SlideShare ist ein Scribd-Unternehmen logo
1 von 6
Downloaden Sie, um offline zu lesen
12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS
www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 1/6
AS RELAÇÕES HÍDRICAS DAS PLANTAS VASCULARES
(6ª Parte)
Alexandra Rosa da Costa,
PhD (Stirling, U.K.)
Departamento de Biologia
Universidade de Évora
Portugal
Novembro de 2001
2. O MOVIMENTO DA ÁGUA NO SPAC (Cont):
2.5. O MOVIMENTO ASCENCIONAL DA ÁGUA:
A existência de plantas terrestres altas só se tornou possível quando as plantas adquiriram, no decorrer da evolução, um sistema
vascular que permitiu um movimento rápido da água para a parte aérea onde ocorre a transpiração. As plantas terrestres sem um sistema
vascular e com mais de 20 ou 30 cm de altura só poderiam existir num ambiente extremamente húmido, onde praticamente não ocorresse
transpiração. Isto explica-se pelo facto do movimento da água por difusão de célula a célula ser demasiado lento para evitar a desidratação
da parte aérea das plantas a transpirar. A importância do sistema vascular pode ser demonstrado pelo facto de uma árvore, num dia quente
de Verão, mover cerca de 200 litros de água desde as raízes até à superfície evaporante das folhas a mais de 20 ou 30 metros de altura
(Kozlowski & Pallardy, 1997).
Para a maioria das plantas o xilema constitui a parte mais longa da via de condução da água no seu interior. Assim, numa planta
com um metro de altura, cerca de 99,5% do transporte da água ocorre no xilema e em árvores mais altas o movimento no xilema
representa uma percentagem ainda maior (Taiz & Zeiger, 1998).
Quando comparado com a complexidade do transporte radial através da raiz, a via no xilema aparece como sendo muito simples e
com pouca resistência. Isto deve-se em parte às suas características que veremos a seguir.
2.5.1. CARACTERÍSTICAS DO XILEMA:
O xilema consiste de quatro tipos de células: os traqueídios, os elementos xilémicos, as fibras, e o parênquima xilémico.
¨ As células do parênquima, sobretudo nas plantas lenhosas, são as únicas que estão vivas. Estas células ocorrem
essencialmente nos raios que aparecem radialmente na madeira das árvores, mas também existem células do parênquima espalhadas
pelo xilema;
¨ As fibras são células de esclerênquima dispostas ao longo dos feixes e que lhes conferem resistência;
¨ Os traqueídios e os elementos xilémicos dispostos verticalmente são as células que estão envolvidas no transporte da
solução xilémica.
Duma maneira geral, as gimnospérmicas têm apenas traqueídios, enquanto que praticamente todas as angiospérmicas têm
elementos xilémicos e traqueídios (Taiz & Zeiger, 1998). Estes dois tipos de células são alongadas, embora os traqueídios sejam mais
compridos e estreitos que os vasos xilémicos (figura 22).
Tanto os traqueídios como os elementos xilémicos funcionam como elementos mortos, isto é, depois de terem sido formados por
crescimento e diferenciação de células meristemáticas, morrem e os seus protoplastos (célula vegetal sem parede) são absorvidos por
outras células. No entanto, antes de morrerem, as suas paredes sofrem alterações que são muito importantes para o transporte da água.
Uma das mudanças é a formação da parede secundária, que consiste largamente em celulose, lenhina e hemi-celuloses, e que cobre a
parede primária (Salisbury & Ross, 1992).
As paredes secundárias conferem uma força de compressão considerável às células o que evita que entrem em colapso sob as
tensões extremas a que por vezes estão sujeitas. Estas paredes, lenhificadas, não são permeáveis à água como as paredes primárias.
Quando se formam não cobrem completamente as paredes primárias, originando as pontuações que são zonas circulares, finas, onde as
células adjacentes estão separadas apenas pelas paredes primárias (Salisbury & Ross, 1992).
12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS
www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 2/6
Figura 22: Traqueídios (A e B) e traqueias (C a G) de diversas plantas, vistos lateralmente. Apenas se apresenta um terço do traqueídio B. É de notar os diferentes
tipos de pontuações nas paredes laterais destas células, e os diferentes tipos de perfurações que existem nas paredes dos topos das traqueias.
Retirado de Noggle e Fritz (1976), fig. 9, pag. 437
Estas pontuações podem ser simples e, então, são apenas um buraco redondo na parede secundária, ou podem ser estruturas
complexas chamadas pontuações areoladas, nas quais a parede secundária se estende sobre a pontuação e a parede primária fica mais
espessa no centro da pontuação formando o toro (figura 23). A figura mostra que o toro pode funcionar como uma válvula, fechando
quando a pressão num lado é superior à pressão no outro (Salisbury & Ross, 1992).
Figura 23: Diagrama duma pontuação areolada dum traqueídio de pinheiro (Pinus sp.). Se a pressão dum lado da pontuação for superior à pressão do outro lado,
o toro é empurrado de maneira que veda o orifício, impedindo o fluxo através dele.
Retirado de Salisbury e Ross (1992), fig. 5.7 (a), pag. 99
12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS
www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 3/6
Os topos das células dos traqueídios sobrepõem-se. As pontuações nas zonas de sobreposição permitem que a água suba
de um traqueídio para outro, ao longo das filas de traqueídios. As pontuações que existem em grande número nos lados dos traqueídios
também permitem a passagem de água entre células adjacentes. Por vezes estas células presentam espessamento espiralados como os
que resistem à compressão nos tubos dos aspiradores.
Os elementos xilémicos estão típicamente reforçados com estes espessamentos que podem ser circulares, espiralados, etc.,
Apresentam também placas de perfuração nos topos que apresentam aberturas nas quais a parede secundária não se forma e a parede
primária e a lamela média se dissolvem, permitindo o movimento rápido da água. Os elementos xilémicos (cada um é uma célula) estão
alinhados formando grandes tubos, constituidos por várias células e que constituiem as traqueias que se estendem de alguns
centímetros a vários metros em certas árvores.
A resistência ao fluxo da água é consideravelmente menor nas angiospérmicas que nas gimnospérmicas, em parte devido às
placas de perfuração, mas também devido a que as traqueias têm diâmetros mais largos que os traqueídios (Salisbury & Ross, 1992).
Por outro lado a transferência entre traqueídios ocorre apenas através das pontuações das extremidades que se sobrepõem,
