
k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)).
As a corollary, note that if φ ∈ Φd, then h(x) = exp(−φ(x)) belongs to Hd.
Further, observe that for h, h ∈ Hd,
Dh◦h (C) (u1, · · · , ud) = (Dh ◦ Dh ) (C) (u1, · · · , ud) , 0 ≤ ui ≤ 1.
21
Arthur CHARPENTIER, Distortion in actuarial sciences
Again, it is possible to get an intuitive interpretation of that distortion.
Consider a max-stable copula C. Let X be a random vector such that X given Θ
has copula C and P (Xi ≤ xi|Θ) = Gi (xi)
Θ
, i = 1, · · · , d.
Then, the (unconditional) joint distribution function of X is given by
F (x) = E (P (X1 ≤ x1, · · · , Xd ≤ xd|Θ)) = E (C (P (X1 ≤ xi|Θ) , · · · , P (Xd ≤ xd|Θ))
= E C G1 (x1)
Θ
, · · · , Gd (xd)
Θ
= E CΘ
(G1 (x1) , · · · , Gd (xd))
= ψ (− log C (G1 (x1) , · · · , Gd (xd))) ,
where ψ is the Laplace transform of the distribution of Θ, i.e.
ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e.
C G1 (x1)
Θ
, · · · , Gd (xd)
Θ
= CΘ
(G1 (x1) , · · · , Gd (xd)) .
The unconditional marginal distribution functions are Fi (xi) = ψ (− log Gi (xi)),
and therefore
CX (x1, · · · , xd) = ψ − log C exp −ψ−1
(x) , exp −ψ−1
(y) .
22
Arthur CHARPENTIER, Distortion in actuarial sciences
Note that since ψ−1
is completly montone, then h belongs to Hd.
23
Arthur CHARPENTIER, Distortion in actuarial sciences
5 Application to aging problems
Let T = (T1, · · · , Td) denote remaining lifetime, at time t = 0. Consider the
conditional distribution
(T1, · · · , Td) given T1 > t, · · · , Td > t
for some t > 0.
Let C denote the survival copula of T ,
P(T1 > t1, · · · , Td > td) = C(P(T1 > t1), · · · , P(T1 > tc)).
The survival copula of the conditional distribution is the copula of
(U1, · · · , Ud) given U1 < F1(t), · · · , Ud < Fd(t)
where (U1, · · · , Ud) has distribution C , and where Fi is the distribution of Ti
Let C be a copula and let U be a random vector with joint distribution function
C. Let u ∈ (0, 1]d
be such that C(u) > 0. The lower tail dependence copula of C
24
Arthur CHARPENTIER, Distortion in actuarial sciences
at level u is defined as the copula, denoted Cu, of the joint distribution of U
conditionally on the event {U ≤ u} = {U1 ≤ u1, · · · , Ud ≤ ud}.
5.1 Aging with Archimedean copulas
If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the
lower tail dependence copula relative to C at level u is given by the strict
Archimedean copula with generator φu defined by
φu(t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1, (3)
where C(u) = φ−1
[φ(u1) + · · · + φ(ud)] (see Juri & Wüthrich (2002) or C & Juri
(2007)).
Example6
Gumbel copulas have generator φ (t) = [− ln t]
θ
where θ ≥ 1. For any u ∈ (0, 1]d
, the
corresponding conditional copula has generator
φu (t) = M1/θ
− ln t
θ
− M where M = [− ln u1]
θ
+ · · · + [− ln ud]
θ
.
25
Arthur CHARPENTIER, Distortion in actuarial sciences
Example7
Clayton copulas C have generator φ (t) = t−θ
− 1 where θ > 0. Hence,
φu (t) = [t·C(u)]−θ
−1−φ(C(u)) = t−θ
·C(u)−θ
−1−[C(u)−θ
−1] = C(u)−θ
·[t−θ
−1],
hence φu (t) = C(u)−θ
· φ(t). Since the generator of an Archimedean copula is unique
up to a multiplicative constant, φu is also the generator of Clayton copula, with
parameter θ.
Théorème3
Consider X with Archimedean copula, having a factor representation, and let ψ denote
the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d
, then X given
X ≤ F−1
X (u) (in the pointwise sense, i.e. X1 ≤ F−1
1 (u1), · · · ., Xd ≤ F−1
d (ud)) is an
Archimedean copula with a factor representation, where the factor has Laplace transform
ψu (t) =
ψ t + ψ−1
(C(u))
C(u)
.
26
Arthur CHARPENTIER, Distortion in actuarial sciences
5.2 Aging with distorted copulas copulas
class of Hd-copulas, defined as
Dh(C)(u1, · · · , ud) = h−1
(C(h(u1), · · · , h(ud))), 0 ≤ ui ≤ 1,
where C is a copula, and h ∈ Hd is a d-distortion function.
Assume that there exists a positive random variable Θ, such that, conditionally
on Θ, random vector X = (X1, · · · , Xd) has copula C, which does not depend on
Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see
e.g. Joe (1997)) : C xh
1 , · · · , xh
d = Ch
(x1, · · · , xd) for all h ≥ 0. The following
result holds,
Lemma1
Let Θ be a random variable with Laplace transform ψ, and consider a random vector
X = (X1, · · · , Xd) such that X given Θ has copula C, an extreme value copula.
Assume that, for all i = 1, · · · , d, P (Xi ≤ xi|Θ) = Gi (xi)
Θ
where the Gi’s are
27
Arthur CHARPENTIER, Distortion in actuarial sciences
distribution functions. Then X has copula
CX (x1, · · · , xd) = ψ − log C exp −ψ−1
(x1) , · · · , exp −ψ−1
(xd) ,
whose copula is of the form Dh(C) with h(·) = exp −ψ−1
(·) .
Théorème4
Let X be a random vector with an Hd-copula with a factor representation, let ψ denote
the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and
Gi’s the marginal distributions.
Let u ∈ (0, 1]d
, then, the copula of X given X ≤ F−1
X (u) is
CX,u (x) = ψu − log Cu exp −ψ−1
u (x1) , · · · , exp −ψ−1
u (xd) = Dhu (Cu)(x),
where hu(·) = exp −ψ−1
u (·) , and where
– ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where
α = − log (C (u∗
)), u∗
i = exp −ψ−1
(ui) for all i = 1, · · · , d. Hence, ψu is the
Laplace transform of Θ given X ≤ F−1
X (u),
28
Arthur CHARPENTIER, Distortion in actuarial sciences
– P Xi ≤ xi|X ≤ F−1
X (u) , Θ = Gi (xi)
Θ
for all i = 1, · · · , d, where
Gi (xi) =
C (u∗
1, u∗
2, · · · , Gi (xi) , · · · , u∗
d)
C (u∗
1, u∗
2, · · · , u∗
i , · · · , u∗
d)
,
– and Cu is the following copula
Cu (x) =
C G1 G1
−1
(x1) , · · · , Gd Gd
−1
(xd)
C G1 F−1
1 (u1) , · · · , Gd F−1
d (ud)
.
29

