SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
LTE Evolution for Cellular IoT
Ericsson & NSN
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 2
• Overview and introduction
Overview and introduction
LTE Evolution for Cellular IoT
Requirements
• White Paper on M2M is geared towards low cost M2M applications
• Utility (electricity/gas/water) metering can be seen as a typical example
• We refer to this as “Cellular Internet of Things” or “Cellular IoT”
Solutions
•Rel-12 introduces important improvements for M2M
• Lower device cost, longer battery life
•Further improvements for M2M are envisioned in Rel-13
• Enhanced coverage, even lower device cost, even longer battery life
Network deployment
•Wide support for operator frequency bands with
different system bandwidths
•M2M services can be operated on stand-alone
carrier or multiplexed with other services
•Battery life >10 years with 2 AA batteries
•Support large number of M2M devices
•Additional 20 dB coverage
•Very low device cost
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 3
• Rel-12 introduces a new low complexity UE category (“Cat-0”)
• Further device complexity reduction can be achieved in Rel-13 (cf. TR 36.888)
- Reduced UE receive bandwidth to 1.4 MHz allows for substantial complexity reduction
- The UE will still be able to operate in all existing LTE system bandwidths up to 20 MHz
- A lower UE power class will allow integration of power amplifier in single chip solution
Low device cost
Rel-8 Cat-4 Rel- 8 Cat-1 Rel-12 Cat-0 Rel-13
Downlink peak rate 150 Mbps 10 Mbps 1 Mbps ~200 kbps
Uplink peak rate 50 Mbps 5 Mbps 1 Mbps ~200 kbps
Max number of downlink spatial layers 2 1 1 1
Number of UE RF receiver chains 2 2 1 1
Duplex mode Full duplex Full duplex Half duplex (opt) Half duplex (opt)
UE receive bandwidth 20 MHz 20 MHz 20 MHz 1.4 MHz
Maximum UE transmit power 23 dBm 23 dBm 23 dBm ~20 dBm
Modem complexity relative to Cat-1 125% 100% 50% 25%
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 4
• Rel-12 introduces a UE power saving mode (PSM) for improved battery life
- UE performs periodic tracking area update (TAU) after which it stays reachable for
paging during a configurable Active timer before it goes to sleep (not reachable)
- More than 10 years battery lifetime with 2 AA batteries can be achieved for delay-
tolerant traffic if the TAU cycle is 10 minutes
• Further battery life improvements for other cases may be considered in Rel-13
Long battery life
TAU cycle
Trans.
2.56 s
(Rel-8)
10.24 s 1 min 10 min 1 h 2 h 1 day
15 min 3.7 4.5 4.9 4.9 4.9 4.9 4.9
1 hour 8.1 13.8 17.0 17.8 17.9 17.9 17.9
1 day 13.2 39.1 84.9 108.0 110.8 111.1 111.3
1 week 13.5 42.0 99.4 132.1 136.2 136.6 137.0
1 month 13.6 42.3 101.6 135.9 140.2 140.7 141.1
1 year 13.6 42.5 102.3 137.1 141.4 141.9 142.3
Estimated battery lifetime in months for different TAU cycles and transaction cycles
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 5
• It is feasible to increase the maximum coupling loss from ~140 dB to ~160 dB
to achieve 20 dB coverage enhancement
- The targeted link budget improvement for each individual physical channel will range
between 12 dB and 20 dB (cf. 3GPP TR 36.888 V12.0.0 Section 9.2)
• Techniques:
