SlideShare ist ein Scribd-Unternehmen logo
1 von 19
ECE 8443 – Pattern Recognition

                 LECTURE 01: COURSE OVERVIEW

• Objectives:
  Course Introduction
  Typical Applications

• Resources:
  Syllabus
  Internet Books and Notes
  D.H.S: Chapter 1
  Glossary




URL:    Audio:
Terminology
• Pattern Recognition: “the act of taking raw data and taking an action based
  on the category of the pattern.”
• Common Applications: speech recognition, fingerprint identification
  (biometrics), DNA sequence identification
• Related Terminology:
   Machine Learning: The ability of a machine to improve its performance
    based on previous results.
   Machine Understanding: acting on the intentions of the user
    generating the data.
• Related Fields: artificial intelligence, signal processing and discipline-specific
  research (e.g., target recognition, speech recognition, natural language
  processing).




ECE 8443: Lecture 01, Slide 1
Recognition or Understanding?
• Which of these images are most scenic?




• How can we develop a system to automatically determine scenic beauty?
  (Hint: feature combination)
• Solutions to such problems require good feature extraction and good
  decision theory.




ECE 8443: Lecture 01, Slide 2
Feature Extraction




ECE 8443: Lecture 01, Slide 3
Features Are Confusable




  • Regions of overlap represent the     • In real problems, features are
    classification error                   confusable and represent
                                           actual variation in the data.
  • Error rates can be computed with
    knowledge of the joint probability   • The traditional role of the
    distributions (see OCW-MIT-6-          signal processing engineer
    450Fall-2006).                         has been to develop better
                                           features (e.g., “invariants”).
  • Context is used to reduce overlap.




ECE 8443: Lecture 01, Slide 4
Decomposition
            Decision


      Post-Processing



        Classification



     Feature Extraction



        Segmentation



            Sensing


              Input

ECE 8443: Lecture 01, Slide 5
The Design Cycle
                     Start


                Collect Data
                                 Key issues:
                                   • “There is no data like more data.”
            Choose Features
                                   • Perceptually-meaningful features?
                                   • How do we find the best model?
              Choose Model         • How do we estimate parameters?
                                   • How do we evaluate performance?
              Train Classifier   Goal of the course:
                                   • Introduce you to mathematically
                                     rigorous ways to train and evaluate
           Evaluate Classifier       models.


                      End

ECE 8443: Lecture 01, Slide 6
Common Mistakes
• I got 100% accuracy on...
    Almost any algorithm works some of the time, but few real-world problems
     have ever been completely solved.
    Training on the evaluation data is forbidden.
    Once you use evaluation data, you should discard it.
• My algorithm is better because...
    Statistical significance and experimental design play a big role in
     determining the validity of a result.
    There is always some probability a random choice of an algorithm will
     produce a better result.
• Hence, in this course, we will also learn how to evaluate algorithms.




ECE 8443: Lecture 01, Slide 7
Image Processing Example

• Sorting Fish: incoming fish are sorted
  according to species using optical
  sensing (sea bass or salmon?)




• Problem Analysis:
   set up a camera and take some sample
    images to extract features                   Sensing
   Consider features such as
    length, lightness, width, number and
    shape of fins, position of mouth, etc.     Segmentation



                                             Feature Extraction



ECE 8443: Lecture 01, Slide 8
Length As A Discriminator




                         • Conclusion: Length is a poor discriminator


ECE 8443: Lecture 01, Slide 9
Add Another Feature




• Lightness is a better feature than length because it reduces the
  misclassification error.
• Can we combine features in such a way that we improve performance?
  (Hint: correlation)



ECE 8443: Lecture 01, Slide 10
Width And Lightness
• Treat features as a N-tuple (two-dimensional vector)
• Create a scatter plot
• Draw a line (regression) separating the two classes




ECE 8443: Lecture 01, Slide 11
Decision Theory
• Can we do better than a linear classifier?




• What is wrong with this decision surface?
  (Hint: generalization)



ECE 8443: Lecture 01, Slide 12
Generalization and Risk
• Why might a smoother decision surface be a better choice?
  (Hint: Occam’s Razor).




• This course investigates how to find such “optimal” decision surfaces and
  how to provide system designers with the tools to make intelligent
  trade-offs.


ECE 8443: Lecture 01, Slide 13
Correlation

           • Degrees of difficulty:   • Real data is often much harder:




ECE 8443: Lecture 01, Slide 14
First Principle
• There are many excellent resources on
  the Internet that demonstrate pattern
  recognition concepts.
• There are many MATLAB toolboxes
     ….
  that implement state of the art
  algorithms.
• One such resource is a Java Applet
  that lets you quickly explore how a
  variety of algorithms process the
  same data.
• An important first principle is:
    There are no magic equations or
     algorithms.
    You must understand the properties
     of your data and what a priori
     knowledge you can bring to bear on
     the problem.