enquanto que a transferência entre traqueias ocorre ao longo duma distância considerável através das pontuações laterais de duas
traqueias adjacentes, em contacto. As traqueias são muito mais longas que os traqueídios, de modo que, à medida que a água sobe na
planta, tem de passar pelas pontuações com menos frequência. Há dados que mostram que que o fluxo de água nas traqueias é, de facto,
muito mais rápido que nos traqueídios.
2.5.2. ATEORIADACOESÃO-TENSÃO PARAAASCENÇÃO DAÁGUA:
Em 1727 um fisiologista chamado Hales sugeriu que a água nas plantas entrava facilmente nas raízes, mas que só poderia
ascender na planta graças à transpiração. Esta ideia foi mais desenvolvida nos finais do século 19 com Sachs e Strasburger que indicaram
a transpiração como sendo a força motriz para a ascenção da água no xilema, mas não explicaram como isto era possível. Só em 1895 é
que Ashkenasy primeiro e depois Dixon e Joly perceberam que a água confinada em pequenos tubos como o xilema desenvolve elevadas
forças de coesão e é capaz de suportar grandes tensões (Kozlowski e Pallardy, 1997).
Estas ideias levaram à chamada teoria da coesão-tensão que é a mais aceite (ainda que muito controversa) para explicar a
subida da água em plantas a transpirar.
Esta teoria assenta em 4 pressupostos (Kozlowski & Pallardy, 1997):
¨ A água tem forças de coesão internas muito elevadas, e, quando confinada em pequenos tubos de paredes molháveis, como é
o caso do xilema, pode suportar grandes tensões que podem chegar aos –30 MPa. (NOTA: paredes molháveis quer dizer paredes
formadas por substâncias com as quais as moléculas de água podem estabelecer forças de adesão);
¨ A água na planta constitui um sistema contínuo através das paredes das células saturadas de água desde as superfícies
evaporantes das folhas até às superfícies absorventes das raízes;
¨ Quando a água se evapora de qualquer parte da planta, mas sobretudo das folhas, a redução do potencial hídrico na superfície
evaporante causa uma deslocação de água do xilema para essa superfície;
¨ Devido às forças de coesão entre as moléculas de água, a perda de água por evaporação causa uma tensão na solução do
xilema que é transmitida através das colunas contínuas de água até às raízes, onde reduz o potencial hídrico causando um influxo de água
para o seu interior.
De acordo com estas premissas, a teoria da coesão-tensão estabelece quer um mecanismo, quer uma força motriz para o fluxo da
água através das plantas. A diferença de potencial hídrico entre a atmosfera e o solo deveria ser mais do que suficiente para providenciar a
força motriz para a subida da água até ao topo das árvores mais altas. No entanto, este mecanismo requer, para poder operar, elevadas
tensões no xilema e é difícil de imaginar como é que esta tensões podem ser mantidas durante a distância necessária. Por exemplo, é
difícil construir uma bomba mecânica que puxasse água do topo de uma coluna de água com mais de 10 metros (equivalente a 1 bar de
pressão) sem que haja falha por cavitação. É muito mais fácil utilizar pressões positivas aplicadas na base. Assim, a questão crítica é
saber-se se a tensão de superfície da água é suficiente para manter estados de alta tensão e se assim for, quais são as condições para
manter essa elevada tensão (Steudle, 2001).
A força de tensão da água (ou de qualquer fluido) é muito difícil de medir, não é como uma barra de metal. Por outro lado, a força de
tensão de uma coluna de água vai depender do diâmetro da conduta, das propriedades das suas paredes e da existência de gases ou
solutos. Mesmo assim, existem alguns dados bastante consistentes que apontam para que água pura, sem gases dissolvidos suporta
tensões de cerca de -25 a –30 MPa a 20 ºC. Estes valores são cerca de 10% da força de tensão do fio de cobre e cerca de 10 vezes
superior à tensão necessária para levar uma coluna de água ininterrupta ao topo das árvores mais altas (Hopkins, 1995).
A água no xilema, sob tensão, tem de permanecer no estado líquido a pressões muito abaixo da sua pressão de vapor. A 20 ºC a
pressão de vapor da água é de 2,3 kPa ou 0,0023 MPa. Uma coluna de água sob tensão está, portanto, num estado fisicamente instável.
Os físicos chamam a esta condição estado metaestável, ou seja, um estado em que podem facilmente ocorrer mudanças, mas em que
essas mudanças só ocorrem, de facto, devido a um estímulo externo. A estabilidade física pode acontecer numa coluna de água sob
tensão pela introdução de uma fase de vapor. As moléculas de água na fase de vapor têm muito baixa coesão o que permite que o vapor se
expanda rapidamente causando a ruptura da coluna de água e, assim, atenuando a tensão (Hopkins, 1995).
A origem duma fase gasosa no xilema explica-se pelo facto da água no xilema conter vários gases dissolvidos, como o dióxido de
carbono, o oxigénio e o azoto. Quando a coluna de água está sob tensão, há uma tendência para estes gases sairem da solução. primeiro
formam-se bolhas submicroscópicas na interface entre a água e as paredes dos traqueídios ou das traqueias, provavelmente em pequenas
fendas ou poros hidrofóbicos das paredes. Estas pequenas bolhas podem redissolver-se ou podem coalescer e expandir rapidamente
preenchendo a conduta. Este processo de formação rápida de bolhas de ar no xilema é chamado cavitação (do latim cavus = oco). A
12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS
www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 4/6
bolha grande de gas constitui uma obstrução na conduta a que se dá o nome de embolia (do grego embolus = rolha) (Hopkins, 1995).
A embolia tem implicações muito sérias para a teoria da coesão-tensão, uma vez que uma traqueia que sofre embolia deixa de
poder transportar água. De facto, a probabilidade elevada de ocorrer cavitação do xilema foi apresentada como sendo a objecção principal à
teoria da coesão-tensão quando esta foi formulada (Hopkins, 1995).
Em 1966, Milburn e Johnson desenvolveram o método acústico para a detecção da cavitação do xilema. Em experiências
laboratoriais com tubos finos de vidro, estes autores observaram que a relaxação rápida da tensão que segue a cavitação produz uma onda
de choque que pode ser ouvida como um “clique”. Utilizando microfones sensíveis é possível ouvir estes “cliques” quando são produzidos
nas plantas por cavitação no xilema. Utilizando folhas de rícino (Ricinus communis) em stresse, estes autores puderam demonstrar que
