SlideShare ist ein Scribd-Unternehmen logo
1 von 37
BMIL Timing Pulse Measurement and Detector Calibration for the OsteoQuant® Advisor: Dr. Thomas N. Hangartner By: Binu Enchakalody 1
The OsteoQuant® pQCTscanner  which can provide precise density assessment of the trabecular and cortical regions of bone. Currently being upgraded to a x-ray tube source and a CZT semiconductor detector. 2 Ref: http://www.wright.edu/academics/bmil/bmil1.htm
Objective Implement a system capable of registering the motor- and detector timing-pulses of the Osteoquant® using a common time-base in microsecond resolution. 2a.   Correct the photon-count loss due to dead time to an error level of  less than 0.5% of the maximum expected photon counts. 2b.   Correct the non-linearity of the projection values due to beam hardening to an error level of less than 1% of the expected maximum projection value. 3
Timing-Pulse Measurement for the OsteoQuant® 4
Need for Timing-Pulse Measurement  Data collected is only useful if there is synchronization between the motor- and detector-timing pulses. The motor- and detector timing-pulses have to be well synchronized to assure correlation between the data collected and the measurement interval.  Aim 	Each detector frame should be accurately related to a motor position. Solution Measure time stamps using a common time base to relate a motor position to a detector frame. 5
Timing-Pulse Measurement: Analyzing the problem Sample Detector Timing-Pulse  0	    2	      4	        6	         8	          10                 12 ms   Sample Motor Timing-Pulse  0	              3      	        6		 9	            12 ms  Common Time-Base (1/1000 resolution) 1 µs  µs  3000  6000   8000   12000   0   2000   4000   10000  9000   6
Timing-Pulse Measurement: Requirement Requires counters working at clock frequencies of 1 MHz or above. High data transfer speed Fast event notification  Solution The USB-4301 is a low-power USB-2.0-compliant, 16-bit, 5 channel, up-down binary counter, capable of operating at frequencies as high as 5 MHz can be used in event counting and pulse generating applications. 7
Setup  ,[object Object]
Modules are daisy chained to form 32-bit counters
Terminal count is achieved in ~72 minutes8
External Circuit Components Synchronization Circuit 9
External Circuit Components 10
Timing Diagram 11
Flow chart External Circuitry ,[object Object]
Start Pulse
Synchronization Circuit
Interrupt Mask
Combined CircuitCounter Programming ,[object Object]
Configuration
Counter Save
Time Stamp12
Error Range of Measured Time Periods Interrupt signal of 2.22 ± 0.003 ms Relative error : 0.13% 13
Sample Spreadsheet 14
Detector Calibration for the OsteoQuant® 15
Detector Calibration: Dead Time  Dead Time  An event occurs at the detector is converted into an electrical signal depending on the intensity and duration of the event.  The time required to collect this charge depends on certain characteristics (mobility, distance to collection electrodes, etc.) of the detector itself and on the subsequent electronics. Due to the random nature governed by Poisson statistics, there is always a probability that the detector misses a true event that follows a recorded event. The missed true events are called dead-time losses 16
Need for Dead-Time Correction Operating Parameters:  Tube Voltage : 45 kVp Tube Current: 0 – 1 mA Photon accumulation time : 50 ms Aim:  Correct the photon-count loss due an error level of less than 0.5% of the maximum expected photon counts (0.5% of 72,000) ±  350 counts.  The photon counts-vs.-tube current response plot is mathematically modeled and then linearized.  The measured non-linear and the expected linear photon counts for varying tube currents of one detector element from a sample data set 17
Detector Calibration: Beam Hardening Beam Hardening X-ray beams used in CT are usually polychromatic When the photon beam passes through material, it tends to preferentially loose its lower energy photons, hardening the beam in the process.  Lower-energy x-rays are more prone to attenuation, and the average energy of a polychromatic beam varies with increasing thickness of the material, thereby making the beam harder.  18
Beam Hardening Operating Parameters:  Tube Voltage : 45 kVp Tube Current: 1 mA Photon accumulation time : 50 ms      Aim:      Correct the non-linearity of the projection values due to beam hardening to an error level of less than 1% of the expected maximum projection value (1% of 5 projection value units) ± 0.05.      The projections-vs.-thickness plot is mathematically modeled and then linearized.  The measured non-linear and expected linear projection values for varying absorber thicknesses. 19
Experimental Setup Source : The tube can operate at a maximum anode voltage of 50 kVp and a maximum anode current of 1 mA, at a maximum operating temperature of 55oC.  Detector : The detector is a CZT semi-conductor cuboid of 64 pixilated elements composed of 50% tellurium, 5% zinc and 45% cadmium.  Slabs : Slabs are used in the beam hardening experiment as a substitute for the bone and soft-tissue in human-body (aluminum and Plexiglas). A total on 19 pairs of these slabs were used. Data was collected on 22 dates over a span of nine months. 20
Dead-Time Correction: Steps Modeling using the fourth-degree polynomial function  Linearization of the model  Drift and stability analysis of the correction Same-date Correction Different-date Correction 21
Dead-Time Correction: Modeling and linearization For dead-time correction 22
Stability of the Dead-Time Correction ,[object Object]
Corrections applied to the data collected at the same date (same-date corrections)  and  a different-date (different-date corrections).
The stability was analyzed by comparing the residuals
The corrections were declared stable if their residuals < 350.
The least expected residuals are those from the same-date corrections23
Beam-Hardening Correction: Steps Fifth-Degree Polynomial Model Modeling using the polynomial function for 10- and 19-plate data sets Linearizing the mathematical model Corrections applied on the 10- and 19-plate data sets  Bimodal-Energy Model Modeling using the bimodal-energy model for 10- and 19-plate data sets Linearizing the mathematical model Corrections applied on  the10- and 19-plate data sets  Compare the stability analysis between both models 24

