SlideShare ist ein Scribd-Unternehmen logo
1 von 18
Downloaden Sie, um offline zu lesen
Tugas Matematika
Integral Hal 49- 59
Disusun Oleh :
POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG
TAHUN AJARAN 2014/2015
Industri Air Kantung Sungailiat 33211
Bangka Induk, Propinsi Kepulauan Bangka Belitung
Telp : +62717 93586
Fax : +6271793585 email : polman@polman-babel.ac.id
http://www.polman-babel.ac.id
Kelompok 7 :
- Rakam Tiano
- Sarman
- Fery Ardiansyah
- Mirza ramadhan
Dua aturan integrasi berguna
Latihan 7.7
Cari integral tak tentu yang paling umum..
1. 3𝑥4
− 5𝑥3
− 21𝑥2
+ 36𝑥 − 10 𝑑𝑥
2. 3𝑥2
− 4𝑐𝑜𝑠 2𝑥 𝑑𝑥
3.
8
𝑡5
+
5
𝑡
𝑑𝑡
4.
1
25 − 𝜃2
+
1
100 + 𝜃2
𝑑𝜃
5.
𝑒5𝑥
− 𝑒4𝑥
𝑒2𝑥
𝑑𝑥
6.
𝑥7
+ 𝑥4
𝑥5
𝑑𝑥
7.
𝑥7
+ 𝑥4
𝑥5
𝑑𝑥
8. 𝑥2
+ 4 2
𝑑𝑥 = 𝑥4
9.
7
𝑡
3 𝑑𝑡
10.
20 + 𝑥
𝑥
𝑑𝑥
Penyelesaian :
1. 3𝑥4
− 5𝑥3
− 21𝑥2
+ 36𝑥 − 10 𝑑𝑥 = 3𝑥4
𝑑𝑥 − 5𝑥3
𝑑𝑥 − 21𝑥2
𝑑𝑥 +
36𝑥 𝑑𝑥 − 10 𝑑𝑥 = 3 𝑥4
𝑑𝑥 − 5 𝑥3
𝑑𝑥 − 21 𝑥2
𝑑𝑥 + 36 𝑥 𝑑𝑥 −
10 𝑑𝑥 = 3
𝑥5
5
− 5
𝑥4
4
− 21
𝑥3
3
+ 36
𝑥2
2
− 10𝑥 + 𝑐 =
3
5
𝑥5
−
5
4
𝑥4
− 7𝑥3
+
18𝑥2
− 10𝑥 + 𝑐
2. 3𝑥2
− 4𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3𝑥2
𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3 𝑥2
𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 =
3
𝑥3
3
− 4
1
2
𝑠𝑖𝑛2𝑥 + 𝑐 = 𝑥3
− 2 sin 2𝑥 + 𝑐
3.
8
𝑡5 +
5
𝑡
𝑑𝑡 =
8
𝑡5 𝑑𝑥 +
5
𝑡
𝑑𝑥 = 8 𝑡−5
𝑑𝑥 + 5
1
𝑡
𝑑𝑥 = 8
𝑡−4
−4
+ 5 𝑙𝑛 𝑡 + 𝑐 =
−2𝑡−4
+ 5 𝑙𝑛 𝑡 + 𝑐
4.
1
25−𝜃2
+
1
100+𝜃2 𝑑𝜃 =
1
25−𝜃2
𝑑𝑥 +
1
100+𝜃2 𝑑𝑥 =
1
52+𝜃2
𝑑𝑥 +
1
102+𝜃2 𝑑𝑥 =
𝑠𝑖𝑛−1 𝜃
5
+
1
10
𝑡𝑎𝑛−1 𝜃
10
+ 𝑐
5.
𝑒5𝑥 −𝑒4𝑥
𝑒2𝑥 𝑑𝑥 = 𝑒3𝑥
− 𝑒2𝑥
𝑑𝑥 = 𝑒3𝑥
𝑑𝑥 − 𝑒2𝑥
𝑑𝑥 =
1
3
𝑒3𝑥
−
1
2
𝑒2𝑥
+ 𝑐
6.
𝑥7+𝑥4
𝑥5 𝑑𝑥 =
𝑥7
𝑥5 𝑑𝑥 +
𝑥4
𝑥5 𝑑𝑥 =
7.
1
𝑒6+𝑥2 𝑑𝑥 = 𝑒6
+ 𝑥2
𝑑𝑥 = 𝑙𝑛 𝑒6
+ 𝑥2
+ 𝑐
8. 𝑥2
+ 4 2
𝑑𝑥 = 𝑥4
+ 16 + 2. 𝑥2
. 4 𝑑𝑥 = 𝑥4
+ 8𝑥2
+ 16 𝑑𝑥 =
1
4+1
𝑥4+1
+
8
2+1
𝑥2+1
+ 16𝑥 + 𝑐 =
1
5
𝑥5
+
8
3
𝑥3
+ 𝑐
9.
7
𝑡3 𝑑𝑡 = 7𝑡−
1
3 𝑑𝑡 =
7
−
1
3
+1
𝑡−
1
3
+1
+ 𝑐 =
7
2
3
𝑡
2
3 + 𝑐 =
21
2
𝑡
2
3 + 𝑐
10.
20+𝑥
𝑥
𝑑𝑥 = 20 + 𝑥 𝑥−
1
2 𝑑𝑥 = 20𝑥−
1
2 + 𝑥
1
2 𝑑𝑥 =
20
−
1
2
+1
𝑥−
1
2
+1
+
1
1
2
+1
𝑥
1
2
+1
+ 𝑐 =
20
1
2
𝑥
1
2 +
1
3
2
𝑥
3
2 + 𝑐 = 40𝑥
1
2 +
2
3
𝑥
3
2 + 𝑐
Integrasi dasar teknik
Integrasi dengan substitusi
Latihan 8.1
Gunakan integrasi dengan substitusi untuk menemukan integral tak tentu yang paling umum.
1. 3 𝑥3
− 5 4
𝑥2
𝑑𝑥
2. 𝑒 𝑥4
𝑥3
𝑑𝑥
3.
𝑡
𝑡2 + 7
𝑑𝑡
4. 𝑥5
− 3𝑥
1
4 5𝑥4
− 3 𝑑𝑥
5.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5 4
𝑑𝑥
6.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5
𝑑𝑥
7. cos 3𝑥2
+ 1 𝑑𝑥
8.
3𝑐𝑜𝑠2
𝑥(𝑠𝑖𝑛 𝑥)
𝑥
𝑑𝑥
9.
𝑒2𝑥
1 + 𝑒4𝑥
𝑑𝑥
10. 6𝑡2
𝑒 𝑡3−2
𝑑𝑡
PENYELESAIAN
1. 3 𝑥3
− 5 4
𝑥2
𝑑𝑥
u = x3
– 5 du = 3x2
dx
= 𝑢4
𝑑𝑢
=
1
5
𝑢5
+ 𝑐
=
(𝑥3
− 5)5
5
+ 𝑐
2. 𝑒 𝑥4
𝑥3
𝑑𝑥
𝑢 = 𝑥4
= 𝑒 𝑥4 1
4
. 4𝑥3
𝑑𝑥
=
1
4
𝑒 𝑥3
4𝑥3
𝑑𝑥
=
1
4
𝑒 𝑢
𝑑𝑢
=
1
4
𝑒 𝑢
+ 𝑐
=
1
4
𝑒 𝑥4
+ 𝑐
3.
𝑡
𝑡2 + 7
𝑑𝑡
𝑢 = 𝑡2
+ 7 𝑑𝑢 = 2𝑡 𝑑𝑥
𝑡
𝑡2 + 7
𝑑𝑡
1
2
2𝑡
𝑡2 + 7
𝑑𝑡
1
2
2𝑡
𝑡2 + 7
𝑑𝑡
1
2
𝑑𝑢
𝑢
1
2
