SlideShare ist ein Scribd-Unternehmen logo

2013.05 - IASSIST 2013 - 2

Dr.-Ing. Thomas Hartmann
Dr.-Ing. Thomas Hartmann
Dr.-Ing. Thomas HartmannBig Data Architect, Consultant, and Developer at Bosch um Robert Bosch GmbH

2013.05 - IASSIST 2013 - 2

1 von 39
A Technical Perspective on Use-Case-Driven Challenges
for Software Architectures
to Document Study and Variable Information
IASSIST 2013
29.05.2013
Matthäus Zloch
GESIS, Germany
matthaeus.zloch@gesis.org
Thomas Bosch
GESIS, Germany
thomas.bosch@gesis.org
boschthomas@blogspot.com
Dennis Wegener
GESIS, Germany
dennis.wegener@gesis.org
1
Outline
• What has already been said
• Challenges for MISSY Software Developers
• MISSY Software Architecture
• Implementation of DISCO
• Persistence Strategies
2
Thomas Presentation
• General information about MISSY
• Next generation MISSY
• Software architecture overview
• Presentation layer and MISSY use cases
• Business logic
• data model
• DDI-RDF Discovery Vocabulary
CHALLENGES AND
REQUIREMENTS
MISSY for Software Developers
4
Requirements to Software Developers
• Focus lies on software reusability
• must be stable and reliable
• API must be clean and easy to extend
• Flexible Web Application Framework and modern architecture
• Service-oriented
• Use of Semantic Web technologies
• Complex data model to represent use-cases (seen in previous
presentation)
5
Requirements to Software Developers
• Define and implement a common data model and
• Different Persistence Strategies
• Creation of an abstract framework and architecture
• Should be well designed to be able to be extended and reusable
• Available as open source software
• Independent of end-user system
6

Recomendados

OSGi Working Group Technical Progress Report 2007 - Enterprise
OSGi Working Group Technical Progress Report 2007 - EnterpriseOSGi Working Group Technical Progress Report 2007 - Enterprise
OSGi Working Group Technical Progress Report 2007 - Enterprisemfrancis
 
Applying Repository Systems to Audiovisual Preservation
Applying Repository Systems to Audiovisual PreservationApplying Repository Systems to Audiovisual Preservation
Applying Repository Systems to Audiovisual PreservationJon W. Dunn
 
MetadataTheory: Metadata Tools (7th of 10)
MetadataTheory: Metadata Tools (7th of 10)MetadataTheory: Metadata Tools (7th of 10)
MetadataTheory: Metadata Tools (7th of 10)Nikos Palavitsinis, PhD
 

Más contenido relacionado

Destacado

2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...Dr.-Ing. Thomas Hartmann
 
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)Dr.-Ing. Thomas Hartmann
 
Time managment
Time managmentTime managment
Time managmentSalah35
 

Destacado (7)

2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
2016.02 - Validating RDF Data Quality using Constraints to Direct the Develop...
 
KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016KIT Graduiertenkolloquium 11.05.2016
KIT Graduiertenkolloquium 11.05.2016
 
Understanding The Participatory News Consumer
Understanding The Participatory News ConsumerUnderstanding The Participatory News Consumer
Understanding The Participatory News Consumer
 
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
Doctoral Examination at the Karlsruhe Institute of Technology (08.07.2016)
 
Rakumo intro
Rakumo introRakumo intro
Rakumo intro
 
Time managment
Time managmentTime managment
Time managment
 
2013.05 - LDOW 2013 @ WWW 2013
2013.05 - LDOW 2013 @ WWW 20132013.05 - LDOW 2013 @ WWW 2013
2013.05 - LDOW 2013 @ WWW 2013
 

Ähnlich wie 2013.05 - IASSIST 2013 - 2

NoSQL Simplified: Schema vs. Schema-less
NoSQL Simplified: Schema vs. Schema-lessNoSQL Simplified: Schema vs. Schema-less
NoSQL Simplified: Schema vs. Schema-lessInfiniteGraph
 
Government GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 StandardsGovernment GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 StandardsNeo4j
 
Paolo Kreth - Persistence layers for microservices – the converged database a...
Paolo Kreth - Persistence layers for microservices – the converged database a...Paolo Kreth - Persistence layers for microservices – the converged database a...
Paolo Kreth - Persistence layers for microservices – the converged database a...matteo mazzeri
 