ECE 8443: Lecture 01, Slide 15
Generalization And Risk

• How much can we trust isolated data
  points?



• Optimal decision surface is a line



• Optimal decision surface still a line




• Optimal decision surface changes
  abruptly

• Can we integrate prior knowledge about data, confidence, or willingness to
  take risk?




ECE 8443: Lecture 01, Slide 16
Bayesian Formulations

              Message            Linguistic    Articulatory        Acoustic
              Source              Channel       Channel            Channel
              Message             Words          Phones            Features

• Bayesian formulation for speech recognition:
            P ( A | W ) P(W )
  P (W | A)
                  P( A)
• Objective: minimize the word error rate by maximizing P(W | A)
• Approach: maximize P( A | W ) (training)
  P( A | W ) : acoustic model (hidden Markov models, Gaussian mixtures, etc.
  P(W ) :       language model (finite state machines, N-grams)
  P(A) :        acoustics (ignored during maximization)
• Bayes Rule allows us to convert the problem of estimating an unknown
  posterior probability to a process in which we can postulate a model, collect
  data under controlled conditions, and estimate the parameters of the model.



ECE 8443: Lecture 01, Slide 17
Summary
• Pattern recognition vs. machine learning vs. machine understanding
• First principle of pattern recognition?
• We will focus more on decision theory and less on feature extraction.
• This course emphasizes statistical and data-driven methods for optimizing
  system design and parameter values.
• Second most important principle?




ECE 8443: Lecture 01, Slide 18

Weitere ähnliche Inhalte

Was ist angesagt?

Artificial Intelligence Chapter 9 Negnevitsky
Artificial Intelligence Chapter 9 NegnevitskyArtificial Intelligence Chapter 9 Negnevitsky
Artificial Intelligence Chapter 9 Negnevitsky
lopanath
 
Cikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business ValueCikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business Value
Xavier Amatriain
 
LearningAG.ppt
LearningAG.pptLearningAG.ppt
LearningAG.ppt
butest
 
MLlecture1.ppt
MLlecture1.pptMLlecture1.ppt
MLlecture1.ppt
butest
 

Was ist angesagt? (20)

Developing Knowledge-Based Systems
Developing Knowledge-Based SystemsDeveloping Knowledge-Based Systems
Developing Knowledge-Based Systems
 
Deep learning crash course
Deep learning crash courseDeep learning crash course
Deep learning crash course
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Neural Computing
Neural ComputingNeural Computing
Neural Computing
 
Neural Networks for Pattern Recognition
Neural Networks for Pattern RecognitionNeural Networks for Pattern Recognition
Neural Networks for Pattern Recognition
 
A Friendly Introduction to Machine Learning
A Friendly Introduction to Machine LearningA Friendly Introduction to Machine Learning
A Friendly Introduction to Machine Learning
 
Recommender Systems In Industry
Recommender Systems In IndustryRecommender Systems In Industry
Recommender Systems In Industry
 
Lecture 1: Introduction to the Course (Practical Information)
Lecture 1: Introduction to the Course (Practical Information)Lecture 1: Introduction to the Course (Practical Information)
Lecture 1: Introduction to the Course (Practical Information)
 
Artificial Intelligence Chapter 9 Negnevitsky
Artificial Intelligence Chapter 9 NegnevitskyArtificial Intelligence Chapter 9 Negnevitsky
Artificial Intelligence Chapter 9 Negnevitsky
 
Lec 6 learning
Lec 6 learningLec 6 learning
Lec 6 learning
 
Cikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business ValueCikm 2013 - Beyond Data From User Information to Business Value
Cikm 2013 - Beyond Data From User Information to Business Value
 
Lec 3 1 reasoning
Lec 3  1 reasoningLec 3  1 reasoning
Lec 3 1 reasoning
 
Introduction to Artificial Intelligence
Introduction to Artificial IntelligenceIntroduction to Artificial Intelligence
Introduction to Artificial Intelligence
 
Barcelona ML Meetup - Lessons Learned
Barcelona ML Meetup - Lessons LearnedBarcelona ML Meetup - Lessons Learned
Barcelona ML Meetup - Lessons Learned
 
LearningAG.ppt
LearningAG.pptLearningAG.ppt
LearningAG.ppt
 
MLlecture1.ppt
MLlecture1.pptMLlecture1.ppt
MLlecture1.ppt
 
Helping Students to Learn Matehmatics Beyond LMS
Helping Students to Learn Matehmatics Beyond LMSHelping Students to Learn Matehmatics Beyond LMS
Helping Students to Learn Matehmatics Beyond LMS
 
Active learning
Active learningActive learning
Active learning
 
Deep learning
Deep learningDeep learning
Deep learning
 
Developing Recommendation System to provide a Personalized Learning experienc...
Developing Recommendation System to provide a PersonalizedLearning experienc...Developing Recommendation System to provide a PersonalizedLearning experienc...
Developing Recommendation System to provide a Personalized Learning experienc...
 