existe uma relação bastante evidente entre a cavitação e a tensão no xilema o que suportaria, de certa forma, a teoria da coesão-tensão
(Hopkins, 1995).
Nos finais dos anos 80, Sperry e os seus colegas desenvolveram um outro método baseado nas alterações da condutância
hidráulica, isto é, uma forma de medir a capacidade total dum tecido para conduzir água. O método acústico apenas contava o número e a
frequência das cavitações, mas o método hidráulico permitia avaliar o impacto das embolias na capacidade de transportar água do tecido.
Estes autores estudaram um talhão de áceres (Acer saccharum) e verificaram que durante a Primavera as embolias ocorriam
essencialmente no tronco principal e reduziam a condutância hidráulica em 31% devido ao stresse de carência hídrica. No Inverno, a
condutância do tronco principal reduzia-se de 60% e nos troncos secundários a redução podia atingir os 100%. Este aumento das embolias
no Inverno estaria provavelmenete ligada a ciclos de congelação-descongelação. A solubilidade dos gases é muito baixa no gelo e, assim,
quando a água congela os gases são forçados a sair da solução; quando se dá a descongelação as pequenas bolhas de gases expandem-
se e causam a cavitação (Hopkins, 1995).
O mecanismo principal para minimizar os efeitos das embolias prende-se com a estrura do xilema. A embolia fica simplesmente
contida dentro dum traqueídio ou dum elemento do xilema. Nos elementos que apresentam pontuações areoladas a embolia fica retida pela
estrutura da pontuação (figura 24). A diferença de pressão entre a traqueia que sofreu a embolia e a adjacente que está cheia de água faz
com que o toro fique comprimido contra o bordo da pontuação, evitando que a bolha de gas passe para o outro lado. A tensão de superfície
impede que a bolha passe através das pequenas aberturas das placas de perfuração entre elementos xilémicos contíguos. No entanto, a
água vai continuar a fluir lateralmente através das pontuações contornando, assim, o elemento bloqueado (figura24). Para além de permitir
que a água contorne o elemento bloqueado as plantas também podem tentar reparara embolia evitando os danos a longo prazo. Isto pode
acontecer à noite quando há pouca transpiração. A redução da tensão no xilema permite que os gases se redissolvam na solução do
xilema (Hopkins, 1995).
Figura 24: As bolhas de ar que se formam no xilema ficam contidas no elemento do xilema ou no traqueídio. A diferença de pressão resultante da embolia faz com
que o toro vede as pontuações areoladas que existem no elemento afectado. A tensão de superfície evita que as bolhas passem através das perfurações
terminais dos elementos. A água continua a fluir à volta do elemento xilémico bloqueado.
Retirado de Hopkins (1995), fig. 3.15, pag. 57
No caso das plantas herbáceas os gases podem ser forçados a redissolverem-se devido à pressão radicular, de que falaremos
mais adiante. No caso das plantas lenhosas a explicação não é tão simples. Algumas espécies como a vinha (Vitis sp.) ou o ácer (Accer
saccharum) desenvolvem uma forte pressão radicular no início da Primavera que pode estar relacionada com esta necessidade de
recuperar os danos causados pelas embolias do Inverno. Por outro lado, a maioria das espécies lenhosas produz xilema secundário novo
todas as Primaveras. Este xilema novo forma-se antes do desenvolvimento das gemas e podem satisfazer as necessidades da planta em
12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS
www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 5/6
termos de condutância hidráulica, substituindo o xilema velho e não funcional (Hopkins, 1995).
2.5.3. ATEORIADAPRESSÃO RADICULAR:
Sempre que por qualquer motivo uma planta não estiver a transpirar desenvolve-se uma pressão positiva nos vasos xilémicos da
raiz e da base dos caules (figura 25). Os iões minerais são acumulados activamente pelas células da raiz e são bombeados para dentro do
xilema, onde, devido à ausência de transpiração, o movimento de água é negligível causando um aumento da concentração dos sais. Este
aumento em sais provoca uma diminuição do potencial osmótico no xilema, o que causa uma entrada de água por osmose (Taiz & Zeiger,
1998).
O movimento da água, através dos tecidos da raiz para o cilindro central, ocorre através das paredes das células. No entanto, a
água tem de passar pelas membranas e protoplastos das células da endoderme, porque as suas paredes são impermeáveis à água. Todo
o anel formado pelas células da endoderme actua como uma simples mem-brana, com uma solução concentrada no lado do xilema, e
uma solução diluída no lado do cortex. Assim, a raiz funciona como um osmómetro, com a água a difundir-se em resposta a uma diferença
de concentrações, do solo através da “membrana” endoderme para o xilema. Isto causa o aumento da pressão nas células do xilema. A
parede impermeável da endoderme também impede que os sais bombeados para o xilema se difundam de novo para o córtex e para o
exterior da raiz.
Quando se destaca, ao nível do solo, o caule de uma planta que não esteja a transpirar, a superfície de corte exuda grande
quantidade de fluido (figura 26). Se se colocar um manómetro na extremidade cortada, observar-se-á que as raízes estão a produzir uma
certa pressão (figura 25), é a chamada pressão radicular (Taiz & Zeiger, 1998).
Figura 25: Experiência que mostra a existência de pressão radicular. A solução excretada pela base do caule está sujeita a uma pressão que pode ser lida no
manómetro de mercúrio.
Retirado de Galston, Davies e Satter (1980), fig. 6.17, pag. 161
A pressão radicular só poderá ser a causa da ascenção da solução xilémica nas plantas muito jovens, antes das folhas estarem
completamente desenvolvidas e a transpiração se tornar um processo dominante.
Figura 26: Exemplos de exsudação da solução xilémica devida à pressão radicular, em feijoeiro (Phaseolus vulgaris) à esquerda e tomateiro (Lycopersicon
esculentum) à direita. As fotografias foram retiradas 5 minutos após a excisão do caule de plantas bem regadas.
Retirado de Hopkins (1995), fig.3.10, pag.53
Caro Leitor:
12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS
www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 6/6
Agradeço que me envie críticas, sugestões e correcção dos erros que detectar. Para isso por favor “Clique aqui”
¨ Para voltar ao Índice “Clique aqui”
¨ Para voltar para a 5ª Parte “Clique aqui”
¨ Para avançar para a 7ª Parte “Clique aqui”
¨ Para voltar à página pessoal de Alexandra Costa “Clique aqui”