𝐼𝑛 𝑢 + 𝑐
1
2
𝐼𝑛 𝑡2
+ 7 + 𝑐
4. 𝑥5
− 3𝑥
1
4 5𝑥4
− 3 𝑑𝑥
𝑢 = 𝑥5
− 3𝑥 𝑑𝑢 = 5𝑥4
− 3 𝑑𝑥
= 𝑢
1
4 𝑑𝑢
= 4𝑢
5
4 + 𝑐
= 4 𝑥5
− 3𝑥
5
4 + 𝑐
5.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5 4
𝑑𝑥
𝑢 = 𝑥4
− 4𝑥2
+ 5 𝑑𝑢 = 4𝑥3
− 8𝑥 𝑑𝑥
=
1
4
.
4 𝑥3
− 2𝑥
𝑢4
𝑑𝑥
=
1
4
𝑑𝑢
𝑢4
=
1
4
𝐼𝑛 𝑢 + 𝑐
=
1
4
𝐼𝑛 𝑥4
− 4𝑥2
+ 5 + 𝑐
6.
𝑥3
− 2𝑥
𝑥4 − 4𝑥2 + 5
𝑑𝑥
𝑢 = 𝑥4
− 4𝑥2
+ 5 𝑑𝑢 = 4𝑥3
− 8𝑥 𝑑𝑥
= 4 𝑥3
− 2𝑥
=
1
4
.
4(𝑥3
− 2𝑥)
𝑥4 − 4𝑥2 + 5
𝑑𝑥
=
1
4
𝑑𝑢
𝑢
=
1
4
𝐼𝑛 𝑢 + 𝑐
=
1
4
𝐼𝑛 𝑥4
− 4𝑥2
+ 5 + 𝑐
9.
𝑒2𝑥
1 + 𝑒4𝑥
𝑑𝑥
=
𝑒2𝑥
1 + 𝑒2𝑥(2)
𝑑𝑥
𝑢 = 1 + 𝑒2𝑥
𝑑𝑢 = 2. 𝑒2𝑥
𝑑𝑥
=
1
2
.
2. 𝑒2𝑥
1 + 𝑒2𝑥(2)
=
1
2
𝑑𝑢
𝑢
=
1
2
𝐼𝑛 𝑢 𝑑𝑥
=
1
2
𝐼𝑛 1 + 𝑒4𝑥
+ 𝑐
10. 6𝑡2
𝑒 𝑡3−2
𝑑𝑡
𝑢 = 𝑡3
− 2 𝑑𝑢 = 3𝑡2
𝑑𝑡
= 6𝑡2
𝑒 𝑡3−2
𝑑𝑡
= 2 3𝑡2
𝑒 𝑡3−2
𝑑𝑡
=
1
3
. 3 2 . 3𝑡2
. 𝑒 𝑡3−2
𝑑𝑡
=
1
3
6 𝑑𝑢. 𝑒 𝑢
=
1
3
𝑒 𝑢
. 6 𝑑𝑢
=
1
3
𝑒 𝑡3−2
. 6 + 𝑐
= 2𝑒 𝑡3−2
+ 𝑐
Integrasi dengan bagian
Latihan 8.2
Gunakan integrasi dengan bagian untuk menemukan integral tak tentu yang paling umum.
1. 2𝑥.sin2x dx
2. 𝑥3
lnx dx
3. 𝑡𝑒 𝑡
dt
4. 𝑥 cos x dx
5. 𝑐𝑜𝑡−1
𝑥 𝑑𝑥
6. 𝑥2
𝑒 𝑥
𝑑𝑥
7. 𝑤( 𝑤 − 3)2
𝑑𝑤
8. 𝑥3
𝑖𝑛 4𝑥 𝑑𝑥
9. 𝑡 (𝑡 + 5)−4
𝑑𝑡
10. 𝑥 𝑥 + 2 . 𝑑𝑥
PENYELESAIAN
1. 2𝑥 sin 2𝑥 𝑑𝑥
Misalnya :
u = 2x du = x
dv = sin 2x dx v= sin 2𝑥𝑑𝑥 = -
1
2
cos2x
𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢
2𝑥 sin 2𝑥 𝑑𝑥 = (2x) (-
1
2
cos 2x ) - (−
1
2
cos 2x ) . 2x
= -
2
2
cos 2x +
1
2
cos 2x dx
= - x cos 2x +
1
2
.
1
2
sin 2x
= - x cos 2x +
1
2
. sin 2x + c
2. 𝑥3
𝑖𝑛 𝑥 𝑑𝑥
Misalnya :
U= inx du =
1
𝑥
dx
dv= 𝑥3
dx v = 𝑥3
𝑑𝑥 =
𝑥4
4
𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢
𝑥3
𝑖𝑛 𝑥 𝑑𝑥 = (in x) (
𝑥4
4
) -
𝑥4
4
.
1
𝑥
dx
=
𝑥4 𝑖𝑛𝑥
4
-
1
4
.
𝑥4
4
=
𝑥4 𝑖𝑛𝑥
4
-
𝑥4
16
+ c
3. 𝑡𝑒 𝑡
𝑑𝑡
Misalnya :
U = t du = dt
dv = 𝑒 𝑡
dt v = 𝑒 𝑡
dt = 𝑒 𝑡
𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢
𝑡𝑒 𝑡
𝑑𝑡 = (t) (𝑒 𝑡
) - 𝑒 𝑡
dt
= 𝑡𝑒 𝑡
- 𝑒 𝑡
dt
= 𝑡𝑒 𝑡
- 𝑒 𝑡
+ c
4. 𝑥 cos 𝑥 𝑑𝑥
Misalnya :
U= x du = dx
dv = cos x dx v = cos 𝑥 𝑑𝑥 = sin x
𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢
𝑥 cos 𝑥 𝑑𝑥 = ( x ) ( sin x ) - sin 𝑥 𝑑𝑥
= sin x + cosx dx
= sin x + cosx + c
5. 𝑐𝑜𝑡−1
( x ) dx
Misalnya :
U = sin𝑥−1
Du= cos𝑥−1
Subtitusi du = sin𝑥−1
du = cos𝑥−1
𝑐𝑜𝑠𝑥 −1
𝑠𝑖𝑛𝑥 −1 dx =
𝑑𝑢
𝑢
Salve integral
= in (u) + c
Subsitusi kembali
U=sin𝑥−1
= in (sin𝑥−1
) + 𝑐
6. 𝑥2
𝑒 𝑥
𝑑𝑥
Misalnya :
U = 𝑥2
du = 2x
dv = 𝑒 𝑥
dx v = 𝑒 𝑥
dx = 𝑒 𝑥
𝑢. 𝑑𝑣 = u.v - 𝑢.du
𝑥2
𝑒 𝑥
𝑑𝑥 = 𝑥2
𝑒 𝑥
- 𝑥
2
. 2𝑥
=𝑥𝑒2𝑥
- 2𝑥. 𝑑𝑥
=𝑥𝑒2𝑥
- x+c
7. 𝑤(𝑤 − 3)2
𝑑𝑤
Misalnya :
U= w du= dw
dv = (𝑤 − 3)2
𝑑𝑤 𝑣 = 2𝑤 − 6 = 𝑤 − 3
𝑢. 𝑑𝑣 = u.v - 𝑢.du
𝑤(𝑤 − 3)2
𝑑𝑤 = 𝑤. 𝑤 − 3 − 𝑤. 𝑑𝑤
= 𝑤2
− 3𝑤 −
1
2
𝑤 + 𝑐
8. 𝑥3
𝑖𝑛 4𝑥 𝑑𝑥
Misalnya :
U= in4x du=
1
4𝑥
𝑑𝑥
dv= 𝑥3
𝑑𝑥 v = 𝑥3
dx =
1
4
𝑥4
𝑢. 𝑑𝑣 = u.v - 𝑣.du
𝑥3
𝑖𝑛 4𝑥 𝑑𝑥 = in4x.
1
4
𝑥4
- in4x .
1
4𝑥
𝑑𝑥
=
1
4
𝑥4
𝑖𝑛4𝑥 −
1
5
𝑥5
∶
1
2
16𝑥2
+ 𝑐
=
1
4
𝑥4
𝑖𝑛4𝑥 -
2𝑥5
80𝑥2 + c
9. 𝑡(𝑡 + 5)−4
𝑑𝑡
Misalnya :
U= t du= dt
dv =(𝑡 + 5)−4
