SlideShare ist ein Scribd-Unternehmen logo
1 von 13
TEMA 2
SUSTANCIA PURA
Sustancia pura
Es un material homogéneo que siempre tiene la misma composición fija e
invariable y cuyas propiedades físicas y químicas son siempre las mismas.
Algunas pueden descomponerse mediante procesos químicos en otras
sustancias más simples como solido, liquido y gaseoso; ejemplo, el Cloruro
de sodio (sal común) , el azúcar,
Equilibrio de fase
Existen tres fases principales para una sustancia pura estas son: sólida, liquida y
gaseosa.
Fase Sólida
Las moléculas están separadas pequeñas distancias, existen grandes
fuerzas de atracción, las moléculas mantienen posiciones fijas unas con
respecto a las otras pero oscilan esta oscilación depende de la temperatura
Cuando la velocidad de oscilación
aumenta lo suficiente estas
moléculas se separan y empieza el
proceso de fusión.
Fase Líquida.
El espaciamiento molecular es parecido al de la fase sólida, excepto que las
moléculas ya no mantienen posiciones fijas entre si. Las moléculas flotan en
grupos.
Fase Gaseosa.
Las moléculas están bastante apartadas unas de otras y no existe un orden
molecular, estas se mueven de forma desordenada en continuo choque entre
ellas y con el recipiente que las contiene
• En general una fase se considera liquida si se puede evaporar por una
disminución de la presión a temperatura constante.
• Una fase se considera vapor si se puede condensar mediante una
reducción de temperatura a presión constante.
• En sustancias que tienen una presión de punto triple por encima de Patm la
sublimación es la única forma de pasar de fase solida a la de vapor en
condiciones atmosféricas.
Diagrama P-v de una sustancia que
se expande al congelarse.
Diagrama P-v de una sustancia que se
contrae al congelarse
SUPERFICIE P – v –T
Cualquier ecuación que tenga dos variables
independientes de la forma
Z = f(X, Y) se puede representar como una
superficie.
Por tanto es posible representar el
comportamiento P – v –T de una sustancia
como una superficie en el espacio.
Todos los puntos sobre la superficie
representan la totalidad de los estados a lo
largo de la trayectoria de un proceso de
cuasi equilibrio.
Estos superficies presentan gran cantidad
de
información pero es mas conveniente
trabaja
con diagramas P – v, T – v, P -T
Propiedades independientes de una sustancia pura
Una razón importante para introducir el concepto de una sustancia pura
es que el estado de una sustancia pura, comprensible, simple (es decir
una sustancia pura en ausencia de movimiento, gravedad y efectos de
superficie, magnéticos o eléctricos) se define por dos propiedades
independientes. Por ejemplo, si se especifican la temperatura y el volumen
especifico del vapor sobrecalentado, se determina el estado del vapor
Para comprender la importancia del término propiedad independiente,
considérese los estados de líquido saturado y vapor saturado de una
sustancia pura. Estos dos estados tienen la misma presión y la misma
temperatura, pero definitivamente no son el mismo estado. Por lo tanto, en
un estado de saturación, la presión y la temperatura no son propiedades
independientes. Para especificar el estado de saturación de una sustancia
pura se requieren dos propiedades independientes como la presión y el
volumen específico, o la presión y la calidad
Para una masa de control difásica, la calidad varía desde 0, cuando la
masada control está compuesta únicamente de líquido saturado, hasta 1,
cuando está constituida únicamente por vapor saturado. Con frecuencia,