Weitere ähnliche Inhalte

Was ist angesagt?

B15 trocas gasosas nas plantas
B15   trocas gasosas nas plantasB15   trocas gasosas nas plantas
B15 trocas gasosas nas plantas
Nuno Correia
 
Transporte nas plantas ppt
Transporte nas plantas pptTransporte nas plantas ppt
Transporte nas plantas ppt
margaridabt
 
B20 transformação e utilização de energia pelos seres vivos - trocas gasos...
B20    transformação e utilização de energia pelos seres vivos - trocas gasos...B20    transformação e utilização de energia pelos seres vivos - trocas gasos...
B20 transformação e utilização de energia pelos seres vivos - trocas gasos...
Nuno Correia
 
Transporte no xilema
Transporte no xilemaTransporte no xilema
Transporte no xilema
Rita Pereira
 
Distribuição de matéria
Distribuição de matériaDistribuição de matéria
Distribuição de matéria
Rita Pereira
 
Relatorio 4 efeito do dioxido de carbono na abertura22222
Relatorio 4  efeito do dioxido de carbono na abertura22222Relatorio 4  efeito do dioxido de carbono na abertura22222
Relatorio 4 efeito do dioxido de carbono na abertura22222
Credencio Maunze
 
(9) biologia e geologia 10º ano - trocas gasosas em seres multicelulares
(9) biologia e geologia   10º ano - trocas gasosas em seres multicelulares(9) biologia e geologia   10º ano - trocas gasosas em seres multicelulares
(9) biologia e geologia 10º ano - trocas gasosas em seres multicelulares
Hugo Martins
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
margaridabt
 
Transporte Nas Plantas
Transporte Nas PlantasTransporte Nas Plantas
Transporte Nas Plantas
Tânia Reis
 
Ppt transporte plantas
Ppt transporte plantasPpt transporte plantas
Ppt transporte plantas
Helena Alves
 
Ppt2 AbsorçãO Radicular
Ppt2   AbsorçãO RadicularPpt2   AbsorçãO Radicular
Ppt2 AbsorçãO Radicular
Nuno Correia
 
B19 superfícies respiratórias
B19   superfícies respiratóriasB19   superfícies respiratórias
B19 superfícies respiratórias
Nuno Correia
 
9 transporte nas plantas
9   transporte nas plantas9   transporte nas plantas
9 transporte nas plantas
margaridabt
 

Was ist angesagt? (20)

transporte Plantas
transporte Plantastransporte Plantas
transporte Plantas
 
B15 trocas gasosas nas plantas
B15   trocas gasosas nas plantasB15   trocas gasosas nas plantas
B15 trocas gasosas nas plantas
 
Transporte nas plantas ppt
Transporte nas plantas pptTransporte nas plantas ppt
Transporte nas plantas ppt
 
B20 transformação e utilização de energia pelos seres vivos - trocas gasos...
B20    transformação e utilização de energia pelos seres vivos - trocas gasos...B20    transformação e utilização de energia pelos seres vivos - trocas gasos...
B20 transformação e utilização de energia pelos seres vivos - trocas gasos...
 
Transporte no xilema
Transporte no xilemaTransporte no xilema
Transporte no xilema
 
Bg 10 superfícies respiratórias
Bg 10   superfícies respiratóriasBg 10   superfícies respiratórias
Bg 10 superfícies respiratórias
 
transportenasplantas
transportenasplantastransportenasplantas
transportenasplantas
 
Distribuição de matéria
Distribuição de matériaDistribuição de matéria
Distribuição de matéria
 
Relatorio 4 efeito do dioxido de carbono na abertura22222
Relatorio 4  efeito do dioxido de carbono na abertura22222Relatorio 4  efeito do dioxido de carbono na abertura22222
Relatorio 4 efeito do dioxido de carbono na abertura22222
 
(9) biologia e geologia 10º ano - trocas gasosas em seres multicelulares
(9) biologia e geologia   10º ano - trocas gasosas em seres multicelulares(9) biologia e geologia   10º ano - trocas gasosas em seres multicelulares
(9) biologia e geologia 10º ano - trocas gasosas em seres multicelulares
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
 
Transporte Nas Plantas
Transporte Nas PlantasTransporte Nas Plantas
Transporte Nas Plantas
 
Ppt transporte plantas
Ppt transporte plantasPpt transporte plantas
Ppt transporte plantas
 
2º Ano - Fisiologia vegetal - Condução e Transpiração I
2º Ano - Fisiologia vegetal - Condução e Transpiração I2º Ano - Fisiologia vegetal - Condução e Transpiração I
2º Ano - Fisiologia vegetal - Condução e Transpiração I
 
Ppt2 AbsorçãO Radicular
Ppt2   AbsorçãO RadicularPpt2   AbsorçãO Radicular
Ppt2 AbsorçãO Radicular
 
Frente 3 módulo 11 Transporte de Seiva Bruta e Elaborada
Frente 3 módulo 11 Transporte de Seiva Bruta e ElaboradaFrente 3 módulo 11 Transporte de Seiva Bruta e Elaborada
Frente 3 módulo 11 Transporte de Seiva Bruta e Elaborada
 
B19 superfícies respiratórias
B19   superfícies respiratóriasB19   superfícies respiratórias
B19 superfícies respiratórias
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
 
9 transporte nas plantas
9   transporte nas plantas9   transporte nas plantas
9 transporte nas plantas
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
 

Ähnlich wie Relações hídricas parte 6

Módulo a3.1 transporte nas plantas
Módulo a3.1   transporte nas plantasMódulo a3.1   transporte nas plantas
Módulo a3.1 transporte nas plantas
Leonor Vaz Pereira
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
margaridabt
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
margaridabt
 
Transporte nas plantas ppt
Transporte nas plantas pptTransporte nas plantas ppt
Transporte nas plantas ppt
margaridabt
 
Transporte nas plantas ppt
Transporte nas plantas pptTransporte nas plantas ppt
Transporte nas plantas ppt
margaridabt
 
Transporte Nas Plantas
Transporte Nas PlantasTransporte Nas Plantas
Transporte Nas Plantas
Isabelpessoa
 
10 trocas gasosas nos animais
10   trocas gasosas nos animais10   trocas gasosas nos animais
10 trocas gasosas nos animais
margaridabt
 

Ähnlich wie Relações hídricas parte 6 (20)

Transporte nas plantas Biologia 10º ano.pdf
Transporte nas plantas Biologia 10º ano.pdfTransporte nas plantas Biologia 10º ano.pdf
Transporte nas plantas Biologia 10º ano.pdf
 
Módulo a3.1 transporte nas plantas
Módulo a3.1   transporte nas plantasMódulo a3.1   transporte nas plantas
Módulo a3.1 transporte nas plantas
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
 