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Slides univ-van-amsterdam
Slides univ-van-amsterdamSlides univ-van-amsterdam
Slides univ-van-amsterdam
 
Slides sales-forecasting-session2-web
Slides sales-forecasting-session2-webSlides sales-forecasting-session2-web
Slides sales-forecasting-session2-web
 
Slides amsterdam-2013
Slides amsterdam-2013Slides amsterdam-2013
Slides amsterdam-2013
 
slides tails copulas
slides tails copulasslides tails copulas
slides tails copulas
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Slides ihp
Slides ihpSlides ihp
Slides ihp
 
Sildes buenos aires
Sildes buenos airesSildes buenos aires
Sildes buenos aires
 
Slides toulouse
Slides toulouseSlides toulouse
Slides toulouse
 
Slides ineq-4
Slides ineq-4Slides ineq-4
Slides ineq-4
 
Slides compiegne
Slides compiegneSlides compiegne
Slides compiegne
 
slides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial scienceslides CIRM copulas, extremes and actuarial science
slides CIRM copulas, extremes and actuarial science
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Lundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentierLundi 16h15-copules-charpentier
Lundi 16h15-copules-charpentier
 
Slides barcelona Machine Learning
Slides barcelona Machine LearningSlides barcelona Machine Learning
Slides barcelona Machine Learning
 
Proba stats-r1-2017
Proba stats-r1-2017Proba stats-r1-2017
Proba stats-r1-2017
 
transformations and nonparametric inference
transformations and nonparametric inferencetransformations and nonparametric inference
transformations and nonparametric inference
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
 
Inequality, slides #2
Inequality, slides #2Inequality, slides #2
Inequality, slides #2
 
Quantile and Expectile Regression
Quantile and Expectile RegressionQuantile and Expectile Regression
Quantile and Expectile Regression
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 

Ähnlich wie Slides mc gill-v3

Slides 110406105147-phpapp01
Slides 110406105147-phpapp01Slides 110406105147-phpapp01
Slides 110406105147-phpapp01Philippe Porta
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfCarlosLazo45
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptxnagalakshmig4
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Dahua Lin
 
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)IJERA Editor
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptAlyasarJabbarli
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...UniversitasGadjahMada
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Arthur Charpentier
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”IOSRJM
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet SeriesOn Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet SeriesIOSR Journals
 
