SlideShare ist ein Scribd-Unternehmen logo
1 von 11
NÚMEROS COMPLEXOS
Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
Esse número, representado pela letra i, denominado  unidade imaginária , é definido por:  i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado  conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
Definição de números complexos Dados dois números reais  a  e  b  , define-se o número complexo z como sendo:  z =  a  +  b i , onde i = √-1 é a unidade imaginária .  Ex: z =  2  +  3 i ( a = 2 e b = 3) w =  -3   -5 i (a = -3 e b = -5) u =  100 i ( a = 0 e b = 100)
NOTAS: a)  diz-se que z =  a  +  b i é a forma binômia ou algébrica do complexo z . b)  dado o número complexo z =  a  +  b i ,  a  é denominada parte real e  b  parte imaginária.  Escreve-se :  a  = Re(z) ;  b  = Im(z) . c)  se em z =  a  +  b i tivermos  a  = 0 e  b  diferente de zero, dizemos que z é um imaginário puro . Ex: z =  3 i . d) se em z =  a  +  b i tivermos  b  = 0 , dizemos que z é um número real .  Ex: z =  5  =  5  +  0 i .  e) Seja z =  a  +  b i , chama-se conjugado de z e representa-se por  , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z.   Ex: z= 4 + 5 i  ->  = 4  –  5 i
f) do item (c) acima concluímos que todo número real é complexo, ou seja,  o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g)  um número complexo z =  a  +  b i pode também ser representado como um par ordenado z = ( a , b ) .
Forma Algébrica Os números complexos são formados por um par ordenado ( a ,  b ) onde os valores de  a  estão situados no eixo x (abscissa) e os valores de  b  no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária.   Sendo P o ponto de coordenadas ( a ,  b ), a forma algébrica pela qual representaremos um número complexo será  a  +  b i, como  a  e b Є R.  A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
Operações com números complexos ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i –  bd ( a + b i)( c + d i)=( ac  –  bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
 Divisão: A divisão   de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex:   =  =
  Por: Andréia Caetano da Silva   Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994

Weitere ähnliche Inhalte

Was ist angesagt? (11)

Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Conjunto dos números complexos
Conjunto dos números complexosConjunto dos números complexos
Conjunto dos números complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexos Números complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 

Ähnlich wie Números Complexos

Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
brandy57279
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
GuiVogt
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
brandy57279
 

Ähnlich wie Números Complexos (15)

Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITA
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
www.videoaulagratisapoio.com.br - Matemática -  Números Complexoswww.videoaulagratisapoio.com.br - Matemática -  Números Complexos
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
 

Kürzlich hochgeladen

Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 

Kürzlich hochgeladen (20)

aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
LENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretaçãoLENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretação
 
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
LISTA DE EXERCICIOS envolveto grandezas e medidas e notação cientifica 1 ANO ...
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Produção de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptxProdução de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptx
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVAEDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
Camadas da terra -Litosfera conteúdo 6º ano
Camadas da terra -Litosfera  conteúdo 6º anoCamadas da terra -Litosfera  conteúdo 6º ano
Camadas da terra -Litosfera conteúdo 6º ano
 
Texto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.pptTexto dramático com Estrutura e exemplos.ppt
Texto dramático com Estrutura e exemplos.ppt
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 

Números Complexos

  • 2. Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
  • 3. Esse número, representado pela letra i, denominado unidade imaginária , é definido por: i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
  • 4. Definição de números complexos Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + b i , onde i = √-1 é a unidade imaginária . Ex: z = 2 + 3 i ( a = 2 e b = 3) w = -3 -5 i (a = -3 e b = -5) u = 100 i ( a = 0 e b = 100)
  • 5. NOTAS: a) diz-se que z = a + b i é a forma binômia ou algébrica do complexo z . b) dado o número complexo z = a + b i , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) . c) se em z = a + b i tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3 i . d) se em z = a + b i tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0 i . e) Seja z = a + b i , chama-se conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z. Ex: z= 4 + 5 i -> = 4 – 5 i
  • 6. f) do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g) um número complexo z = a + b i pode também ser representado como um par ordenado z = ( a , b ) .
  • 7. Forma Algébrica Os números complexos são formados por um par ordenado ( a , b ) onde os valores de a estão situados no eixo x (abscissa) e os valores de b no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária. Sendo P o ponto de coordenadas ( a , b ), a forma algébrica pela qual representaremos um número complexo será a + b i, como a e b Є R. A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
  • 8.
  • 9.  Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i – bd ( a + b i)( c + d i)=( ac – bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
  • 10.  Divisão: A divisão de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex: = =
  • 11. Por: Andréia Caetano da Silva Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994