Transporte nas plantas
Transporte nas plantasTransporte nas plantas
Transporte nas plantas
 
Relações hídricas parte 3
Relações hídricas parte 3Relações hídricas parte 3
Relações hídricas parte 3
 
Fisio. bal.hidri A.pptx
Fisio. bal.hidri A.pptxFisio. bal.hidri A.pptx
Fisio. bal.hidri A.pptx
 
Relações hídricas parte 7
Relações hídricas parte 7Relações hídricas parte 7
Relações hídricas parte 7
 
Lista de exercícios 4 com gabarito - bio frente 1 - 2º bim 2015 - prof james
Lista de exercícios 4 com gabarito -  bio frente 1 - 2º bim 2015  - prof jamesLista de exercícios 4 com gabarito -  bio frente 1 - 2º bim 2015  - prof james
Lista de exercícios 4 com gabarito - bio frente 1 - 2º bim 2015 - prof james
 
5.Transporte_Plantas.pdf
5.Transporte_Plantas.pdf5.Transporte_Plantas.pdf
5.Transporte_Plantas.pdf
 
Apostila fisiologia vegetal
Apostila fisiologia vegetalApostila fisiologia vegetal
Apostila fisiologia vegetal
 
Relações hídricas parte 1
Relações hídricas parte 1Relações hídricas parte 1
Relações hídricas parte 1
 
transportenasplantas-profissional.pptx
transportenasplantas-profissional.pptxtransportenasplantas-profissional.pptx
transportenasplantas-profissional.pptx
 
Transporte nas plantas ppt
Transporte nas plantas pptTransporte nas plantas ppt
Transporte nas plantas ppt
 
Transporte nas plantas ppt
Transporte nas plantas pptTransporte nas plantas ppt
Transporte nas plantas ppt
 
Transporte Nas Plantas
Transporte Nas PlantasTransporte Nas Plantas
Transporte Nas Plantas
 
Relações hídricas parte 5
Relações hídricas parte 5Relações hídricas parte 5
Relações hídricas parte 5
 
Fisiologia vegetal
Fisiologia vegetalFisiologia vegetal
Fisiologia vegetal
 
A conquista do ambiente terrestre pelas plantas
A conquista do ambiente terrestre pelas plantasA conquista do ambiente terrestre pelas plantas
A conquista do ambiente terrestre pelas plantas
 
10 trocas gasosas nos animais
10   trocas gasosas nos animais10   trocas gasosas nos animais
10 trocas gasosas nos animais
 
Biologia 1EM 2BIM
Biologia 1EM 2BIM Biologia 1EM 2BIM
Biologia 1EM 2BIM
 

Mehr von Bruno Djvan Ramos Barbosa

Sistema Reprodutor Masculino e Feminino
Sistema Reprodutor Masculino e Feminino Sistema Reprodutor Masculino e Feminino
Sistema Reprodutor Masculino e Feminino
Bruno Djvan Ramos Barbosa
 
Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...
Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...
Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...
Bruno Djvan Ramos Barbosa
 
Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...
Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...
Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...
Bruno Djvan Ramos Barbosa
 

Mehr von Bruno Djvan Ramos Barbosa (20)

TRANSLOCAÇÃO DE SOLUTOS PELO FLOEMA
TRANSLOCAÇÃO DE SOLUTOS PELO FLOEMATRANSLOCAÇÃO DE SOLUTOS PELO FLOEMA
TRANSLOCAÇÃO DE SOLUTOS PELO FLOEMA
 
Sistema Reprodutor Comparado - Fisiologia Comparada
Sistema Reprodutor Comparado - Fisiologia ComparadaSistema Reprodutor Comparado - Fisiologia Comparada
Sistema Reprodutor Comparado - Fisiologia Comparada
 
Umbuzeiro - Caatinga
Umbuzeiro - Caatinga Umbuzeiro - Caatinga
Umbuzeiro - Caatinga
 
Sistema Reprodutor Masculino e Feminino
Sistema Reprodutor Masculino e Feminino Sistema Reprodutor Masculino e Feminino
Sistema Reprodutor Masculino e Feminino
 
Síndrome de Down
Síndrome de Down Síndrome de Down
Síndrome de Down
 
Educação sexual - Estágio Supervisionado III e IV
Educação sexual - Estágio Supervisionado III e IVEducação sexual - Estágio Supervisionado III e IV
Educação sexual - Estágio Supervisionado III e IV
 
cactáceas da caatinga
cactáceas da caatinga cactáceas da caatinga
cactáceas da caatinga
 
Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...
Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...
Avaliação da dinâmica da água no solo, evapotranspiração da cultura e estado ...
 
Água nas Plantas
Água nas PlantasÁgua nas Plantas
Água nas Plantas
 
Aplicação da Geoestatística em Ciências Agrarias
Aplicação da Geoestatística em Ciências AgrariasAplicação da Geoestatística em Ciências Agrarias
Aplicação da Geoestatística em Ciências Agrarias
 
Relações hídricas
Relações hídricasRelações hídricas
Relações hídricas
 
Relações hídricas parte 13
Relações hídricas parte 13Relações hídricas parte 13
Relações hídricas parte 13
 
Relações hídricas parte 12
Relações hídricas parte 12Relações hídricas parte 12
Relações hídricas parte 12
 
Relações hídricas parte 11
Relações hídricas parte 11Relações hídricas parte 11
Relações hídricas parte 11
 
Relações hídricas parte 10
Relações hídricas parte 10Relações hídricas parte 10
Relações hídricas parte 10
 
Relações hídricas parte 9
Relações hídricas parte 9Relações hídricas parte 9
Relações hídricas parte 9
 
Relações hídricas parte 8
Relações hídricas parte 8Relações hídricas parte 8
Relações hídricas parte 8
 
Relações hídricas parte 2
Relações hídricas parte 2Relações hídricas parte 2
Relações hídricas parte 2
 
Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...
Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...
Interdisciplinar de ciências da natureza e suas tecnologias - Desperdício de ...
 
