SlideShare ist ein Scribd-Unternehmen logo
1 von 13
Downloaden Sie, um offline zu lesen
1
Bio Energi Berbasis Jagung dan Pemanfaatan Limbahnya
Teguh Wikan Widodo, A. Asari, Ana N.dan Elita, R.
Balai Besar Pengembangan Mekanisasi Pertanian Serpong
Badan Litbang Pertanian, Departemen Pertanian
Tromol Pos 2 Serpong, Tangerang 15310 BANTEN
Tel.: (021) 537 6780, Fax: (021) 537 6784
Email: teguh_wikan_widodo@yahoo.com
Abstrak
Berdasarkan karakteristik fisik dan kimianya, tanaman jagung (Zea mays) memiliki
banyak kegunaan, berpotensi sebagai sumber bio energi dan produk samping yang
bernilai ekonomis tinggi. Pemanfaatan jagung dan limbahnya sebagai sumber bio
energi dengan teknologi konversi energi yang ada saat ini, di antaranya adalah (1)
sebagai bahan bakar tungku untuk proses pengeringan atau pemanasan, (2) sebagai
bahan bakar padat untuk proses pirolisis dan gasifikasi, (3) sebagai bahan baku
pembuatan ethanol dan (4) sebagai bahan baku potential pembuatan biodiesel.
Meskipun pemanfaatan limbah jagung dan turunan produk berbahan baku jagung
sebagai sumber energi terbarukan cukup potensial untuk dikembangkan di Indonesia,
namun penggunaan secara optimal perlu dikaji agar diperoleh keuntungan yang
maksimal. Pemanfaatan limbah jagung masih menghadapi banyak kendala seperti
lokasi produksi jagung yang tersebar dan densitas kamba yang kecil sehingga biaya
transportasi untuk mengumpulkan bahan baku cukup tinggi. Dengan sistem kawasan
terintegrasi diharapkan dapat mengatasi kendala tersebut. Keberhasilan dalam
meningkatkan produktivitas tanaman jagung, diperlukan pula diversifikasi
pemanfaatan produknya agar nilai ekonomisnya meningkat. Oleh karena itu, tulisan
ini diharapkan dapat memberikan wacana untuk keperluan tersebut.
Kata kunci: energi terbarukan, teknologi konversi energi, biomasa, jagung
2
Bio- Energy (Corn based) and The Utilization Its Waste
Teguh Wikan Widodo, Ana N., A.Asari and Elita R.
Indonesian Center for Agricultural Engineering Research and Development
(ICAERD), AARD, Ministry of Agriculture
Tromol Pos 2 Serpong, Tangerang 15310 BANTEN
Tel.: (021) 537 6780, Fax: (021) 537 6784
Email: teguh_wikan_widodo@yahoo.com
Abstract
Based on its physical and chemical properties, corn (Zea mays) has some potential
uses as bio-energy material and by products. The possible utilizations of corn and its
waste as bio – energy with available conversion technology such as (1) fuel stove for
drying and heating process (2) fuel for pirolysis and gasification (3) material for
ethanol production and (4) material for bio-diesel production. Although the
utilization of corn waste and other corn based products as renewable energy are
potential to be developed in Indonesia, the economic should be studied. The
utilization of corn waste still faces some barriers such as the scattered production
area and the density of corn is bulky and therefore the transportation cost of
collecting the product may be expensive. Integrated system of production location, its
processing unit and users may reduce the barriers. The corn productivity should also
be increased and the diversification of product should be promoted. This paper will
discuss the possible utilization of corn based bio-energy and its barriers to be
developed in Indonesia.
Keywords: renewable energy, energy conversion technology, biomass, corn
1. Pendahuluan
Kenaikan harga bahan bakar minyak dan menipisnya cadangan sumber
minyak bumi di Indonesia dapat menjadi penghambat pembangunan pertanian
berkelanjutan. Atas dasar masalah tersebut, maka diperlukan upaya untuk mencari
sumber-sumber energi alternatif. Salah satu potensi energi alternatif adalah limbah
biomasa yang dihasilkan dari aktivitas produksi pertanian yang jumlahnya sangat
besar.
3
Biomasa bersifat mudah didapatkan, ramah lingkungan dan terbarukan.