Andere mochten auch

Common Digital Advertising Formats of 2012
Common Digital Advertising Formats of 2012Common Digital Advertising Formats of 2012
Common Digital Advertising Formats of 2012
MarcusThomasLLC
 
Introduction to Image Editing
Introduction to Image EditingIntroduction to Image Editing
Introduction to Image Editing
barc300
 
Некоторые алгоритмы многомерной обработки изображений
Некоторые алгоритмы многомерной обработки изображенийНекоторые алгоритмы многомерной обработки изображений
Некоторые алгоритмы многомерной обработки изображений
MSU GML VideoGroup
 
JPG vs. GIF vs. PNG
JPG vs. GIF vs. PNGJPG vs. GIF vs. PNG
JPG vs. GIF vs. PNG
kay2
 
Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов.
Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов. Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов.
Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов.
Yandex
 

Andere mochten auch (20)

Csc446: Pattren Recognition (LN1)
Csc446: Pattren Recognition (LN1)Csc446: Pattren Recognition (LN1)
Csc446: Pattren Recognition (LN1)
 
Kai Weber & Chris Atherton - Pattern recognition for technical communicators ...
Kai Weber & Chris Atherton - Pattern recognition for technical communicators ...Kai Weber & Chris Atherton - Pattern recognition for technical communicators ...
Kai Weber & Chris Atherton - Pattern recognition for technical communicators ...
 
Common Digital Advertising Formats of 2012
Common Digital Advertising Formats of 2012Common Digital Advertising Formats of 2012
Common Digital Advertising Formats of 2012
 
Digital photo preservation in brief 20150617
Digital photo preservation in brief 20150617 Digital photo preservation in brief 20150617
Digital photo preservation in brief 20150617
 
Finding and Editing Images Online
Finding and Editing Images OnlineFinding and Editing Images Online
Finding and Editing Images Online
 
Digital graphics pro forma
Digital graphics pro formaDigital graphics pro forma
Digital graphics pro forma
 
File types pro forma(1)
File types pro forma(1)File types pro forma(1)
File types pro forma(1)
 
Introduction to Image Editing
Introduction to Image EditingIntroduction to Image Editing
Introduction to Image Editing
 
Некоторые алгоритмы многомерной обработки изображений
Некоторые алгоритмы многомерной обработки изображенийНекоторые алгоритмы многомерной обработки изображений
Некоторые алгоритмы многомерной обработки изображений
 
What is pattern_recognition (lecture 1 of 6)
What is pattern_recognition (lecture 1 of 6)What is pattern_recognition (lecture 1 of 6)
What is pattern_recognition (lecture 1 of 6)
 
Как делается Яндекс.Браузер — Михаил Лопаткин
Как делается Яндекс.Браузер — Михаил ЛопаткинКак делается Яндекс.Браузер — Михаил Лопаткин
Как делается Яндекс.Браузер — Михаил Лопаткин
 
Depth image recognition using isomorphic graph theory
Depth image recognition using isomorphic graph theoryDepth image recognition using isomorphic graph theory
Depth image recognition using isomorphic graph theory
 
Digital imaging
Digital imagingDigital imaging
Digital imaging
 
7 3-2
7 3-27 3-2
7 3-2
 
Портрет по фото на заказ
Портрет по фото на заказПортрет по фото на заказ
Портрет по фото на заказ
 
JPG vs. GIF vs. PNG
JPG vs. GIF vs. PNGJPG vs. GIF vs. PNG
JPG vs. GIF vs. PNG
 
CSC446: Pattern Recognition (LN6)
CSC446: Pattern Recognition (LN6)CSC446: Pattern Recognition (LN6)
CSC446: Pattern Recognition (LN6)
 
A study on face recognition technique based on eigenface
A study on face recognition technique based on eigenfaceA study on face recognition technique based on eigenface
A study on face recognition technique based on eigenface
 
Визуализация данных: как превратить числа в образы
Визуализация данных: как превратить числа в образыВизуализация данных: как превратить числа в образы
Визуализация данных: как превратить числа в образы
 
Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов.
Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов. Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов.
Анализ изображений и видео. Поиск по подобию, поиск нечетких дубликатов.
 