Weitere ähnliche Inhalte

Was ist angesagt?

Improvement of grid connected photovoltaic system using artificial neural net...
Improvement of grid connected photovoltaic system using artificial neural net...Improvement of grid connected photovoltaic system using artificial neural net...
Improvement of grid connected photovoltaic system using artificial neural net...ijscmcj
 
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...TELKOMNIKA JOURNAL
 
Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...
Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...
Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...IJECEIAES
 
Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...
Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...
Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...CSCJournals
 
Test different neural networks models for forecasting of wind,solar and energ...
Test different neural networks models for forecasting of wind,solar and energ...Test different neural networks models for forecasting of wind,solar and energ...
Test different neural networks models for forecasting of wind,solar and energ...Tonmoy Ibne Arif
 
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORKSENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORKijwmn
 
B041221317
B041221317B041221317
B041221317IOSR-JEN
 
Expert system of single magnetic lens using JESS in Focused Ion Beam
Expert system of single magnetic lens using JESS in Focused Ion BeamExpert system of single magnetic lens using JESS in Focused Ion Beam
Expert system of single magnetic lens using JESS in Focused Ion Beamijcsa
 
Daavettila.Hannah.MEEM2901Portfolio.Fall2014
Daavettila.Hannah.MEEM2901Portfolio.Fall2014Daavettila.Hannah.MEEM2901Portfolio.Fall2014
Daavettila.Hannah.MEEM2901Portfolio.Fall2014Hannah Daavettila
 

Was ist angesagt? (20)

07 huld presentation_61853_3_th
07 huld presentation_61853_3_th07 huld presentation_61853_3_th
07 huld presentation_61853_3_th
 
Australia 2
Australia 2Australia 2
Australia 2
 
Improvement of grid connected photovoltaic system using artificial neural net...
Improvement of grid connected photovoltaic system using artificial neural net...Improvement of grid connected photovoltaic system using artificial neural net...
Improvement of grid connected photovoltaic system using artificial neural net...
 
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
Energy Consumption Saving in Embedded Microprocessors Using Hardware Accelera...
 
The Resistance Comparison Method Using Integral Controller for Photovoltaic E...
The Resistance Comparison Method Using Integral Controller for Photovoltaic E...The Resistance Comparison Method Using Integral Controller for Photovoltaic E...
The Resistance Comparison Method Using Integral Controller for Photovoltaic E...
 
Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...
Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...
Multi Objective Directed Bee Colony Optimization for Economic Load Dispatch W...
 
14 presentation barykina
14 presentation barykina14 presentation barykina
14 presentation barykina
 
Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...
Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...
Elements Space and Amplitude Perturbation Using Genetic Algorithm for Antenna...
 
L1303038388
L1303038388L1303038388
L1303038388
 
Final_Report
Final_ReportFinal_Report
Final_Report
 
04 winter(ptb), status and outlook of photo class
04 winter(ptb), status and outlook of photo class04 winter(ptb), status and outlook of photo class
04 winter(ptb), status and outlook of photo class
 
16 reise uncertainties_v02
16 reise uncertainties_v0216 reise uncertainties_v02
16 reise uncertainties_v02
 
20 supsi workshop schinke
20 supsi workshop schinke20 supsi workshop schinke
20 supsi workshop schinke
 
Test different neural networks models for forecasting of wind,solar and energ...
Test different neural networks models for forecasting of wind,solar and energ...Test different neural networks models for forecasting of wind,solar and energ...
Test different neural networks models for forecasting of wind,solar and energ...
 