Secara umum potensi energi biomassa berasal dari limbah tujuh komoditi yang
berasal dari sektor kehutanan, perkebunan dan pertanian. Potensi limbah biomassa
terbesar adalah dari limbah kayu hutan, kemudian diikuti oleh limbah padi, jagung,
ubi kayu, kelapa, kelapa sawit dan tebu. Secara keseluruhan potensi energi limbah
biomassa Indonesia diperkirakan sebesar 49.807,43 MW. Dari jumlah tersebut,
kapasitas terpasang hanya sekitar 178 MW atau 0,36 % dari potensi yang ada
(Hendrison, 2003; Agustina, 2004). Selain sebagai sumber energi biomasa, limbah
jagung dapat dimanfaatkan sebagai bahan pakan ternak dan pupuk kompos.
Beberapa kendala dalam pengembangan energi terbarukan adalah
ketersediaan bahan, keamanan supply, harga, kemudahan penanganan dan
penggunaannya. Faktor-faktor eksternal seperti pengembangan teknologi, subsidi,
isu-isu lingkungan dan perundang-undangan memainkan peranan dalam
pengembangan energi terbarukan (Koopmans, 1998). Dengan mempertimbangkan
potensi limbah pertanian dan penggunaannya di pedesaan, penelitian-penelitian
energi terbarukan dalam hal pengelolaan konservasi energi dan penggunaan secara
efisien adalah penting untuk dilakukan untuk mendukung pembangunan pertanian
berkelanjutan. Tulisan ini bertujuan untuk mengetahui potensi limbah jagung, produk
turunannya sebagai sumber bio energi dan potensi lain limbah jagung sebagai bahan
baku industri.
2. Potensi Limbah Jagung Untuk Energi Terbarukan
Jagung (Zea mays) adalah merupakan tanaman pangan yang penting di
Indonesia. Pada tahun 2006, luas panen jagung adalah 3,5 juta hektar dengan
produksi rata-rata 3,47ton/ha, produksi jagung secara nasional 11,7 juta ton. Menurut
Prasetyo (2002) limbah batang dan daun jagung kering adalah 3,46 ton/ha sehingga
limbah pertanian yang dihasilkan sekitar 12.1juta ton. Dengan konversi nilai kalori
4370 kkal/kg (Sudradjat, 2004) potensi energi limbah batang dan daun jagung kering
sebesar 66,35 GJ. Energi tongkol jagung dapat dihitung dengan menggunakan nilai
4
Residue to Product Ratio (RPR) tongkol jagung adalah 0,273 (pada kadar air 7,53%)
dan nilai kalori 4451 kkal/kg (Koopmans and Koppejan, 1997; Sudradjat, 2004).
Potensi energi tongkol jagung adalah 55,75 GJ.
Potensi energi limbah pada komoditas jagung sangat besar dan diharapkan
akan terus meningkat sejalan dengan program pemerintah dalam meningkatkan
produksi jagung secara nasional. Namun, limbah jagung memiliki banyak kegunaan,
diantaranya adalah untuk pakan ternak, dalam hal ini pemerintah telah mencanangkan
program pengembangan peternakan secara terintegrasi (Crop Livestock System/
CLS). Oleh karena itu, optimasi pemanfaatan limbah jagung sangat diperlukan untuk
mendapatkan keuntungan yang optimal. Untuk memperkirakan potensi riil energi
limbah jagung, penggunaan tongkol jagung untuk keperluan bahan bakar sekitar 90%
sedangkan limbah batang dan daun sekitar 30% dari potensi yang ada.
Gambar 1. Potensi riil energi limbah jagung di Indonesia tahun
2006
0
5
10
15
20
25
1 2 3 4 5 6
Provinsi
PotensiEnergi,GJ.
Tongkol
Batang+daun
Sumatera
Utara
Lampung
Jawa
Tengah
Jawa Timur
Nusa
Tenggar
a
Timur
Sulawesi
Selatan
5
3. Bentuk-Bentuk Energi Terbarukan Dari Jagung
Sumber energi terbarukan yang berasal dari komoditas jagung di Indonesia
belum dimanfaatkan secara optimal. Studi mengenai pengembangan potensi sumber
energi terbarukan yang berasal dari komoditas jagung telah dilakukan di berbagai
negara. Potensi pemanfaatan dan pengembangan sumber energi terbarukan tersebut di
antaranya adalah sebagai berikut:
3.1. Bahan Bakar Padat
Sifat tongkol jagung yang memiliki kandungan karbon yang tinggi. Hasil
penelitian menunjukkan bahwa untuk mengeringkan 6 ton jagung dari kadar air
32.5% sampai 13.7% bb selama 7 jam diperlukan sekitar 30 kg tongkol jagung kering
per jam (Alkuino 2000).