𝑣 = −4𝑡−3
− 20−3
= 2𝑡−2
+ 10−2
𝑢. 𝑑𝑣 = u.v - 𝑣.du
𝑡(𝑡 + 5)−4
𝑑𝑡 =( t. 2𝑡−2
+ 10−2
) - 2𝑡−2
+ 10−2
. 𝑑𝑡
= 20𝑡−4
+ (2𝑡 + 10 + 𝑑𝑡
10. 𝑥 𝑥 + 2 .dx
Misalnya :
U = x du = dx
Dv= 𝑥 + 2 dx v= (𝑥 + 2)
1
2 =2𝑥1
1
2 +0.671
1
2
𝑢. 𝑑𝑣 = u.v - 𝑣.du
𝑥 𝑥 + 2 .dx = x . 2𝑥1
1
2 +0.671
1
2 - 2𝑥1
1
2 + 0.671
1
2 . dx
= x.2,67𝑥
3
2 - (2𝑥
3
2 + 0,67
3
2) dx
= 2,67𝑥2
3
2 - 2,67𝑥
6
2 + c
Integrasi dengan menggunakan tabel rumus
terpisahkan
Latihan 8.3
Gunakan tabel rumus integral dalam Lampiran C untuk menemukan integral tak tentu yang
paling umum.
1. cot 𝑥 𝑑𝑥
2.
1
𝑥+2 (2𝑥+5)
𝑑𝑥
3. 𝑙𝑛𝑥 2
𝑑𝑥
4. 𝑥 cos 𝑥 𝑑𝑥
5.
𝑥
𝑥+2 2 𝑑𝑥
6. 3𝑥𝑒 𝑥
𝑑𝑥
7. 10 𝑤 + 3 𝑑𝑤
8. 𝑡(𝑡 + 5)−1
𝑑𝑡
9. 𝑥 𝑥 + 2 𝑑𝑥
10.
1
sin 𝑢 cos 𝑢
𝑑𝑢
PENYELESAIAN
1. cot 𝑥 𝑑𝑥
( Formula nomor 7)
Penyelesaian :
𝑐𝑜𝑡 𝑥 𝑑𝑥 =
𝑐𝑜𝑠𝑥
𝑠𝑖𝑛𝑥
𝑑𝑥
Misalkan :
𝑢 = sin 𝑥
𝑑𝑢 = cos 𝑥 𝑑𝑥
Subsitusi 𝑑𝑢 = cos 𝑥, 𝑈 = sin 𝑥
cos 𝑥
sin 𝑥
𝑑𝑥 =
𝑑𝑢
𝑢
𝑠𝑎𝑙𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙
ln 𝑢 + 𝐶
subsitusi kembali 𝑈 = sin 𝑥
𝑙𝑛 sin 𝑥 + 𝑐
2.
1
𝑥+2 (2𝑥+5)
𝑑𝑥
=
1
𝑥 + 2 (2𝑥 + 5)
=
𝐴
𝑥 + 2
+
𝐴
2𝑥 + 5
𝐴 =
1
𝑥 + 2 (2.2 + 5)
=
1
9
𝐵 =
1
5 + 2 (2𝑥 + 5)
=
1
7
Sehingga :
1
𝑥 + 2 2𝑥 + 5
𝑑𝑥 =
1
𝑥 + 2 2𝑥 + 5
=
1
9
𝑥 + 2
𝑑𝑥 +
1
9
2𝑥 + 5
𝑑𝑥
=
1
9
𝑙𝑛 𝑥 + 2 +
1
7
ln 2𝑥 + 5 + c
3. 𝑙𝑛𝑥 2
𝑑𝑥 = 𝑙𝑛𝑥 𝑙𝑛𝑥 𝑑𝑥
Missal :
U = ln x 𝑑𝑢 = (
1
𝑥
)2
Dv = dx
dv = 𝑑𝑥
v = x
(𝑙𝑛𝑥)2
𝑑𝑥 = 𝑢𝑣 − 𝑣𝑑𝑢 (x ln )
= (𝑙𝑛𝑥)2
. x - 𝑥
1
𝑥2 𝑑𝑥
= 𝑥. (𝑙𝑛𝑥)2
-
1
𝑥
𝑑𝑥
= 𝑥. (𝑙𝑛𝑥)2
x - 𝑥−1
𝑑𝑥
= 𝑥. (𝑙𝑛𝑥)2
-
1
0
𝑥0
+ 𝑐
= 𝑥. (𝑙𝑛𝑥)2
- ~ + 𝑐
= ln x ( x ln x-x ) – (𝑥 ln 𝑥 − 𝑥) .
1
𝑥
=x (ln x)2
- x ln x -
4. 𝑥 cos 𝑥 𝑑𝑥
Penyelesaian :
𝑈 = 𝑋 → 𝑑𝑢 = 𝑑𝑥
𝑑𝑣 = 𝑐𝑜𝑠𝑥 → 𝑣 = 𝑠𝑖𝑛𝑥
𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛𝑥 𝑑𝑥
𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐
5.
𝑥
𝑥+2 2 𝑑𝑥
Penyelesaian :
𝑥
𝑥+2 2 =
𝐴
𝑥+2
+
𝐵
𝑥+2
=
𝐴 𝑥+2 +𝐵
𝑥+2
2
𝐴 = 2
𝐴 + 𝐵 = 0 = −2
Sehingga :
𝑥
𝑥 + 2 2
𝑑𝑥 =
𝑑𝑥
𝑥 + 2
–
𝑑𝑥
𝑥 + 2 2
𝑀𝑖𝑠𝑎𝑙𝑙 𝑢 = 𝑥 + 2 → 𝑑𝑢 = 𝑑𝑥
𝑑𝑥
𝑥 + 2
–
𝑑𝑥
𝑥 + 2 2
=
𝑑𝑢
𝑢
–
𝑑𝑢
𝑢2
= 2𝑙𝑛 +
2
𝑢
+ 𝑐
2𝑙𝑛 𝑥 + 2 +
2
𝑥+2
+ 𝑐
6. 3𝑥𝑒 𝑥
𝑑𝑥
U = 3x dv = 𝑒 𝑥
𝑑𝑥
𝑑𝑢
𝑑𝑥
= 3 v = 𝑒 𝑥
𝑑𝑥 = 𝑒 𝑥
du = 3 dx
𝑢𝑑𝑣 = u.v – 𝑣 𝑑𝑢
= (3x) . (𝑒 𝑥
) – 𝑒 𝑥
. 3 𝑑𝑥
= 3x 𝑒 𝑥
− 3𝑒 𝑥
7. 10 𝑤 + 3 dw
( Formula nomor 2)
10 𝑤 + 3 dw = (10 𝑤 + 3)
1
2 dw
=
1
1
2
+ 1
(10 𝑤 + 3)
1
2
+1
+ 𝑐
=
2
3
(10 𝑤 + 3)
3
2 + 𝑐
8. 𝑡(𝑡 + 5)−1
𝑑𝑡
=
𝑡
𝑡+5
dt = 𝑡 (𝑡 + 5)−1
𝑑𝑡
Missal:
U = t + 5 U= t+5
𝑑𝑢
𝑑𝑡
= 1 t = (u-5)
𝑑𝑢 = 𝑑𝑡 t=u→u=t+5 =5
t = 2 → u=t+5 = 7
=
𝑡
𝑡+5
dt = 𝑡 (𝑡 + 5)−1
𝑑𝑡 = 𝑢 − 5 𝑢−1
𝑑𝑢 = 𝑢0
− 5𝑢−1
𝑑𝑢
(𝑢0
− 5𝑢) … … … … . = 𝑢 − 𝑢
−5𝑢−1
+1 du
−5(𝑢1
−
1
5
𝑥 ) 𝑑𝑥
-5 (ln 𝑢 -
1
5
0+1
𝑥0+1
)
-5 ( ln 𝑡 + 5 -
1
5
x)
-5 ln 𝑡 + 5 + x
9. 𝑥 𝑥 + 2 𝑑𝑥
𝑚𝑖𝑠𝑎𝑙 𝑢 = 𝑥 + 2 → 𝑥 = 𝑢 − 2
𝑑𝑢 = 𝑑𝑥
Sehingga integral diatas dapat menjadi :
= 𝑖𝑛𝑡 𝑢 − 2 𝑈 𝑑𝑢
= 𝑖𝑛𝑡 𝑢 − 2 𝑈
1
2 𝑑𝑢
= 𝑖𝑛𝑡 𝑈
5
2 − 𝑈
1
2 𝑑𝑢
=
2
7
𝑈
2
7 −
2
3
𝑈
3
2 + 𝐶
= 𝑖𝑛𝑡 (𝑥 + 2)
5
2 −
2
3
(𝑥 + 2)
3
2 + 𝐶

