SlideShare ist ein Scribd-Unternehmen logo
1 von 10
Downloaden Sie, um offline zu lesen
Theoretical Computer Science Cheat Sheet
                            Definitions                                                                                                     Series
f (n) = O(g(n))                    iff ∃ positive c, n0 such that                  n                                        n                                              n
                                                                                               n(n + 1)                               n(n + 1)(2n + 1)                                   n2 (n + 1)2
                                   0 ≤ f (n) ≤ cg(n) ∀n ≥ n0 .                         i=               ,                      i2 =                    ,                          i3 =               .
                                                                              i=1
                                                                                                  2                   i=1
                                                                                                                                             6                           i=1
                                                                                                                                                                                              4
f (n) = Ω(g(n))                    iff ∃ positive c, n0 such that
                                                                             In general:
                                   f (n) ≥ cg(n) ≥ 0 ∀n ≥ n0 .                n                                                               n
                                                                                                 1
f (n) = Θ(g(n))                    iff f (n) = O(g(n)) and                             im =          (n + 1)m+1 − 1 −     (i + 1)m+1 − im+1 − (m + 1)im
                                                                             i=1
                                                                                                m+1                  i=1
                                   f (n) = Ω(g(n)).
                                                                             n−1                             m
                                                                                                 1                     m+1
f (n) = o(g(n))                    iff limn→∞ f (n)/g(n) = 0.                          im =                                 Bk nm+1−k .
                                                                             i=1
                                                                                                m+1                     k
                                                                                                           k=0
  lim an = a                       iff ∀ > 0, ∃n0 such that
  n→∞                                                                        Geometric series:
                                   |an − a| < , ∀n ≥ n0 .                      n                                                       ∞                           ∞
                                                                                       cn+1 − 1                                                      1                              c
      sup S                        least b ∈ R such that b ≥ s,                   ci =          ,                     c = 1,                ci =        ,                 ci =         ,        |c| < 1,
                                                                                         c−1                                                        1−c                            1−c
                                   ∀s ∈ S.                                    i=0                                                     i=0                          i=1
                                                                              n                                                                                   ∞
                                                                                               ncn+2 − (n + 1)cn+1 + c                                                                c
       inf S                       greatest b ∈ R such that b ≤                       ici =                            ,                          c = 1,              ici =                 ,       |c| < 1.
                                   s, ∀s ∈ S.                                i=0
                                                                                                      (c − 1)2                                                  i=0
                                                                                                                                                                                   (1 − c)2
                                                                             Harmonic series:
   lim inf an                      lim inf{ai | i ≥ n, i ∈ N}.                                               n                    n
      n→∞                          n→∞                                                                               1                            n(n + 1)      n(n − 1)
                                                                                                Hn =                   ,               iHi =               Hn −          .
  lim sup an                       lim sup{ai | i ≥ n, i ∈ N}.                                             i=1
                                                                                                                     i           i=1
                                                                                                                                                     2             4
      n→∞                          n→∞
                                                                               n                                                   n
        n                                                                                                                                   i                 n+1                              1
        k                          Combinations: Size k sub-                          Hi = (n + 1)Hn − n,                                     Hi =                                Hn+1 −                 .
                                   sets of a size n set.                      i=1                                                i=1
                                                                                                                                            m                 m+1                             m+1
        n                                                                                                                               n
                                   Stirling numbers (1st kind):                        n               n!                                     n                                     n            n
        k
                                   Arrangements of an n ele-                 1.                =              ,                  2.                  = 2n ,                  3.           =         ,
                                                                                       k           (n − k)!k!                                 k                                     k           n−k
                                                                                                                                       k=0
                                   ment set into k cycles.
                                                                                       n         n n−1                                                        n               n−1   n−1
        n                                                                    4.                =       ,                                             5.               =           +     ,
        k                          Stirling numbers (2nd kind):                        k         k k−1                                                        k                k    k−1
                                   Partitions of an n element                          n        m                n         n−k
                                                                                                                                                              n
                                                                                                                                                                      r+k                 r+n+1
                                   set into k non-empty sets.                6.                       =                        ,                     7.                             =           ,
                                                                                       m        k                k         m−k                                         k                    n
        n                                                                                                                                                  k=0
                                   1st order Eulerian numbers:                        n                                                                    n
        k                                                                                      k           n+1                                                      r          s                r+s
                                   Permutations π1 π2 . . . πn on            8.                      =         ,                                     9.                                   =         ,
                                                                                               m           m+1                                                      k         n−k                n
                                   {1, 2, . . . , n} with k ascents.               k=0                                                                     k=0
                                                                                          n                      k−n−1                                                             n            n
        n
                                   2nd order Eulerian numbers.               10.               = (−1)      k
                                                                                                                       ,                                              11.                =           = 1,
        k                                                                                 k                        k                                                               1            n
       Cn                          Catalan Numbers: Binary                                 n                            n−1                               n                  n−1
                                   trees with n + 1 vertices.                12.                   = 2n−1 − 1,                ,               13.                 =k                     +
                                                                                           2                            k−1                               k                   k
       n                               n                                           n                             n        n
14.        = (n − 1)!,           15.       = (n − 1)!Hn−1 ,                 16.        = 1,                17.       ≥      ,
       1                               2                                           n                             k        k
                                                                                     n
       n               n−1     n−1              n            n        n                  n                         1     2n
18.        = (n − 1)         +      ,   19.           =           =       ,   20.             = n!,    21. Cn =             ,
       k                k      k−1             n−1       n−1          2                  k                       n+1 n
                                                                                    k=0
        n         n                      n            n                          n               n−1                 n−1
22.         =           = 1,       23.        =               ,          24.         = (k + 1)            + (n − k)         ,
        0       n−1                       k       n−1−k                          k                   k               k−1
        0       1 if k = 0,                     n                                           n                        n+1
25.         =                             26.       = 2n − n − 1,                   27.         = 3n − (n + 1)2n +          ,
        k       0 otherwise                     1                                           2                          2
            n                                   m                                                          n
                 n     x+k              n           n+1                                             n          n       k
28.   xn =                   ,   29.        =               (m + 1 − k)n (−1)k ,        30. m!          =                   ,
                 k      n              m              k                                            m           k     n−m
               k=0                                                     k=0                                                                                              k=0
                     n
        n                      n       n−k                                                               n                                                            n
31.            =                           (−1)n−k−m k!,                                       32.                   = 1,                                 33.                     = 0 for n = 0,
        m                      k        m                                                                0                                                            n
                     k=0
                                                                                                                                                                         n
        n                             n−1                              n−1                                                                                                         n          (2n)n
34.             = (k + 1)                       + (2n − 1 − k)                    ,                                                                           35.                         =         ,
        k                              k                               k−1                                                                                                         k            2n
                                                                                                                                                                       k=0
                           n                                                                                                                                          n
         x                            n     x+n−1−k                                                              n+1                          n      k                        k
36.                  =                              ,                                                37.                         =                            =                 (m + 1)n−k ,
        x−n                           k        2n                                                                m+1                          k      m                        m
                           k=0                                                                                                         k                           k=0
Theoretical Computer Science Cheat Sheet
                                                              Identities Cont.                                                                                                   Trees
                                                  n                      n                                                        n
      n+1                      n       k               k n−k                 1 k                                   x                       n         x+k              Every tree with n
38.       =                                  =           n   = n!                 ,                  39.              =                                  ,            vertices has n − 1
      m+1                      k       m               m                     k! m                                 x−n                      k          2n
                       k                         k=0                 k=0                                                       k=0
                                                                                                                                                                      edges.
      n                    n       k+1                                                                     n                  n+1          k
40.        =                           (−1)n−k ,                                             41.             =                               (−1)m−k ,                Kraft            inequal-
      m                    k       m+1                                                                     m                  k+1          m
               k                                                                                                    k                                                 ity: If the depths
                               m                                                                                              m
      m+n+1                            n+k                                                           m+n+1                                           n+k              of the leaves of
42.                        =         k     ,                                            43.                =                        k(n + k)             ,
        m                               k                                                              m                                              k               a binary tree are
                               k=0                                                                                            k=0
      n                    n+1         k                                  n                           n+1          k                                                  d1 , . . . , dn :
44.        =                             (−1)m−k ,           45. (n − m)!              =                             (−1)m−k ,                 for n ≥ m,                   n
      m                    k+1         m                                  m                           k+1          m                                                             2−di ≤ 1,
               k                                                                             k
       n                           m−n           m+n       m+k                        n                           m−n             m+n            m+k                       i=1
46.                =                                           ,             47.         =                                                           ,
      n−m                          m+k           n+k        k                        n−m                          m+k             n+k             k                   and equality holds
                           k                                                                               k
        n              +m                     k        n−k     n                             n                 +m                     k     n−k           n           only if every in-
48.                                =                             ,             49.                                       =                                  .         ternal node has 2
        +m                                              m      k                             +m                                              m            k
                                       k                                                                                      k
                                                                                                                                                                      sons.