Tabel 1. Analisis kimia tongkol jagung (Lachke, 2002)
Kadar air a)
13,9
Abu b)
1,17
Analisa kandungan zat kimia c)
C
H
O
N
S
Abu
HHV (MJ/kg)
43,42
6,32
46,69
0,67
0,07
2,30
14,7 – 18,9
a)
ASTM E 1756-95, b)
ASTM E-1755-95,
c)
jasa analisa komersial (Huffman Labs, Inc. USA).
Dalam bentuk arang (char), efisiensi penggunaan energi tongkol jagung dapat
ditingkatkan. Proses pembentukan arang (carbonization) menggunakan prinsip dasar
proses pirolisa cepat/karbonasi cepat, dimana terjadi proses pembakaran pada suhu
6
berkisar 150−600o
C dengan udara yang sangat terbatas. Hasil Flash Carbonization
dari tongkol jagung (Lachke, 2002), adalah sebagai berikut:
Kandungan (%)
Kadar air 13,6
Karbon tetap (fixed carbon) 83,7
Abu 2,7
y char (%) 33,1
y fc (%) 28,0
HHV (MJ/kg) 32,0
y char = m char / m bio
y fc = y char { % fc / (100 - %ash)}
y char : produktivitas arang
m char : masa kering arang
m bio : masa kering bahan
y fc : produktivitas fixed-carbon
y char : produktivitas arang
% fc : persentase kandungan fixed-carbon
% ash : persentase kandungan abu
HHV : Higher Heating Value
Karbonisasi pada tekanan 1,2 Mpa, menyala setelah 2 menit pemanasan dan aliran
udara pada autoclave dihentikan setelah 18 menit. Produktivitas fixed-carbon
mencapai 100%.
Kandungan energi tongkol jagung: 3.500–4.500 kkal/ kg atau 14.7−18.9
MJ/kg, suhu pembakaran dapat mencapai 205o
C Sedangkan sumber pustaka lain
menyebutkan bahwa dengan karbonisasi tongkol jagung, kandungan energinya dapat
7
mencapai 32 MJ/kg (Watson, 1988 dalam Prostowo, dkk., 1998; Mochidzuki, et al.,
2002).
Energi termal dari hasil pembakaran merupakan teknologi konversi biomasa
yang paling tua, dan menghasilkan efisiensi panas hanya sekitar 12% (Manurung,
2004). Pemanfaatan panas langsung yang paling banyak dilakukan orang adalah
untuk memasak atau pengeringan dengan menggunakan tungku. Jika panas yang
dihasilkan dipergunakan untuk memanaskan ketel uap maka dapat dimanfaatkan
untuk membangkitkan tenaga mekanis atau listrik.
3.2. Bahan Padat Untuk Proses Pirolisa dan Gasifikasi
Pirolisa merupakan proses pemanfaatan limbah dengan cara pembakaran tidak
sempurna pada suhu yang relatif rendah yaitu sekitar 400−500o
C. Proses pirolisa
menghasilkan gas dengan nilai kalor 4000 kJ/Nm3
gas, minyak cair (bio-oil) dengan
nilai kalor 16000−17000 kJ/kg dan arang. Gas yang terbentuk dapat dipergunakan
untuk menghasilkan udara panas, menggerakkan motor atau membangkitkan tenaga
listrik.
Limbah jagung dapat dimanfaatkan sebagai bahan bakar padat untuk proses
thermal gasifikasi. Pada proses gasifikasi, terjadi pembakaran tidak sempurna pada
suhu yang relatif tinggi, yaitu sekitar 900−1200o
C. Proses gasifikasi menghasilkan
produk tunggal berupa gas dengan nilai kalori 4000−5000 kJ/Nm3
. Gas yang
diperoleh dapat dimanfaatkan untuk menghasilkan udara panas, menggerakkan motor
dan dapat digunakan sebagai pembangkit listrik. Konversi energi dengan cara
gasifikasi efisiensi panasnya mencapai 50−70%. Proses pembentukan gas pada sistem
ini merupakan kelanjutan dari proses pirolisa di mana reaksi yang terjadi adalah:
C + CO2 2 CO
C + H2O H2 + CO
C + 2 H2 CH4
Pada fase gas beberapa reaksi tambahan dapat terjadi:
8
CO + H2O O2 + H2
CO + 3H2 CH4 + H2O
Penelitian pendahuluan mengenai kemungkinan penggunaan tongkol jagung
sebagai bahan padatan proses gasifikasi telah dilakukan dan presentasi gas, abu arang,
tar dan liquida terkondensasi pada berbagai suhu pembakaran adalah sebagai berikut:
Tabel 2. Gas, abu arang, tar dan likuida terkondensasi pada proses karbonisasi
tongkol jagung.