Big SQL 3.0 - Fast and easy SQL on Hadoop
Big SQL 3.0 - Fast and easy SQL on HadoopBig SQL 3.0 - Fast and easy SQL on Hadoop
Big SQL 3.0 - Fast and easy SQL on HadoopWilfried Hoge
 
IBM InfoSphere Data Architect 9.1 - Francis Arnaudiès
IBM InfoSphere Data Architect 9.1 - Francis ArnaudièsIBM InfoSphere Data Architect 9.1 - Francis Arnaudiès
IBM InfoSphere Data Architect 9.1 - Francis ArnaudièsIBMInfoSphereUGFR
 
2014.07.11 biginsights data2014
2014.07.11 biginsights data20142014.07.11 biginsights data2014
2014.07.11 biginsights data2014Wilfried Hoge
 
Team Data Science Process Presentation (TDSP), Aug 29, 2017
Team Data Science Process Presentation (TDSP), Aug 29, 2017Team Data Science Process Presentation (TDSP), Aug 29, 2017
Team Data Science Process Presentation (TDSP), Aug 29, 2017Debraj GuhaThakurta
 
Objectivity/DB: A Multipurpose NoSQL Database
Objectivity/DB: A Multipurpose NoSQL DatabaseObjectivity/DB: A Multipurpose NoSQL Database
Objectivity/DB: A Multipurpose NoSQL DatabaseInfiniteGraph
 
Model-Driven Cloud Data Storage
Model-Driven Cloud Data StorageModel-Driven Cloud Data Storage
Model-Driven Cloud Data Storagejccastrejon
 
Big Data Expo 2015 - Barnsten Why Data Modelling is Essential
Big Data Expo 2015 - Barnsten Why Data Modelling is EssentialBig Data Expo 2015 - Barnsten Why Data Modelling is Essential
Big Data Expo 2015 - Barnsten Why Data Modelling is EssentialBigDataExpo
 
Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...
Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...
Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...Databricks
 
Semantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud ManagementSemantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud ManagementPeter Haase
 

Ähnlich wie 2013.05 - IASSIST 2013 - 2 (20)

NoSQL Simplified: Schema vs. Schema-less
NoSQL Simplified: Schema vs. Schema-lessNoSQL Simplified: Schema vs. Schema-less
NoSQL Simplified: Schema vs. Schema-less
 
2013.05 - IASSIST 2013
2013.05 - IASSIST 20132013.05 - IASSIST 2013
2013.05 - IASSIST 2013
 
02 - DatabaseConcepts.pdf
02 - DatabaseConcepts.pdf02 - DatabaseConcepts.pdf
02 - DatabaseConcepts.pdf
 
DevOps for the DBA- Jax Style!
DevOps for the DBA-  Jax Style!DevOps for the DBA-  Jax Style!
DevOps for the DBA- Jax Style!
 
Unit4
Unit4Unit4
Unit4
 
Government GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 StandardsGovernment GraphSummit: And Then There Were 15 Standards
Government GraphSummit: And Then There Were 15 Standards
 
Paolo Kreth - Persistence layers for microservices – the converged database a...
Paolo Kreth - Persistence layers for microservices – the converged database a...Paolo Kreth - Persistence layers for microservices – the converged database a...
Paolo Kreth - Persistence layers for microservices – the converged database a...
 
Big SQL 3.0 - Fast and easy SQL on Hadoop
Big SQL 3.0 - Fast and easy SQL on HadoopBig SQL 3.0 - Fast and easy SQL on Hadoop
Big SQL 3.0 - Fast and easy SQL on Hadoop
 
IBM InfoSphere Data Architect 9.1 - Francis Arnaudiès
IBM InfoSphere Data Architect 9.1 - Francis ArnaudièsIBM InfoSphere Data Architect 9.1 - Francis Arnaudiès
IBM InfoSphere Data Architect 9.1 - Francis Arnaudiès
 
2014.07.11 biginsights data2014
2014.07.11 biginsights data20142014.07.11 biginsights data2014
2014.07.11 biginsights data2014
 
Require js training
Require js trainingRequire js training
Require js training
 
Team Data Science Process Presentation (TDSP), Aug 29, 2017
Team Data Science Process Presentation (TDSP), Aug 29, 2017Team Data Science Process Presentation (TDSP), Aug 29, 2017
Team Data Science Process Presentation (TDSP), Aug 29, 2017
 