                                                                                   Recurrences
 Master method:                                                                                                                           Generating functions:
 T (n) = aT (n/b) + f (n),                 a ≥ 1, b > 1                      1 T (n) − 3T (n/2) = n                                         1. Multiply both sides of the equa-
                                                                             3 T (n/2) − 3T (n/4) = n/2                                        tion by xi .
 If ∃ > 0 such that f (n) = O(nlogb a− )
                                                                              .    .    .                                                   2. Sum both sides over all i for
 then                                                                         .    .    .
                                                                              .    .    .                                                      which the equation is valid.
           T (n) = Θ(nlogb a ).
                                                                  3log2 n−1 T (2) − 3T (1) = 2                                              3. Choose a generating function
                                                                                                                                                                        ∞
 If f (n) = Θ(nlogb a ) then                                                                                                                   G(x). Usually G(x) = i=0 xi gi .
          T (n) = Θ(nlogb a log2 n).                           Let m = log2 n. Summing the left side                                        3. Rewrite the equation in terms of
                                                               we get T (n) − 3m T (1) = T (n) − 3m =                                          the generating function G(x).
 If ∃ > 0 such that f (n) = Ω(nlogb a+ ),                      T (n) − nk where k = log2 3 ≈ 1.58496.
                                                                                                                                            4. Solve for G(x).
 and ∃c < 1 such that af (n/b) ≤ cf (n)                        Summing the right side we get
 for large n, then                                                      m−1          m−1                                                    5. The coefficient of xi in G(x) is gi .
                                                                            n i           3 i                                             Example:
             T (n) = Θ(f (n)).                                                 3 =n       2   .
                                                                        i=0
                                                                            2i        i=0
                                                                                                                                                 gi+1 = 2gi + 1, g0 = 0.
 Substitution (example): Consider the
 following recurrence                                          Let c = 3 . Then we have
                                                                       2
                                                                                                                                          Multiply and sum:
                  i
        Ti+1 = 22 · Ti2 , T1 = 2.
                                                                         m−1
                                                                                             c −1m                                               gi+1 xi =  2gi xi +                         xi .
                                                                                i
                                                                     n         c =n                                                            i≥0                   i≥0              i≥0
                                                                                              c−1
 Note that Ti is always a power of two.                                  i=0
                                                                                                                                          We choose G(x) = i≥0 xi gi . Rewrite
 Let ti = log2 Ti . Then we have                                                    = 2n(clog2 n − 1)
                                                                                                                                          in terms of G(x):
         ti+1 = 2i + 2ti , t1 = 1.
                                                                                    = 2n(c(k−1) logc n − 1)                                    G(x) − g0
                                                                                                                                                         = 2G(x) +     xi .
 Let ui = ti /2i . Dividing both sides of                                           = 2nk − 2n,                                                    x
                                                                                                                                                                                     i≥0
 the previous equation by 2i+1 we get
            ti+1      2i    ti                                 and so T (n) = 3n − 2n. Full history re-
                                                                                        k                                                 Simplify:
                  = i+1 + i .                                                                                                                    G(x)            1
           2 i+1    2       2                                  currences can often be changed to limited                                              = 2G(x) +     .
                                                               history ones (example): Consider                                                     x           1−x
 Substituting we find                                                                   i−1
       ui+1 = 1 + ui ,
               2           u1 = 1 ,
                                 2
                                                                                                                                          Solve for G(x):
                                                                         Ti = 1 +            Tj ,         T0 = 1.                                               x
                                                                                                                                                 G(x) =                  .
 which is simply ui = i/2. So we find                                                   j=0
                                                                                                                                                         (1 − x)(1 − 2x)
                                     i−1
 that Ti has the closed form Ti = 2i2 .                        Note that
                                                                                                      i                                   Expand this using partial fractions:
 Summing factors (example): Consider                                                                                                                       2        1
 the following recurrence                                                      Ti+1 = 1 +                  Tj .                             G(x) = x           −
                                                                                                                                                        1 − 2x 1 − x
    T (n) = 3T (n/2) + n, T (1) = 1.                                                                 j=0
                                                                                                                                                                          
                                                               Subtracting we find
 Rewrite so that all terms involving T                                                       i                     i−1                                = x 2               2i xi −          xi 
 are on the left side                                             Ti+1 − Ti = 1 +                    Tj − 1 −            Tj                                          i≥0             i≥0
          T (n) − 3T (n/2) = n.                                                             j=0                    j=0
                                                                                                                                                      =          i+1
                                                                                                                                                                (2         − 1)x  i+1
                                                                                                                                                                                        .
 Now expand the recurrence, and choose                                             = Ti .                                                                 i≥0
 a factor which makes the left side “tele-
 scope”                                                        And so Ti+1 = 2Ti = 2i+1 .                                                 So gi = 2i − 1.
Theoretical Computer Science Cheat Sheet
                                                                                            √                                       √
                                                                                          1+ 5                            ˆ       1− 5
          π ≈ 3.14159,          e ≈ 2.71828,             γ ≈ 0.57721,                φ=     2      ≈ 1.61803,             φ=        2        ≈ −.61803

  i             2i              pi                                   General                                                  Probability
  1             2               2        Bernoulli Numbers (Bi = 0, odd i = 1):                        Continuous distributions: If
                                                                      1         1            1                                                    b
  2             4               3         B0 = 1, B1 =       B2 =    −2,
                                                                       B4 =     6,        − 30 ,                Pr[a < X < b] =                       p(x) dx,
                                                    1          1          5
  3              8              5             B6 = 42 , B8 = − 30 , B10 = 66 .                                                                a

  4             16              7        Change of base, quadratic formula:                            then p is the probability density function of
                                                                      √                                X. If
  5             32              11                 loga x      −b ± b2 − 4ac                                        Pr[X < a] = P (a),
                                          logb x =        ,                    .
  6             64              13                 loga b              2a
                                                                                                       then P is the distribution function of X. If
  7            128              17       Euler’s number e:                                             P and p both exist then
                                                             1    1   11
  8            256              19                e=1+       2 + 24 + 120 + · · ·
                                                                  +   6
                                                                                                                                        a

                                                                x n                                                     P (a) =              p(x) dx.
  9            512              23                      lim 1 +      = ex .                                                             −∞
                                                       n→∞      n                                      Expectation: If X is discrete
 10           1,024             29                       1 n           1 n+1
                                                     1+ n <e< 1+ n            .
 11           2,048             31                                                                              E[g(X)] =               g(x) Pr[X = x].
                                                   1 n          e      11e           1                                              x
 12           4,096             37         1+         =e−          +       2
                                                                             −O               .
                                                   n           2n 24n                n3                If X continuous then
 13           8,192             41                                                                                        ∞                                ∞
                                         Harmonic numbers:
 14           16,384            43                                                                     E[g(X)] =           g(x)p(x) dx =                     g(x) dP (x).
                                          1, 3 , 11 , 25 , 137 , 49 , 363 , 761 , 7129 , . . .
                                             2    6   12    60    20 140 280 2520
                                                                                                                        −∞                              −∞
 15           32,768            47                                                                     Variance, standard deviation:
 16           65,536            53                  ln n < Hn < ln n + 1,                                      VAR[X] = E[X 2 ] − E[X]2 ,
 17          131,072            59                                     1                                             σ = VAR[X].
                                                 Hn = ln n + γ + O        .
 18          262,144            61                                     n                               For events A and B:
 19          524,288            67       Factorial, Stirling’s approximation:                           Pr[A ∨ B] = Pr[A] + Pr[B] − Pr[A ∧ B]
 20         1,048,576           71             1, 2, 6, 24, 120, 720, 5040, 40320, 362880,   ...        Pr[A ∧ B] = Pr[A] · Pr[B],
 21         2,097,152           73                                                                                 iff A and B are independent.
                                                        √ n               1
                                                                           n
 22         4,194,304           79               n! =       2πn   1+Θ           .                                      Pr[A ∧ B]
                                                          e               n                                Pr[A|B] =
 23          8,388,608          83                                                                                       Pr[B]
                                         Ackermann’s function and inverse:
                                                   
 24         16,777,216          89                                                                     For random variables X and Y :
                                                    2j                     i=1
 25         33,554,432          97        a(i, j) = a(i − 1, 2)             j=1                           E[X · Y ] = E[X] · E[Y ],
                                                   
 26         67,108,864          101                  a(i − 1, a(i, j − 1)) i, j ≥ 2                                if X and Y are independent.