Weitere ähnliche Inhalte

Was ist angesagt? (15)

Tugas 2 matematika 2
Tugas 2  matematika 2Tugas 2  matematika 2
Tugas 2 matematika 2
 
Tugas2 matematika
Tugas2 matematikaTugas2 matematika
Tugas2 matematika
 
Tugas 2
Tugas 2Tugas 2
Tugas 2
 
Tugas 2 mtk 2
Tugas 2 mtk 2Tugas 2 mtk 2
Tugas 2 mtk 2
 
Tugas 2 MTK2
Tugas 2 MTK2Tugas 2 MTK2
Tugas 2 MTK2
 
Tugas 2
Tugas 2Tugas 2
Tugas 2
 
Tugas 2
Tugas 2Tugas 2
Tugas 2
 
Tugas Matematika 3
Tugas Matematika 3Tugas Matematika 3
Tugas Matematika 3
 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 eb
 
Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2) Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2)
 
Tugas mtk 3
Tugas mtk 3Tugas mtk 3
Tugas mtk 3
 
1st Math Task
1st Math Task1st Math Task
1st Math Task
 
Tugas 3 MTK2
Tugas 3 MTK2Tugas 3 MTK2
Tugas 3 MTK2
 
Tugas 3 mtk2
Tugas 3 mtk2Tugas 3 mtk2
Tugas 3 mtk2
 
Formulas
FormulasFormulas
Formulas
 

Andere mochten auch

Productivity improvement in bottleneck machine for automated cylinder block line
Productivity improvement in bottleneck machine for automated cylinder block lineProductivity improvement in bottleneck machine for automated cylinder block line
Productivity improvement in bottleneck machine for automated cylinder block line
Carnegie Mellon University
 
Case of Aluminum Cylinder block-Precisioner
Case of Aluminum Cylinder block-PrecisionerCase of Aluminum Cylinder block-Precisioner
Case of Aluminum Cylinder block-Precisioner
Tobey Hou
 
4+stroke+engine+cycle
4+stroke+engine+cycle4+stroke+engine+cycle
4+stroke+engine+cycle
Adel Ch
 
Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...
Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...
Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...
Altair
 

Andere mochten auch (15)

Productivity improvement in bottleneck machine for automated cylinder block line
Productivity improvement in bottleneck machine for automated cylinder block lineProductivity improvement in bottleneck machine for automated cylinder block line
Productivity improvement in bottleneck machine for automated cylinder block line
 
Case of Aluminum Cylinder block-Precisioner
Case of Aluminum Cylinder block-PrecisionerCase of Aluminum Cylinder block-Precisioner
Case of Aluminum Cylinder block-Precisioner
 
Blown Head Gasket
Blown Head GasketBlown Head Gasket
Blown Head Gasket
 
Enginestand edited
Enginestand editedEnginestand edited
Enginestand edited
 
4+stroke+engine+cycle
4+stroke+engine+cycle4+stroke+engine+cycle
4+stroke+engine+cycle
 
Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...
Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...
Stress and Durability Analysis of Threaded Connections in a Cast Aluminum Cyl...
 