A generalisation of the ratio-of-uniform algorithm
A generalisation of the ratio-of-uniform algorithmA generalisation of the ratio-of-uniform algorithm
A generalisation of the ratio-of-uniform algorithmChristian Robert
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 

Ähnlich wie Slides mc gill-v3 (20)

Slides 110406105147-phpapp01
Slides 110406105147-phpapp01Slides 110406105147-phpapp01
Slides 110406105147-phpapp01
 
Finance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdfFinance Enginering from Columbia.pdf
Finance Enginering from Columbia.pdf
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
 
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
Fixed Point Results In Fuzzy Menger Space With Common Property (E.A.)
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.ppt
 
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
ON OPTIMALITY OF THE INDEX OF SUM, PRODUCT, MAXIMUM, AND MINIMUM OF FINITE BA...
 
Distributions
DistributionsDistributions
Distributions
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Course notes2summer2012
Course notes2summer2012Course notes2summer2012
Course notes2summer2012
 
Slides risk-rennes
Slides risk-rennesSlides risk-rennes
Slides risk-rennes
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Slides ensae-2016-8
Slides ensae-2016-8Slides ensae-2016-8
Slides ensae-2016-8
 
Slides ensae 8
Slides ensae 8Slides ensae 8
Slides ensae 8
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet SeriesOn Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
On Spaces of Entire Functions Having Slow Growth Represented By Dirichlet Series
 
A generalisation of the ratio-of-uniform algorithm
A generalisation of the ratio-of-uniform algorithmA generalisation of the ratio-of-uniform algorithm
A generalisation of the ratio-of-uniform algorithm
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 

Mehr von Arthur Charpentier (20)

Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
ACT6100 introduction
ACT6100 introductionACT6100 introduction
ACT6100 introduction
 
Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)Family History and Life Insurance (UConn actuarial seminar)
Family History and Life Insurance (UConn actuarial seminar)
 
Control epidemics
Control epidemics Control epidemics
Control epidemics
 
STT5100 Automne 2020, introduction
STT5100 Automne 2020, introductionSTT5100 Automne 2020, introduction
STT5100 Automne 2020, introduction
 
Family History and Life Insurance
Family History and Life InsuranceFamily History and Life Insurance
Family History and Life Insurance
 
Machine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & InsuranceMachine Learning in Actuarial Science & Insurance
Machine Learning in Actuarial Science & Insurance
 
Reinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and FinanceReinforcement Learning in Economics and Finance
Reinforcement Learning in Economics and Finance
 
Optimal Control and COVID-19
Optimal Control and COVID-19Optimal Control and COVID-19
Optimal Control and COVID-19
 
Slides OICA 2020
Slides OICA 2020Slides OICA 2020
Slides OICA 2020
 
Lausanne 2019 #3
Lausanne 2019 #3Lausanne 2019 #3
Lausanne 2019 #3
 
Lausanne 2019 #4
Lausanne 2019 #4Lausanne 2019 #4
Lausanne 2019 #4
 
Lausanne 2019 #2
Lausanne 2019 #2Lausanne 2019 #2
Lausanne 2019 #2
 
Lausanne 2019 #1
Lausanne 2019 #1Lausanne 2019 #1
Lausanne 2019 #1
 
Side 2019 #10
Side 2019 #10Side 2019 #10
Side 2019 #10
 
Side 2019 #11
Side 2019 #11Side 2019 #11
Side 2019 #11
 
Side 2019 #12
Side 2019 #12Side 2019 #12
Side 2019 #12
 
Side 2019 #9
Side 2019 #9Side 2019 #9
Side 2019 #9
 
Side 2019 #8
Side 2019 #8Side 2019 #8
Side 2019 #8
 
Side 2019 #7
Side 2019 #7Side 2019 #7
Side 2019 #7
 

Kürzlich hochgeladen

Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignHenry Tapper
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxanshikagoel52
 
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...Call Girls in Nagpur High Profile
 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...Suhani Kapoor
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawlmakika9823
 
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services  9892124323 | ₹,4500 With Room Free DeliveryMalad Call Girl in Services  9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free DeliveryPooja Nehwal
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130Suhani Kapoor
 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdfAdnet Communications
 
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Roomdivyansh0kumar0
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfGale Pooley
 
The Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfThe Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfGale Pooley
 
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyTyöeläkeyhtiö Elo
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Delhi Call girls
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfGale Pooley
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingAggregage
 
The Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfThe Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfGale Pooley
 
Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Commonwealth
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfGale Pooley
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...ssifa0344
 

Kürzlich hochgeladen (20)

Log your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaignLog your LOA pain with Pension Lab's brilliant campaign
Log your LOA pain with Pension Lab's brilliant campaign
 
Dividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptxDividend Policy and Dividend Decision Theories.pptx
Dividend Policy and Dividend Decision Theories.pptx
 
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
VVIP Pune Call Girls Katraj (7001035870) Pune Escorts Nearby with Complete Sa...
 