2012.12 - EDDI 2012 - Workshop
2012.12 - EDDI 2012 - Workshop2012.12 - EDDI 2012 - Workshop
2012.12 - EDDI 2012 - Workshop
 
Objectivity/DB: A Multipurpose NoSQL Database
Objectivity/DB: A Multipurpose NoSQL DatabaseObjectivity/DB: A Multipurpose NoSQL Database
Objectivity/DB: A Multipurpose NoSQL Database
 
Domain Driven Design
Domain Driven DesignDomain Driven Design
Domain Driven Design
 
CDMI For Swift
CDMI For SwiftCDMI For Swift
CDMI For Swift
 
Model-Driven Cloud Data Storage
Model-Driven Cloud Data StorageModel-Driven Cloud Data Storage
Model-Driven Cloud Data Storage
 
Big Data Expo 2015 - Barnsten Why Data Modelling is Essential
Big Data Expo 2015 - Barnsten Why Data Modelling is EssentialBig Data Expo 2015 - Barnsten Why Data Modelling is Essential
Big Data Expo 2015 - Barnsten Why Data Modelling is Essential
 
Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...
Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...
Using Crowdsourced Images to Create Image Recognition Models with Analytics Z...
 
Semantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud ManagementSemantic Technologies for Enterprise Cloud Management
Semantic Technologies for Enterprise Cloud Management
 

Mehr von Dr.-Ing. Thomas Hartmann

2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)Dr.-Ing. Thomas Hartmann
 
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...Dr.-Ing. Thomas Hartmann
 
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)Dr.-Ing. Thomas Hartmann
 
2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)Dr.-Ing. Thomas Hartmann
 
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...Dr.-Ing. Thomas Hartmann
 
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)Dr.-Ing. Thomas Hartmann
 
The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...Dr.-Ing. Thomas Hartmann
 
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...Dr.-Ing. Thomas Hartmann
 
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...Dr.-Ing. Thomas Hartmann
 
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]Dr.-Ing. Thomas Hartmann
 
2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel SurveysDr.-Ing. Thomas Hartmann
 
2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3Dr.-Ing. Thomas Hartmann
 
2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3Dr.-Ing. Thomas Hartmann
 
2012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 22012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 2Dr.-Ing. Thomas Hartmann
 

Mehr von Dr.-Ing. Thomas Hartmann (20)

2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
2015.09. - The Role of Reasoning for RDF Validation (SEMANTiCS 2015)
 
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
2015.09 - Guidance, Please! Towards a Framework for RDF-Based Constraint Lang...
 
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
2015.03 - The RDF Validator - A Tool to Validate RDF Data (KIM)
 
2014.12 - Let's Disco - 2 (EDDI 2014)
2014.12 - Let's Disco - 2 (EDDI 2014)2014.12 - Let's Disco - 2 (EDDI 2014)
2014.12 - Let's Disco - 2 (EDDI 2014)
 
2014.12 - Let's Disco (EDDI 2014)
2014.12 - Let's Disco (EDDI 2014)2014.12 - Let's Disco (EDDI 2014)
2014.12 - Let's Disco (EDDI 2014)
 
2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)2014.10 - How to Formulate and Validate Constraints (DC 2014)
2014.10 - How to Formulate and Validate Constraints (DC 2014)
 
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
2014.10 - Towards Description Set Profiles for RDF Using SPARQL as Intermedia...
 
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
2014.10 - Requirements on RDF Constraint Formulation and Validation (DC 2014)
 
The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...The Next Generation of the Microdata Information System MISSY - An Integrated...
The Next Generation of the Microdata Information System MISSY - An Integrated...
 
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
The New Microdata Information System (MISSY) - Integration of DDI-based Data ...
 
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
Use Cases and Vocabularies Related to the DDI-RDF Discovery Vocabulary (EDDI ...
 