la calidad también se expresa como un porcentaje. Obsérvese que la
calidad sólo está definida para la mezcla difásica constituida por líquido y
vapor. El volumen del sistema a lo largo de la línea difásica es: V= Vliq+
Vvap Si consideramos una masa m que tiene una calidad x. La expresión
anterior definirá el volumen o sea la suma del volumen del líquido y el
volumen del vapor. En términos de la masa, la ecuación anterior se
puede escribir en la forma mv = m liq v liq + m vap v vap. Ya se había
definido v f, para referirnos al volumen especifico del liquido saturado y v
g , para el volumen especifico del vapor saturado, ahora bien la
diferencia entre estos dos v g - v f , representa el incremento en volumen
especifico cuando el estado cambia de liquido saturado a vapor saturado
y de identifica como v fg
Ecuaciones de estado para la fase vapor
A partir de observaciones experimentales se ha establecido que el
comportamiento, según las propiedades P, v y T, de gases a baja
densidad, esta representado muy aproximadamente por la siguiente
ecuación de estado.
Pv = Rg
Ten donde, Rg= Ru/M.en que Rg
del gas, M el peso molecular y Ru
es la constante universal de logases. El valor de Ru depende de las
unidades elegidas para P, v y T. Los valores que se usarán
más frecuencia en este texto son: R
u
= 848 kgfm/kgmol ºK = 1545 pies lbf/lbmol ºR = 1.987 Btu/lbmol ºR
Es cuando el Número de mach es mayor que " 0.3" por lo cual se
presenten variaciones apreciables de densidad. Cuando ocurre lo anterior
quiere decir que las variaciones de las presiones y temperaturas también
son significativas. Esas grandes variaciones de temperatura implica que
las ecuaciones de la energía siguientes no se pueden despreciar:
Estas ecuaciones se resuelven simultáneamente para obtener
las cuatro incógnitas siguientes:
1.- Presión
2.- Densidad
3.- Temperatura
4.- Velocidad
Superficie Termodinámica
Las superficies termodinámicas están formadas por presión (p),
volumen (v) y temperatura (T), que sería en resumen P-v-T. Estas
superficies son las que ayudan y permiten identificar los diferentes tipos
de estados y como estos pasan de un estado a otro, mas que todo, los
resultados se pueden representar en coordenadas rectangulares y es a
esto lo que se llama superficie P-v-T.
Estas superficies, presión (p), volumen (v) y temperatura (T) sirven para
calcular los valores que pertenecen a una sustancia de trabajo cuando se
encuentra en cualquier estado de la superficie.
Si una superficie tiene mayor temperatura que la temperatura crítica, no
será capaz de condensar a la fase líquida, independientemente de cuan alta
sea la presión que se ejerce sobre ella. Cuando la presión es mayor que la
presión crítica, el estado se conoce como estado supercrítico.
Se dice que es mejor trabajar con diagramas bidimensionales, ya que estos
diagramas pueden verse como proyecciones de una superficie tridimensional.
La gráfica se puede observar en tres dimensiones, en donde se
muestran como propiedades la presión (p), volumen (v) y temperatura (T),
mostrándose así los estados de una sustancia simple.
En esta gráfica se puede considerar T y v como variables independientes,
lo que sería la base y P la variable dependiente, lo que sería la altura. Todos
los puntos que se encuentren dentro de la superficie representan estados de
equilibrio. Donde existe solo una fase se muestran como superficies curvas
sobre la superficie P-v-T y las de dos fases se muestran como
perpendiculares al