Presentation on Remanufacturing of Engine Block of a locomotive at DMW, Patiala
Presentation on Remanufacturing of Engine Block of a locomotive at DMW, PatialaPresentation on Remanufacturing of Engine Block of a locomotive at DMW, Patiala
Presentation on Remanufacturing of Engine Block of a locomotive at DMW, Patiala
 
Engine type and classification.
Engine type  and classification. Engine type  and classification.
Engine type and classification.
 
Engine block manufacturing process
Engine block manufacturing processEngine block manufacturing process
Engine block manufacturing process
 
Parts of engine
Parts of engineParts of engine
Parts of engine
 
Basic Geometrical Dimensioning & Tolerancing Tranning
Basic Geometrical Dimensioning  & Tolerancing TranningBasic Geometrical Dimensioning  & Tolerancing Tranning
Basic Geometrical Dimensioning & Tolerancing Tranning
 
2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare2015 Upload Campaigns Calendar - SlideShare
2015 Upload Campaigns Calendar - SlideShare
 
What to Upload to SlideShare
What to Upload to SlideShareWhat to Upload to SlideShare
What to Upload to SlideShare
 
How to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & TricksHow to Make Awesome SlideShares: Tips & Tricks
How to Make Awesome SlideShares: Tips & Tricks
 
Getting Started With SlideShare
Getting Started With SlideShareGetting Started With SlideShare
Getting Started With SlideShare
 