Ähnlich wie lecture_01.pptx - PowerPoint Presentation

Introduction to machine learning and pattern recognition
Introduction to machine learning and pattern recognitionIntroduction to machine learning and pattern recognition
Introduction to machine learning and pattern recognition
aqib296675
 
Deep learning - a primer
Deep learning - a primerDeep learning - a primer
Deep learning - a primer
Shirin Elsinghorst
 

Ähnlich wie lecture_01.pptx - PowerPoint Presentation (20)

MachineLearning.pptx
MachineLearning.pptxMachineLearning.pptx
MachineLearning.pptx
 
Introduction to machine learning and pattern recognition
Introduction to machine learning and pattern recognitionIntroduction to machine learning and pattern recognition
Introduction to machine learning and pattern recognition
 
Decision tree
Decision treeDecision tree
Decision tree
 
DT.pptx
DT.pptxDT.pptx
DT.pptx
 
EssentialsOfMachineLearning.pdf
EssentialsOfMachineLearning.pdfEssentialsOfMachineLearning.pdf
EssentialsOfMachineLearning.pdf
 
Artificial Intelligence for Automated Software Testing
Artificial Intelligence for Automated Software TestingArtificial Intelligence for Automated Software Testing
Artificial Intelligence for Automated Software Testing
 
Chapter10.pptx
Chapter10.pptxChapter10.pptx
Chapter10.pptx
 
Deep learning - a primer
Deep learning - a primerDeep learning - a primer
Deep learning - a primer
 
How Can Machine Learning Help Your Research Forward?
How Can Machine Learning Help Your Research Forward?How Can Machine Learning Help Your Research Forward?
How Can Machine Learning Help Your Research Forward?
 
Deep learning introduction
Deep learning introductionDeep learning introduction
Deep learning introduction
 
L5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature EngineeringL5. Data Transformation and Feature Engineering
L5. Data Transformation and Feature Engineering
 
Intro to machine learning
Intro to machine learningIntro to machine learning
Intro to machine learning
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
lec1.ppt
lec1.pptlec1.ppt
lec1.ppt
 
Intro to Machine Learning by Microsoft Ventures
Intro to Machine Learning by Microsoft VenturesIntro to Machine Learning by Microsoft Ventures
Intro to Machine Learning by Microsoft Ventures
 
The Machine Learning Workflow with Azure
The Machine Learning Workflow with AzureThe Machine Learning Workflow with Azure
The Machine Learning Workflow with Azure
 
Deep learning summary
Deep learning summaryDeep learning summary
Deep learning summary
 
2023 Supervised Learning for Orange3 from scratch
2023 Supervised Learning for Orange3 from scratch2023 Supervised Learning for Orange3 from scratch
2023 Supervised Learning for Orange3 from scratch
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Data Structure and Algorithms
Data Structure and AlgorithmsData Structure and Algorithms
Data Structure and Algorithms
 

Mehr von butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
butest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
butest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
butest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
butest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
butest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
butest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
butest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
butest
 
Facebook
Facebook Facebook
Facebook
butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
butest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
butest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
butest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
butest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
butest
 