- The targeted coverage enhancement for some physical control channels can be
achieved through relaxation of acquisition time requirements (SCH, PBCH)
- For other physical control channels, robust quality with the targeted coverage is
achieved through repetition (PDCCH/EPDCCH, PUCCH, PRACH)
- For the physical data channels, subframe bundling and HARQ retransmissions will
achieve sufficient coverage for low-end M2M data services (PDSCH, PUSCH)
- Alternative means of transmission for some higher layer messages that are currently
handled as cell common transmissions (SIB, RAR, Paging) should be considered
Enhanced coverage
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 6
Physical channel name PUCCH PRACH PUSCH PDSCH SCH PBCH PDCCH
Transmitter
Max Tx power (dBm) 23 23 23 46 46 46 46
(1) Actual Tx power (dBm) 23 23 23 46 46 46 46
Receiver
(2) Thermal noise density (dBm/Hz) -174 -174 -174 -174 -174 -174 -174
(3) Receiver noise figure (dB) 5 5 5 9 9 9 9
(4) Interference margin (dB) 0 0 0 0 0 0 0
(5) Occupied channel bandwidth (Hz) 180000 1080000 360000 180000 1080000 1080000 1080000
(6) Effective noise power
= (2) + (3) + (4) + 10 log((5)) (dBm) -116.4 -108.7 -113.4 -112.4 -104.7 -104.7 -104.7
(7) Required SINR (dB) -7.8 -10 -4.3 0 -3.8 -3.5 -0.7
(8) Coverage enhancement technique 13.8 19.3 20.3 2.6 6.5 6.8 9.6
Repetition and/or PSD boosting 12.8 14.7 19.3 2.6 3.0 9.6
Relaxed requirement 4.6 6.5
Frequency hopping 1.0 1.0
Multiple decoding attempts 3.8
(9) Receiver sensitivity
= (6) + (7) - (8) (dBm) -138.0 -138.0 -138.0 -115.0 -115.0 -115.0 -115.0
(10) MCL
= (1) - (9) (dB) 161.0 161.0 161.0 161.0 161.0 161.0 161.0
Link budget
Enhanced coverage
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 7
• Assumptions for capacity estimation
- Daily uplink report of 100 bytes, not sensitive to latency (model based on TR 36.888)
- Ideal scheduling is assumed but all overheads from message header, RRC connection
set-up and release have been included
- Other assumptions: 1732 m inter-site distance, 900 MHz band, 10 MHz system
bandwidth, eNB antenna gain 14 dBi, UE antenna gain -4 dBi, penetration loss from
TR 36.888, antenna pattern from TR 36.814
High capacity
Number of user data messages per day per cell per 180 kHz spectrum allocation
Case 3a: 1.2 km/h UE velocity,
20 dB additional penetration loss
Case 3b: 30 km/h UE velocity,
10 dB additional penetration loss
> 5 million > 5 million
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 8
2013 2014 2015 2016 2017 2018 2019
Rel-12
Work Item
Rel-13
ImplementationWork Item
Implementation
Commercial
Deployment
Commercial
Deployment
Timeline
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 9
• Sub-GHz frequency bands (bands below 1 GHz) are attractive from coverage
point of view
- In many deployment scenarios, introducing LTE in a sub-GHz band is straightforward
with an LTE system bandwidth between 1.4 MHz and 20 MHz
- But in some scenarios, it may be challenging to find at least 1.4 MHz of available
spectrum in order to deploy LTE for e.g. M2M
- In scenarios where only a very narrow spectrum allocation is available, a more narrow
LTE system bandwidth than 1.4 MHz would appear to be desirable
• The following slides outline a potential solution for narrowband LTE