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORKSENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
SENSOR SELECTION SCHEME IN TEMPERATURE WIRELESS SENSOR NETWORK
 
19 kröger
19 kröger19 kröger
19 kröger
 
B041221317
B041221317B041221317
B041221317
 
Expert system of single magnetic lens using JESS in Focused Ion Beam
Expert system of single magnetic lens using JESS in Focused Ion BeamExpert system of single magnetic lens using JESS in Focused Ion Beam
Expert system of single magnetic lens using JESS in Focused Ion Beam
 
Energy Harvesting using Carbon Nanotubes
Energy Harvesting using Carbon NanotubesEnergy Harvesting using Carbon Nanotubes
Energy Harvesting using Carbon Nanotubes
 
Daavettila.Hannah.MEEM2901Portfolio.Fall2014
Daavettila.Hannah.MEEM2901Portfolio.Fall2014Daavettila.Hannah.MEEM2901Portfolio.Fall2014
Daavettila.Hannah.MEEM2901Portfolio.Fall2014
 

Andere mochten auch

The archived Canadian US Patent Competitive Intelligence Database (2014/10/21)
The archived Canadian US Patent Competitive Intelligence Database (2014/10/21) The archived Canadian US Patent Competitive Intelligence Database (2014/10/21)
The archived Canadian US Patent Competitive Intelligence Database (2014/10/21) Muchiu (Henry) Chang, PhD. Cantab
 
The archived Canadian US Patent Competitive Intelligence Database (2016/5/24)
The archived Canadian US Patent Competitive Intelligence Database (2016/5/24) The archived Canadian US Patent Competitive Intelligence Database (2016/5/24)
The archived Canadian US Patent Competitive Intelligence Database (2016/5/24) Muchiu (Henry) Chang, PhD. Cantab
 
The Archived Canadian Patent Competitive Intelligence (2012/1/3)
The Archived Canadian Patent Competitive Intelligence (2012/1/3)The Archived Canadian Patent Competitive Intelligence (2012/1/3)
The Archived Canadian Patent Competitive Intelligence (2012/1/3)Muchiu (Henry) Chang, PhD. Cantab
 
The Archived Canadian Patent Competitive Intelligence (April 5, 2011)
The Archived Canadian Patent Competitive Intelligence (April 5, 2011)The Archived Canadian Patent Competitive Intelligence (April 5, 2011)
The Archived Canadian Patent Competitive Intelligence (April 5, 2011)Muchiu (Henry) Chang, PhD. Cantab
 
2. seminar hvorfor blogge
2. seminar hvorfor blogge2. seminar hvorfor blogge
2. seminar hvorfor bloggeSocialOnline
 
The archived Canadian US Patent Competitive Intelligence Database (2016/7/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/7/19) The archived Canadian US Patent Competitive Intelligence Database (2016/7/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/7/19) Muchiu (Henry) Chang, PhD. Cantab
 
The archived Canadian US Patent Competitive Intelligence Database (2015/4/21)
The archived Canadian US Patent Competitive Intelligence Database (2015/4/21) The archived Canadian US Patent Competitive Intelligence Database (2015/4/21)
The archived Canadian US Patent Competitive Intelligence Database (2015/4/21) Muchiu (Henry) Chang, PhD. Cantab
 
The Archived Canadian Patent Competitive Intelligence (May 17, 2011)
The Archived Canadian Patent Competitive Intelligence (May 17, 2011)The Archived Canadian Patent Competitive Intelligence (May 17, 2011)
The Archived Canadian Patent Competitive Intelligence (May 17, 2011)Muchiu (Henry) Chang, PhD. Cantab
 
The Archived Canadian Patent Competitive Intelligence (2013/7/2)
The Archived Canadian Patent Competitive Intelligence (2013/7/2)The Archived Canadian Patent Competitive Intelligence (2013/7/2)
The Archived Canadian Patent Competitive Intelligence (2013/7/2)Muchiu (Henry) Chang, PhD. Cantab
 
Verrex Gms Portfolio 2011
Verrex Gms Portfolio 2011Verrex Gms Portfolio 2011
Verrex Gms Portfolio 2011wchivil
 
The archived Canadian US Patent Competitive Intelligence Database (2016/4/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/4/19) The archived Canadian US Patent Competitive Intelligence Database (2016/4/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/4/19) Muchiu (Henry) Chang, PhD. Cantab
 
The Archived Canadian Patent Competitive Intelligence (2012/2/21)
The Archived Canadian Patent Competitive Intelligence (2012/2/21)The Archived Canadian Patent Competitive Intelligence (2012/2/21)
The Archived Canadian Patent Competitive Intelligence (2012/2/21)Muchiu (Henry) Chang, PhD. Cantab
 
The archived Canadian US Patent Competitive Intelligence Database (2015/3/10)
The archived Canadian US Patent Competitive Intelligence Database (2015/3/10) The archived Canadian US Patent Competitive Intelligence Database (2015/3/10)
The archived Canadian US Patent Competitive Intelligence Database (2015/3/10) Muchiu (Henry) Chang, PhD. Cantab
 