Visita Técnica a Estação de Piscicultura de Bebedouro-PE, 3ª/EPB
Visita Técnica a Estação de Piscicultura de Bebedouro-PE, 3ª/EPBVisita Técnica a Estação de Piscicultura de Bebedouro-PE, 3ª/EPB
Visita Técnica a Estação de Piscicultura de Bebedouro-PE, 3ª/EPB
 

Kürzlich hochgeladen

Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 

Kürzlich hochgeladen (20)

Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEMPRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
PRÁTICAS PEDAGÓGICAS GESTÃO DA APRENDIZAGEM
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVAEDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
 
Produção de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptxProdução de Texto - 5º ano - CRÔNICA.pptx
Produção de Texto - 5º ano - CRÔNICA.pptx
 
GÊNERO CARTAZ - o que é, para que serve.pptx
GÊNERO CARTAZ - o que é, para que serve.pptxGÊNERO CARTAZ - o que é, para que serve.pptx
GÊNERO CARTAZ - o que é, para que serve.pptx
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
migração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenosmigração e trabalho 2º ano.pptx fenomenos
migração e trabalho 2º ano.pptx fenomenos
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 

Relações hídricas parte 6

  • 1. 12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 1/6 AS RELAÇÕES HÍDRICAS DAS PLANTAS VASCULARES (6ª Parte) Alexandra Rosa da Costa, PhD (Stirling, U.K.) Departamento de Biologia Universidade de Évora Portugal Novembro de 2001 2. O MOVIMENTO DA ÁGUA NO SPAC (Cont): 2.5. O MOVIMENTO ASCENCIONAL DA ÁGUA: A existência de plantas terrestres altas só se tornou possível quando as plantas adquiriram, no decorrer da evolução, um sistema vascular que permitiu um movimento rápido da água para a parte aérea onde ocorre a transpiração. As plantas terrestres sem um sistema vascular e com mais de 20 ou 30 cm de altura só poderiam existir num ambiente extremamente húmido, onde praticamente não ocorresse transpiração. Isto explica-se pelo facto do movimento da água por difusão de célula a célula ser demasiado lento para evitar a desidratação da parte aérea das plantas a transpirar. A importância do sistema vascular pode ser demonstrado pelo facto de uma árvore, num dia quente de Verão, mover cerca de 200 litros de água desde as raízes até à superfície evaporante das folhas a mais de 20 ou 30 metros de altura (Kozlowski & Pallardy, 1997). Para a maioria das plantas o xilema constitui a parte mais longa da via de condução da água no seu interior. Assim, numa planta com um metro de altura, cerca de 99,5% do transporte da água ocorre no xilema e em árvores mais altas o movimento no xilema representa uma percentagem ainda maior (Taiz & Zeiger, 1998). Quando comparado com a complexidade do transporte radial através da raiz, a via no xilema aparece como sendo muito simples e com pouca resistência. Isto deve-se em parte às suas características que veremos a seguir. 2.5.1. CARACTERÍSTICAS DO XILEMA: O xilema consiste de quatro tipos de células: os traqueídios, os elementos xilémicos, as fibras, e o parênquima xilémico. ¨ As células do parênquima, sobretudo nas plantas lenhosas, são as únicas que estão vivas. Estas células ocorrem essencialmente nos raios que aparecem radialmente na madeira das árvores, mas também existem células do parênquima espalhadas pelo xilema; ¨ As fibras são células de esclerênquima dispostas ao longo dos feixes e que lhes conferem resistência; ¨ Os traqueídios e os elementos xilémicos dispostos verticalmente são as células que estão envolvidas no transporte da solução xilémica. Duma maneira geral, as gimnospérmicas têm apenas traqueídios, enquanto que praticamente todas as angiospérmicas têm elementos xilémicos e traqueídios (Taiz & Zeiger, 1998). Estes dois tipos de células são alongadas, embora os traqueídios sejam mais compridos e estreitos que os vasos xilémicos (figura 22). Tanto os traqueídios como os elementos xilémicos funcionam como elementos mortos, isto é, depois de terem sido formados por crescimento e diferenciação de células meristemáticas, morrem e os seus protoplastos (célula vegetal sem parede) são absorvidos por outras células. No entanto, antes de morrerem, as suas paredes sofrem alterações que são muito importantes para o transporte da água. Uma das mudanças é a formação da parede secundária, que consiste largamente em celulose, lenhina e hemi-celuloses, e que cobre a parede primária (Salisbury & Ross, 1992). As paredes secundárias conferem uma força de compressão considerável às células o que evita que entrem em colapso sob as tensões extremas a que por vezes estão sujeitas. Estas paredes, lenhificadas, não são permeáveis à água como as paredes primárias. Quando se formam não cobrem completamente as paredes primárias, originando as pontuações que são zonas circulares, finas, onde as células adjacentes estão separadas apenas pelas paredes primárias (Salisbury & Ross, 1992).
  • 2. 12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 2/6 Figura 22: Traqueídios (A e B) e traqueias (C a G) de diversas plantas, vistos lateralmente. Apenas se apresenta um terço do traqueídio B. É de notar os diferentes tipos de pontuações nas paredes laterais destas células, e os diferentes tipos de perfurações que existem nas paredes dos topos das traqueias. Retirado de Noggle e Fritz (1976), fig. 9, pag. 437 Estas pontuações podem ser simples e, então, são apenas um buraco redondo na parede secundária, ou podem ser estruturas complexas chamadas pontuações areoladas, nas quais a parede secundária se estende sobre a pontuação e a parede primária fica mais espessa no centro da pontuação formando o toro (figura 23). A figura mostra que o toro pode funcionar como uma válvula, fechando quando a pressão num lado é superior à pressão no outro (Salisbury & Ross, 1992). Figura 23: Diagrama duma pontuação areolada dum traqueídio de pinheiro (Pinus sp.). Se a pressão dum lado da pontuação for superior à pressão do outro lado, o toro é empurrado de maneira que veda o orifício, impedindo o fluxo através dele. Retirado de Salisbury e Ross (1992), fig. 5.7 (a), pag. 99