Tugas Matematika Kelompok 7

  • 1. Tugas Matematika Integral Hal 49- 59 Disusun Oleh : POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG TAHUN AJARAN 2014/2015 Industri Air Kantung Sungailiat 33211 Bangka Induk, Propinsi Kepulauan Bangka Belitung Telp : +62717 93586 Fax : +6271793585 email : polman@polman-babel.ac.id http://www.polman-babel.ac.id Kelompok 7 : - Rakam Tiano - Sarman - Fery Ardiansyah - Mirza ramadhan
  • 2. Dua aturan integrasi berguna Latihan 7.7 Cari integral tak tentu yang paling umum.. 1. 3𝑥4 − 5𝑥3 − 21𝑥2 + 36𝑥 − 10 𝑑𝑥 2. 3𝑥2 − 4𝑐𝑜𝑠 2𝑥 𝑑𝑥 3. 8 𝑡5 + 5 𝑡 𝑑𝑡 4. 1 25 − 𝜃2 + 1 100 + 𝜃2 𝑑𝜃 5. 𝑒5𝑥 − 𝑒4𝑥 𝑒2𝑥 𝑑𝑥 6. 𝑥7 + 𝑥4 𝑥5 𝑑𝑥 7. 𝑥7 + 𝑥4 𝑥5 𝑑𝑥 8. 𝑥2 + 4 2 𝑑𝑥 = 𝑥4 9. 7 𝑡 3 𝑑𝑡 10. 20 + 𝑥 𝑥 𝑑𝑥
  • 3. Penyelesaian : 1. 3𝑥4 − 5𝑥3 − 21𝑥2 + 36𝑥 − 10 𝑑𝑥 = 3𝑥4 𝑑𝑥 − 5𝑥3 𝑑𝑥 − 21𝑥2 𝑑𝑥 + 36𝑥 𝑑𝑥 − 10 𝑑𝑥 = 3 𝑥4 𝑑𝑥 − 5 𝑥3 𝑑𝑥 − 21 𝑥2 𝑑𝑥 + 36 𝑥 𝑑𝑥 − 10 𝑑𝑥 = 3 𝑥5 5 − 5 𝑥4 4 − 21 𝑥3 3 + 36 𝑥2 2 − 10𝑥 + 𝑐 = 3 5 𝑥5 − 5 4 𝑥4 − 7𝑥3 + 18𝑥2 − 10𝑥 + 𝑐 2. 3𝑥2 − 4𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3𝑥2 𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3 𝑥2 𝑑𝑥 − 4 𝑐𝑜𝑠 2𝑥 𝑑𝑥 = 3 𝑥3 3 − 4 1 2 𝑠𝑖𝑛2𝑥 + 𝑐 = 𝑥3 − 2 sin 2𝑥 + 𝑐 3. 8 𝑡5 + 5 𝑡 𝑑𝑡 = 8 𝑡5 𝑑𝑥 + 5 𝑡 𝑑𝑥 = 8 𝑡−5 𝑑𝑥 + 5 1 𝑡 𝑑𝑥 = 8 𝑡−4 −4 + 5 𝑙𝑛 𝑡 + 𝑐 = −2𝑡−4 + 5 𝑙𝑛 𝑡 + 𝑐 4. 1 25−𝜃2 + 1 100+𝜃2 𝑑𝜃 = 1 25−𝜃2 𝑑𝑥 + 1 100+𝜃2 𝑑𝑥 = 1 52+𝜃2 𝑑𝑥 + 1 102+𝜃2 𝑑𝑥 = 𝑠𝑖𝑛−1 𝜃 5 + 1 10 𝑡𝑎𝑛−1 𝜃 10 + 𝑐 5. 𝑒5𝑥 −𝑒4𝑥 𝑒2𝑥 𝑑𝑥 = 𝑒3𝑥 − 𝑒2𝑥 𝑑𝑥 = 𝑒3𝑥 𝑑𝑥 − 𝑒2𝑥 𝑑𝑥 = 1 3 𝑒3𝑥 − 1 2 𝑒2𝑥 + 𝑐 6. 𝑥7+𝑥4 𝑥5 𝑑𝑥 = 𝑥7 𝑥5 𝑑𝑥 + 𝑥4 𝑥5 𝑑𝑥 = 7. 1 𝑒6+𝑥2 𝑑𝑥 = 𝑒6 + 𝑥2 𝑑𝑥 = 𝑙𝑛 𝑒6 + 𝑥2 + 𝑐 8. 𝑥2 + 4 2 𝑑𝑥 = 𝑥4 + 16 + 2. 𝑥2 . 4 𝑑𝑥 = 𝑥4 + 8𝑥2 + 16 𝑑𝑥 = 1 4+1 𝑥4+1 + 8 2+1 𝑥2+1 + 16𝑥 + 𝑐 = 1 5 𝑥5 + 8 3 𝑥3 + 𝑐 9. 7 𝑡3 𝑑𝑡 = 7𝑡− 1 3 𝑑𝑡 = 7 − 1 3 +1 𝑡− 1 3 +1 + 𝑐 = 7 2 3 𝑡 2 3 + 𝑐 = 21 2 𝑡 2 3 + 𝑐 10. 20+𝑥 𝑥 𝑑𝑥 = 20 + 𝑥 𝑥− 1 2 𝑑𝑥 = 20𝑥− 1 2 + 𝑥 1 2 𝑑𝑥 = 20 − 1 2 +1 𝑥− 1 2 +1 + 1 1 2 +1 𝑥 1 2 +1 + 𝑐 = 20 1 2 𝑥 1 2 + 1 3 2 𝑥 3 2 + 𝑐 = 40𝑥 1 2 + 2 3 𝑥 3 2 + 𝑐
  • 4. Integrasi dasar teknik Integrasi dengan substitusi Latihan 8.1 Gunakan integrasi dengan substitusi untuk menemukan integral tak tentu yang paling umum. 1. 3 𝑥3 − 5 4 𝑥2 𝑑𝑥 2. 𝑒 𝑥4 𝑥3 𝑑𝑥 3. 𝑡 𝑡2 + 7 𝑑𝑡 4. 𝑥5 − 3𝑥 1 4 5𝑥4 − 3 𝑑𝑥 5. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 4 𝑑𝑥 6. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 𝑑𝑥 7. cos 3𝑥2 + 1 𝑑𝑥 8. 3𝑐𝑜𝑠2 𝑥(𝑠𝑖𝑛 𝑥) 𝑥 𝑑𝑥 9. 𝑒2𝑥 1 + 𝑒4𝑥 𝑑𝑥 10. 6𝑡2 𝑒 𝑡3−2 𝑑𝑡
  • 5. PENYELESAIAN 1. 3 𝑥3 − 5 4 𝑥2 𝑑𝑥 u = x3 – 5 du = 3x2 dx = 𝑢4 𝑑𝑢 = 1 5 𝑢5 + 𝑐 = (𝑥3 − 5)5 5 + 𝑐 2. 𝑒 𝑥4 𝑥3 𝑑𝑥 𝑢 = 𝑥4 = 𝑒 𝑥4 1 4 . 4𝑥3 𝑑𝑥 = 1 4 𝑒 𝑥3 4𝑥3 𝑑𝑥 = 1 4 𝑒 𝑢 𝑑𝑢 = 1 4 𝑒 𝑢 + 𝑐 = 1 4 𝑒 𝑥4 + 𝑐 3. 𝑡 𝑡2 + 7 𝑑𝑡 𝑢 = 𝑡2 + 7 𝑑𝑢 = 2𝑡 𝑑𝑥 𝑡 𝑡2 + 7 𝑑𝑡