deployment within a 200-kHz spectrum allocation intended for M2M services
- Given enough industry support, this new LTE system bandwidth can be standardized
Narrowband deployment
Choice of system bandwidth
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 10
• An LTE system bandwidth of 200 kHz can be realized by restricting the
downlink transmission to a single 180-kHz LTE physical resource block (PRB)
- The minimum system bandwidth now corresponds to a single PRB of 180 kHz instead
of 6 PRBs
- Use TDM between downlink channels (SCH, PBCH, PDCCH, PDSCH)
- Time expansion principle applies to some downlink channels (PBCH, PDCCH,
PDSCH)
- Need to design new synchronization signals (SCH)
200 kHz system bandwidth - downlink solution
Narrowband deployment
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 11
• In uplink, allocate resources on 15-kHz subcarrier level
- The purpose is to be able to multiplex more than one user simultaneously in uplink
• This may be considered also for other narrow system bandwidths than 200 kHz, e.g. 1.4 MHz
• This is not needed in downlink since downlink is not power limited to the same extent as uplink
- Vary number of repetitions and subcarriers depending on coverage situation
- Use TDM between uplink channels (PRACH, PUCCH, PUSCH)
- Need to design new random access preamble signals (PRACH)
200 kHz system bandwidth - uplink solution
Narrowband deployment
basiccoveragemode
robust coverage mode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
basiccoveragemode
frequency
extreme coverage mode
robust coverage mode
robust coverage mode
basiccoveragemode
basiccoveragemode
extreme coverage mode
robust coverage mode
robust coverage mode
robust coverage mode
robust coverage mode
robust coverage mode
time
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 12
• Two deployment options:
- Without guard bands, one LTE channel replaces one GSM channel
- With 100-kHz guard bands, one LTE channel replaces two GSM channels
• No or minor impact on the performance of adjacent GSM carriers
GSM
GSM
GSM
GSM
GSM
GSM
LTE
GSM
GSM
GSM
GSM
GSM
GSM
200 kHz 200 kHz
GSM
GSM
GSM
GSM
GSM
LTE
GSM
GSM
GSM
GSM
GSM
GSM
GSM
No guard band 100 kHz guard band
100 kHz guard200 kHz
200 kHz system bandwidth - co-existence with GSM
Narrowband deployment
©2014 Ericsson & NSN. All rights reserved. | April 2014 | 13
• LTE evolution is able to provide an efficient solution for Cellular IoT
- Natural evolution of existing networks in existing or additional spectrum
- M2M traffic can co-exist on the same carrier as other traffic if desired
• Rel-12 improvements for M2M
- 50% modem complexity reduction compared to Cat-1 UE
- 10+ years battery lifetime for downlink delay-tolerant traffic
• Envisioned Rel-13 improvements for M2M
- 75% modem complexity reduction compared to Cat-1 UE
- Main cost reduction comes from reducing the UE receive bandwidth to 1.4 MHz
- 10+ years battery lifetime for cases not targeted by Rel-12
- 15-20 dB coverage enhancement
• Narrowband deployment
- Introduction of a narrower LTE system bandwidth (e.g. 200 kHz) can be considered
but requires substantial additional efforts compared to the improvements listed above
Summary