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
VIP Call Girls LB Nagar ( Hyderabad ) Phone 8250192130 | ₹5k To 25k With Room...
 
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service AizawlVip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
Vip B Aizawl Call Girls #9907093804 Contact Number Escorts Service Aizawl
 
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services  9892124323 | ₹,4500 With Room Free DeliveryMalad Call Girl in Services  9892124323 | ₹,4500 With Room Free Delivery
Malad Call Girl in Services 9892124323 | ₹,4500 With Room Free Delivery
 
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
VIP Call Girls Service Dilsukhnagar Hyderabad Call +91-8250192130
 
20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf20240417-Calibre-April-2024-Investor-Presentation.pdf
20240417-Calibre-April-2024-Investor-Presentation.pdf
 
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jodhpur Park 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jodhpur Park 👉 8250192130 Available With Room
 
The Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdfThe Economic History of the U.S. Lecture 18.pdf
The Economic History of the U.S. Lecture 18.pdf
 
The Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdfThe Economic History of the U.S. Lecture 17.pdf
The Economic History of the U.S. Lecture 17.pdf
 
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance CompanyInterimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
Interimreport1 January–31 March2024 Elo Mutual Pension Insurance Company
 
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
Best VIP Call Girls Noida Sector 18 Call Me: 8448380779
 
The Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdfThe Economic History of the U.S. Lecture 21.pdf
The Economic History of the U.S. Lecture 21.pdf
 
How Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of ReportingHow Automation is Driving Efficiency Through the Last Mile of Reporting
How Automation is Driving Efficiency Through the Last Mile of Reporting
 
The Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdfThe Economic History of the U.S. Lecture 30.pdf
The Economic History of the U.S. Lecture 30.pdf
 
Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]Monthly Market Risk Update: April 2024 [SlideShare]
Monthly Market Risk Update: April 2024 [SlideShare]
 
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Maya Call 7001035870 Meet With Nagpur Escorts
 
The Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdfThe Economic History of the U.S. Lecture 22.pdf
The Economic History of the U.S. Lecture 22.pdf
 
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
Solution Manual for Principles of Corporate Finance 14th Edition by Richard B...
 