Weitere ähnliche Inhalte

Was ist angesagt?

Ecuaciones y conceptos fundamentales
Ecuaciones y conceptos fundamentalesEcuaciones y conceptos fundamentales
Ecuaciones y conceptos fundamentales
Itamar Bernal
 
Clase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vvClase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vv
Renato Pantoja Guerrero
 
Clase no 3 termodinamica básica
Clase no 3 termodinamica básicaClase no 3 termodinamica básica
Clase no 3 termodinamica básica
Alex Pitti Zuleta
 
Termodinamica de las fases del agua
Termodinamica de las fases del aguaTermodinamica de las fases del agua
Termodinamica de las fases del agua
ESPOL
 
Presentación4 wilmer bravo sustancia puras
Presentación4 wilmer bravo sustancia purasPresentación4 wilmer bravo sustancia puras
Presentación4 wilmer bravo sustancia puras
bravowill
 
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De PropiedadesSustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
marilys
 
Diagramas de fasee
Diagramas de faseeDiagramas de fasee
Diagramas de fasee
mfernandez1
 

Was ist angesagt? (20)

Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Termodinámica Sustancia Pura
Termodinámica   Sustancia PuraTermodinámica   Sustancia Pura
Termodinámica Sustancia Pura
 
3 1 propiedades sustancia pura ii
3 1 propiedades sustancia pura ii3 1 propiedades sustancia pura ii
3 1 propiedades sustancia pura ii
 
Diagramas de-fases
Diagramas de-fasesDiagramas de-fases
Diagramas de-fases
 
Ecuaciones y conceptos fundamentales
Ecuaciones y conceptos fundamentalesEcuaciones y conceptos fundamentales
Ecuaciones y conceptos fundamentales
 
59740987 sustancias-puras
59740987 sustancias-puras59740987 sustancias-puras
59740987 sustancias-puras
 
Clase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vvClase 04 propiedades sustancias puras (saturación) vv
Clase 04 propiedades sustancias puras (saturación) vv
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Clase no 3 termodinamica básica
Clase no 3 termodinamica básicaClase no 3 termodinamica básica
Clase no 3 termodinamica básica
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Termodinamica de las fases del agua
Termodinamica de las fases del aguaTermodinamica de las fases del agua
Termodinamica de las fases del agua
 
Definiciones generales termodinámica
Definiciones generales termodinámicaDefiniciones generales termodinámica
Definiciones generales termodinámica
 
Transformaciones fisicas
Transformaciones fisicasTransformaciones fisicas
Transformaciones fisicas
 
Presentación4 wilmer bravo sustancia puras
Presentación4 wilmer bravo sustancia purasPresentación4 wilmer bravo sustancia puras
Presentación4 wilmer bravo sustancia puras
 
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De PropiedadesSustancias Puras, Gases Ideales, Diagrama De Propiedades
Sustancias Puras, Gases Ideales, Diagrama De Propiedades
 
sustancias puras
sustancias purassustancias puras
sustancias puras
 
Sesion 2 sustancia pura 2016
Sesion  2 sustancia pura 2016Sesion  2 sustancia pura 2016
Sesion 2 sustancia pura 2016
 
Diagramas de fasee
Diagramas de faseeDiagramas de fasee
Diagramas de fasee
 

Ähnlich wie Presentación sustancia pura ender bastidas

Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
VVMIGUEL
 

Ähnlich wie Presentación sustancia pura ender bastidas (20)

Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Termodinamica Anthonny Diaz
Termodinamica Anthonny DiazTermodinamica Anthonny Diaz
Termodinamica Anthonny Diaz
 
Sustancias puras1
Sustancias puras1Sustancias puras1
Sustancias puras1
 
Presentación 1 sustancia pura ronald
Presentación 1  sustancia pura ronaldPresentación 1  sustancia pura ronald
Presentación 1 sustancia pura ronald
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Presentación6 kevin sanchez sustancia puras
Presentación6 kevin sanchez sustancia purasPresentación6 kevin sanchez sustancia puras
Presentación6 kevin sanchez sustancia puras
 
Sustancias pura
Sustancias puraSustancias pura
Sustancias pura
 
Termodinamica Dubraska Espinoza
Termodinamica Dubraska EspinozaTermodinamica Dubraska Espinoza
Termodinamica Dubraska Espinoza
 
Sustancias puras
Sustancias purasSustancias puras
Sustancias puras
 
Propiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptxPropiedades de las sustancias puras.pptx
Propiedades de las sustancias puras.pptx
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdfGUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
GUIA PEDAGOGICA TERMODINAMICA SUSTANCIAS PURAS.pdf
 