Weitere ähnliche Inhalte

Mehr von Björn Ekelund

The Transformation of Life, Universe and Everything
The Transformation of Life, Universe and EverythingThe Transformation of Life, Universe and Everything
The Transformation of Life, Universe and EverythingBjörn Ekelund
 
Cellular Internet of Things white paper
Cellular Internet of Things white paperCellular Internet of Things white paper
Cellular Internet of Things white paperBjörn Ekelund
 
Björn Ekelund at the annual ELLIIT Workshop 2013
Björn Ekelund at the annual ELLIIT Workshop 2013Björn Ekelund at the annual ELLIIT Workshop 2013
Björn Ekelund at the annual ELLIIT Workshop 2013Björn Ekelund
 
MAPCI at Skåne:Sthlm 2013
MAPCI at Skåne:Sthlm 2013MAPCI at Skåne:Sthlm 2013
MAPCI at Skåne:Sthlm 2013Björn Ekelund
 
MAPCI Institute Definition
MAPCI Institute DefinitionMAPCI Institute Definition
MAPCI Institute DefinitionBjörn Ekelund
 
FD-SOI and eQuad white paper
FD-SOI and eQuad white paperFD-SOI and eQuad white paper
FD-SOI and eQuad white paperBjörn Ekelund
 
LTE, Telephony and Battery Life
LTE, Telephony and Battery LifeLTE, Telephony and Battery Life
LTE, Telephony and Battery LifeBjörn Ekelund
 

Mehr von Björn Ekelund (8)

The Transformation of Life, Universe and Everything
The Transformation of Life, Universe and EverythingThe Transformation of Life, Universe and Everything
The Transformation of Life, Universe and Everything
 
Cellular Internet of Things white paper
Cellular Internet of Things white paperCellular Internet of Things white paper
Cellular Internet of Things white paper
 
Lightweight M2M
Lightweight M2MLightweight M2M
Lightweight M2M
 
Björn Ekelund at the annual ELLIIT Workshop 2013
Björn Ekelund at the annual ELLIIT Workshop 2013Björn Ekelund at the annual ELLIIT Workshop 2013
Björn Ekelund at the annual ELLIIT Workshop 2013
 
MAPCI at Skåne:Sthlm 2013
MAPCI at Skåne:Sthlm 2013MAPCI at Skåne:Sthlm 2013
MAPCI at Skåne:Sthlm 2013
 
MAPCI Institute Definition
MAPCI Institute DefinitionMAPCI Institute Definition
MAPCI Institute Definition
 
FD-SOI and eQuad white paper
FD-SOI and eQuad white paperFD-SOI and eQuad white paper
FD-SOI and eQuad white paper
 
LTE, Telephony and Battery Life
LTE, Telephony and Battery LifeLTE, Telephony and Battery Life
LTE, Telephony and Battery Life
 

Kürzlich hochgeladen

A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 

Kürzlich hochgeladen (20)