Slides mc gill-v3

  • 1. Arthur CHARPENTIER, Distortion in actuarial sciences Distorting ... in actuarial sciences Arthur Charpentier Université Rennes 1 arthur.charpentier@univ-rennes1.fr http ://freakonometrics.blog.free.fr/ Montréal Seminar of Actuarial and Financial Mathematics, McGill, November 2010. 1
  • 2. Arthur CHARPENTIER, Distortion in actuarial sciences 1 Decision theory and distorted risk measures Consider a preference ordering among risks, such that 1. is distribution based, i.e. if X Y , ∀ ˜X L = X ˜Y L = Y , then ˜X ˜Y ; hence, we can write FX FY 2. is total, reflexive and transitive, 3. is continuous, i.e. ∀FX, FY and FZ such that FX FY FZ, ∃λ, µ ∈ (0, 1) such that λFX + (1 − λ)FZ FY µFX + (1 − µ)FZ. 4. satisfies an independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1), FX FY =⇒ λFX + (1 − λ)FZ λFY + (1 − λ)FZ. 5. satisfies an ordering axiom, ∀X and Y constant (i.e. P(X = x) = P(Y = y) = 1, FX FY =⇒ x ≤ y. 2
  • 3. Arthur CHARPENTIER, Distortion in actuarial sciences Théorème1 Ordering satisfies axioms 1-2-3-4-5 if and only if ∃u : R → R, continuous, strictly increasing and unique (up to an increasing affine transformation) such that ∀FX and FY : FX FY ⇔ R u(x)dFX(x) ≤ R u(x)dFY (x) ⇔ E[u(X)] ≤ E[u(Y )]. But if we consider an alternative to the independence axiom 4’. satisfies an dual independence axiom, i.e. ∀FX, FY and FZ, and ∀λ ∈ (0, 1), FX FY =⇒ [λF−1 X + (1 − λ)F−1 Z ]−1 [λF−1 Y + (1 − λ)F−1 Z ]−1 . we (Yaari (1987)) obtain a dual representation theorem, Théorème2 Ordering satisfies axioms 1-2-3-4’-5 if and only if ∃g : [0, 1] → R, continuous, strictly increasing such that ∀FX and FY : FX FY ⇔ R g(FX(x))dx ≤ R g(FY (x))dx 3
  • 4. Arthur CHARPENTIER, Distortion in actuarial sciences Standard axioms required on risque measures R : X → R, – law invariance, X L = Y =⇒ R(X) = R(Y ) – increasing X ≥ Y =⇒ R(X) ≥ R(Y ), – translation invariance ∀k ∈ R, =⇒ R(X + k) = R(X) + k, – homogeneity ∀λ ∈ R+, R(λX) = λ · R(X), – subadditivity R(X + Y ) ≤ R(X) + R(Y ), – convexity ∀β ∈ [0, 1], R(βλX + [1 − β]Y ) ≤ β · R(X) + [1 − β] · R(Y ). – additivity for comonotonic risks ∀X and Y comonotonic, R(X + Y ) = R(X) + R(Y ), – maximal correlation (w.r.t. measure µ) ∀X, R(X) = sup {E(X · U) where U ∼ µ} – strong coherence ∀X and Y , sup{R( ˜X + ˜Y )} = R(X) + R(Y ), where ˜X L = X and ˜Y L = Y . 4
  • 5. Arthur CHARPENTIER, Distortion in actuarial sciences Proposition1 If R is a monetary convex fonction, then the three statements are equivalent, – R is strongly coherent, – R is additive for comonotonic risks, – R is a maximal correlation measure. Proposition2 A coherente risk measure R is additive for comonotonic risks if and only if there exists a decreasing positive function φ on [0, 1] such that R(X) = 1 0 φ(t)F−1 (1 − t)dt where F(x) = F(X ≤ x). see Kusuoka (2001), i.e. R is a spectral risk measure. 5
  • 6. Arthur CHARPENTIER, Distortion in actuarial sciences Definition1 A distortion function is a function g : [0, 1] → [0, 1] such that g(0) = 0 and g(1) = 1. For positive risks, Definition1 Given distortion function g, Wang’s risk measure, denoted Rg, is Rg (X) = ∞ 0 g (1 − FX(x)) dx = ∞ 0 g FX(x) dx (1) Proposition1 Wang’s risk measure can be defined as Rg (X) = 1 0 F−1 X (1 − α) dg(α) = 1 0 VaR[X; 1 − α] dg(α). (2) 6
  • 7. Arthur CHARPENTIER, Distortion in actuarial sciences More generally (risks taking value in R) Definition2 We call distorted risk measure R(X) = 1 0 F−1 (1 − u)dg(u) where g is some distortion function. Proposition3 R(X) can be written R(X) = +∞ 0 g(1 − F(x))dx − 0 −∞ [1 − g(1 − F(x))]dx. 7
  • 8. Arthur CHARPENTIER, Distortion in actuarial sciences risk measures R distortion function g VaR g (x) = I[x ≥ p] Tail-VaR g (x) = min {x/p, 1} PH g (x) = xp Dual Power g (x) = 1 − (1 − x) 1/p Gini g (x) = (1 + p) x − px2 exponential transform g (x) = (1 − px ) / (1 − p) Table 1 – Standard risk measures, p ∈ (0, 1). 8