  • 3. 12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 3/6 Os topos das células dos traqueídios sobrepõem-se. As pontuações nas zonas de sobreposição permitem que a água suba de um traqueídio para outro, ao longo das filas de traqueídios. As pontuações que existem em grande número nos lados dos traqueídios também permitem a passagem de água entre células adjacentes. Por vezes estas células presentam espessamento espiralados como os que resistem à compressão nos tubos dos aspiradores. Os elementos xilémicos estão típicamente reforçados com estes espessamentos que podem ser circulares, espiralados, etc., Apresentam também placas de perfuração nos topos que apresentam aberturas nas quais a parede secundária não se forma e a parede primária e a lamela média se dissolvem, permitindo o movimento rápido da água. Os elementos xilémicos (cada um é uma célula) estão alinhados formando grandes tubos, constituidos por várias células e que constituiem as traqueias que se estendem de alguns centímetros a vários metros em certas árvores. A resistência ao fluxo da água é consideravelmente menor nas angiospérmicas que nas gimnospérmicas, em parte devido às placas de perfuração, mas também devido a que as traqueias têm diâmetros mais largos que os traqueídios (Salisbury & Ross, 1992). Por outro lado a transferência entre traqueídios ocorre apenas através das pontuações das extremidades que se sobrepõem, enquanto que a transferência entre traqueias ocorre ao longo duma distância considerável através das pontuações laterais de duas traqueias adjacentes, em contacto. As traqueias são muito mais longas que os traqueídios, de modo que, à medida que a água sobe na planta, tem de passar pelas pontuações com menos frequência. Há dados que mostram que que o fluxo de água nas traqueias é, de facto, muito mais rápido que nos traqueídios. 2.5.2. ATEORIADACOESÃO-TENSÃO PARAAASCENÇÃO DAÁGUA: Em 1727 um fisiologista chamado Hales sugeriu que a água nas plantas entrava facilmente nas raízes, mas que só poderia ascender na planta graças à transpiração. Esta ideia foi mais desenvolvida nos finais do século 19 com Sachs e Strasburger que indicaram a transpiração como sendo a força motriz para a ascenção da água no xilema, mas não explicaram como isto era possível. Só em 1895 é que Ashkenasy primeiro e depois Dixon e Joly perceberam que a água confinada em pequenos tubos como o xilema desenvolve elevadas forças de coesão e é capaz de suportar grandes tensões (Kozlowski e Pallardy, 1997). Estas ideias levaram à chamada teoria da coesão-tensão que é a mais aceite (ainda que muito controversa) para explicar a subida da água em plantas a transpirar. Esta teoria assenta em 4 pressupostos (Kozlowski & Pallardy, 1997): ¨ A água tem forças de coesão internas muito elevadas, e, quando confinada em pequenos tubos de paredes molháveis, como é o caso do xilema, pode suportar grandes tensões que podem chegar aos –30 MPa. (NOTA: paredes molháveis quer dizer paredes formadas por substâncias com as quais as moléculas de água podem estabelecer forças de adesão); ¨ A água na planta constitui um sistema contínuo através das paredes das células saturadas de água desde as superfícies evaporantes das folhas até às superfícies absorventes das raízes; ¨ Quando a água se evapora de qualquer parte da planta, mas sobretudo das folhas, a redução do potencial hídrico na superfície evaporante causa uma deslocação de água do xilema para essa superfície; ¨ Devido às forças de coesão entre as moléculas de água, a perda de água por evaporação causa uma tensão na solução do xilema que é transmitida através das colunas contínuas de água até às raízes, onde reduz o potencial hídrico causando um influxo de água para o seu interior. De acordo com estas premissas, a teoria da coesão-tensão estabelece quer um mecanismo, quer uma força motriz para o fluxo da água através das plantas. A diferença de potencial hídrico entre a atmosfera e o solo deveria ser mais do que suficiente para providenciar a força motriz para a subida da água até ao topo das árvores mais altas. No entanto, este mecanismo requer, para poder operar, elevadas tensões no xilema e é difícil de imaginar como é que esta tensões podem ser mantidas durante a distância necessária. Por exemplo, é difícil construir uma bomba mecânica que puxasse água do topo de uma coluna de água com mais de 10 metros (equivalente a 1 bar de pressão) sem que haja falha por cavitação. É muito mais fácil utilizar pressões positivas aplicadas na base. Assim, a questão crítica é saber-se se a tensão de superfície da água é suficiente para manter estados de alta tensão e se assim for, quais são as condições para manter essa elevada tensão (Steudle, 2001). A força de tensão da água (ou de qualquer fluido) é muito difícil de medir, não é como uma barra de metal. Por outro lado, a força de tensão de uma coluna de água vai depender do diâmetro da conduta, das propriedades das suas paredes e da existência de gases ou solutos. Mesmo assim, existem alguns dados bastante consistentes que apontam para que água pura, sem gases dissolvidos suporta tensões de cerca de -25 a –30 MPa a 20 ºC. Estes valores são cerca de 10% da força de tensão do fio de cobre e cerca de 10 vezes superior à tensão necessária para levar uma coluna de água ininterrupta ao topo das árvores mais altas (Hopkins, 1995). A água no xilema, sob tensão, tem de permanecer no estado líquido a pressões muito abaixo da sua pressão de vapor. A 20 ºC a pressão de vapor da água é de 2,3 kPa ou 0,0023 MPa. Uma coluna de água sob tensão está, portanto, num estado fisicamente instável. Os físicos chamam a esta condição estado metaestável, ou seja, um estado em que podem facilmente ocorrer mudanças, mas em que essas mudanças só ocorrem, de facto, devido a um estímulo externo. A estabilidade física pode acontecer numa coluna de água sob tensão pela introdução de uma fase de vapor. As moléculas de água na fase de vapor têm muito baixa coesão o que permite que o vapor se expanda rapidamente causando a ruptura da coluna de água e, assim, atenuando a tensão (Hopkins, 1995). A origem duma fase gasosa no xilema explica-se pelo facto da água no xilema conter vários gases dissolvidos, como o dióxido de carbono, o oxigénio e o azoto. Quando a coluna de água está sob tensão, há uma tendência para estes gases sairem da solução. primeiro formam-se bolhas submicroscópicas na interface entre a água e as paredes dos traqueídios ou das traqueias, provavelmente em pequenas fendas ou poros hidrofóbicos das paredes. Estas pequenas bolhas podem redissolver-se ou podem coalescer e expandir rapidamente preenchendo a conduta. Este processo de formação rápida de bolhas de ar no xilema é chamado cavitação (do latim cavus = oco). A