 27        134,217,728          103            α(i) = min{j | a(j, j) ≥ i}.                              E[X + Y ] = E[X] + E[Y ],
                                                                                                            E[cX] = c E[X].
 28        268,435,456          107      Binomial distribution:
                                                        n k n−k                                        Bayes’ theorem:
 29        536,870,912          109      Pr[X = k] =       p q  ,                    q = 1 − p,
                                                        k                                                                Pr[B|Ai ] Pr[Ai ]
 30       1,073,741,824         113                                                                       Pr[Ai |B] = n                       .
                                                                 n                                                      j=1 Pr[Aj ] Pr[B|Aj ]
 31       2,147,483,648         127                                        n k n−k
                                                  E[X] =              k      p q   = np.               Inclusion-exclusion:
 32       4,294,967,296         131                                        k                                    n             n
                                                             k=1
                                         Poisson distribution:                                          Pr          Xi =            Pr[Xi ] +
           Pascal’s Triangle
                                                             e−λ λk                                          i=1              i=1
                     1                        Pr[X = k] =           , E[X] = λ.                                     n                                            k
                                                               k!
                 11                      Normal (Gaussian) distribution:                                                 (−1)k+1                      Pr             Xij .
                                                                                                                    k=2                 ii <···<ik           j=1
                121                                  1            2   2
                                          p(x) = √       e−(x−µ) /2σ , E[X] = µ.                       Moment inequalities:
                1331                                 2πσ
                                                                                                                                                         1
               14641                     The “coupon collector”: We are given a                                     Pr |X| ≥ λ E[X] ≤                      ,
                                         random coupon each day, and there are n                                                                         λ
             1 5 10 10 5 1                                                                                                                                     1
                                         different types of coupons. The distribu-                               Pr X − E[X] ≥ λ · σ ≤                             .
            1 6 15 20 15 6 1             tion of coupons is uniform. The expected                                                                              λ2
          1 7 21 35 35 21 7 1                                                                          Geometric distribution:
                                         number of days to pass before we to col-
                                         lect all n types is                                              Pr[X = k] = pq k−1 ,                        q = 1 − p,
         1 8 28 56 70 56 28 8 1
                                                                                                                                  ∞
      1 9 36 84 126 126 84 36 9 1                             nHn .                                                                                        1
                                                                                                                    E[X] =              kpq k−1 =            .
                                                                                                                                                           p
1 10 45 120 210 252 210 120 45 10 1                                                                                             k=1
Theoretical Computer Science Cheat Sheet
                       Trigonometry                                                              Matrices                                         More Trig.
                                                                       Multiplication:                                                                C
                                                                                                                n
                                             (0,1)
                                                                                    C = A · B,        ci,j =         ai,k bk,j .                              a
         b                                                                                                                                        b       h
                                                      (cos θ, sin θ)                                           k=1
                      C                           θ                    Determinants: det A = 0 iff A is non-singular.
     A
                             (-1,0)                    (1,0)                                                                                  A       c            B
                                                                                  det A · B = det A · det B,                                Law of cosines:
             c      a
                                                                                                                                            c2 = a2 +b2 −2ab cos C.
                                                                                                      n
                                             (0,-1)
             B                                                                       det A =              sign(π)ai,π(i) .
                                                                                                π i=1                                       Area:
Pythagorean theorem:
                C 2 = A2 + B 2 .                                       2 × 2 and 3 × 3 determinant:
                                                                                        a b                                                  A = 1 hc,
                                                                                                                                                 2
Definitions:                                                                                   = ad − bc,                                        = 1 ab sin C,
                                                                                        c d                                                       2
          sin a = A/C,         cos a = B/C,
                                                                            a b      c                                                           c2 sin A sin B
          csc a = C/A,         sec a = C/B,                                               b           c    a c    a b                           =               .
                                                                            d e      f =g               −h     +i                                    2 sin C
             sin a    A                cos a  B                                           e           f    d f    d e                       Heron’s formula:
    tan a =        = ,         cot a =       = .                            g h      i
            cos a     B                sin a  A                                                  aei + bf g + cdh                                √
Area, radius of inscribed     circle:                                                   =
                                                                                                  − ceg − f ha − ibd.                        A = s · sa · sb · sc ,
                     1          AB
                                                                       Permanents:                                                           s = 1 (a + b + c),
                     2 AB,             .                                                                                                         2
                             A+B+C                                                                          n
                                                                                                                                            sa = s − a,
Identities:                                                                            perm A =                  ai,π(i) .
                                                                                                       π i=1
                                                                                                                                            sb = s − b,
          1                                                  1
sin x =       ,                                cos x =           ,                      Hyperbolic Functions                                sc = s − c.
        csc x                                              sec x
            1                                                          Definitions:                                                          More identities:
tan x =        ,                        sin2 x + cos2 x = 1,
         cot x                                                                  ex − e−x                        e +e   x      −x
                                                                                                                                                        1 − cos x
                                                                       sinh x =           ,            cosh x =           ,                  sin x =                   ,
1 + tan2 x = sec2 x,                   1 + cot2 x = csc2 x,                          2
                                                                                       −x
                                                                                                                     2                           2            2
                                                                                e −e
                                                                                 x
                                                                                                                   1
                                                                       tanh x = x         ,            csch x =        ,                                1 + cos x
sin x = cos      π
                 2   −x ,               sin x = sin(π − x),                     e + e−x                         sinh x                      cos x =
                                                                                                                                                 2                     ,
                                                                                   1                               1                                          2
                                                                       sech x =        ,               coth x =         .
cos x = − cos(π − x),                 tan x = cot      π
                                                       2   −x ,                 cosh x                          tanh x                                  1 − cos x
                                                                                                                                            tan x =
                                                                                                                                                 2                     ,
                                                                       Identities:                                                                      1 + cos x
cot x = − cot(π − x),                 csc x = cot x − cot x,
                                                  2                                                                                                  1 − cos x
                                                                       cosh2 x − sinh2 x = 1,              tanh2 x + sech2 x = 1,                  =
                                                                                                                                                       sin x
                                                                                                                                                                  ,
sin(x ± y) = sin x cos y ± cos x sin y,
                                                                                                                                                       sin x
                                                                       coth2 x − csch2 x = 1,               sinh(−x) = − sinh x,                   =              ,
cos(x ± y) = cos x cos y       sin x sin y,                                                                                                          1 + cos x
                                                                       cosh(−x) = cosh x,                  tanh(−x) = − tanh x,                         1 + cos x
              tan x ± tan y                                                                                                                 cot x =                    ,
tan(x ± y) =                  ,                                                                                                                  2      1 − cos x
             1 tan x tan y                                             sinh(x + y) = sinh x cosh y + cosh x sinh y,
                                                                                                                                                     1 + cos x
             cot x cot y 1                                                                                                                         =              ,
cot(x ± y) =                ,                                          cosh(x + y) = cosh x cosh y + sinh x sinh y,                                    sin x
              cot x ± cot y                                                                                                                            sin x
                                                  2 tan x              sinh 2x = 2 sinh x cosh x,                                                  =              ,
sin 2x = 2 sin x cos x,                sin 2x =
                                                1 + tan2 x
                                                           ,                                                                                         1 − cos x
                                                                       cosh 2x = cosh2 x + sinh2 x,                                                  eix − e−ix
cos 2x = cos2 x − sin2 x,             cos 2x = 2 cos2 x − 1,                                                                                 sin x =                ,
                                                                                                                                                           2i
                                                  1 − tan2 x           cosh x + sinh x = ex ,              cosh x − sinh x = e−x ,                   eix + e−ix
cos 2x = 1 − 2 sin2 x,                cos 2x =               ,
                                                  1 + tan2 x                                                                                 cos x =                ,
                                                                       (cosh x + sinh x)n = cosh nx + sinh nx,                     n ∈ Z,                  2
            2 tan x                      cot2 x − 1                                                                                                     eix − e−ix
tan 2x =          2 ,          cot 2x =             ,                  2 sinh2 x    = cosh x − 1,         2 cosh2 x        = cosh x + 1.    tan x = −i ix                ,
          1 − tan x                        2 cot x                             2                                  2                                     e + e−ix
sin(x + y) sin(x − y) = sin2 x − sin2 y,                                                                                                                e2ix − 1
                                                                        θ    sin θ    cos θ    tan θ            . . . in mathematics               = −i 2ix          ,
                                                                                                                                                        e +1
cos(x + y) cos(x − y) = cos2 x − sin2 y.                                                                        you don’t under-                     sinh ix
                                                                        0     0        √
                                                                                        1       √
                                                                                                 0                                           sin x =           ,
                                                                        π      1         3        3             stand things, you                        i
Euler’s equation:                                                       6      2       2         3
                                                                              √        √                        just get used to
        eix = cos x + i sin x,           eiπ
                                               = −1.                    π       2        2
                                                                                                                                             cos x = cosh ix,
                                                                        4      2       2       1                them.
            v2.02 c 1994 by Steve Seiden                                π
                                                                              √
                                                                                3      1
                                                                                               √                – J. von Neumann            tan x =
                                                                                                                                                     tanh ix
                                                                                                                                                                .
                                                                        3      2       2         3                                                       i
                 sseiden@acm.org                                        π
                                                                        2     1         0      ∞
         http://www.csc.lsu.edu/~seiden
Theoretical Computer Science Cheat Sheet
              Number Theory                                                              Graph Theory
The Chinese remainder theorem: There ex-             Definitions:                                      Notation:
ists a number C such that:                           Loop           An edge connecting a ver-         E(G) Edge set
                                                                    tex to itself.                    V (G) Vertex set
              C ≡ r1 mod m1                                                                           c(G)    Number of components
                                                     Directed       Each edge has a direction.
               . .
               . .   .
                     .                               Simple         Graph with no loops or            G[S]    Induced subgraph
               . .   .
                                                                    multi-edges.                      deg(v) Degree of v
              C ≡ rn mod mn                                                                           ∆(G) Maximum degree
                                                     Walk           A sequence v0 e1 v1 . . . e v .
if mi and mj are relatively prime for i = j.         Trail          A walk with distinct edges.       δ(G)    Minimum degree
                                                     Path           A trail with distinct             χ(G) Chromatic number
Euler’s function: φ(x) is the number of
                                                                    vertices.                         χE (G) Edge chromatic number
positive integers less than x relatively
                   n                                 Connected      A graph where there exists        Gc      Complement graph
prime to x. If i=1 pei is the prime fac-
                       i
                                                                    a path between any two            Kn      Complete graph
torization of x then
                      n
                                                                    vertices.                         Kn1 ,n2 Complete bipartite graph
           φ(x) =         pi i −1 (pi − 1).
                           e
                                                     Component      A maximal connected
                                                                                                      r(k, ) Ramsey number
                    i=1
                                                                    subgraph.                                       Geometry
Euler’s theorem: If a and b are relatively           Tree           A connected acyclic graph.
prime then                                                                                            Projective coordinates: triples
                                                     Free tree      A tree with no root.
             1 ≡ aφ(b) mod b.                                                                         (x, y, z), not all x, y and z zero.
                                                     DAG            Directed acyclic graph.
                                                     Eulerian       Graph with a trail visiting        (x, y, z) = (cx, cy, cz) ∀c = 0.
Fermat’s theorem:
                                                                    each edge exactly once.           Cartesian        Projective
            1 ≡ ap−1 mod p.
                                                     Hamiltonian    Graph with a cycle visiting       (x, y)          (x, y, 1)
The Euclidean algorithm: if a > b are in-                           each vertex exactly once.         y = mx + b (m, −1, b)
tegers then                                          Cut            A set of edges whose re-          x=c             (1, 0, −c)
        gcd(a, b) = gcd(a mod b, b).                                moval increases the num-          Distance formula, Lp and L∞
       n
If i=1 pei is the prime factorization of x                          ber of components.                metric:
        i
then                                                 Cut-set        A minimal cut.                           (x1 − x0 )2 + (y1 − y0 )2 ,
                          pi i +1 − 1
                       n   e                         Cut edge       A size 1 cut.                                                        1/p
     S(x) =       d=                  .              k-Connected    A graph connected with                |x1 − x0 |p + |y1 − y0 |p            ,
                            pi − 1
                d|x   i=1                                           the removal of any k − 1           lim |x1 − x0 |p + |y1 − y0 |       p 1/p
                                                                                                                                                   .
Perfect Numbers: x is an even perfect num-                          vertices.                          p→∞

ber iff x = 2n−1 (2n −1) and 2n −1 is prime.          k-Tough        ∀S ⊆ V, S = ∅ we have             Area of triangle (x0 , y0 ), (x1 , y1 )
Wilson’s theorem: n is a prime iff                                   k · c(G − S) ≤ |S|.               and (x2 , y2 ):
           (n − 1)! ≡ −1 mod n.                      k-Regular      A graph where all vertices           1        x1 − x0 y1 − y0
                                                                                                         2 abs x − x                  .
                                                                    have degree k.                                  2   0 y2 − y0
M¨bius 
  o     inversion:                                   k-Factor       A k-regular spanning
        1         if i = 1.                                                                          Angle formed by three points:
                                                                   subgraph.
          0        if i is not square-free.
 µ(i) =                                              Matching       A set of edges, no two of
        