A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

LTE evolution for cellular Internet of Things

  • 1. LTE Evolution for Cellular IoT Ericsson & NSN
  • 2. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 2 • Overview and introduction Overview and introduction LTE Evolution for Cellular IoT Requirements • White Paper on M2M is geared towards low cost M2M applications • Utility (electricity/gas/water) metering can be seen as a typical example • We refer to this as “Cellular Internet of Things” or “Cellular IoT” Solutions •Rel-12 introduces important improvements for M2M • Lower device cost, longer battery life •Further improvements for M2M are envisioned in Rel-13 • Enhanced coverage, even lower device cost, even longer battery life Network deployment •Wide support for operator frequency bands with different system bandwidths •M2M services can be operated on stand-alone carrier or multiplexed with other services •Battery life >10 years with 2 AA batteries •Support large number of M2M devices •Additional 20 dB coverage •Very low device cost
  • 3. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 3 • Rel-12 introduces a new low complexity UE category (“Cat-0”) • Further device complexity reduction can be achieved in Rel-13 (cf. TR 36.888) - Reduced UE receive bandwidth to 1.4 MHz allows for substantial complexity reduction - The UE will still be able to operate in all existing LTE system bandwidths up to 20 MHz - A lower UE power class will allow integration of power amplifier in single chip solution Low device cost Rel-8 Cat-4 Rel- 8 Cat-1 Rel-12 Cat-0 Rel-13 Downlink peak rate 150 Mbps 10 Mbps 1 Mbps ~200 kbps Uplink peak rate 50 Mbps 5 Mbps 1 Mbps ~200 kbps Max number of downlink spatial layers 2 1 1 1 Number of UE RF receiver chains 2 2 1 1 Duplex mode Full duplex Full duplex Half duplex (opt) Half duplex (opt) UE receive bandwidth 20 MHz 20 MHz 20 MHz 1.4 MHz Maximum UE transmit power 23 dBm 23 dBm 23 dBm ~20 dBm Modem complexity relative to Cat-1 125% 100% 50% 25%
  • 4. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 4 • Rel-12 introduces a UE power saving mode (PSM) for improved battery life - UE performs periodic tracking area update (TAU) after which it stays reachable for paging during a configurable Active timer before it goes to sleep (not reachable) - More than 10 years battery lifetime with 2 AA batteries can be achieved for delay- tolerant traffic if the TAU cycle is 10 minutes • Further battery life improvements for other cases may be considered in Rel-13 Long battery life TAU cycle Trans. 2.56 s (Rel-8) 10.24 s 1 min 10 min 1 h 2 h 1 day 15 min 3.7 4.5 4.9 4.9 4.9 4.9 4.9 1 hour 8.1 13.8 17.0 17.8 17.9 17.9 17.9 1 day 13.2 39.1 84.9 108.0 110.8 111.1 111.3 1 week 13.5 42.0 99.4 132.1 136.2 136.6 137.0 1 month 13.6 42.3 101.6 135.9 140.2 140.7 141.1 1 year 13.6 42.5 102.3 137.1 141.4 141.9 142.3 Estimated battery lifetime in months for different TAU cycles and transaction cycles
  • 5. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 5 • It is feasible to increase the maximum coupling loss from ~140 dB to ~160 dB to achieve 20 dB coverage enhancement - The targeted link budget improvement for each individual physical channel will range between 12 dB and 20 dB (cf. 3GPP TR 36.888 V12.0.0 Section 9.2) • Techniques: - The targeted coverage enhancement for some physical control channels can be achieved through relaxation of acquisition time requirements (SCH, PBCH) - For other physical control channels, robust quality with the targeted coverage is achieved through repetition (PDCCH/EPDCCH, PUCCH, PRACH) - For the physical data channels, subframe bundling and HARQ retransmissions will achieve sufficient coverage for low-end M2M data services (PDSCH, PUSCH) - Alternative means of transmission for some higher layer messages that are currently handled as cell common transmissions (SIB, RAR, Paging) should be considered Enhanced coverage
  • 6. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 6 Physical channel name PUCCH PRACH PUSCH PDSCH SCH PBCH PDCCH Transmitter Max Tx power (dBm) 23 23 23 46 46 46 46 (1) Actual Tx power (dBm) 23 23 23 46 46 46 46 Receiver (2) Thermal noise density (dBm/Hz) -174 -174 -174 -174 -174 -174 -174 (3) Receiver noise figure (dB) 5 5 5 9 9 9 9 (4) Interference margin (dB) 0 0 0 0 0 0 0 (5) Occupied channel bandwidth (Hz) 180000 1080000 360000 180000 1080000 1080000 1080000 (6) Effective noise power = (2) + (3) + (4) + 10 log((5)) (dBm) -116.4 -108.7 -113.4 -112.4 -104.7 -104.7 -104.7 (7) Required SINR (dB) -7.8 -10 -4.3 0 -3.8 -3.5 -0.7 (8) Coverage enhancement technique 13.8 19.3 20.3 2.6 6.5 6.8 9.6 Repetition and/or PSD boosting 12.8 14.7 19.3 2.6 3.0 9.6 Relaxed requirement 4.6 6.5 Frequency hopping 1.0 1.0 Multiple decoding attempts 3.8 (9) Receiver sensitivity = (6) + (7) - (8) (dBm) -138.0 -138.0 -138.0 -115.0 -115.0 -115.0 -115.0 (10) MCL = (1) - (9) (dB) 161.0 161.0 161.0 161.0 161.0 161.0 161.0 Link budget Enhanced coverage