The archived Canadian US Patent Competitive Intelligence Database (2013/12/31)
The archived Canadian US Patent Competitive Intelligence Database (2013/12/31) The archived Canadian US Patent Competitive Intelligence Database (2013/12/31)
The archived Canadian US Patent Competitive Intelligence Database (2013/12/31) Muchiu (Henry) Chang, PhD. Cantab
 
Keep Walking
Keep  WalkingKeep  Walking
Keep Walkingmammoth67
 
The archived Canadian US Patent Competitive Intelligence Database (2016/3/1)
The archived Canadian US Patent Competitive Intelligence Database (2016/3/1) The archived Canadian US Patent Competitive Intelligence Database (2016/3/1)
The archived Canadian US Patent Competitive Intelligence Database (2016/3/1) Muchiu (Henry) Chang, PhD. Cantab
 

Andere mochten auch (18)

The archived Canadian US Patent Competitive Intelligence Database (2014/10/21)
The archived Canadian US Patent Competitive Intelligence Database (2014/10/21) The archived Canadian US Patent Competitive Intelligence Database (2014/10/21)
The archived Canadian US Patent Competitive Intelligence Database (2014/10/21)
 
The archived Canadian US Patent Competitive Intelligence Database (2016/5/24)
The archived Canadian US Patent Competitive Intelligence Database (2016/5/24) The archived Canadian US Patent Competitive Intelligence Database (2016/5/24)
The archived Canadian US Patent Competitive Intelligence Database (2016/5/24)
 
The Archived Canadian Patent Competitive Intelligence (2012/1/3)
The Archived Canadian Patent Competitive Intelligence (2012/1/3)The Archived Canadian Patent Competitive Intelligence (2012/1/3)
The Archived Canadian Patent Competitive Intelligence (2012/1/3)
 
The Archived Canadian Patent Competitive Intelligence (April 5, 2011)
The Archived Canadian Patent Competitive Intelligence (April 5, 2011)The Archived Canadian Patent Competitive Intelligence (April 5, 2011)
The Archived Canadian Patent Competitive Intelligence (April 5, 2011)
 
2. seminar hvorfor blogge
2. seminar hvorfor blogge2. seminar hvorfor blogge
2. seminar hvorfor blogge
 
The archived Canadian US Patent Competitive Intelligence Database (2016/7/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/7/19) The archived Canadian US Patent Competitive Intelligence Database (2016/7/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/7/19)
 
The archived Canadian US Patent Competitive Intelligence Database (2015/4/21)
The archived Canadian US Patent Competitive Intelligence Database (2015/4/21) The archived Canadian US Patent Competitive Intelligence Database (2015/4/21)
The archived Canadian US Patent Competitive Intelligence Database (2015/4/21)
 
The Archived Canadian Patent Competitive Intelligence (May 17, 2011)
The Archived Canadian Patent Competitive Intelligence (May 17, 2011)The Archived Canadian Patent Competitive Intelligence (May 17, 2011)
The Archived Canadian Patent Competitive Intelligence (May 17, 2011)
 
The Archived Canadian Patent Competitive Intelligence (2013/7/2)
The Archived Canadian Patent Competitive Intelligence (2013/7/2)The Archived Canadian Patent Competitive Intelligence (2013/7/2)
The Archived Canadian Patent Competitive Intelligence (2013/7/2)
 
Verrex Gms Portfolio 2011
Verrex Gms Portfolio 2011Verrex Gms Portfolio 2011
Verrex Gms Portfolio 2011
 
Yr 12 introduction to coursework
Yr 12 introduction to courseworkYr 12 introduction to coursework
Yr 12 introduction to coursework
 
The archived Canadian US Patent Competitive Intelligence Database (2016/4/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/4/19) The archived Canadian US Patent Competitive Intelligence Database (2016/4/19)
The archived Canadian US Patent Competitive Intelligence Database (2016/4/19)
 
The Archived Canadian Patent Competitive Intelligence (2012/2/21)
The Archived Canadian Patent Competitive Intelligence (2012/2/21)The Archived Canadian Patent Competitive Intelligence (2012/2/21)
The Archived Canadian Patent Competitive Intelligence (2012/2/21)
 
The archived Canadian US Patent Competitive Intelligence Database (2015/3/10)
The archived Canadian US Patent Competitive Intelligence Database (2015/3/10) The archived Canadian US Patent Competitive Intelligence Database (2015/3/10)
The archived Canadian US Patent Competitive Intelligence Database (2015/3/10)
 
The archived Canadian US Patent Competitive Intelligence Database (2013/12/31)
The archived Canadian US Patent Competitive Intelligence Database (2013/12/31) The archived Canadian US Patent Competitive Intelligence Database (2013/12/31)
The archived Canadian US Patent Competitive Intelligence Database (2013/12/31)
 
Keep Walking
Keep  WalkingKeep  Walking
Keep Walking
 
Persuasion 2012
Persuasion 2012Persuasion 2012
Persuasion 2012
 
The archived Canadian US Patent Competitive Intelligence Database (2016/3/1)
The archived Canadian US Patent Competitive Intelligence Database (2016/3/1) The archived Canadian US Patent Competitive Intelligence Database (2016/3/1)
The archived Canadian US Patent Competitive Intelligence Database (2016/3/1)
 

Ähnlich wie Timing-pulse measurement and detector calibration for the OsteoQuant®.