  • 9. Arthur CHARPENTIER, Distortion in actuarial sciences Here, it looks like risk measures can be seen as R(X) = Eg◦P(X). Remark1 Let Q denote the distorted measure induced by g on P, denoted g ◦ P i.e. Q([a, +∞)) = g(P([a, +∞))). Since g is increasing on [0, 1] Q is a capacity. Example1 Consider function g(x) = xk . The PH - proportional hazard - risk measure is R(X; k) = 1 0 F−1 (1 − u)kuk−1 du = ∞ 0 [F(x)]k dx If k is an integer [F(x)]k is the survival distribution of the minimum over k values. Definition2 The Esscher risk measure with parameter h > 0 is Es[X; h], defined as Es[X; h] = E[X exp(hX)] MX(h) = d dh ln MX(h). 9
  • 10. Arthur CHARPENTIER, Distortion in actuarial sciences 2 Archimedean copulas Definition3 Let φ denote a decreasing function (0, 1] → [0, ∞] such that φ(1) = 0, and such that φ−1 is d-monotone, i.e. for all k = 0, 1, · · · , d, (−1)k [φ−1 ](k) (t) ≥ 0 for all t. Define the inverse (or quasi-inverse if φ(0) < ∞) as φ−1 (t) =    φ−1 (t) for 0 ≤ t ≤ φ(0) 0 for φ(0) < t < ∞. The function C(u1, · · · , un) = φ−1 (φ(u1) + · · · + φ(ud)), u1, · · · , un ∈ [0, 1], is a copula, called an Archimedean copula, with generator φ. Let Φd denote the set of generators in dimension d. Example2 The independent copula C⊥ is an Archimedean copula, with generator φ(t) = − log t. 10
  • 11. Arthur CHARPENTIER, Distortion in actuarial sciences The upper Fréchet-Hoeffding copula, defined as the minimum componentwise, M(u) = min{u1, · · · , ud}, is not Archimedean (but can be obtained as the limit of some Archimedean copulas). Set λ(t) = exp[−φ(t)] (the multiplicative generator), then C(u1, ..., ud) = λ−1 (λ(u1) · · · λ(ud)), ∀u1, ..., ud ∈ [0, 1], which can be written C(u1, ..., ud) = λ−1 (Cp erp[λ(u1), . . . , λ(ud)]), ∀u1, ..., ud ∈ [0, 1], Note that it is possible to get an interpretation of that distortion of the independence. A large subclass of Archimedean copula in dimension d is the class of Archimedean copulas obtained using the frailty approach. Consider random variables X1, · · · , Xd conditionally independent, given a latent factor Θ, a positive random variable, such that P (Xi ≤ xi|Θ) = Gi (x) Θ where Gi denotes a baseline distribution function. 11
  • 12. Arthur CHARPENTIER, Distortion in actuarial sciences The joint distribution function of X is given by FX (x1, · · · , xd) = E (P (X1 ≤ x1, · · · , Xd ≤ Xd|Θ)) = E d i=1 P (Xi ≤ xi|Θ) = E d i=1 Gi (xi) Θ = E d i=1 exp [−Θ (− log Gi (xi))] = ψ − d i=1 log Gi (xi) , where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)) . Because the marginal distributions are given respectively by Fi(xi) = P(Xi ≤ xi) = ψ (− log Gi (xi)) , the copula of X is C (u) = FX F−1 1 (u1) , · · · , F−1 d (ud) = ψ ψ−1 (u) + · · · + ψ−1 (ud) This copula is an Archimedean copula with generator φ = ψ−1 (see e.g. Clayton (1978), Oakes (1989), Bandeen-Roche & Liang (1996) for more details). 12
  • 13. Arthur CHARPENTIER, Distortion in actuarial sciences 3 Hierarchical Archimedean copulas It is possible to look at C(u1, · · · , ud) defined as φ−1 1 [φ1[φ−1 2 (φ2[· · · φ−1 d−1[φd−1(u1) + φd−1(u2)] + · · · + φ2(ud−1))] + φ1(ud)] where φi are generators. C is a copula if φi ◦ φ−1 i−1 is the inverse of a Laplace transform. This copula is said to be a fully nested Archimedean (FNA) copula. E.g. in dimension d = 5, we get φ−1 1 [φ1(φ−1 2 [φ2(φ−1 3 [φ3(φ−1 4 [φ4(u1) + φ4(u2)]) + φ3(u3)]) + φ2(u4)]) + φ1(u5)]. It is also possible to consider partially nested Archimedean (PNA) copulas, e.g. 13
  • 14. Arthur CHARPENTIER, Distortion in actuarial sciences by coupling (U1, U2, U3), and (U4, U5), φ−1 4 [φ4(φ−1 1 [φ1(φ−1 2 [φ2(u1) + φ2(u2)]) + φ1(u3)]) + φ4(φ−1 3 [φ3(u4) + φ3(u5)])] Again, it is a copula if φ2 ◦ φ−1 1 is the inverse of a Laplace transform, as well as φ4 ◦ φ−1 1 and φ4 ◦ φ−1 3 . 14
  • 15. Arthur CHARPENTIER, Distortion in actuarial sciences U1 U2 U3 U4 U5 φ4 φ3 φ2 φ1 U1 U2 U3 U4 U5 φ2 φ1 φ3 φ4 Figure 1 – fully nested Archimedean copula, and partially nested Archimedean copula. 15
  • 16. Arthur CHARPENTIER, Distortion in actuarial sciences It is also possible to consider φ−1 3 [φ3(φ−1 1 [φ1(u1) + φ1(u2) + φ1(u3)]) + φ3(φ−1 2 [φ2(u4) + φ2(u5)])]. if φ3 ◦ φ−1 1 andφ3 ◦ φ−1 2 are inverses of Laplace transform. Or φ−1 3 [φ3(φ−1 1 [φ1(u1) + φ1(u2)] + φ3(u3) + φ3(φ−1 2 [φ2(u4) + φ2(u5)])]. 16