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
Towards the Discovery of Person-Level Data (SemStats, ISWC 2013) [2013.10]
 
2013.05 - IASSIST 2013 - 3
2013.05 - IASSIST 2013 - 32013.05 - IASSIST 2013 - 3
2013.05 - IASSIST 2013 - 3
 
2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys2013.02 - 7th Workshop of German Panel Surveys
2013.02 - 7th Workshop of German Panel Surveys
 
2012.12 - EDDI 2012 - Poster Demo
2012.12 - EDDI 2012 - Poster Demo2012.12 - EDDI 2012 - Poster Demo
2012.12 - EDDI 2012 - Poster Demo
 
2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3
 
2012.11 - ISWC 2012 - DC - 2
2012.11 - ISWC 2012 - DC -  22012.11 - ISWC 2012 - DC -  2
2012.11 - ISWC 2012 - DC - 2
 
2012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 12012.11 - ISWC 2012 - DC - 1
2012.11 - ISWC 2012 - DC - 1
 
2012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 32012.10 - DDI Lifecycle - Moving Forward - 3
2012.10 - DDI Lifecycle - Moving Forward - 3
 
2012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 22012.10 - DDI Lifecycle - Moving Forward - 2
2012.10 - DDI Lifecycle - Moving Forward - 2
 

Último

D.pharmacy Pharmacology 4th unit notes.pdf
D.pharmacy Pharmacology 4th unit notes.pdfD.pharmacy Pharmacology 4th unit notes.pdf
D.pharmacy Pharmacology 4th unit notes.pdfSUMIT TIWARI
 
Unleashing the Power of AI Tools for Enhancing Research, International FDP on...
Unleashing the Power of AI Tools for Enhancing Research, International FDP on...Unleashing the Power of AI Tools for Enhancing Research, International FDP on...
Unleashing the Power of AI Tools for Enhancing Research, International FDP on...Dr. Vinod Kumar Kanvaria
 
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfWriting Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfMr Bounab Samir
 
LOGISTICS AND SUPPLY CHAIN MANAGEMENT
LOGISTICS  AND  SUPPLY CHAIN  MANAGEMENTLOGISTICS  AND  SUPPLY CHAIN  MANAGEMENT
LOGISTICS AND SUPPLY CHAIN MANAGEMENThpirrjournal
 
FILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptx
FILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptxFILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptx
FILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptxmarielouisemiranda1
 
Bayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with ExamplesBayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with ExamplesTushar Tank
 
John See - Narrative Story
John See - Narrative StoryJohn See - Narrative Story
John See - Narrative StoryAlan See
 
Grantseeking Solo- Securing Awards with Limited Staff PDF.pdf
Grantseeking Solo- Securing Awards with Limited Staff  PDF.pdfGrantseeking Solo- Securing Awards with Limited Staff  PDF.pdf
Grantseeking Solo- Securing Awards with Limited Staff PDF.pdfTechSoup
 
Exit Essay - Save the Filipino Language by Renz Perez.docx
Exit Essay - Save the Filipino Language by Renz Perez.docxExit Essay - Save the Filipino Language by Renz Perez.docx
Exit Essay - Save the Filipino Language by Renz Perez.docxMYDA ANGELICA SUAN
 
Digital Storytelling Community Launch!.pptx
Digital Storytelling Community Launch!.pptxDigital Storytelling Community Launch!.pptx
Digital Storytelling Community Launch!.pptxJisc
 
50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...
50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...
50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...Nguyen Thanh Tu Collection
 
2.15.24 Making Whiteness -- Baldwin.pptx
2.15.24 Making Whiteness -- Baldwin.pptx2.15.24 Making Whiteness -- Baldwin.pptx
2.15.24 Making Whiteness -- Baldwin.pptxMaryPotorti1
 
UNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATION
UNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATIONUNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATION
UNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATIONSayali Powar
 
Narrative Exploration of New Categories at Mondelēz
Narrative Exploration of New Categories at MondelēzNarrative Exploration of New Categories at Mondelēz
Narrative Exploration of New Categories at MondelēzRay Poynter
 
Detailed Presentation on Human Rights(1).pptx
Detailed Presentation on Human Rights(1).pptxDetailed Presentation on Human Rights(1).pptx
Detailed Presentation on Human Rights(1).pptxDrOsiaMajeed
 
LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)
LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)
LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)satyanshp7890
 
HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)
HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)
HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)Rabiya Husain
 
Chromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-PrincipleChromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-Principleblessipriyanka
 
Practical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptxPractical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptxKatherine Villaluna
 

Último (20)

D.pharmacy Pharmacology 4th unit notes.pdf
D.pharmacy Pharmacology 4th unit notes.pdfD.pharmacy Pharmacology 4th unit notes.pdf
D.pharmacy Pharmacology 4th unit notes.pdf
 
Unleashing the Power of AI Tools for Enhancing Research, International FDP on...
Unleashing the Power of AI Tools for Enhancing Research, International FDP on...Unleashing the Power of AI Tools for Enhancing Research, International FDP on...
Unleashing the Power of AI Tools for Enhancing Research, International FDP on...
 