  • 7. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 7 • Assumptions for capacity estimation - Daily uplink report of 100 bytes, not sensitive to latency (model based on TR 36.888) - Ideal scheduling is assumed but all overheads from message header, RRC connection set-up and release have been included - Other assumptions: 1732 m inter-site distance, 900 MHz band, 10 MHz system bandwidth, eNB antenna gain 14 dBi, UE antenna gain -4 dBi, penetration loss from TR 36.888, antenna pattern from TR 36.814 High capacity Number of user data messages per day per cell per 180 kHz spectrum allocation Case 3a: 1.2 km/h UE velocity, 20 dB additional penetration loss Case 3b: 30 km/h UE velocity, 10 dB additional penetration loss > 5 million > 5 million
  • 8. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 8 2013 2014 2015 2016 2017 2018 2019 Rel-12 Work Item Rel-13 ImplementationWork Item Implementation Commercial Deployment Commercial Deployment Timeline
  • 9. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 9 • Sub-GHz frequency bands (bands below 1 GHz) are attractive from coverage point of view - In many deployment scenarios, introducing LTE in a sub-GHz band is straightforward with an LTE system bandwidth between 1.4 MHz and 20 MHz - But in some scenarios, it may be challenging to find at least 1.4 MHz of available spectrum in order to deploy LTE for e.g. M2M - In scenarios where only a very narrow spectrum allocation is available, a more narrow LTE system bandwidth than 1.4 MHz would appear to be desirable • The following slides outline a potential solution for narrowband LTE deployment within a 200-kHz spectrum allocation intended for M2M services - Given enough industry support, this new LTE system bandwidth can be standardized Narrowband deployment Choice of system bandwidth
  • 10. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 10 • An LTE system bandwidth of 200 kHz can be realized by restricting the downlink transmission to a single 180-kHz LTE physical resource block (PRB) - The minimum system bandwidth now corresponds to a single PRB of 180 kHz instead of 6 PRBs - Use TDM between downlink channels (SCH, PBCH, PDCCH, PDSCH) - Time expansion principle applies to some downlink channels (PBCH, PDCCH, PDSCH) - Need to design new synchronization signals (SCH) 200 kHz system bandwidth - downlink solution Narrowband deployment
  • 11. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 11 • In uplink, allocate resources on 15-kHz subcarrier level - The purpose is to be able to multiplex more than one user simultaneously in uplink • This may be considered also for other narrow system bandwidths than 200 kHz, e.g. 1.4 MHz • This is not needed in downlink since downlink is not power limited to the same extent as uplink - Vary number of repetitions and subcarriers depending on coverage situation - Use TDM between uplink channels (PRACH, PUCCH, PUSCH) - Need to design new random access preamble signals (PRACH) 200 kHz system bandwidth - uplink solution Narrowband deployment basiccoveragemode robust coverage mode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode basiccoveragemode frequency extreme coverage mode robust coverage mode robust coverage mode basiccoveragemode basiccoveragemode extreme coverage mode robust coverage mode robust coverage mode robust coverage mode robust coverage mode robust coverage mode time
  • 12. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 12 • Two deployment options: - Without guard bands, one LTE channel replaces one GSM channel - With 100-kHz guard bands, one LTE channel replaces two GSM channels • No or minor impact on the performance of adjacent GSM carriers GSM GSM GSM GSM GSM GSM LTE GSM GSM GSM GSM GSM GSM 200 kHz 200 kHz GSM GSM GSM GSM GSM LTE GSM GSM GSM GSM GSM GSM GSM No guard band 100 kHz guard band 100 kHz guard200 kHz 200 kHz system bandwidth - co-existence with GSM Narrowband deployment
  • 13. ©2014 Ericsson & NSN. All rights reserved. | April 2014 | 13 • LTE evolution is able to provide an efficient solution for Cellular IoT - Natural evolution of existing networks in existing or additional spectrum - M2M traffic can co-exist on the same carrier as other traffic if desired • Rel-12 improvements for M2M - 50% modem complexity reduction compared to Cat-1 UE - 10+ years battery lifetime for downlink delay-tolerant traffic • Envisioned Rel-13 improvements for M2M - 75% modem complexity reduction compared to Cat-1 UE - Main cost reduction comes from reducing the UE receive bandwidth to 1.4 MHz - 10+ years battery lifetime for cases not targeted by Rel-12 - 15-20 dB coverage enhancement • Narrowband deployment - Introduction of a narrower LTE system bandwidth (e.g. 200 kHz) can be considered but requires substantial additional efforts compared to the improvements listed above Summary