  • 17. Arthur CHARPENTIER, Distortion in actuarial sciences U1 U2 U3 U4 U5 φ1 φ3 φ2 U1 U2 U3 U4 U5 φ1 φ3 φ2 Figure 2 – Copules Archimédiennes hiérarchiques avec deux constructions dif- férentes. 17
  • 18. Arthur CHARPENTIER, Distortion in actuarial sciences Example3 If φi’s are Gumbel’s generators, with parameter θi, a sufficient condition for C to be a FNA copula is that θi’s increasing. Similarly if φi’s are Clayton’s generators. Again, an heuristic interpretation can be derived. 18
  • 19. Arthur CHARPENTIER, Distortion in actuarial sciences 4 Distorting copulas Genest & Rivest (2001) extended the concept of Archimedean copulas introducing the multivariate probability integral transformation (Wang, Nelsen & Valdez (2005) called this the distorted copula, while Klement, Mesiar & Pap (2005) or Durante & Sempi (2005) called this the transformed copula). Consider a copula C. Let h be a continuous strictly concave increasing function [0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1, such that Dh (C) (u1, · · · , ud) = h−1 (C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1 is a copula. Those functions will be called distortion functions. Example4 A classical example is obtained when h is a power function, and when the power is the inverse of an integer, hn(x) = x1/n , i.e. Dhn (C) (u, v) = Cn (u1/n , v1/n ), 0 ≤ u, v ≤ 1 and n ∈ N. Then this copula is the survival copula of the componentwise maxima : the copula of 19
  • 20. Arthur CHARPENTIER, Distortion in actuarial sciences (max{X1, · · · , Xn}, max{Y1, · · · , Yn}) is Dhn (C), where {(X1, Y1), · · · , (Xn, Yn)} is an i.i.d. sample, and the (Xi, Yi)’s have copula C. A max-stable copula is a copula C such that ∀n ∈ N, Cn (u 1/n 1 , · · · , u 1/n d ) = C(u1, · · · , ud). Example5 Let φ denote a convex decreasing function on (0, 1] such that φ(1) = 0, and define C(u, v) = φ−1 (φ(u) + φ(v)) = Dexp[−φ](C⊥ ). This function is an Archimedean copula. In the bivariate case, h need not be differentiable, and concavity is a sufficient condition. Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1] such that h (0) = 0 and h (1) = 1, C ∈ C, Dh (C) (u1, · · · , ud) = h−1 (C (h (u1) , · · · , h (ud))) , 0 ≤ ui ≤ 1 is a copula, called distorted copula. Hd-copulas will be functions Dh (C) for some distortion function h and some 20
  • 21. Arthur CHARPENTIER, Distortion in actuarial sciences copula C. d-increasingness of function Dh (C) is obtained when h ∈ Hd, i.e. h is continuous, with h (0) = 0 and h (1) = 1, and such that h(k) (x) ≤ 0 for all x ∈ (0, 1) and k = 2, 3, · · · , d (see Theorem 2.6 and 4.4 in Morillas (2005)). As a corollary, note that if φ ∈ Φd, then h(x) = exp(−φ(x)) belongs to Hd. Further, observe that for h, h ∈ Hd, Dh◦h (C) (u1, · · · , ud) = (Dh ◦ Dh ) (C) (u1, · · · , ud) , 0 ≤ ui ≤ 1. 21
  • 22. Arthur CHARPENTIER, Distortion in actuarial sciences Again, it is possible to get an intuitive interpretation of that distortion. Consider a max-stable copula C. Let X be a random vector such that X given Θ has copula C and P (Xi ≤ xi|Θ) = Gi (xi) Θ , i = 1, · · · , d. Then, the (unconditional) joint distribution function of X is given by F (x) = E (P (X1 ≤ x1, · · · , Xd ≤ xd|Θ)) = E (C (P (X1 ≤ xi|Θ) , · · · , P (Xd ≤ xd|Θ)) = E C G1 (x1) Θ , · · · , Gd (xd) Θ = E CΘ (G1 (x1) , · · · , Gd (xd)) = ψ (− log C (G1 (x1) , · · · , Gd (xd))) , where ψ is the Laplace transform of the distribution of Θ, i.e. ψ (t) = E (exp (−tΘ)), since C is a max-stable copula, i.e. C G1 (x1) Θ , · · · , Gd (xd) Θ = CΘ (G1 (x1) , · · · , Gd (xd)) . The unconditional marginal distribution functions are Fi (xi) = ψ (− log Gi (xi)), and therefore CX (x1, · · · , xd) = ψ − log C exp −ψ−1 (x) , exp −ψ−1 (y) . 22
  • 23. Arthur CHARPENTIER, Distortion in actuarial sciences Note that since ψ−1 is completly montone, then h belongs to Hd. 23