         (−1)r if i is the product of                                                                                            (x2 , y2 )
                   r distinct primes.                               which are adjacent.
                                                                                                                            2
                                                     Clique         A set of vertices, all of
If                                                                                                                   θ
                                                                    which are adjacent.
              G(a) =              F (d),                                                                       (0, 0)       1      (x1 , y1 )
                                                     Ind. set       A set of vertices, none of
                            d|a
                                                                    which are adjacent.                             (x1 , y1 ) · (x2 , y2 )
                                                                                                           cos θ =                          .
then                                                 Vertex cover   A set of vertices which                                     1 2
                                       a
           F (a) =          µ(d)G        .                          cover all edges.                  Line through two points (x0 , y0 )
                                       d
                      d|a                            Planar graph   A graph which can be em-          and (x1 , y1 ):
Prime numbers:                                                      beded in the plane.                         x y 1
                                      ln ln n        Plane graph    An embedding of a planar                   x0 y0 1 = 0.
    pn = n ln n + n ln ln n − n + n
                                       ln n                         graph.                                     x1 y1 1
                   n                                                                                  Area of circle, volume of sphere:
           +O            ,                                             deg(v) = 2m.
                  ln n                                                                                     A = πr2 ,         V = 4 πr3 .
                                                                 v∈V                                                             3
          n         n           2!n
 π(n) =       +            +                         If G is planar then n − m + f = 2, so
         ln n (ln n)2         (ln n)3                                                                 If I have seen farther than others,
                                                           f ≤ 2n − 4, m ≤ 3n − 6.                    it is because I have stood on the
                     n
           +O                .                       Any planar graph has a vertex with de-           shoulders of giants.
                  (ln n)4
                                                     gree ≤ 5.                                        – Issac Newton
Theoretical Computer Science Cheat Sheet
                                π                                                                                    Calculus
Wallis’ identity:                                                         Derivatives:
                2 · 2 · 4 · 4 · 6 · 6···
        π =2·                                                                   d(cu)   du                    d(u + v)   du dv                            d(uv)    dv   du
                1 · 3 · 3 · 5 · 5 · 7···                                  1.          =c ,              2.             =    +    ,                   3.         =u    +v ,
                                                                                 dx     dx                       dx      dx dx                             dx      dx   dx
Brouncker’s continued fraction expansion:
                            12                                                  d(un )        du                d(u/v)    v du − u          dv
                                                                                                                                                                d(ecu )       du
          π                                                               4.           = nun−1 ,             5.        =    dx              dx
                                                                                                                                                 ,         6.           = cecu ,
          4 =1+                32                                                dx           dx                  dx           v2                                 dx          dx
                    2+           52
                                     2+
                                            2+    72                            d(cu )           du                                                                 d(ln u)   1 du
                                                 2+···
                                                                          7.           = (ln c)cu ,                                                            8.           =      ,
                                                                                 dx              dx                                                                   dx      u dx
Gregrory’s series:
                1               1       1         1
      4 =1− 3 +                     −                  − ···
      π
                                            +                                   d(sin u)        du                                                        d(cos u)          du
                                5       7         9                       9.             = cos u ,                                               10.               = − sin u ,
                                                                                  dx            dx                                                           dx             dx
Newton’s series:
                                                                                 d(tan u)         du                                                       d(cot u)         du
       1        1          1·3                                            11.             = sec2 u ,                                             12.                = csc2 u ,
                                                                                    dx            dx                                                          dx            dx
  6 = 2 + 2 · 3 · 23 + 2 · 4 · 5 · 25 + · · ·
  π

                                                                                 d(sec u)              du                                    d(csc u)                du
Sharp’s series:                                                           13.             = tan u sec u ,                             14.             = − cot u csc u ,
                                                                                    dx                 dx                                      dx                    dx
       1    1    1    1                                                       d(arcsin u)      1     du                                    d(arccos u)      −1 du
π
    = √ 1− 1  + 2  − 3   +···                                             15.             =√            ,                              16.             =√            ,
6         3 ·3 3 ·5 3 ·7                                                          dx          1−u  2 dx                                        dx          1 − u2 dx
        3
Euler’s series:                                                               d(arctan u)      1 du                                          d(arccot u)     −1 du
                                                                          17.             =           ,                                  18.             =           ,
                                                                                  dx        1 + u2 dx                                            dx        1 + u2 dx
     π2       1        1        1           1          1
      6   =   12   +   22   +   32   +      42   +     52   + ···             d(arcsec u)       1    du                                      d(arccsc u)      −1      du
     π2       1        1        1           1          1
                                                                          19.             = √           ,                            20.                 = √             ,
                                                                                            u 1−u  2 dx                                                    u 1−u    2 dx
      8   =   12   +   32   +   52   +      72   +     92   + ···                 dx                                                             dx
     π2       1        1        1           1          1                      d(sinh u)         du                                                 d(cosh u)          du
     12   =   12   −   22   +   32   −      42   +     52   − ···         21.           = cosh u ,                                            22.            = sinh u ,
                                                                                 dx             dx                                                     dx             dx
                   Partial Fractions                                             d(tanh u)          du                                            d(coth u)            du
                                                                          23.              = sech2 u ,                                   24.                = − csch2 u ,
Let N (x) and D(x) be polynomial func-                                              dx              dx                                               dx                dx
tions of x.        We can break down                                             d(sech u)                  du                         d(csch u)                  du
N (x)/D(x) using partial fraction expan-                                  25.              = − sech u tanh u ,                  26.              = − csch u coth u ,
                                                                                    dx                      dx                            dx                      dx
sion. First, if the degree of N is greater
than or equal to the degree of D, divide                                      d(arcsinh u)      1     du                                 d(arccosh u)      1     du
                                                                          27.              =√            ,                           28.              =√            ,
                                                                                   dx          1+u  2 dx                                      dx         u 2 − 1 dx
N by D, obtaining
         N (x)             N (x)                                              d(arctanh u)      1 du                                       d(arccoth u)      1 du
                 = Q(x) +        ,                                        29.              =           ,                               30.              = 2         ,
         D(x)              D(x)                                                    dx        1 − u2 dx                                          dx       u − 1 dx
where the degree of N is less than that of                                     d(arcsech u)     −1    du                                d(arccsch u)       −1     du
                                                                          31.               = √          ,                       32.                 =    √          .
D. Second, factor D(x). Use the follow-                                              dx      u 1 − u2 dx                                     dx        |u| 1 + u2 dx
ing rules: For a non-repeated factor:                                     Integrals:
         N (x)         A      N (x)
                   =       +        ,
     (x − a)D(x)     x−a       D(x)                                       1.      cu dx = c    u dx,                            2.      (u + v) dx =                 u dx +        v dx,
where
                            N (x)                                                            1                                       1
                   A=                              .                      3.      xn dx =       xn+1 ,        n = −1,      4.          dx = ln x,               5.       ex dx = ex ,
                            D(x)         x=a
                                                                                            n+1                                      x
For a repeated factor:                                                              dx                                                               dv                           du
                                                                          6.             = arctan x,                                   7.        u      dx = uv −             v      dx,
    N (x)
                 m−1
                           Ak      N (x)                                          1 + x2                                                             dx                           dx
               =                 +       ,
(x − a)m D(x)          (x − a)m−k D(x)                                    8.      sin x dx = − cos x,                                                     9.        cos x dx = sin x,
                            k=0

where
                   1 dk              N (x)                                10.      tan x dx = − ln | cos x|,                                 11.           cot x dx = ln | cos x|,
          Ak =                                               .
                   k! dxk            D(x)              x=a

                                                                          12.      sec x dx = ln | sec x + tan x|,               13.         csc x dx = ln | csc x + cot x|,
The reasonable man adapts himself to the
world; the unreasonable persists in trying
to adapt the world to himself. Therefore                                  14.      arcsin x dx = arcsin x +
                                                                                          a             a          a2 − x2 ,    a > 0,
all progress depends on the unreasonable.
– George Bernard Shaw
Theoretical Computer Science Cheat Sheet
                                                                                        Calculus Cont.