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfWriting Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
 
LOGISTICS AND SUPPLY CHAIN MANAGEMENT
LOGISTICS  AND  SUPPLY CHAIN  MANAGEMENTLOGISTICS  AND  SUPPLY CHAIN  MANAGEMENT
LOGISTICS AND SUPPLY CHAIN MANAGEMENT
 
FILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptx
FILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptxFILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptx
FILIPINO 7 IKATLO AT IKAAPAT NA LINGGO 3RD QUARTER.pptx
 
Bayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with ExamplesBayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with Examples
 
John See - Narrative Story
John See - Narrative StoryJohn See - Narrative Story
John See - Narrative Story
 
Grantseeking Solo- Securing Awards with Limited Staff PDF.pdf
Grantseeking Solo- Securing Awards with Limited Staff  PDF.pdfGrantseeking Solo- Securing Awards with Limited Staff  PDF.pdf
Grantseeking Solo- Securing Awards with Limited Staff PDF.pdf
 
Exit Essay - Save the Filipino Language by Renz Perez.docx
Exit Essay - Save the Filipino Language by Renz Perez.docxExit Essay - Save the Filipino Language by Renz Perez.docx
Exit Essay - Save the Filipino Language by Renz Perez.docx
 
Digital Storytelling Community Launch!.pptx
Digital Storytelling Community Launch!.pptxDigital Storytelling Community Launch!.pptx
Digital Storytelling Community Launch!.pptx
 
50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...
50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...
50 ĐỀ THI THỬ TỐT NGHIỆP THPT TIẾNG ANH 2024 CÓ GIẢI CHI TIẾT - GIỚI HẠN KHO...
 
Caldecott Medal Book Winners and Media Used
Caldecott Medal Book Winners and Media UsedCaldecott Medal Book Winners and Media Used
Caldecott Medal Book Winners and Media Used
 
2.15.24 Making Whiteness -- Baldwin.pptx
2.15.24 Making Whiteness -- Baldwin.pptx2.15.24 Making Whiteness -- Baldwin.pptx
2.15.24 Making Whiteness -- Baldwin.pptx
 
UNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATION
UNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATIONUNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATION
UNIT 1 BIOMOLECULE_CARBOHYDRATES PRESENTATION
 
Narrative Exploration of New Categories at Mondelēz
Narrative Exploration of New Categories at MondelēzNarrative Exploration of New Categories at Mondelēz
Narrative Exploration of New Categories at Mondelēz
 
Detailed Presentation on Human Rights(1).pptx
Detailed Presentation on Human Rights(1).pptxDetailed Presentation on Human Rights(1).pptx
Detailed Presentation on Human Rights(1).pptx
 
LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)
LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)
LIGHT,MIRROR,REFLECTION& REFRACTION. (Optometric optics)
 
HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)
HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)
HOW TO DEVELOP A RESEARCH PROPOSAL (FOR RESEARCH SCHOLARS)
 
Chromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-PrincipleChromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-Principle
 
Practical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptxPractical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptx
 