Sustancia pura
Sustancia pura  Sustancia pura
Sustancia pura
 
GUIA2SUSTANCIASPURAS.pdf
GUIA2SUSTANCIASPURAS.pdfGUIA2SUSTANCIASPURAS.pdf
GUIA2SUSTANCIASPURAS.pdf
 
Sustancia pura
Sustancia puraSustancia pura
Sustancia pura
 
CARACTERISTICAS Y PROPIEDADES DE LOS FLUIDOS
 CARACTERISTICAS Y PROPIEDADES DE LOS FLUIDOS CARACTERISTICAS Y PROPIEDADES DE LOS FLUIDOS
CARACTERISTICAS Y PROPIEDADES DE LOS FLUIDOS
 
Fluidos texto
Fluidos textoFluidos texto
Fluidos texto
 
Primera unidad
Primera unidadPrimera unidad
Primera unidad
 
Fluidos
FluidosFluidos
Fluidos
 

Kürzlich hochgeladen

EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
FagnerLisboa3
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
AnnimoUno1
 

Kürzlich hochgeladen (11)

Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 

Presentación sustancia pura ender bastidas

  • 2. Sustancia pura Es un material homogéneo que siempre tiene la misma composición fija e invariable y cuyas propiedades físicas y químicas son siempre las mismas. Algunas pueden descomponerse mediante procesos químicos en otras sustancias más simples como solido, liquido y gaseoso; ejemplo, el Cloruro de sodio (sal común) , el azúcar,
  • 3. Equilibrio de fase Existen tres fases principales para una sustancia pura estas son: sólida, liquida y gaseosa. Fase Sólida Las moléculas están separadas pequeñas distancias, existen grandes fuerzas de atracción, las moléculas mantienen posiciones fijas unas con respecto a las otras pero oscilan esta oscilación depende de la temperatura Cuando la velocidad de oscilación aumenta lo suficiente estas moléculas se separan y empieza el proceso de fusión.
  • 4. Fase Líquida. El espaciamiento molecular es parecido al de la fase sólida, excepto que las moléculas ya no mantienen posiciones fijas entre si. Las moléculas flotan en grupos. Fase Gaseosa. Las moléculas están bastante apartadas unas de otras y no existe un orden molecular, estas se mueven de forma desordenada en continuo choque entre ellas y con el recipiente que las contiene
  • 5. • En general una fase se considera liquida si se puede evaporar por una disminución de la presión a temperatura constante. • Una fase se considera vapor si se puede condensar mediante una reducción de temperatura a presión constante. • En sustancias que tienen una presión de punto triple por encima de Patm la sublimación es la única forma de pasar de fase solida a la de vapor en condiciones atmosféricas. Diagrama P-v de una sustancia que se expande al congelarse.
  • 6. Diagrama P-v de una sustancia que se contrae al congelarse SUPERFICIE P – v –T Cualquier ecuación que tenga dos variables independientes de la forma Z = f(X, Y) se puede representar como una superficie.
  • 7. Por tanto es posible representar el comportamiento P – v –T de una sustancia como una superficie en el espacio. Todos los puntos sobre la superficie representan la totalidad de los estados a lo largo de la trayectoria de un proceso de cuasi equilibrio. Estos superficies presentan gran cantidad de información pero es mas conveniente trabaja con diagramas P – v, T – v, P -T
  • 8. Propiedades independientes de una sustancia pura Una razón importante para introducir el concepto de una sustancia pura es que el estado de una sustancia pura, comprensible, simple (es decir una sustancia pura en ausencia de movimiento, gravedad y efectos de superficie, magnéticos o eléctricos) se define por dos propiedades independientes. Por ejemplo, si se especifican la temperatura y el volumen especifico del vapor sobrecalentado, se determina el estado del vapor Para comprender la importancia del término propiedad independiente, considérese los estados de líquido saturado y vapor saturado de una sustancia pura. Estos dos estados tienen la misma presión y la misma temperatura, pero definitivamente no son el mismo estado. Por lo tanto, en un estado de saturación, la presión y la temperatura no son propiedades independientes. Para especificar el estado de saturación de una sustancia pura se requieren dos propiedades independientes como la presión y el volumen específico, o la presión y la calidad