15.   arccos x dx = arccos x −
             a             a                       a2 − x2 ,          a > 0,                               16.         arctan x dx = x arctan x −
                                                                                                                              a               a
                                                                                                                                                             a
                                                                                                                                                             2   ln(a2 + x2 ),        a > 0,

17.   sin2 (ax)dx =                1
                                  2a   ax − sin(ax) cos(ax) ,                                                                18.      cos2 (ax)dx =     1
                                                                                                                                                       2a    ax + sin(ax) cos(ax) ,

19.   sec2 x dx = tan x,                                                                                                                             20.             csc2 x dx = − cot x,

                               sinn−1 x cos x n − 1                                                                                      cosn−1 x sin x n − 1
21.   sinn x dx = −                          +                         sinn−2 x dx,                        22.         cosn x dx =                     +                       cosn−2 x dx,
                                     n          n                                                                                             n           n
                              tann−1 x                                                                                                     cotn−1 x
23.   tann x dx =                      −           tann−2 x dx,             n = 1,                           24.        cotn x dx = −               −            cotn−2 x dx,         n = 1,
                                n−1                                                                                                         n−1
                              tan x secn−1 x n − 2
25.   secn x dx =                           +                         secn−2 x dx,           n = 1,
                                  n−1         n−1
                               cot x cscn−1 x n − 2
26.   cscn x dx = −                          +                         cscn−2 x dx,               n = 1,         27.     sinh x dx = cosh x,          28.            cosh x dx = sinh x,
                                   n−1         n−1

29.   tanh x dx = ln | cosh x|, 30.                       coth x dx = ln | sinh x|, 31.                    sech x dx = arctan sinh x, 32.                   csch x dx = ln tanh x ,
                                                                                                                                                                                2


33.   sinh2 x dx =            1
                              4   sinh(2x) − 1 x,
                                             2                                 34.       cosh2 x dx =        1
                                                                                                             4   sinh(2x) + 1 x,
                                                                                                                            2                        35.          sech2 x dx = tanh x,

36.   arcsinh x dx = x arcsinh x −
              a                a                          x2 + a2 ,        a > 0,                                      37.         arctanh x dx = x arctanh x +
                                                                                                                                           a                a
                                                                                                                                                                           a
                                                                                                                                                                           2   ln |a2 − x2 |,
                               x
                      x arccosh − x2 + a2 , if arccosh x > 0 and a > 0,
                                                        a
38.           x
      arccosh a dx =            a
                                x
                      x arccosh + x2 + a2 , if arccosh x < 0 and a > 0,
                                a                       a

          dx
39.   √          = ln x + a2 + x2 , a > 0,
        a2 + x2
         dx       1                                                                                                                                               a2
40.           = a arctan x , a > 0,                            41.       a2 − x2 dx =                                                       x
                                                                                                                                            2    a2 − x2 +        2    arcsin x ,     a > 0,
      a2 + x2             a                                                                                                                                                   a


                                                                                3a4
42.   (a2 − x2 )3/2 dx = x (5a2 − 2x2 ) a2 − x2 +
                         8                                                       8    arcsin x ,
                                                                                             a       a > 0,

               dx                                                                           dx      1    a+x                                             dx            x
43.   √              = arcsin x ,                a > 0,                    44.                   =    ln     ,                             45.                    = √         ,
          a2    − x2          a                                                        a2   −x 2   2a    a−x                                       (a2   −x2 )3/2
                                                                                                                                                                   a2 a2 − x2

                                                        a2                                                                           dx
46.           a2 ± x2 dx =         x
                                   2     a2 ± x2 ±      2    ln x +            a2 ± x2 ,                                 47.     √          = ln x + x2 − a2 , a > 0,
                                                                                                                                   x2 − a2

         dx       1     x                                                                                                          √              2(3bx − 2a)(a + bx)3/2
48.             = ln         ,                                                                                            49.    x a + bx dx =                           ,
      ax2 + bx    a   a + bx                                                                                                                               15b2
      √                                                                                                                                         √          √
        a + bx       √                1                                                                                       x           1       a + bx − a
50.            dx = 2 a + bx + a    √       dx,                                                                  51.      √        dx = √ ln √             √ , a > 0,
          x                        x a + bx                                                                                 a + bx         2      a + bx + a
      √                                 √
        a2 − x2                     a + a2 − x2
52.             dx = a2 − x2 − a ln             ,                                                                                    53.       x a2 − x2 dx = − 1 (a2 − x2 )3/2 ,
                                                                                                                                                                3
          x                               x
                                                                                                                                                                               √
          2                                  2      2                          a4                                                                dx        1    a+                 a2 − x2
54.   x         a2   −   x2   dx =      x
                                        8 (2x    −a )        a2   −   x2   +   8    arcsin   x
                                                                                             a,     a > 0,                         55.     √           = − a ln                            ,
                                                                                                                                               a2 − x2                             x
         x dx                                                                                                             x2 dx                    2
56.   √         = − a2 − x2 ,                                                                                57.        √         = − x a2 − x2 + a arcsin a,
                                                                                                                                      2           2
                                                                                                                                                             x
                                                                                                                                                                                      a > 0,
        a2 − x2                                                                                                           a2 − x2
      √                                √                                                                                √
        a2 + x2       2 + x2 − a ln
                                    a + a2 + x2                                                                          x2 − a2
58.             dx = a                          ,                                                            59.                  dx = x2 − a2 − a arccos |x| ,
                                                                                                                                                           a
                                                                                                                                                                                      a > 0,
          x                              x                                                                                  x
                                                                                                                                              dx                                   x
60.   x        x2 ± a2 dx = 1 (x2 ± a2 )3/2 ,
                            3                                                                                                      61.      √        =           1
                                                                                                                                                                     ln        √           ,
                                                                                                                                           x x2 + a2             a
                                                                                                                                                                          a+       a2 + x2
Formulario de matematicas
Formulario de matematicas
Formulario de matematicas

Weitere ähnliche Inhalte

Was ist angesagt?

กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
tuiye
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
Namit Kotiya
 
Bayesian Methods for Machine Learning
Bayesian Methods for Machine LearningBayesian Methods for Machine Learning
Bayesian Methods for Machine Learning
butest
 
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
كتيب   ملخصات دروس للرياضيات السنة الثانية ثانوي 2كتيب   ملخصات دروس للرياضيات السنة الثانية ثانوي 2
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
math44
 

Was ist angesagt? (17)

กลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Pptกลศาสตร์เพิ่มเติม Ppt
กลศาสตร์เพิ่มเติม Ppt
 
Mesh Processing Course : Differential Calculus
Mesh Processing Course : Differential CalculusMesh Processing Course : Differential Calculus
Mesh Processing Course : Differential Calculus
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 
1
11
1
 
Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009Markov Tutorial CDC Shanghai 2009
Markov Tutorial CDC Shanghai 2009
 
Xi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulaeXi maths ch3_trigo_func_formulae
Xi maths ch3_trigo_func_formulae
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Appendices
AppendicesAppendices
Appendices
 
Table 7a,7b kft 131
Table 7a,7b  kft 131Table 7a,7b  kft 131
Table 7a,7b kft 131
 
Bayesian Methods for Machine Learning
Bayesian Methods for Machine LearningBayesian Methods for Machine Learning
Bayesian Methods for Machine Learning
 
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
كتيب   ملخصات دروس للرياضيات السنة الثانية ثانوي 2كتيب   ملخصات دروس للرياضيات السنة الثانية ثانوي 2
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
 
rinko2011-agh
rinko2011-aghrinko2011-agh
rinko2011-agh
 
rinko2010
rinko2010rinko2010
rinko2010
 
Ism et chapter_2
Ism et chapter_2Ism et chapter_2
Ism et chapter_2
 

Andere mochten auch (8)

Transformada de Fourrier
Transformada de FourrierTransformada de Fourrier
Transformada de Fourrier
 
Trigo Sheet Cheat :D
Trigo Sheet Cheat :DTrigo Sheet Cheat :D
Trigo Sheet Cheat :D
 
Trigonometry cheat sheet
Trigonometry cheat sheetTrigonometry cheat sheet
Trigonometry cheat sheet
 
Kodar-lan Raspberry Pi I/O - Cheat-Sheet elektronik
Kodar-lan Raspberry Pi I/O - Cheat-Sheet elektronikKodar-lan Raspberry Pi I/O - Cheat-Sheet elektronik
Kodar-lan Raspberry Pi I/O - Cheat-Sheet elektronik
 
Transformada de Fourier
Transformada de FourierTransformada de Fourier
Transformada de Fourier
 
Law of sine and cosines
Law of sine and cosinesLaw of sine and cosines
Law of sine and cosines
 
Trig cheat sheet
Trig cheat sheetTrig cheat sheet
Trig cheat sheet
 
Reglas de derivadas e integrales
Reglas de derivadas e integralesReglas de derivadas e integrales
Reglas de derivadas e integrales
 

Ähnlich wie Formulario de matematicas

2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
Algebra formulae
Algebra formulaeAlgebra formulae
Algebra formulae
Tamizhmuhil
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
zabidah awang
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
zabidah awang
 
數學測試
數學測試數學測試
數學測試
s9007912
 
Copy of appendices
Copy of appendicesCopy of appendices
Copy of appendices
Chethan Nt
 

Ähnlich wie Formulario de matematicas (20)

Fourier series
Fourier seriesFourier series
Fourier series
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
Algebra formulae
Algebra formulaeAlgebra formulae
Algebra formulae
 
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 20102 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
 
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 20102 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
數學測試
數學測試數學測試
數學測試
 
Copy of appendices
Copy of appendicesCopy of appendices
Copy of appendices
 
An engineer 1+1=2
An engineer 1+1=2An engineer 1+1=2
An engineer 1+1=2
 
Computer science-formulas
Computer science-formulasComputer science-formulas
Computer science-formulas
 
Mth3101 Advanced Calculus Chapter 2
Mth3101 Advanced Calculus Chapter 2Mth3101 Advanced Calculus Chapter 2
Mth3101 Advanced Calculus Chapter 2
 
Number theory lecture (part 1)
Number theory lecture (part 1)Number theory lecture (part 1)
Number theory lecture (part 1)
 
S 7
S 7S 7
S 7
 
Dr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabistDr hasany 2467_16649_1_lec-2-zabist
Dr hasany 2467_16649_1_lec-2-zabist
 
2_Asymptotic notations.pptx
2_Asymptotic notations.pptx2_Asymptotic notations.pptx
2_Asymptotic notations.pptx
 
one + 1
one + 1one + 1
one + 1
 
Asymptotic notation
Asymptotic notationAsymptotic notation
Asymptotic notation
 
Master method
Master methodMaster method
Master method
 
Number theory lecture (part 2)
Number theory lecture (part 2)Number theory lecture (part 2)
Number theory lecture (part 2)
 

Kürzlich hochgeladen

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
giselly40
 

Kürzlich hochgeladen (20)