  • 6. 1 2 2𝑡 𝑡2 + 7 𝑑𝑡 1 2 2𝑡 𝑡2 + 7 𝑑𝑡 1 2 𝑑𝑢 𝑢 1 2 𝐼𝑛 𝑢 + 𝑐 1 2 𝐼𝑛 𝑡2 + 7 + 𝑐 4. 𝑥5 − 3𝑥 1 4 5𝑥4 − 3 𝑑𝑥 𝑢 = 𝑥5 − 3𝑥 𝑑𝑢 = 5𝑥4 − 3 𝑑𝑥 = 𝑢 1 4 𝑑𝑢 = 4𝑢 5 4 + 𝑐 = 4 𝑥5 − 3𝑥 5 4 + 𝑐 5. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 4 𝑑𝑥 𝑢 = 𝑥4 − 4𝑥2 + 5 𝑑𝑢 = 4𝑥3 − 8𝑥 𝑑𝑥 = 1 4 . 4 𝑥3 − 2𝑥 𝑢4 𝑑𝑥 = 1 4 𝑑𝑢 𝑢4 = 1 4 𝐼𝑛 𝑢 + 𝑐 = 1 4 𝐼𝑛 𝑥4 − 4𝑥2 + 5 + 𝑐
  • 7. 6. 𝑥3 − 2𝑥 𝑥4 − 4𝑥2 + 5 𝑑𝑥 𝑢 = 𝑥4 − 4𝑥2 + 5 𝑑𝑢 = 4𝑥3 − 8𝑥 𝑑𝑥 = 4 𝑥3 − 2𝑥 = 1 4 . 4(𝑥3 − 2𝑥) 𝑥4 − 4𝑥2 + 5 𝑑𝑥 = 1 4 𝑑𝑢 𝑢 = 1 4 𝐼𝑛 𝑢 + 𝑐 = 1 4 𝐼𝑛 𝑥4 − 4𝑥2 + 5 + 𝑐 9. 𝑒2𝑥 1 + 𝑒4𝑥 𝑑𝑥 = 𝑒2𝑥 1 + 𝑒2𝑥(2) 𝑑𝑥 𝑢 = 1 + 𝑒2𝑥 𝑑𝑢 = 2. 𝑒2𝑥 𝑑𝑥 = 1 2 . 2. 𝑒2𝑥 1 + 𝑒2𝑥(2) = 1 2 𝑑𝑢 𝑢 = 1 2 𝐼𝑛 𝑢 𝑑𝑥 = 1 2 𝐼𝑛 1 + 𝑒4𝑥 + 𝑐
  • 8. 10. 6𝑡2 𝑒 𝑡3−2 𝑑𝑡 𝑢 = 𝑡3 − 2 𝑑𝑢 = 3𝑡2 𝑑𝑡 = 6𝑡2 𝑒 𝑡3−2 𝑑𝑡 = 2 3𝑡2 𝑒 𝑡3−2 𝑑𝑡 = 1 3 . 3 2 . 3𝑡2 . 𝑒 𝑡3−2 𝑑𝑡 = 1 3 6 𝑑𝑢. 𝑒 𝑢 = 1 3 𝑒 𝑢 . 6 𝑑𝑢 = 1 3 𝑒 𝑡3−2 . 6 + 𝑐 = 2𝑒 𝑡3−2 + 𝑐
  • 9. Integrasi dengan bagian Latihan 8.2 Gunakan integrasi dengan bagian untuk menemukan integral tak tentu yang paling umum. 1. 2𝑥.sin2x dx 2. 𝑥3 lnx dx 3. 𝑡𝑒 𝑡 dt 4. 𝑥 cos x dx 5. 𝑐𝑜𝑡−1 𝑥 𝑑𝑥 6. 𝑥2 𝑒 𝑥 𝑑𝑥 7. 𝑤( 𝑤 − 3)2 𝑑𝑤 8. 𝑥3 𝑖𝑛 4𝑥 𝑑𝑥 9. 𝑡 (𝑡 + 5)−4 𝑑𝑡 10. 𝑥 𝑥 + 2 . 𝑑𝑥
  • 10. PENYELESAIAN 1. 2𝑥 sin 2𝑥 𝑑𝑥 Misalnya : u = 2x du = x dv = sin 2x dx v= sin 2𝑥𝑑𝑥 = - 1 2 cos2x 𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢 2𝑥 sin 2𝑥 𝑑𝑥 = (2x) (- 1 2 cos 2x ) - (− 1 2 cos 2x ) . 2x = - 2 2 cos 2x + 1 2 cos 2x dx = - x cos 2x + 1 2 . 1 2 sin 2x = - x cos 2x + 1 2 . sin 2x + c 2. 𝑥3 𝑖𝑛 𝑥 𝑑𝑥 Misalnya : U= inx du = 1 𝑥 dx dv= 𝑥3 dx v = 𝑥3 𝑑𝑥 = 𝑥4 4 𝑢. 𝑑𝑣 = 𝑢𝑣 – 𝑢. 𝑑𝑢 𝑥3 𝑖𝑛 𝑥 𝑑𝑥 = (in x) ( 𝑥4 4 ) - 𝑥4 4 . 1 𝑥 dx = 𝑥4 𝑖𝑛𝑥 4 - 1 4 . 𝑥4 4 = 𝑥4 𝑖𝑛𝑥 4 - 𝑥4 16 + c 3. 𝑡𝑒 𝑡 𝑑𝑡 Misalnya : U = t du = dt dv = 𝑒 𝑡 dt v = 𝑒 𝑡 dt = 𝑒 𝑡 𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢
  • 11. 𝑡𝑒 𝑡 𝑑𝑡 = (t) (𝑒 𝑡 ) - 𝑒 𝑡 dt = 𝑡𝑒 𝑡 - 𝑒 𝑡 dt = 𝑡𝑒 𝑡 - 𝑒 𝑡 + c 4. 𝑥 cos 𝑥 𝑑𝑥 Misalnya : U= x du = dx dv = cos x dx v = cos 𝑥 𝑑𝑥 = sin x 𝑢. 𝑑𝑣 = 𝑢. 𝑣 – 𝑢. 𝑑𝑢 𝑥 cos 𝑥 𝑑𝑥 = ( x ) ( sin x ) - sin 𝑥 𝑑𝑥 = sin x + cosx dx = sin x + cosx + c 5. 𝑐𝑜𝑡−1 ( x ) dx Misalnya : U = sin𝑥−1 Du= cos𝑥−1 Subtitusi du = sin𝑥−1 du = cos𝑥−1 𝑐𝑜𝑠𝑥 −1 𝑠𝑖𝑛𝑥 −1 dx = 𝑑𝑢 𝑢 Salve integral = in (u) + c Subsitusi kembali U=sin𝑥−1 = in (sin𝑥−1 ) + 𝑐 6. 𝑥2 𝑒 𝑥 𝑑𝑥 Misalnya : U = 𝑥2 du = 2x dv = 𝑒 𝑥 dx v = 𝑒 𝑥 dx = 𝑒 𝑥 𝑢. 𝑑𝑣 = u.v - 𝑢.du 𝑥2 𝑒 𝑥 𝑑𝑥 = 𝑥2 𝑒 𝑥 - 𝑥 2 . 2𝑥 =𝑥𝑒2𝑥 - 2𝑥. 𝑑𝑥 =𝑥𝑒2𝑥 - x+c 7. 𝑤(𝑤 − 3)2 𝑑𝑤 Misalnya : U= w du= dw
  • 12. dv = (𝑤 − 3)2 𝑑𝑤 𝑣 = 2𝑤 − 6 = 𝑤 − 3 𝑢. 𝑑𝑣 = u.v - 𝑢.du 𝑤(𝑤 − 3)2 𝑑𝑤 = 𝑤. 𝑤 − 3 − 𝑤. 𝑑𝑤 = 𝑤2 − 3𝑤 − 1 2 𝑤 + 𝑐 8. 𝑥3 𝑖𝑛 4𝑥 𝑑𝑥 Misalnya : U= in4x du= 1 4𝑥 𝑑𝑥 dv= 𝑥3 𝑑𝑥 v = 𝑥3 dx = 1 4 𝑥4 𝑢. 𝑑𝑣 = u.v - 𝑣.du 𝑥3 𝑖𝑛 4𝑥 𝑑𝑥 = in4x. 1 4 𝑥4 - in4x . 1 4𝑥 𝑑𝑥 = 1 4 𝑥4 𝑖𝑛4𝑥 − 1 5 𝑥5 ∶ 1 2 16𝑥2 + 𝑐 = 1 4 𝑥4 𝑖𝑛4𝑥 - 2𝑥5 80𝑥2 + c 9. 𝑡(𝑡 + 5)−4 𝑑𝑡 Misalnya : U= t du= dt dv =(𝑡 + 5)−4 𝑣 = −4𝑡−3 − 20−3 = 2𝑡−2 + 10−2 𝑢. 𝑑𝑣 = u.v - 𝑣.du 𝑡(𝑡 + 5)−4 𝑑𝑡 =( t. 2𝑡−2 + 10−2 ) - 2𝑡−2 + 10−2 . 𝑑𝑡 = 20𝑡−4 + (2𝑡 + 10 + 𝑑𝑡 10. 𝑥 𝑥 + 2 .dx Misalnya : U = x du = dx Dv= 𝑥 + 2 dx v= (𝑥 + 2) 1 2 =2𝑥1 1 2 +0.671 1 2 𝑢. 𝑑𝑣 = u.v - 𝑣.du 𝑥 𝑥 + 2 .dx = x . 2𝑥1 1 2 +0.671 1 2 - 2𝑥1 1 2 + 0.671 1 2 . dx = x.2,67𝑥 3 2 - (2𝑥 3 2 + 0,67 3 2) dx = 2,67𝑥2 3 2 - 2,67𝑥 6 2 + c