Temperature (o
K) 550 650 750 850 950 1050 1150
Abu arang (%)
Gas (%)
Liquida terkondensasi (%)
Tar
31.8
20.2
36.7
11.3
26.0
24.4
40.2
10.5
23.2
24.4
40.2
10.5
21.5
39.8
31.7
7.0
20.2
61.4
13.3
5.1
19.8
64.7
12.3
3.2
19.1
72.0
6.0
1.7
3.3. Ethanol dan 2,3 butanadiol
Biomasa mengandung selulosa dan hemiselulosa. Produk akhir dari hidrolisa
selulosa adalah glukosa. Glukosa dikenal sebagai gula dengan 6 gugus karbon (dapat
difermentasi), sedangkan bagian hemiselulosa adalah D-xylosa adalah gula dengan 5
gugus karbon. D-xylosa adalah jumlah gula nomor dua terbanyak di alam dan bahan
potensial untuk makanan dan bahan bakar. Gula hemiselulosa (D-xylosa) dapat
diperoleh dengan produktivitas 80−90% dari xylan dengan asam atau hidrolisa
enzimatik. Penggunaan D-xylose pada produksi komersial dari zat-zat kimia bernilai
ekonomis tinggi seperti ethanol, asam asetat, 2,3-butanadiol, aseton, isopropanol dan
n-butanol dengan menggunakan mikroorganisme (Lachke, 2002).
Riset dalam rangka mempelajari peranan mikroorganisme pada gula pentosa
masih dalam taraf pengembangan. Peneliti dari universitas Purdue-AS telah
mengembangkan ragi dengan modifikasi genetika, dimana diharapkan dapat
memfermentasikan selulosa menjadi etanol secara efisien. Ragi hasil rekayasa
genetika paling tidak mampu menghasilkan lebih dari 30% etanol dari sejumlah
9
bahan tanaman. Tujuannya adalah membuat etanol dengan harga yang kompetitif
dengan bensin (Anon, 2002; Lachke, 2002).
Ethanol dan 2,3 butanadiol merupakan bahan bakar alkohol yang berasal dari
proses fermentasi gula atau molase (Gambar 2). Ethanol mempunyai nilai energi 122
MJ/kg, sedangkan 2,3-butanediol nilai energinya 114 MJ/kg.
Penggunaan ethanol sebagai bahan bakar baik sebagai campuran bahan bakar
bensin dan solar atau sebagai pengganti bensin telah dilakukan di beberapa negara.
Sebagai contoh dalam rangka kebijakan penggunaan bahan bakar yang ramah
lingkungan, Australia telah mengeluarkan kebijakan pencampuran ethanol pada
bensin untuk konsumsi kendaraan bermotor pada rasio 1:14. Sumber ethanol di
Australia dihasilkan dari limbah industri penghasil gula, pati dan gluten. Penggunaan
ethanol sebagai bahan bakar pengganti bensin dan solar sebagai program nasional
pernah berhasil dilakukan oleh Brazil pada tahun 70-an yang sumber utamanya
berasal dari limbah pengolahan tebu.
Kajian produksi bahan bakar alkohol ini perlu terus dilakukan, mengingat
secara ekonomi ongkos produksi untuk konsumsi masal pada saat ini masih cukup
tinggi sehingga belum mampu bersaing dengan bahan bakar fosil (Aye, 1999).
Gambar 2. Proses produksi ethanol secara ringkas
S ubstrat (m olase)
K arbohidrat (gula)
K ham ir (ragi) atau
Z ym om onas m obilis
E thanol (alkohol)
L im bah m en gandun g
selulosa/ tepun g
P retreatm en t
10
3.4. Biodiesel
Biodiesel merupakan alternative energi bahan bakar solar yang sumber-
sumbernya berasal dari minyak sayur (vegetable oil) dan lemak hewani (animal fat).
Minyak dan lemak secara umum bersifat water-insoluble; namun terdapat kandungan
bahan-bahan hydrophobic yang berasal glycerol dan fatty acids yang dikenal dengan
nama triglycerides (Ma & Hanna,1999).