  • 4. 12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 4/6 bolha grande de gas constitui uma obstrução na conduta a que se dá o nome de embolia (do grego embolus = rolha) (Hopkins, 1995). A embolia tem implicações muito sérias para a teoria da coesão-tensão, uma vez que uma traqueia que sofre embolia deixa de poder transportar água. De facto, a probabilidade elevada de ocorrer cavitação do xilema foi apresentada como sendo a objecção principal à teoria da coesão-tensão quando esta foi formulada (Hopkins, 1995). Em 1966, Milburn e Johnson desenvolveram o método acústico para a detecção da cavitação do xilema. Em experiências laboratoriais com tubos finos de vidro, estes autores observaram que a relaxação rápida da tensão que segue a cavitação produz uma onda de choque que pode ser ouvida como um “clique”. Utilizando microfones sensíveis é possível ouvir estes “cliques” quando são produzidos nas plantas por cavitação no xilema. Utilizando folhas de rícino (Ricinus communis) em stresse, estes autores puderam demonstrar que existe uma relação bastante evidente entre a cavitação e a tensão no xilema o que suportaria, de certa forma, a teoria da coesão-tensão (Hopkins, 1995). Nos finais dos anos 80, Sperry e os seus colegas desenvolveram um outro método baseado nas alterações da condutância hidráulica, isto é, uma forma de medir a capacidade total dum tecido para conduzir água. O método acústico apenas contava o número e a frequência das cavitações, mas o método hidráulico permitia avaliar o impacto das embolias na capacidade de transportar água do tecido. Estes autores estudaram um talhão de áceres (Acer saccharum) e verificaram que durante a Primavera as embolias ocorriam essencialmente no tronco principal e reduziam a condutância hidráulica em 31% devido ao stresse de carência hídrica. No Inverno, a condutância do tronco principal reduzia-se de 60% e nos troncos secundários a redução podia atingir os 100%. Este aumento das embolias no Inverno estaria provavelmenete ligada a ciclos de congelação-descongelação. A solubilidade dos gases é muito baixa no gelo e, assim, quando a água congela os gases são forçados a sair da solução; quando se dá a descongelação as pequenas bolhas de gases expandem- se e causam a cavitação (Hopkins, 1995). O mecanismo principal para minimizar os efeitos das embolias prende-se com a estrura do xilema. A embolia fica simplesmente contida dentro dum traqueídio ou dum elemento do xilema. Nos elementos que apresentam pontuações areoladas a embolia fica retida pela estrutura da pontuação (figura 24). A diferença de pressão entre a traqueia que sofreu a embolia e a adjacente que está cheia de água faz com que o toro fique comprimido contra o bordo da pontuação, evitando que a bolha de gas passe para o outro lado. A tensão de superfície impede que a bolha passe através das pequenas aberturas das placas de perfuração entre elementos xilémicos contíguos. No entanto, a água vai continuar a fluir lateralmente através das pontuações contornando, assim, o elemento bloqueado (figura24). Para além de permitir que a água contorne o elemento bloqueado as plantas também podem tentar reparara embolia evitando os danos a longo prazo. Isto pode acontecer à noite quando há pouca transpiração. A redução da tensão no xilema permite que os gases se redissolvam na solução do xilema (Hopkins, 1995). Figura 24: As bolhas de ar que se formam no xilema ficam contidas no elemento do xilema ou no traqueídio. A diferença de pressão resultante da embolia faz com que o toro vede as pontuações areoladas que existem no elemento afectado. A tensão de superfície evita que as bolhas passem através das perfurações terminais dos elementos. A água continua a fluir à volta do elemento xilémico bloqueado. Retirado de Hopkins (1995), fig. 3.15, pag. 57 No caso das plantas herbáceas os gases podem ser forçados a redissolverem-se devido à pressão radicular, de que falaremos mais adiante. No caso das plantas lenhosas a explicação não é tão simples. Algumas espécies como a vinha (Vitis sp.) ou o ácer (Accer saccharum) desenvolvem uma forte pressão radicular no início da Primavera que pode estar relacionada com esta necessidade de recuperar os danos causados pelas embolias do Inverno. Por outro lado, a maioria das espécies lenhosas produz xilema secundário novo todas as Primaveras. Este xilema novo forma-se antes do desenvolvimento das gemas e podem satisfazer as necessidades da planta em
  • 5. 12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 5/6 termos de condutância hidráulica, substituindo o xilema velho e não funcional (Hopkins, 1995). 2.5.3. ATEORIADAPRESSÃO RADICULAR: Sempre que por qualquer motivo uma planta não estiver a transpirar desenvolve-se uma pressão positiva nos vasos xilémicos da raiz e da base dos caules (figura 25). Os iões minerais são acumulados activamente pelas células da raiz e são bombeados para dentro do xilema, onde, devido à ausência de transpiração, o movimento de água é negligível causando um aumento da concentração dos sais. Este aumento em sais provoca uma diminuição do potencial osmótico no xilema, o que causa uma entrada de água por osmose (Taiz & Zeiger, 1998). O movimento da água, através dos tecidos da raiz para o cilindro central, ocorre através das paredes das células. No entanto, a água tem de passar pelas membranas e protoplastos das células da endoderme, porque as suas paredes são impermeáveis à água. Todo o anel formado pelas células da endoderme actua como uma simples mem-brana, com uma solução concentrada no lado do xilema, e uma solução diluída no lado do cortex. Assim, a raiz funciona como um osmómetro, com a água a difundir-se em resposta a uma diferença de concentrações, do solo através da “membrana” endoderme para o xilema. Isto causa o aumento da pressão nas células do xilema. A parede impermeável da endoderme também impede que os sais bombeados para o xilema se difundam de novo para o córtex e para o exterior da raiz. Quando se destaca, ao nível do solo, o caule de uma planta que não esteja a transpirar, a superfície de corte exuda grande quantidade de fluido (figura 26). Se se colocar um manómetro na extremidade cortada, observar-se-á que as raízes estão a produzir uma certa pressão (figura 25), é a chamada pressão radicular (Taiz & Zeiger, 1998). Figura 25: Experiência que mostra a existência de pressão radicular. A solução excretada pela base do caule está sujeita a uma pressão que pode ser lida no manómetro de mercúrio. Retirado de Galston, Davies e Satter (1980), fig. 6.17, pag. 161 A pressão radicular só poderá ser a causa da ascenção da solução xilémica nas plantas muito jovens, antes das folhas estarem completamente desenvolvidas e a transpiração se tornar um processo dominante. Figura 26: Exemplos de exsudação da solução xilémica devida à pressão radicular, em feijoeiro (Phaseolus vulgaris) à esquerda e tomateiro (Lycopersicon esculentum) à direita. As fotografias foram retiradas 5 minutos após a excisão do caule de plantas bem regadas. Retirado de Hopkins (1995), fig.3.10, pag.53 Caro Leitor:
  • 6. 12/02/13 A ASCENÇÃO DA ÁGUA NAS PLANTAS www.angelfire.com/ar3/alexcosta0/RelHid/Rhw6.htm 6/6 Agradeço que me envie críticas, sugestões e correcção dos erros que detectar. Para isso por favor “Clique aqui” ¨ Para voltar ao Índice “Clique aqui” ¨ Para voltar para a 5ª Parte “Clique aqui” ¨ Para avançar para a 7ª Parte “Clique aqui” ¨ Para voltar à página pessoal de Alexandra Costa “Clique aqui”