  • 13. Integrasi dengan menggunakan tabel rumus terpisahkan Latihan 8.3 Gunakan tabel rumus integral dalam Lampiran C untuk menemukan integral tak tentu yang paling umum. 1. cot 𝑥 𝑑𝑥 2. 1 𝑥+2 (2𝑥+5) 𝑑𝑥 3. 𝑙𝑛𝑥 2 𝑑𝑥 4. 𝑥 cos 𝑥 𝑑𝑥 5. 𝑥 𝑥+2 2 𝑑𝑥 6. 3𝑥𝑒 𝑥 𝑑𝑥 7. 10 𝑤 + 3 𝑑𝑤 8. 𝑡(𝑡 + 5)−1 𝑑𝑡 9. 𝑥 𝑥 + 2 𝑑𝑥 10. 1 sin 𝑢 cos 𝑢 𝑑𝑢
  • 14. PENYELESAIAN 1. cot 𝑥 𝑑𝑥 ( Formula nomor 7) Penyelesaian : 𝑐𝑜𝑡 𝑥 𝑑𝑥 = 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥 Misalkan : 𝑢 = sin 𝑥 𝑑𝑢 = cos 𝑥 𝑑𝑥 Subsitusi 𝑑𝑢 = cos 𝑥, 𝑈 = sin 𝑥 cos 𝑥 sin 𝑥 𝑑𝑥 = 𝑑𝑢 𝑢 𝑠𝑎𝑙𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ln 𝑢 + 𝐶 subsitusi kembali 𝑈 = sin 𝑥 𝑙𝑛 sin 𝑥 + 𝑐 2. 1 𝑥+2 (2𝑥+5) 𝑑𝑥 = 1 𝑥 + 2 (2𝑥 + 5) = 𝐴 𝑥 + 2 + 𝐴 2𝑥 + 5 𝐴 = 1 𝑥 + 2 (2.2 + 5) = 1 9 𝐵 = 1 5 + 2 (2𝑥 + 5) = 1 7 Sehingga : 1 𝑥 + 2 2𝑥 + 5 𝑑𝑥 = 1 𝑥 + 2 2𝑥 + 5
  • 15. = 1 9 𝑥 + 2 𝑑𝑥 + 1 9 2𝑥 + 5 𝑑𝑥 = 1 9 𝑙𝑛 𝑥 + 2 + 1 7 ln 2𝑥 + 5 + c 3. 𝑙𝑛𝑥 2 𝑑𝑥 = 𝑙𝑛𝑥 𝑙𝑛𝑥 𝑑𝑥 Missal : U = ln x 𝑑𝑢 = ( 1 𝑥 )2 Dv = dx dv = 𝑑𝑥 v = x (𝑙𝑛𝑥)2 𝑑𝑥 = 𝑢𝑣 − 𝑣𝑑𝑢 (x ln ) = (𝑙𝑛𝑥)2 . x - 𝑥 1 𝑥2 𝑑𝑥 = 𝑥. (𝑙𝑛𝑥)2 - 1 𝑥 𝑑𝑥 = 𝑥. (𝑙𝑛𝑥)2 x - 𝑥−1 𝑑𝑥 = 𝑥. (𝑙𝑛𝑥)2 - 1 0 𝑥0 + 𝑐 = 𝑥. (𝑙𝑛𝑥)2 - ~ + 𝑐 = ln x ( x ln x-x ) – (𝑥 ln 𝑥 − 𝑥) . 1 𝑥 =x (ln x)2 - x ln x - 4. 𝑥 cos 𝑥 𝑑𝑥 Penyelesaian : 𝑈 = 𝑋 → 𝑑𝑢 = 𝑑𝑥 𝑑𝑣 = 𝑐𝑜𝑠𝑥 → 𝑣 = 𝑠𝑖𝑛𝑥 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑣𝑑𝑢
  • 16. 𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 − 𝑠𝑖𝑛𝑥 𝑑𝑥 𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐 5. 𝑥 𝑥+2 2 𝑑𝑥 Penyelesaian : 𝑥 𝑥+2 2 = 𝐴 𝑥+2 + 𝐵 𝑥+2 = 𝐴 𝑥+2 +𝐵 𝑥+2 2 𝐴 = 2 𝐴 + 𝐵 = 0 = −2 Sehingga : 𝑥 𝑥 + 2 2 𝑑𝑥 = 𝑑𝑥 𝑥 + 2 – 𝑑𝑥 𝑥 + 2 2 𝑀𝑖𝑠𝑎𝑙𝑙 𝑢 = 𝑥 + 2 → 𝑑𝑢 = 𝑑𝑥 𝑑𝑥 𝑥 + 2 – 𝑑𝑥 𝑥 + 2 2 = 𝑑𝑢 𝑢 – 𝑑𝑢 𝑢2 = 2𝑙𝑛 + 2 𝑢 + 𝑐 2𝑙𝑛 𝑥 + 2 + 2 𝑥+2 + 𝑐 6. 3𝑥𝑒 𝑥 𝑑𝑥 U = 3x dv = 𝑒 𝑥 𝑑𝑥 𝑑𝑢 𝑑𝑥 = 3 v = 𝑒 𝑥 𝑑𝑥 = 𝑒 𝑥 du = 3 dx 𝑢𝑑𝑣 = u.v – 𝑣 𝑑𝑢
  • 17. = (3x) . (𝑒 𝑥 ) – 𝑒 𝑥 . 3 𝑑𝑥 = 3x 𝑒 𝑥 − 3𝑒 𝑥 7. 10 𝑤 + 3 dw ( Formula nomor 2) 10 𝑤 + 3 dw = (10 𝑤 + 3) 1 2 dw = 1 1 2 + 1 (10 𝑤 + 3) 1 2 +1 + 𝑐 = 2 3 (10 𝑤 + 3) 3 2 + 𝑐 8. 𝑡(𝑡 + 5)−1 𝑑𝑡 = 𝑡 𝑡+5 dt = 𝑡 (𝑡 + 5)−1 𝑑𝑡 Missal: U = t + 5 U= t+5 𝑑𝑢 𝑑𝑡 = 1 t = (u-5) 𝑑𝑢 = 𝑑𝑡 t=u→u=t+5 =5 t = 2 → u=t+5 = 7 = 𝑡 𝑡+5 dt = 𝑡 (𝑡 + 5)−1 𝑑𝑡 = 𝑢 − 5 𝑢−1 𝑑𝑢 = 𝑢0 − 5𝑢−1 𝑑𝑢 (𝑢0 − 5𝑢) … … … … . = 𝑢 − 𝑢 −5𝑢−1 +1 du −5(𝑢1 − 1 5 𝑥 ) 𝑑𝑥 -5 (ln 𝑢 - 1 5 0+1 𝑥0+1 ) -5 ( ln 𝑡 + 5 - 1 5 x)
  • 18. -5 ln 𝑡 + 5 + x 9. 𝑥 𝑥 + 2 𝑑𝑥 𝑚𝑖𝑠𝑎𝑙 𝑢 = 𝑥 + 2 → 𝑥 = 𝑢 − 2 𝑑𝑢 = 𝑑𝑥 Sehingga integral diatas dapat menjadi : = 𝑖𝑛𝑡 𝑢 − 2 𝑈 𝑑𝑢 = 𝑖𝑛𝑡 𝑢 − 2 𝑈 1 2 𝑑𝑢 = 𝑖𝑛𝑡 𝑈 5 2 − 𝑈 1 2 𝑑𝑢 = 2 7 𝑈 2 7 − 2 3 𝑈 3 2 + 𝐶 = 𝑖𝑛𝑡 (𝑥 + 2) 5 2 − 2 3 (𝑥 + 2) 3 2 + 𝐶