2013.05 - IASSIST 2013 - 2

  • 1. A Technical Perspective on Use-Case-Driven Challenges for Software Architectures to Document Study and Variable Information IASSIST 2013 29.05.2013 Matthäus Zloch GESIS, Germany matthaeus.zloch@gesis.org Thomas Bosch GESIS, Germany thomas.bosch@gesis.org boschthomas@blogspot.com Dennis Wegener GESIS, Germany dennis.wegener@gesis.org 1
  • 2. Outline • What has already been said • Challenges for MISSY Software Developers • MISSY Software Architecture • Implementation of DISCO • Persistence Strategies 2
  • 3. Thomas Presentation • General information about MISSY • Next generation MISSY • Software architecture overview • Presentation layer and MISSY use cases • Business logic • data model • DDI-RDF Discovery Vocabulary
  • 5. Requirements to Software Developers • Focus lies on software reusability • must be stable and reliable • API must be clean and easy to extend • Flexible Web Application Framework and modern architecture • Service-oriented • Use of Semantic Web technologies • Complex data model to represent use-cases (seen in previous presentation) 5
  • 6. Requirements to Software Developers • Define and implement a common data model and • Different Persistence Strategies • Creation of an abstract framework and architecture • Should be well designed to be able to be extended and reusable • Available as open source software • Independent of end-user system 6
  • 8. Software Architecture – Design Goals • Separation of • Model, i.e. concepts and real life objects, that represents the use case • (Physical) Storage mechanisms • Logic that controls and provides services to manipulate the data • The representation of information itself • The key is to have logically separated parts, where people might work independently but collaboratively • Creation of a reusable and extendable abstract API 8
  • 9. Software Architecture • State-of-the-art technologies to develop software • Multitier architecture • Model-View-Controller (MVC-Pattern) • Maven Projects + Modules • Multitier architecture separates the project into logical parts • Presentation, application processing, data, persistence, … 9
  • 10. 10
  • 16. Data Model • DDI-RDF Discovery Vocabulary DISCO • designed for the discovery use-case • provides object types, properties and data type properties designed for discovery use-case • We use DISCO as the internal data model • Implemented in Java • Maps all object properties available • Subclass relationships through Java native inheritance 16
  • 17. 17
  • 18. Extendible Data Model • DISCO does not cover all use cases • Projects may have individual needs • DISCO-model objects may be extended 18 DISCO-Model Your Project-Model
  • 19. Extendible Data Model • DISCO does not cover all use cases • Projects may have individual needs • DISCO-model objects may be extended 19 Provide this as an API!!DISCO-Model Your Project-Model
  • 20. 20
  • 25. Persistence-Layer – Strategies • The application itself does not need to know how the data is (physically) stored • Methods are provided to access and store objects through data access objects • Actual implementation is “hidden” to the upper layers • A strategy is an implementation of the actual type of persistence or physical storage, respectively • e.g. DDI-L-XML, DDI-RDF, XML-DB, Relational-DB, etc. 25
  • 26. Persistence-Layer – Strategies • The application itself does not need to know how the data is (physically) stored • Methods are provided to access and store objects through data access objects • Actual implementation is “hidden” to the upper layers • A strategy is an implementation of the actual type of persistence or physical storage, respectively • e.g. DDI-L-XML, DDI-RDF, XML-DB, Relational-DB, etc. 26 disco- persistence api
  • 27. Persistence-Layer – Strategies • The application itself does not need to know how the data is (physically) stored • Methods are provided to access and store objects through data access objects • Actual implementation is “hidden” to the upper layers • A strategy is an implementation of the actual type of persistence or physical storage, respectively • e.g. DDI-L-XML, DDI-RDF, XML-DB, Relational-DB, etc. • Due to performance: 27 disco- persistence api disco-persistence relational
  • 28. Persistence-Layer – Strategies / Modules • disco-persistence-api • Defines persistence functionality for model components regardless of the actual type of physical persistence • disco-persistence-relational • Implements the persistence functionality defined in disco-persistence-api with respect to the usage of relational DBs • disco-persistence-xml • Implements the persistence functionality defined in disco-persistence-api with respect to the usage of DDI-XML • disco-persistence-rdf • Implements the persistence functionality defined in disco-persistence-api with respect to the usage of the disco-specification 28
  • 29. Persistence-Layer – Strategies / Modules • disco-persistence-api • Defines persistence functionality for model components regardless of the actual type of physical persistence • disco-persistence-relational • Implements the persistence functionality defined in disco-persistence-api with respect to the usage of relational DBs • disco-persistence-xml • Implements the persistence functionality defined in disco-persistence-api with respect to the usage of DDI-XML • disco-persistence-rdf • Implements the persistence functionality defined in disco-persistence-api with respect to the usage of the disco-specification 29
  • 30. 30
  • 36. Declaration of own Properties 36 project-model
  • 37. Missy Project API – Modules 37 persistence business presentation missy-editor-web missy-editor-core disco-model disco- persistence-api disco- persistence- relational missy-model missy- persistence-api missy- persistence- relational
  • 38. 38
  • 39. Thank you for your attention 39 Matthäus Zloch Team Architecture GESIS, Germany matthaeus.zloch@gesis.org The Missy Project http://github.com/missy-project