Adaptive and inteligence
Adaptive and inteligenceAdaptive and inteligence
Adaptive and inteligenceFinitoTheEnd
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference PresentationAnmol Dwivedi
 
Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...
Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...
Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...IJTET Journal
 
Approximated computing for low power neural networks
Approximated computing for low power neural networksApproximated computing for low power neural networks
Approximated computing for low power neural networksTELKOMNIKA JOURNAL
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Dennis Dang
 
SAIP2015 presentation_v5
SAIP2015 presentation_v5SAIP2015 presentation_v5
SAIP2015 presentation_v5Thembelani Gina
 
Modeling of Optical Scattering in Advanced LIGO
Modeling of Optical Scattering in Advanced LIGOModeling of Optical Scattering in Advanced LIGO
Modeling of Optical Scattering in Advanced LIGOHunter Rew
 
Design of 6 bit flash analog to digital converter using variable switching vo...
Design of 6 bit flash analog to digital converter using variable switching vo...Design of 6 bit flash analog to digital converter using variable switching vo...
Design of 6 bit flash analog to digital converter using variable switching vo...VLSICS Design
 
IEE572 Final Report
IEE572 Final ReportIEE572 Final Report
IEE572 Final Reportjgoldpac
 
Cmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensorCmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensoreSAT Publishing House
 
Cmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensorCmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensoreSAT Publishing House
 
Wireless Sensor ramya
Wireless Sensor ramyaWireless Sensor ramya
Wireless Sensor ramyaRamya Magesh
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER) ijceronline
 
Charge Sharing Suppression in Single Photon Processing Pixel Array
Charge Sharing Suppression in Single Photon Processing Pixel ArrayCharge Sharing Suppression in Single Photon Processing Pixel Array
Charge Sharing Suppression in Single Photon Processing Pixel Arrayijeei-iaes
 
Parametric estimation in photovoltaic modules using the crow search algorithm
Parametric estimation in photovoltaic modules using the crow search algorithmParametric estimation in photovoltaic modules using the crow search algorithm
Parametric estimation in photovoltaic modules using the crow search algorithmIJECEIAES
 

Ähnlich wie Timing-pulse measurement and detector calibration for the OsteoQuant®. (20)

E021052327
E021052327E021052327
E021052327
 
Adaptive and inteligence
Adaptive and inteligenceAdaptive and inteligence
Adaptive and inteligence
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference Presentation
 
D16_06r4
D16_06r4D16_06r4
D16_06r4
 
Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...
Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...
Effective Area and Power Reduction for Low-Voltage CMOS Image Sensor Based Ap...
 
Approximated computing for low power neural networks
Approximated computing for low power neural networksApproximated computing for low power neural networks
Approximated computing for low power neural networks
 
Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2Ieee2014 seattle biteau_poster_v1.2
Ieee2014 seattle biteau_poster_v1.2
 
SAIP2015 presentation_v5
SAIP2015 presentation_v5SAIP2015 presentation_v5
SAIP2015 presentation_v5
 
Modeling of Optical Scattering in Advanced LIGO
Modeling of Optical Scattering in Advanced LIGOModeling of Optical Scattering in Advanced LIGO
Modeling of Optical Scattering in Advanced LIGO
 
Design of 6 bit flash analog to digital converter using variable switching vo...
Design of 6 bit flash analog to digital converter using variable switching vo...Design of 6 bit flash analog to digital converter using variable switching vo...
Design of 6 bit flash analog to digital converter using variable switching vo...
 
IEE572 Final Report
IEE572 Final ReportIEE572 Final Report
IEE572 Final Report
 
Cmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensorCmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensor
 
Cmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensorCmos active pixel design using 0.6 μm image sensor
Cmos active pixel design using 0.6 μm image sensor
 
TUPPC055_Final
TUPPC055_FinalTUPPC055_Final
TUPPC055_Final
 
Lab2_final
Lab2_finalLab2_final
Lab2_final
 
AbratenkoTalk
AbratenkoTalkAbratenkoTalk
AbratenkoTalk
 
Wireless Sensor ramya
Wireless Sensor ramyaWireless Sensor ramya
Wireless Sensor ramya
 
International Journal of Computational Engineering Research(IJCER)
 International Journal of Computational Engineering Research(IJCER)  International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Charge Sharing Suppression in Single Photon Processing Pixel Array
Charge Sharing Suppression in Single Photon Processing Pixel ArrayCharge Sharing Suppression in Single Photon Processing Pixel Array
Charge Sharing Suppression in Single Photon Processing Pixel Array
 
Parametric estimation in photovoltaic modules using the crow search algorithm
Parametric estimation in photovoltaic modules using the crow search algorithmParametric estimation in photovoltaic modules using the crow search algorithm
Parametric estimation in photovoltaic modules using the crow search algorithm
 

Kürzlich hochgeladen

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 

Kürzlich hochgeladen (20)

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 

Timing-pulse measurement and detector calibration for the OsteoQuant®.