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

Formulario de matematicas

  • 1. Theoretical Computer Science Cheat Sheet Definitions Series f (n) = O(g(n)) iff ∃ positive c, n0 such that n n n n(n + 1) n(n + 1)(2n + 1) n2 (n + 1)2 0 ≤ f (n) ≤ cg(n) ∀n ≥ n0 . i= , i2 = , i3 = . i=1 2 i=1 6 i=1 4 f (n) = Ω(g(n)) iff ∃ positive c, n0 such that In general: f (n) ≥ cg(n) ≥ 0 ∀n ≥ n0 . n n 1 f (n) = Θ(g(n)) iff f (n) = O(g(n)) and im = (n + 1)m+1 − 1 − (i + 1)m+1 − im+1 − (m + 1)im i=1 m+1 i=1 f (n) = Ω(g(n)). n−1 m 1 m+1 f (n) = o(g(n)) iff limn→∞ f (n)/g(n) = 0. im = Bk nm+1−k . i=1 m+1 k k=0 lim an = a iff ∀ > 0, ∃n0 such that n→∞ Geometric series: |an − a| < , ∀n ≥ n0 . n ∞ ∞ cn+1 − 1 1 c sup S least b ∈ R such that b ≥ s, ci = , c = 1, ci = , ci = , |c| < 1, c−1 1−c 1−c ∀s ∈ S. i=0 i=0 i=1 n ∞ ncn+2 − (n + 1)cn+1 + c c inf S greatest b ∈ R such that b ≤ ici = , c = 1, ici = , |c| < 1. s, ∀s ∈ S. i=0 (c − 1)2 i=0 (1 − c)2 Harmonic series: lim inf an lim inf{ai | i ≥ n, i ∈ N}. n n n→∞ n→∞ 1 n(n + 1) n(n − 1) Hn = , iHi = Hn − . lim sup an lim sup{ai | i ≥ n, i ∈ N}. i=1 i i=1 2 4 n→∞ n→∞ n n n i n+1 1 k Combinations: Size k sub- Hi = (n + 1)Hn − n, Hi = Hn+1 − . sets of a size n set. i=1 i=1 m m+1 m+1 n n Stirling numbers (1st kind): n n! n n n k Arrangements of an n ele- 1. = , 2. = 2n , 3. = , k (n − k)!k! k k n−k k=0 ment set into k cycles. n n n−1 n n−1 n−1 n 4. = , 5. = + , k Stirling numbers (2nd kind): k k k−1 k k k−1 Partitions of an n element n m n n−k n r+k r+n+1 set into k non-empty sets. 6. = , 7. = , m k k m−k k n n k=0 1st order Eulerian numbers: n n k k n+1 r s r+s Permutations π1 π2 . . . πn on 8. = , 9. = , m m+1 k n−k n {1, 2, . . . , n} with k ascents. k=0 k=0 n k−n−1 n n n 2nd order Eulerian numbers. 10. = (−1) k , 11. = = 1, k k k 1 n Cn Catalan Numbers: Binary n n−1 n n−1 trees with n + 1 vertices. 12. = 2n−1 − 1, , 13. =k + 2 k−1 k k n n n n n 14. = (n − 1)!, 15. = (n − 1)!Hn−1 , 16. = 1, 17. ≥ , 1 2 n k k n n n−1 n−1 n n n n 1 2n 18. = (n − 1) + , 19. = = , 20. = n!, 21. Cn = , k k k−1 n−1 n−1 2 k n+1 n k=0 n n n n n n−1 n−1 22. = = 1, 23. = , 24. = (k + 1) + (n − k) , 0 n−1 k n−1−k k k k−1 0 1 if k = 0, n n n+1 25. = 26. = 2n − n − 1, 27. = 3n − (n + 1)2n + , k 0 otherwise 1 2 2 n m n n x+k n n+1 n n k 28. xn = , 29. = (m + 1 − k)n (−1)k , 30. m! = , k n m k m k n−m k=0 k=0 k=0 n n n n−k n n 31. = (−1)n−k−m k!, 32. = 1, 33. = 0 for n = 0, m k m 0 n k=0 n n n−1 n−1 n (2n)n 34. = (k + 1) + (2n − 1 − k) , 35. = , k k k−1 k 2n k=0 n n x n x+n−1−k n+1 n k k 36. = , 37. = = (m + 1)n−k , x−n k 2n m+1 k m m k=0 k k=0
  • 2. Theoretical Computer Science Cheat Sheet Identities Cont. Trees n n n n+1 n k k n−k 1 k x n x+k Every tree with n 38. = = n = n! , 39. = , vertices has n − 1 m+1 k m m k! m x−n k 2n k k=0 k=0 k=0 edges. n n k+1 n n+1 k 40. = (−1)n−k , 41. = (−1)m−k , Kraft inequal- m k m+1 m k+1 m k k ity: If the depths m m m+n+1 n+k m+n+1 n+k of the leaves of 42. = k , 43. = k(n + k) , m k m k a binary tree are k=0 k=0 n n+1 k n n+1 k d1 , . . . , dn : 44. = (−1)m−k , 45. (n − m)! = (−1)m−k , for n ≥ m, n m k+1 m m k+1 m 2−di ≤ 1, k k n m−n m+n m+k n m−n m+n m+k i=1 46. = , 47. = , n−m m+k n+k k n−m m+k n+k k and equality holds k k n +m k n−k n n +m k n−k n only if every in- 48. = , 49. = . ternal node has 2 +m m k +m m k k k sons. Recurrences Master method: Generating functions: T (n) = aT (n/b) + f (n), a ≥ 1, b > 1 1 T (n) − 3T (n/2) = n 1. Multiply both sides of the equa- 3 T (n/2) − 3T (n/4) = n/2 tion by xi . If ∃ > 0 such that f (n) = O(nlogb a− ) . . . 2. Sum both sides over all i for then . . . . . . which the equation is valid. T (n) = Θ(nlogb a ). 3log2 n−1 T (2) − 3T (1) = 2 3. Choose a generating function ∞ If f (n) = Θ(nlogb a ) then G(x). Usually G(x) = i=0 xi gi . T (n) = Θ(nlogb a log2 n). Let m = log2 n. Summing the left side 3. Rewrite the equation in terms of we get T (n) − 3m T (1) = T (n) − 3m = the generating function G(x). If ∃ > 0 such that f (n) = Ω(nlogb a+ ), T (n) − nk where k = log2 3 ≈ 1.58496. 4. Solve for G(x). and ∃c < 1 such that af (n/b) ≤ cf (n) Summing the right side we get for large n, then m−1 m−1 5. The coefficient of xi in G(x) is gi . n i 3 i Example: T (n) = Θ(f (n)). 3 =n 2 . i=0 2i i=0 gi+1 = 2gi + 1, g0 = 0. Substitution (example): Consider the following recurrence Let c = 3 . Then we have 2 Multiply and sum: i Ti+1 = 22 · Ti2 , T1 = 2. m−1 c −1m gi+1 xi = 2gi xi + xi . i n c =n i≥0 i≥0 i≥0 c−1 Note that Ti is always a power of two. i=0 We choose G(x) = i≥0 xi gi . Rewrite Let ti = log2 Ti . Then we have = 2n(clog2 n − 1) in terms of G(x): ti+1 = 2i + 2ti , t1 = 1. = 2n(c(k−1) logc n − 1) G(x) − g0 = 2G(x) + xi . Let ui = ti /2i . Dividing both sides of = 2nk − 2n, x i≥0 the previous equation by 2i+1 we get ti+1 2i ti and so T (n) = 3n − 2n. Full history re- k Simplify: = i+1 + i . G(x) 1 2 i+1 2 2 currences can often be changed to limited = 2G(x) + . history ones (example): Consider x 1−x Substituting we find i−1 ui+1 = 1 + ui , 2 u1 = 1 , 2 Solve for G(x): Ti = 1 + Tj , T0 = 1. x G(x) = . which is simply ui = i/2. So we find j=0 (1 − x)(1 − 2x) i−1 that Ti has the closed form Ti = 2i2 . Note that i Expand this using partial fractions: Summing factors (example): Consider 2 1 the following recurrence Ti+1 = 1 + Tj . G(x) = x − 1 − 2x 1 − x T (n) = 3T (n/2) + n, T (1) = 1. j=0   Subtracting we find Rewrite so that all terms involving T i i−1 = x 2 2i xi − xi  are on the left side Ti+1 − Ti = 1 + Tj − 1 − Tj i≥0 i≥0 T (n) − 3T (n/2) = n. j=0 j=0 = i+1 (2 − 1)x i+1 . Now expand the recurrence, and choose = Ti . i≥0 a factor which makes the left side “tele- scope” And so Ti+1 = 2Ti = 2i+1 . So gi = 2i − 1.
  • 3. Theoretical Computer Science Cheat Sheet √ √ 1+ 5 ˆ 1− 5 π ≈ 3.14159, e ≈ 2.71828, γ ≈ 0.57721, φ= 2 ≈ 1.61803, φ= 2 ≈ −.61803 i 2i pi General Probability 1 2 2 Bernoulli Numbers (Bi = 0, odd i = 1): Continuous distributions: If 1 1 1 b 2 4 3 B0 = 1, B1 = B2 = −2, B4 = 6, − 30 , Pr[a < X < b] = p(x) dx, 1 1 5 3 8 5 B6 = 42 , B8 = − 30 , B10 = 66 . a 4 16 7 Change of base, quadratic formula: then p is the probability density function of √ X. If 5 32 11 loga x −b ± b2 − 4ac Pr[X < a] = P (a), logb x = , . 6 64 13 loga b 2a then P is the distribution function of X. If 7 128 17 Euler’s number e: P and p both exist then 1 1 11 8 256 19 e=1+ 2 + 24 + 120 + · · · + 6 a x n P (a) = p(x) dx. 9 512 23 lim 1 + = ex . −∞ n→∞ n Expectation: If X is discrete 10 1,024 29 1 n 1 n+1 1+ n <e< 1+ n . 11 2,048 31 E[g(X)] = g(x) Pr[X = x]. 1 n e 11e 1 x 12 4,096 37 1+ =e− + 2 −O . n 2n 24n n3 If X continuous then 13 8,192 41 ∞ ∞ Harmonic numbers: 14 16,384 43 E[g(X)] = g(x)p(x) dx = g(x) dP (x). 1, 3 , 11 , 25 , 137 , 49 , 363 , 761 , 7129 , . . . 