  • 24. Arthur CHARPENTIER, Distortion in actuarial sciences 5 Application to aging problems Let T = (T1, · · · , Td) denote remaining lifetime, at time t = 0. Consider the conditional distribution (T1, · · · , Td) given T1 > t, · · · , Td > t for some t > 0. Let C denote the survival copula of T , P(T1 > t1, · · · , Td > td) = C(P(T1 > t1), · · · , P(T1 > tc)). The survival copula of the conditional distribution is the copula of (U1, · · · , Ud) given U1 < F1(t), · · · , Ud < Fd(t) where (U1, · · · , Ud) has distribution C , and where Fi is the distribution of Ti Let C be a copula and let U be a random vector with joint distribution function C. Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C 24
  • 25. Arthur CHARPENTIER, Distortion in actuarial sciences at level u is defined as the copula, denoted Cu, of the joint distribution of U conditionally on the event {U ≤ u} = {U1 ≤ u1, · · · , Ud ≤ ud}. 5.1 Aging with Archimedean copulas If C is a strict Archimedean copula with generator φ (i.e. φ(0) = ∞), then the lower tail dependence copula relative to C at level u is given by the strict Archimedean copula with generator φu defined by φu(t) = φ(t · C(u)) − φ(C(u)), 0 ≤ t ≤ 1, (3) where C(u) = φ−1 [φ(u1) + · · · + φ(ud)] (see Juri & Wüthrich (2002) or C & Juri (2007)). Example6 Gumbel copulas have generator φ (t) = [− ln t] θ where θ ≥ 1. For any u ∈ (0, 1]d , the corresponding conditional copula has generator φu (t) = M1/θ − ln t θ − M where M = [− ln u1] θ + · · · + [− ln ud] θ . 25
  • 26. Arthur CHARPENTIER, Distortion in actuarial sciences Example7 Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0. Hence, φu (t) = [t·C(u)]−θ −1−φ(C(u)) = t−θ ·C(u)−θ −1−[C(u)−θ −1] = C(u)−θ ·[t−θ −1], hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is unique up to a multiplicative constant, φu is also the generator of Clayton copula, with parameter θ. Théorème3 Consider X with Archimedean copula, having a factor representation, and let ψ denote the Laplace transform of the heterogeneity factor Θ. Let u ∈ (0, 1]d , then X given X ≤ F−1 X (u) (in the pointwise sense, i.e. X1 ≤ F−1 1 (u1), · · · ., Xd ≤ F−1 d (ud)) is an Archimedean copula with a factor representation, where the factor has Laplace transform ψu (t) = ψ t + ψ−1 (C(u)) C(u) . 26
  • 27. Arthur CHARPENTIER, Distortion in actuarial sciences 5.2 Aging with distorted copulas copulas class of Hd-copulas, defined as Dh(C)(u1, · · · , ud) = h−1 (C(h(u1), · · · , h(ud))), 0 ≤ ui ≤ 1, where C is a copula, and h ∈ Hd is a d-distortion function. Assume that there exists a positive random variable Θ, such that, conditionally on Θ, random vector X = (X1, · · · , Xd) has copula C, which does not depend on Θ. Assume moreover that C is in extreme value copula, or max-stable copula (see e.g. Joe (1997)) : C xh 1 , · · · , xh d = Ch (x1, · · · , xd) for all h ≥ 0. The following result holds, Lemma1 Let Θ be a random variable with Laplace transform ψ, and consider a random vector X = (X1, · · · , Xd) such that X given Θ has copula C, an extreme value copula. Assume that, for all i = 1, · · · , d, P (Xi ≤ xi|Θ) = Gi (xi) Θ where the Gi’s are 27
  • 28. Arthur CHARPENTIER, Distortion in actuarial sciences distribution functions. Then X has copula CX (x1, · · · , xd) = ψ − log C exp −ψ−1 (x1) , · · · , exp −ψ−1 (xd) , whose copula is of the form Dh(C) with h(·) = exp −ψ−1 (·) . Théorème4 Let X be a random vector with an Hd-copula with a factor representation, let ψ denote the Laplace transform of the heterogeneity factor Θ, C denote the underlying copula, and Gi’s the marginal distributions. Let u ∈ (0, 1]d , then, the copula of X given X ≤ F−1 X (u) is CX,u (x) = ψu − log Cu exp −ψ−1 u (x1) , · · · , exp −ψ−1 u (xd) = Dhu (Cu)(x), where hu(·) = exp −ψ−1 u (·) , and where – ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where α = − log (C (u∗ )), u∗ i = exp −ψ−1 (ui) for all i = 1, · · · , d. Hence, ψu is the Laplace transform of Θ given X ≤ F−1 X (u), 28
  • 29. Arthur CHARPENTIER, Distortion in actuarial sciences – P Xi ≤ xi|X ≤ F−1 X (u) , Θ = Gi (xi) Θ for all i = 1, · · · , d, where Gi (xi) = C (u∗ 1, u∗ 2, · · · , Gi (xi) , · · · , u∗ d) C (u∗ 1, u∗ 2, · · · , u∗ i , · · · , u∗ d) , – and Cu is the following copula Cu (x) = C G1 G1 −1 (x1) , · · · , Gd Gd −1 (xd) C G1 F−1 1 (u1) , · · · , Gd F−1 d (ud) . 29