  • 1. BMIL Timing Pulse Measurement and Detector Calibration for the OsteoQuant® Advisor: Dr. Thomas N. Hangartner By: Binu Enchakalody 1
  • 2. The OsteoQuant® pQCTscanner which can provide precise density assessment of the trabecular and cortical regions of bone. Currently being upgraded to a x-ray tube source and a CZT semiconductor detector. 2 Ref: http://www.wright.edu/academics/bmil/bmil1.htm
  • 3. Objective Implement a system capable of registering the motor- and detector timing-pulses of the Osteoquant® using a common time-base in microsecond resolution. 2a. Correct the photon-count loss due to dead time to an error level of less than 0.5% of the maximum expected photon counts. 2b. Correct the non-linearity of the projection values due to beam hardening to an error level of less than 1% of the expected maximum projection value. 3
  • 4. Timing-Pulse Measurement for the OsteoQuant® 4
  • 5. Need for Timing-Pulse Measurement Data collected is only useful if there is synchronization between the motor- and detector-timing pulses. The motor- and detector timing-pulses have to be well synchronized to assure correlation between the data collected and the measurement interval. Aim Each detector frame should be accurately related to a motor position. Solution Measure time stamps using a common time base to relate a motor position to a detector frame. 5
  • 6. Timing-Pulse Measurement: Analyzing the problem Sample Detector Timing-Pulse 0 2 4 6 8 10 12 ms Sample Motor Timing-Pulse 0 3 6 9 12 ms Common Time-Base (1/1000 resolution) 1 µs µs 3000 6000 8000 12000 0 2000 4000 10000 9000 6
  • 7. Timing-Pulse Measurement: Requirement Requires counters working at clock frequencies of 1 MHz or above. High data transfer speed Fast event notification Solution The USB-4301 is a low-power USB-2.0-compliant, 16-bit, 5 channel, up-down binary counter, capable of operating at frequencies as high as 5 MHz can be used in event counting and pulse generating applications. 7
  • 8.
  • 9. Modules are daisy chained to form 32-bit counters
  • 10. Terminal count is achieved in ~72 minutes8
  • 11. External Circuit Components Synchronization Circuit 9
  • 14.
  • 18.
  • 22. Error Range of Measured Time Periods Interrupt signal of 2.22 ± 0.003 ms Relative error : 0.13% 13
  • 24. Detector Calibration for the OsteoQuant® 15
  • 25. Detector Calibration: Dead Time Dead Time An event occurs at the detector is converted into an electrical signal depending on the intensity and duration of the event. The time required to collect this charge depends on certain characteristics (mobility, distance to collection electrodes, etc.) of the detector itself and on the subsequent electronics. Due to the random nature governed by Poisson statistics, there is always a probability that the detector misses a true event that follows a recorded event. The missed true events are called dead-time losses 16
  • 26. Need for Dead-Time Correction Operating Parameters: Tube Voltage : 45 kVp Tube Current: 0 – 1 mA Photon accumulation time : 50 ms Aim: Correct the photon-count loss due an error level of less than 0.5% of the maximum expected photon counts (0.5% of 72,000) ± 350 counts. The photon counts-vs.-tube current response plot is mathematically modeled and then linearized. The measured non-linear and the expected linear photon counts for varying tube currents of one detector element from a sample data set 17
  • 27. Detector Calibration: Beam Hardening Beam Hardening X-ray beams used in CT are usually polychromatic When the photon beam passes through material, it tends to preferentially loose its lower energy photons, hardening the beam in the process. Lower-energy x-rays are more prone to attenuation, and the average energy of a polychromatic beam varies with increasing thickness of the material, thereby making the beam harder. 18
  • 28. Beam Hardening Operating Parameters: Tube Voltage : 45 kVp Tube Current: 1 mA Photon accumulation time : 50 ms Aim: Correct the non-linearity of the projection values due to beam hardening to an error level of less than 1% of the expected maximum projection value (1% of 5 projection value units) ± 0.05. The projections-vs.-thickness plot is mathematically modeled and then linearized. The measured non-linear and expected linear projection values for varying absorber thicknesses. 19
  • 29. Experimental Setup Source : The tube can operate at a maximum anode voltage of 50 kVp and a maximum anode current of 1 mA, at a maximum operating temperature of 55oC. Detector : The detector is a CZT semi-conductor cuboid of 64 pixilated elements composed of 50% tellurium, 5% zinc and 45% cadmium. Slabs : Slabs are used in the beam hardening experiment as a substitute for the bone and soft-tissue in human-body (aluminum and Plexiglas). A total on 19 pairs of these slabs were used. Data was collected on 22 dates over a span of nine months. 20
  • 30. Dead-Time Correction: Steps Modeling using the fourth-degree polynomial function Linearization of the model Drift and stability analysis of the correction Same-date Correction Different-date Correction 21
  • 31. Dead-Time Correction: Modeling and linearization For dead-time correction 22