2 6 12 60 20 140 280 2520 −∞ −∞ 15 32,768 47 Variance, standard deviation: 16 65,536 53 ln n < Hn < ln n + 1, VAR[X] = E[X 2 ] − E[X]2 , 17 131,072 59 1 σ = VAR[X]. Hn = ln n + γ + O . 18 262,144 61 n For events A and B: 19 524,288 67 Factorial, Stirling’s approximation: Pr[A ∨ B] = Pr[A] + Pr[B] − Pr[A ∧ B] 20 1,048,576 71 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, ... Pr[A ∧ B] = Pr[A] · Pr[B], 21 2,097,152 73 iff A and B are independent. √ n 1 n 22 4,194,304 79 n! = 2πn 1+Θ . Pr[A ∧ B] e n Pr[A|B] = 23 8,388,608 83 Pr[B] Ackermann’s function and inverse:  24 16,777,216 89 For random variables X and Y :  2j i=1 25 33,554,432 97 a(i, j) = a(i − 1, 2) j=1 E[X · Y ] = E[X] · E[Y ],  26 67,108,864 101 a(i − 1, a(i, j − 1)) i, j ≥ 2 if X and Y are independent. 27 134,217,728 103 α(i) = min{j | a(j, j) ≥ i}. E[X + Y ] = E[X] + E[Y ], E[cX] = c E[X]. 28 268,435,456 107 Binomial distribution: n k n−k Bayes’ theorem: 29 536,870,912 109 Pr[X = k] = p q , q = 1 − p, k Pr[B|Ai ] Pr[Ai ] 30 1,073,741,824 113 Pr[Ai |B] = n . n j=1 Pr[Aj ] Pr[B|Aj ] 31 2,147,483,648 127 n k n−k E[X] = k p q = np. Inclusion-exclusion: 32 4,294,967,296 131 k n n k=1 Poisson distribution: Pr Xi = Pr[Xi ] + Pascal’s Triangle e−λ λk i=1 i=1 1 Pr[X = k] = , E[X] = λ. n k k! 11 Normal (Gaussian) distribution: (−1)k+1 Pr Xij . k=2 ii <···<ik j=1 121 1 2 2 p(x) = √ e−(x−µ) /2σ , E[X] = µ. Moment inequalities: 1331 2πσ 1 14641 The “coupon collector”: We are given a Pr |X| ≥ λ E[X] ≤ , random coupon each day, and there are n λ 1 5 10 10 5 1 1 different types of coupons. The distribu- Pr X − E[X] ≥ λ · σ ≤ . 1 6 15 20 15 6 1 tion of coupons is uniform. The expected λ2 1 7 21 35 35 21 7 1 Geometric distribution: number of days to pass before we to col- lect all n types is Pr[X = k] = pq k−1 , q = 1 − p, 1 8 28 56 70 56 28 8 1 ∞ 1 9 36 84 126 126 84 36 9 1 nHn . 1 E[X] = kpq k−1 = . p 1 10 45 120 210 252 210 120 45 10 1 k=1
  • 4. Theoretical Computer Science Cheat Sheet Trigonometry Matrices More Trig. Multiplication: C n (0,1) C = A · B, ci,j = ai,k bk,j . a b b h (cos θ, sin θ) k=1 C θ Determinants: det A = 0 iff A is non-singular. A (-1,0) (1,0) A c B det A · B = det A · det B, Law of cosines: c a c2 = a2 +b2 −2ab cos C. n (0,-1) B det A = sign(π)ai,π(i) . π i=1 Area: Pythagorean theorem: C 2 = A2 + B 2 . 2 × 2 and 3 × 3 determinant: a b A = 1 hc, 2 Definitions: = ad − bc, = 1 ab sin C, c d 2 sin a = A/C, cos a = B/C, a b c c2 sin A sin B csc a = C/A, sec a = C/B, b c a c a b = . d e f =g −h +i 2 sin C sin a A cos a B e f d f d e Heron’s formula: tan a = = , cot a = = . g h i cos a B sin a A aei + bf g + cdh √ Area, radius of inscribed circle: = − ceg − f ha − ibd. A = s · sa · sb · sc , 1 AB Permanents: s = 1 (a + b + c), 2 AB, . 2 A+B+C n sa = s − a, Identities: perm A = ai,π(i) . π i=1 sb = s − b, 1 1 sin x = , cos x = , Hyperbolic Functions sc = s − c. csc x sec x 1 Definitions: More identities: tan x = , sin2 x + cos2 x = 1, cot x ex − e−x e +e x −x 1 − cos x sinh x = , cosh x = , sin x = , 1 + tan2 x = sec2 x, 1 + cot2 x = csc2 x, 2 −x 2 2 2 e −e x 1 tanh x = x , csch x = , 1 + cos x sin x = cos π 2 −x , sin x = sin(π − x), e + e−x sinh x cos x = 2 , 1 1 2 sech x = , coth x = . cos x = − cos(π − x), tan x = cot π 2 −x , cosh x tanh x 1 − cos x tan x = 2 , Identities: 1 + cos x cot x = − cot(π − x), csc x = cot x − cot x, 2 1 − cos x cosh2 x − sinh2 x = 1, tanh2 x + sech2 x = 1, = sin x , sin(x ± y) = sin x cos y ± cos x sin y, sin x coth2 x − csch2 x = 1, sinh(−x) = − sinh x, = , cos(x ± y) = cos x cos y sin x sin y, 1 + cos x cosh(−x) = cosh x, tanh(−x) = − tanh x, 1 + cos x tan x ± tan y cot x = , tan(x ± y) = , 2 1 − cos x 1 tan x tan y sinh(x + y) = sinh x cosh y + cosh x sinh y, 1 + cos x cot x cot y 1 = , cot(x ± y) = , cosh(x + y) = cosh x cosh y + sinh x sinh y, sin x cot x ± cot y sin x 2 tan x sinh 2x = 2 sinh x cosh x, = , sin 2x = 2 sin x cos x, sin 2x = 1 + tan2 x , 1 − cos x cosh 2x = cosh2 x + sinh2 x, eix − e−ix cos 2x = cos2 x − sin2 x, cos 2x = 2 cos2 x − 1, sin x = , 2i 1 − tan2 x cosh x + sinh x = ex , cosh x − sinh x = e−x , eix + e−ix cos 2x = 1 − 2 sin2 x, cos 2x = , 1 + tan2 x cos x = , (cosh x + sinh x)n = cosh nx + sinh nx, n ∈ Z, 2 2 tan x cot2 x − 1 eix − e−ix tan 2x = 2 , cot 2x = , 2 sinh2 x = cosh x − 1, 2 cosh2 x = cosh x + 1. tan x = −i ix , 1 − tan x 2 cot x 2 2 e + e−ix sin(x + y) sin(x − y) = sin2 x − sin2 y, e2ix − 1 θ sin θ cos θ tan θ . . . in mathematics = −i 2ix , e +1 cos(x + y) cos(x − y) = cos2 x − sin2 y. you don’t under- sinh ix 0 0 √ 1 √ 0 sin x = , π 1 3 3 stand things, you i Euler’s equation: 6 2 2 3 √ √ just get used to eix = cos x + i sin x, eiπ = −1. π 2 2 cos x = cosh ix, 4 2 2 1 them. v2.02 c 1994 by Steve Seiden π √ 3 1 √ – J. von Neumann tan x = tanh ix . 3 2 2 3 i sseiden@acm.org π 2 1 0 ∞ http://www.csc.lsu.edu/~seiden
  • 5. Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex- Definitions: Notation: ists a number C such that: Loop An edge connecting a ver- E(G) Edge set tex to itself. V (G) Vertex set C ≡ r1 mod m1 c(G) Number of components Directed Each edge has a direction. . . . . . . Simple Graph with no loops or G[S] Induced subgraph . . . multi-edges. deg(v) Degree of v C ≡ rn mod mn ∆(G) Maximum degree Walk A sequence v0 e1 v1 . . . e v . if mi and mj are relatively prime for i = j. Trail A walk with distinct edges. δ(G) Minimum degree Path A trail with distinct χ(G) Chromatic number Euler’s function: φ(x) is the number of vertices. χE (G) Edge chromatic number positive integers less than x relatively n Connected A graph where there exists Gc Complement graph prime to x. If i=1 pei is the prime fac- i a path between any two Kn Complete graph torization of x then n vertices. Kn1 ,n2 Complete bipartite graph φ(x) = pi i −1 (pi − 1). e Component A maximal connected r(k, ) Ramsey number i=1 subgraph. Geometry Euler’s theorem: If a and b are relatively Tree A connected acyclic graph. prime then Projective coordinates: triples Free tree A tree with no root. 1 ≡ aφ(b) mod b. (x, y, z), not all x, y and z zero. DAG Directed acyclic graph. Eulerian Graph with a trail visiting (x, y, z) = (cx, cy, cz) ∀c = 0. Fermat’s theorem: each edge exactly once. Cartesian Projective 1 ≡ ap−1 mod p. Hamiltonian Graph with a cycle visiting (x, y) (x, y, 1) The Euclidean algorithm: if a > b are in- each vertex exactly once. y = mx + b (m, −1, b) tegers then Cut A set of edges whose re- x=c (1, 0, −c) gcd(a, b) = gcd(a mod b, b). moval increases the num- Distance formula, Lp and L∞ n If i=1 pei is the prime factorization of x ber of components. metric: i then Cut-set A minimal cut. (x1 − x0 )2 + (y1 − y0 )2 , pi i +1 − 1 n e Cut edge A size 1 cut. 1/p S(x) = d= . k-Connected A graph connected with |x1 − x0 |p + |y1 − y0 |p , pi − 1 d|x i=1 the removal of any k − 1 lim |x1 − x0 |p + |y1 − y0 | p 1/p . Perfect Numbers: x is an even perfect num- vertices. p→∞ ber iff x = 2n−1 (2n −1) and 2n −1 is prime. k-Tough ∀S ⊆ V, S = ∅ we have Area of triangle (x0 , y0 ), (x1 , y1 ) Wilson’s theorem: n is a prime iff k · c(G − S) ≤ |S|. and (x2 , y2 ): (n − 1)! ≡ −1 mod n. k-Regular A graph where all vertices 1 x1 − x0 y1 − y0 2 abs x − x . have degree k. 2 0 y2 − y0 M¨bius  o inversion: k-Factor A k-regular spanning 1 if i = 1. Angle formed by three points:  subgraph. 