Mehr von butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

lecture_01.pptx - PowerPoint Presentation

  • 1. ECE 8443 – Pattern Recognition LECTURE 01: COURSE OVERVIEW • Objectives: Course Introduction Typical Applications • Resources: Syllabus Internet Books and Notes D.H.S: Chapter 1 Glossary URL: Audio:
  • 2. Terminology • Pattern Recognition: “the act of taking raw data and taking an action based on the category of the pattern.” • Common Applications: speech recognition, fingerprint identification (biometrics), DNA sequence identification • Related Terminology:  Machine Learning: The ability of a machine to improve its performance based on previous results.  Machine Understanding: acting on the intentions of the user generating the data. • Related Fields: artificial intelligence, signal processing and discipline-specific research (e.g., target recognition, speech recognition, natural language processing). ECE 8443: Lecture 01, Slide 1
  • 3. Recognition or Understanding? • Which of these images are most scenic? • How can we develop a system to automatically determine scenic beauty? (Hint: feature combination) • Solutions to such problems require good feature extraction and good decision theory. ECE 8443: Lecture 01, Slide 2
  • 4. Feature Extraction ECE 8443: Lecture 01, Slide 3
  • 5. Features Are Confusable • Regions of overlap represent the • In real problems, features are classification error confusable and represent actual variation in the data. • Error rates can be computed with knowledge of the joint probability • The traditional role of the distributions (see OCW-MIT-6- signal processing engineer 450Fall-2006). has been to develop better features (e.g., “invariants”). • Context is used to reduce overlap. ECE 8443: Lecture 01, Slide 4
  • 6. Decomposition Decision Post-Processing Classification Feature Extraction Segmentation Sensing Input ECE 8443: Lecture 01, Slide 5
  • 7. The Design Cycle Start Collect Data Key issues: • “There is no data like more data.” Choose Features • Perceptually-meaningful features? • How do we find the best model? Choose Model • How do we estimate parameters? • How do we evaluate performance? Train Classifier Goal of the course: • Introduce you to mathematically rigorous ways to train and evaluate Evaluate Classifier models. End ECE 8443: Lecture 01, Slide 6
  • 8. Common Mistakes • I got 100% accuracy on...  Almost any algorithm works some of the time, but few real-world problems have ever been completely solved.  Training on the evaluation data is forbidden.  Once you use evaluation data, you should discard it. • My algorithm is better because...  Statistical significance and experimental design play a big role in determining the validity of a result.  There is always some probability a random choice of an algorithm will produce a better result. • Hence, in this course, we will also learn how to evaluate algorithms. ECE 8443: Lecture 01, Slide 7
  • 9. Image Processing Example • Sorting Fish: incoming fish are sorted according to species using optical sensing (sea bass or salmon?) • Problem Analysis:  set up a camera and take some sample images to extract features Sensing  Consider features such as length, lightness, width, number and shape of fins, position of mouth, etc. Segmentation Feature Extraction ECE 8443: Lecture 01, Slide 8
  • 10. Length As A Discriminator • Conclusion: Length is a poor discriminator ECE 8443: Lecture 01, Slide 9
  • 11. Add Another Feature • Lightness is a better feature than length because it reduces the misclassification error. • Can we combine features in such a way that we improve performance? (Hint: correlation) ECE 8443: Lecture 01, Slide 10
  • 12. Width And Lightness • Treat features as a N-tuple (two-dimensional vector) • Create a scatter plot • Draw a line (regression) separating the two classes ECE 8443: Lecture 01, Slide 11
  • 13. Decision Theory • Can we do better than a linear classifier? • What is wrong with this decision surface? (Hint: generalization) ECE 8443: Lecture 01, Slide 12
  • 14. Generalization and Risk • Why might a smoother decision surface be a better choice? (Hint: Occam’s Razor). • This course investigates how to find such “optimal” decision surfaces and how to provide system designers with the tools to make intelligent trade-offs. ECE 8443: Lecture 01, Slide 13
  • 15. Correlation • Degrees of difficulty: • Real data is often much harder: ECE 8443: Lecture 01, Slide 14
  • 16. First Principle • There are many excellent resources on the Internet that demonstrate pattern recognition concepts. • There are many MATLAB toolboxes …. that implement state of the art algorithms. • One such resource is a Java Applet that lets you quickly explore how a variety of algorithms process the same data. • An important first principle is:  There are no magic equations or algorithms.  You must understand the properties of your data and what a priori knowledge you can bring to bear on the problem. ECE 8443: Lecture 01, Slide 15
  • 17. Generalization And Risk • How much can we trust isolated data points? • Optimal decision surface is a line • Optimal decision surface still a line • Optimal decision surface changes abruptly • Can we integrate prior knowledge about data, confidence, or willingness to take risk? ECE 8443: Lecture 01, Slide 16
  • 18. Bayesian Formulations Message Linguistic Articulatory Acoustic Source Channel Channel Channel Message Words Phones Features • Bayesian formulation for speech recognition: P ( A | W ) P(W ) P (W | A) P( A) • Objective: minimize the word error rate by maximizing P(W | A) • Approach: maximize P( A | W ) (training)  P( A | W ) : acoustic model (hidden Markov models, Gaussian mixtures, etc.  P(W ) : language model (finite state machines, N-grams)  P(A) : acoustics (ignored during maximization) • Bayes Rule allows us to convert the problem of estimating an unknown posterior probability to a process in which we can postulate a model, collect data under controlled conditions, and estimate the parameters of the model. ECE 8443: Lecture 01, Slide 17
  • 19. Summary • Pattern recognition vs. machine learning vs. machine understanding • First principle of pattern recognition? • We will focus more on decision theory and less on feature extraction. • This course emphasizes statistical and data-driven methods for optimizing system design and parameter values. • Second most important principle? ECE 8443: Lecture 01, Slide 18