  • 32.
  • 33. Corrections applied to the data collected at the same date (same-date corrections) and a different-date (different-date corrections).
  • 34. The stability was analyzed by comparing the residuals
  • 35. The corrections were declared stable if their residuals < 350.
  • 36. The least expected residuals are those from the same-date corrections23
  • 37. Beam-Hardening Correction: Steps Fifth-Degree Polynomial Model Modeling using the polynomial function for 10- and 19-plate data sets Linearizing the mathematical model Corrections applied on the 10- and 19-plate data sets Bimodal-Energy Model Modeling using the bimodal-energy model for 10- and 19-plate data sets Linearizing the mathematical model Corrections applied on the10- and 19-plate data sets Compare the stability analysis between both models 24
  • 38. Beam-Hardening Correction According to Beer’s Law, the projection values of the x-ray beam passing through an object are linearly proportional to μ(E). The projection values are generally linearized to a linear line. i: 1, 2, 3, ... 19 for the number of slab pairs used I0 : counts collected with no object in the beam path Ii: counts collected with i number of slab pairs µeff: linear attenuation coefficient for Al and Pl di : thickness of i number of slab pairs 25
  • 39. Linearization Using the Polynomial Model Based on the projection value-vs.-slab thickness plots, it was decided that an 5th-degree polynomial fit can model these data. Each detector element’s data was fitted using a second to a sixth-degree polynomial function. 26
  • 40.
  • 41. μ2is the slope by E2 for large thicknesses
  • 42. μ1 is the slope by E1 for smaller thicknesses.To solve for the unknowns, the non-linear least squares method is used. The equation system was iteratively solved using a Matlab script by assuming initial values for the unknown fitting parameters. Ref: de Casteele, E. V., Dyck, D. V., Sijbers, J., and Raman, E. 2002. An energy-based beam hardening model in tomography. Phys Med Biol 47, 23–30. 27
  • 43.
  • 44. Energies E2 and E1 are not predetermined.
  • 45. Estimate of the expected lower and upper bound for μ1 and μ2.
  • 46. E2 proved to be greater than E1Linear attenuation coefficient (μ(E)) vs. energy for the Al/Pl slabs. 28
  • 47.
  • 48. Linearization using both models satisfy the required error criterion
  • 49. The stability of the beam-hardening corrections were analyzed by evaluating the error statistics of the same-date and different-date corrected values.29
  • 50. Secondary Correction Primary correction every day is a tedious process. Apply primary corrections from one particular date to the data sets collected from other dates and following this with a secondary correction (3rd degree polynomial) based only on a few plates (0, 6, 14, 19 or 0, 3, 7, 9) measured on the specific date. Without Secondary Correction With Secondary Correction 30
  • 51. Stability analysis for beam-hardening corrections Same-date and different-date corrections. Same-date primary Different-date primary Different-date-primary followed by secondary Data collected on 22 dates, during nine months. 134 coefficient matrices for the 10-plate data sets. 5 coefficient matrices for the 19-plate data sets. Stability for the correction method is assumed if the residuals of the same-date and different-date corrections are less than 0.05. 31
  • 52. Results: Dead-Time Correction Linearization using the fourth-degree model for a data set. Histogram of the individual residuals using a fourth-degree polynomial correction for a data set 32
  • 53. Same-Date Corrections: 10 plate data-set 33 Corrected projection values and their histograms for the polynomial and the bimodal-energy model
  • 54. Different-date corrections: 10 plate data-set Corrected projection values and their histograms for the polynomial and the bimodal-energy model 34
  • 55. Different-date primary followed by secondary correction: 10 plate data-set 35 Corrected projection values and their histograms for the polynomial and the bimodal-energy model
  • 56. Summary: Correction Methods Summary of the same-date and different-date primary (Prim) corrections using the fifth degree polynomial and bimodal-energy models, and the same-date and different-date primary corrections using both models followed by the secondary (Sec) corrections. The checked cells represent the methods that produced residuals lower than 0.05. 36
  • 57. Detector Calibration: Summary The same-date dead-time corrections were all within the expected residual value. The data collection required for the dead-time corrections can be automated. Same-date primary corrections consistently produced corrected projection values that were well within the expected residual of 0.05. Most of the residuals for the different-date bimodal corrections were below 0.05, whereas the residual values for the different-date polynomial corrections were above 0.05. Future Work Using the non-paralyzable dead-time model. Beam hardening corrections should be studied with different tube voltages. Stability of the corrections over a shorter time period can be studied 37