  • 9. Para una masa de control difásica, la calidad varía desde 0, cuando la masada control está compuesta únicamente de líquido saturado, hasta 1, cuando está constituida únicamente por vapor saturado. Con frecuencia, la calidad también se expresa como un porcentaje. Obsérvese que la calidad sólo está definida para la mezcla difásica constituida por líquido y vapor. El volumen del sistema a lo largo de la línea difásica es: V= Vliq+ Vvap Si consideramos una masa m que tiene una calidad x. La expresión anterior definirá el volumen o sea la suma del volumen del líquido y el volumen del vapor. En términos de la masa, la ecuación anterior se puede escribir en la forma mv = m liq v liq + m vap v vap. Ya se había definido v f, para referirnos al volumen especifico del liquido saturado y v g , para el volumen especifico del vapor saturado, ahora bien la diferencia entre estos dos v g - v f , representa el incremento en volumen especifico cuando el estado cambia de liquido saturado a vapor saturado y de identifica como v fg
  • 10. Ecuaciones de estado para la fase vapor A partir de observaciones experimentales se ha establecido que el comportamiento, según las propiedades P, v y T, de gases a baja densidad, esta representado muy aproximadamente por la siguiente ecuación de estado. Pv = Rg Ten donde, Rg= Ru/M.en que Rg del gas, M el peso molecular y Ru es la constante universal de logases. El valor de Ru depende de las unidades elegidas para P, v y T. Los valores que se usarán más frecuencia en este texto son: R u = 848 kgfm/kgmol ºK = 1545 pies lbf/lbmol ºR = 1.987 Btu/lbmol ºR Es cuando el Número de mach es mayor que " 0.3" por lo cual se presenten variaciones apreciables de densidad. Cuando ocurre lo anterior quiere decir que las variaciones de las presiones y temperaturas también son significativas. Esas grandes variaciones de temperatura implica que las ecuaciones de la energía siguientes no se pueden despreciar:
  • 11. Estas ecuaciones se resuelven simultáneamente para obtener las cuatro incógnitas siguientes: 1.- Presión 2.- Densidad 3.- Temperatura 4.- Velocidad
  • 12. Superficie Termodinámica Las superficies termodinámicas están formadas por presión (p), volumen (v) y temperatura (T), que sería en resumen P-v-T. Estas superficies son las que ayudan y permiten identificar los diferentes tipos de estados y como estos pasan de un estado a otro, mas que todo, los resultados se pueden representar en coordenadas rectangulares y es a esto lo que se llama superficie P-v-T. Estas superficies, presión (p), volumen (v) y temperatura (T) sirven para calcular los valores que pertenecen a una sustancia de trabajo cuando se encuentra en cualquier estado de la superficie. Si una superficie tiene mayor temperatura que la temperatura crítica, no será capaz de condensar a la fase líquida, independientemente de cuan alta sea la presión que se ejerce sobre ella. Cuando la presión es mayor que la presión crítica, el estado se conoce como estado supercrítico.
  • 13. Se dice que es mejor trabajar con diagramas bidimensionales, ya que estos diagramas pueden verse como proyecciones de una superficie tridimensional. La gráfica se puede observar en tres dimensiones, en donde se muestran como propiedades la presión (p), volumen (v) y temperatura (T), mostrándose así los estados de una sustancia simple. En esta gráfica se puede considerar T y v como variables independientes, lo que sería la base y P la variable dependiente, lo que sería la altura. Todos los puntos que se encuentren dentro de la superficie representan estados de equilibrio. Donde existe solo una fase se muestran como superficies curvas sobre la superficie P-v-T y las de dos fases se muestran como perpendiculares al