0 if i is not square-free. µ(i) = Matching A set of edges, no two of   (−1)r if i is the product of (x2 , y2 ) r distinct primes. which are adjacent. 2 Clique A set of vertices, all of If θ which are adjacent. G(a) = F (d), (0, 0) 1 (x1 , y1 ) Ind. set A set of vertices, none of d|a which are adjacent. (x1 , y1 ) · (x2 , y2 ) cos θ = . then Vertex cover A set of vertices which 1 2 a F (a) = µ(d)G . cover all edges. Line through two points (x0 , y0 ) d d|a Planar graph A graph which can be em- and (x1 , y1 ): Prime numbers: beded in the plane. x y 1 ln ln n Plane graph An embedding of a planar x0 y0 1 = 0. pn = n ln n + n ln ln n − n + n ln n graph. x1 y1 1 n Area of circle, volume of sphere: +O , deg(v) = 2m. ln n A = πr2 , V = 4 πr3 . v∈V 3 n n 2!n π(n) = + + If G is planar then n − m + f = 2, so ln n (ln n)2 (ln n)3 If I have seen farther than others, f ≤ 2n − 4, m ≤ 3n − 6. it is because I have stood on the n +O . Any planar graph has a vertex with de- shoulders of giants. (ln n)4 gree ≤ 5. – Issac Newton
  • 6. Theoretical Computer Science Cheat Sheet π Calculus Wallis’ identity: Derivatives: 2 · 2 · 4 · 4 · 6 · 6··· π =2· d(cu) du d(u + v) du dv d(uv) dv du 1 · 3 · 3 · 5 · 5 · 7··· 1. =c , 2. = + , 3. =u +v , dx dx dx dx dx dx dx dx Brouncker’s continued fraction expansion: 12 d(un ) du d(u/v) v du − u dv d(ecu ) du π 4. = nun−1 , 5. = dx dx , 6. = cecu , 4 =1+ 32 dx dx dx v2 dx dx 2+ 52 2+ 2+ 72 d(cu ) du d(ln u) 1 du 2+··· 7. = (ln c)cu , 8. = , dx dx dx u dx Gregrory’s series: 1 1 1 1 4 =1− 3 + − − ··· π + d(sin u) du d(cos u) du 5 7 9 9. = cos u , 10. = − sin u , dx dx dx dx Newton’s series: d(tan u) du d(cot u) du 1 1 1·3 11. = sec2 u , 12. = csc2 u , dx dx dx dx 6 = 2 + 2 · 3 · 23 + 2 · 4 · 5 · 25 + · · · π d(sec u) du d(csc u) du Sharp’s series: 13. = tan u sec u , 14. = − cot u csc u , dx dx dx dx 1 1 1 1 d(arcsin u) 1 du d(arccos u) −1 du π = √ 1− 1 + 2 − 3 +··· 15. =√ , 16. =√ , 6 3 ·3 3 ·5 3 ·7 dx 1−u 2 dx dx 1 − u2 dx 3 Euler’s series: d(arctan u) 1 du d(arccot u) −1 du 17. = , 18. = , dx 1 + u2 dx dx 1 + u2 dx π2 1 1 1 1 1 6 = 12 + 22 + 32 + 42 + 52 + ··· d(arcsec u) 1 du d(arccsc u) −1 du π2 1 1 1 1 1 19. = √ , 20. = √ , u 1−u 2 dx u 1−u 2 dx 8 = 12 + 32 + 52 + 72 + 92 + ··· dx dx π2 1 1 1 1 1 d(sinh u) du d(cosh u) du 12 = 12 − 22 + 32 − 42 + 52 − ··· 21. = cosh u , 22. = sinh u , dx dx dx dx Partial Fractions d(tanh u) du d(coth u) du 23. = sech2 u , 24. = − csch2 u , Let N (x) and D(x) be polynomial func- dx dx dx dx tions of x. We can break down d(sech u) du d(csch u) du N (x)/D(x) using partial fraction expan- 25. = − sech u tanh u , 26. = − csch u coth u , dx dx dx dx sion. First, if the degree of N is greater than or equal to the degree of D, divide d(arcsinh u) 1 du d(arccosh u) 1 du 27. =√ , 28. =√ , dx 1+u 2 dx dx u 2 − 1 dx N by D, obtaining N (x) N (x) d(arctanh u) 1 du d(arccoth u) 1 du = Q(x) + , 29. = , 30. = 2 , D(x) D(x) dx 1 − u2 dx dx u − 1 dx where the degree of N is less than that of d(arcsech u) −1 du d(arccsch u) −1 du 31. = √ , 32. = √ . D. Second, factor D(x). Use the follow- dx u 1 − u2 dx dx |u| 1 + u2 dx ing rules: For a non-repeated factor: Integrals: N (x) A N (x) = + , (x − a)D(x) x−a D(x) 1. cu dx = c u dx, 2. (u + v) dx = u dx + v dx, where N (x) 1 1 A= . 3. xn dx = xn+1 , n = −1, 4. dx = ln x, 5. ex dx = ex , D(x) x=a n+1 x For a repeated factor: dx dv du 6. = arctan x, 7. u dx = uv − v dx, N (x) m−1 Ak N (x) 1 + x2 dx dx = + , (x − a)m D(x) (x − a)m−k D(x) 8. sin x dx = − cos x, 9. cos x dx = sin x, k=0 where 1 dk N (x) 10. tan x dx = − ln | cos x|, 11. cot x dx = ln | cos x|, Ak = . k! dxk D(x) x=a 12. sec x dx = ln | sec x + tan x|, 13. csc x dx = ln | csc x + cot x|, The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore 14. arcsin x dx = arcsin x + a a a2 − x2 , a > 0, all progress depends on the unreasonable. – George Bernard Shaw
  • 7. Theoretical Computer Science Cheat Sheet Calculus Cont. 15. arccos x dx = arccos x − a a a2 − x2 , a > 0, 16. arctan x dx = x arctan x − a a a 2 ln(a2 + x2 ), a > 0, 17. sin2 (ax)dx = 1 2a ax − sin(ax) cos(ax) , 18. cos2 (ax)dx = 1 2a ax + sin(ax) cos(ax) , 19. sec2 x dx = tan x, 20. csc2 x dx = − cot x, sinn−1 x cos x n − 1 cosn−1 x sin x n − 1 21. sinn x dx = − + sinn−2 x dx, 22. cosn x dx = + cosn−2 x dx, n n n n tann−1 x cotn−1 x 23. tann x dx = − tann−2 x dx, n = 1, 24. cotn x dx = − − cotn−2 x dx, n = 1, n−1 n−1 tan x secn−1 x n − 2 25. secn x dx = + secn−2 x dx, n = 1, n−1 n−1 cot x cscn−1 x n − 2 26. cscn x dx = − + cscn−2 x dx, n = 1, 27. sinh x dx = cosh x, 28. cosh x dx = sinh x, n−1 n−1 29. tanh x dx = ln | cosh x|, 30. coth x dx = ln | sinh x|, 31. sech x dx = arctan sinh x, 32. csch x dx = ln tanh x , 2 33. sinh2 x dx = 1 4 sinh(2x) − 1 x, 2 34. cosh2 x dx = 1 4 sinh(2x) + 1 x, 2 35. sech2 x dx = tanh x, 36. arcsinh x dx = x arcsinh x − a a x2 + a2 , a > 0, 37. arctanh x dx = x arctanh x + a a a 2 ln |a2 − x2 |,  x  x arccosh − x2 + a2 , if arccosh x > 0 and a > 0, a 38. x arccosh a dx = a x  x arccosh + x2 + a2 , if arccosh x < 0 and a > 0, a a dx 39. √ = ln x + a2 + x2 , a > 0, a2 + x2 dx 1 a2 40. = a arctan x , a > 0, 41. a2 − x2 dx = x 2 a2 − x2 + 2 arcsin x , a > 0, a2 + x2 a a 3a4 42. (a2 − x2 )3/2 dx = x (5a2 − 2x2 ) a2 − x2 + 8 8 arcsin x , a a > 0, dx dx 1 a+x dx x 43. √ = arcsin x , a > 0, 44. = ln , 45. = √ , a2 − x2 a a2 −x 2 2a a−x (a2 −x2 )3/2 a2 a2 − x2 a2 dx 46. a2 ± x2 dx = x 2 a2 ± x2 ± 2 ln x + a2 ± x2 , 47. √ = ln x + x2 − a2 , a > 0, x2 − a2 dx 1 x √ 2(3bx − 2a)(a + bx)3/2 48. = ln , 49. x a + bx dx = , ax2 + bx a a + bx 15b2 √ √ √ a + bx √ 1 x 1 a + bx − a 50. dx = 2 a + bx + a √ dx, 51. √ dx = √ ln √ √ , a > 0, x x a + bx a + bx 2 a + bx + a √ √ a2 − x2 a + a2 − x2 52. dx = a2 − x2 − a ln , 53. x a2 − x2 dx = − 1 (a2 − x2 )3/2 , 3 x x √ 2 2 2 a4 dx 1 a+ a2 − x2 54. x a2 − x2 dx = x 8 (2x −a ) a2 − x2 + 8 arcsin x a, a > 0, 55. √ = − a ln , a2 − x2 x x dx x2 dx 2 56. √ = − a2 − x2 , 57. √ = − x a2 − x2 + a arcsin a, 2 2 x a > 0, a2 − x2 a2 − x2 √ √ √ a2 + x2 2 + x2 − a ln a + a2 + x2 x2 − a2 58. dx = a , 59. dx = x2 − a2 − a arccos |x| , a a > 0, x x x dx x 60. x x2 ± a2 dx = 1 (x2 ± a2 )3/2 , 3 61. √ = 1 ln √ , x x2 + a2 a a+ a2 + x2