Hinweis der Redaktion

  1. Works on the translate-rotate principleThese movements are achieved through a combination of high-precision mechanical hardware and stepping motors.The three orthogonal movements in the scanner are the translation and rotation of the source and detector and the axial positioning of the gantry.
  2. The motor moves the scanner at a required speed and acceleration. The motion-control system generates the necessary pulses to rotate the motor shaft for the required measurement interval. The data collected is irrelevant unless the motor and data collection timing pulses are correlatedAs we do not know the relative phase of the two pulse trains and do not want to assume consistency between the two frequenciesProvides a reference between the two pulse events, to relate a motor position to a detector frame.
  3. This kind of data transfer can be achieved using a counter with a universal serial bus (USB) interface combined with a temporary storage buffer. Fast event notification speed from the counters to the computer should be in milliseconds or less to register all events.
  4. Start pulse generated from CNTR3 of module 1. Produces a pulse after 65ms.The start pulse from CNTR 3 sets a FF, which enables the counting of an 8 bit counter at 1 MHz. 128ms later, the counter MSB transitions to a high state which resets the flip flop and thereby reshapes the input signal.
  5. The synch pulse acts as a common point of reference to the two pulse trains. After a delay of 0.5ms after the synch pulse, the OR gates are activated and the counting starts.
  6. Motor pulses were simulated using a function generator.Sync time pulses are the raw pulses subtracted from the start pulse. The start pulse is the only common time stamp for both modules.
  7. There are certain general properties that apply to all types of radiation detectors.Some of these properties can cause loss in expected photon counts. These lossesare often modeled as being caused by dead-time and may result in errors in thereconstructed image if left uncorrected.
  8. This charge is collected applying an electric field across the detector. The time taken to recover from an event registration is dead timeA problem occurs if another event happens during the time required to create the electric signal. The occurrence of a radiation quantum is a random event governed by Poisson statistics. and these losses become severe for larger event rates.
  9. The consequence of dead-time is shown here.The scanner is to be operated at 1mA. Hence the expected counts according to the slope equation is 72,000.
  10. In CT reconstruction, the reconstructed image values are assumed to be linearly proportional to the density of the object scanned, which is fulfilled if a mono-energetic x-ray source is used. However, use of a poly-energetic x-ray source results in wrongly estimated density values in some parts of the reconstructed image.
  11. . The anode material is a compound made of tungsten, molybdenum and rhodiumEach slab measures 10.5 cm x 6.5 cm, with the thickness of an individual slab being 1.62 mm for aluminum and 7.8 mm for Plexig10 slab pairs simulate the arm, 19 leg
  12. y_i is the modeled uncorrected tube current vs. photon count response. Y_i is the ideal response. y_i can be mathematically modeled as a function of beta, where x is the independent variable and y is the dependant variable.Slope is calculated from the linear part of the response.The fourth degree polynomial equation returns four root values out of which the complex and negative roots are ignored. The real root closest to the expected linear line is chosen.
  13. Stability was tested using same and different date corrections.Coefficient vectors from 22 dates for data sets collected over nine months. For same-date corrections n is 64 x 10 . For diff date, it varies with the number of data sets. The results are discussed later
  14. Corrections: Same date and Different date
  15. In CT reconstruction, the reconstructed image values are assumed to be linearly proportional to the density of the object scanned.According to Beer’s Law, the projection values of the x-ray beam passing through an object are linearly proportional to μ(E). For a monoenergetic x-ray source, the effective attenuation coefficient μeff is a function of the average energy of the x-ray spectrum (Bremsstrahlung). The projection values are generally linearized to a linear line of slope μeff
  16. Purely a mathematical modelThe robustness of the different polynomial fits was measured using the F-test for a 99% confidence interval. Mathematical model is linearized. 5 root values
  17. For lower energies, the equation is the same as Beer’s law. The author knows his energy and m1, m2 valueare equated to zero and the minimum squared error associated with each unknown are calculated.
  18. To prove that the appropriate relationship between E2 and E1 exists for our data, a random 19-platedata set was chosen to calculate the fitting parameters and estimate the energies. A random 19-plate data set was chosen to calculate the fitting parameters and energies.
  19. The idea of different date corrections was suggested because setting the parameters for correction prior to every scan is a tedious process especially beam hardening.If there is no drift in the detector response, the correction from another day can be used.Different date corrections are the correction coefficients from from the data collected on a different date applied on another data set.
  20. Measuring the plates to calculate the parameters necessary for the primary correction every day is a tedious process.
  21. The same-date and different-date corrections are assumed to be stable if their residuals are less than or equal to 350.
  22. as the photon energy is a major factor in defining the attenuation properties