Secara umum ada empat cara pemanfaatan dan pembuatan biodiesel, yaitu: (1)
minyak digunakan langsung atau sebagai bahan campuran, (2) microemulsi, (3)
pirolisa, (4) transesterifikasi (Ma & Hanna,1999). Proses yang paling umum
dilakukan adalah proses tranesterifikasi. Pada proses transesterfikasi, reaksi bertahap
dari triglycerida menjadi diglycerida, kemudian menjadi monoglycerida dan
monoglycerida diubah menjadi fatty acid esters. Penggunaan minyak atau minyak
bekas (used oil) secara langsung dapat dilakukan, namun dapat mengkontaminasi oli
pelumas dan dapat mengakibatkan tingginya karbon deposit yang disebabkan oleh
viskositas bahan yang cukup tinggi.
Komoditas jagung merupakan salah satu sumber potential penghasil biodiesel,
namun seiring dengan bertambahnya populasi, kebutuhan untuk sumber pangan dan
pakan akan semakin meningkat. Kebutuhan untuk sumber pangan dan pakan yang
berasal dari komoditas jagung di Indonesia dan beberapa negara di Asia sangat besar
dan harga minyak jagung cukup mahal, sehingga pengembangannya untuk biodisel
tidak dapat diperlakukan sebagai sumber utama bahan bakar.
3.5. Pemanfaatan limbah jagung dan pengembangan produk samping
Jagung memiliki banyak kegunaan, diantaranya yaitu: daun sebagai hijauan
pakan ruminansia, biji jagung sebagai sumber energi ternak unggas, sedangkan
limbah jagung lainnya seperti kulit jagung, bonggol jagung dan dedak jagung dapat
dimanfaatkan sebagai pakan ternak. Pemanfaatan tongkol jagung untuk pakan ternak
11
melalui proses fermentasi dengan cara mencampur tongkol jagung dengan bakteri
trikoderma dan gula pasir (Prasetyo, 2002; Ditjen. Peternakan, 2003).
Sebuah perusahaan di Iowa, AS berhasil memanfaatkan tongkol jagung
sebagai berbagai produk yang ramah lingkungan. Tongkol memiliki sifat-sifat seperti
salah satu bagiannya keras dan sebagian bersifat menyerap (absorbent), juga sifat-
sifat yang merupakan gabungan beberapa sifat, seperti: tidak terjadi reaksi kimia bila
dicampur dengan zat kimia lain (inert), dapat terurai secara alami dan ringan sehingga
tongkol jagung berupakan bahan ideal campuran pakan, bahan campuran insektisida
dan pupuk. Serta dapat digunakan sebagai alas hewan peliharaan karena alami, bersih
dan dapat mengurangi bau tidak sedap (www.ciras.iastate.edu/iof).
Beberapa ragi seperti Candida polymorpha dan Pichia miso secara aerob
dapat merubah D-xylose mejadi xylitol sebagai produk utamanya dengan efisiensi
konversi mencapai 90%. Penemuan ini membanggakan karena xylitol adalah suatu
gula alkohol yang merupakan pemanis alami yang terdapat dalam jumlah kecil pada
berbagai varietas buah-buahan dan sayuran. Xylitol tidak membentuk asam dan
digunakan sebagai gula substitusi bagi penderita diabetes. Xylitol sering dipakai
sebagai bahan permen karet dan pasta gigi. Macam-macam gula dalam residu tongkol
jagung (% berat kering) adalah xylose: 65, arabinose: 10 dan glukose: 25 (Lachke,
2002).
4. Kesimpulan
Dari uraian diatas, dapat ditarik beberapa kesimpulan sebagai berikut:
4.1. Tanaman jagung (Zea mays) adalah merupakan tanaman pangan terpenting
kedua di Indonesia. Berdasarkan karakteristik fisik dan kimianya, tanaman
jagung memiliki banyak kegunaan, berpotensi sebagai sumber energi
terbarukan dan produk samping yang bernilai ekonomis tinggi.
4.2. Pemanfaatan jagung dan limbahnya sebagai sumber energi terbarukan dengan
teknologi konversi energi yang ada saat ini, di antaranya adalah (1) sebagai
bahan bakar tungku untuk proses pengeringan atau pemanasan, (2) sebagai
12
bahan bakar padat untuk proses pirolisis dan gasifikasi, (3) sebagai bahan baku
pembuatan ethanol dan (4) sebagai bahan baku potential pembuatan biodiesel.
4.3. Pemanfaatan limbah jagung dan turunan produk berbahan baku jagung sebagai
sumber energi terbarukan cukup potensial untuk dikembangkan di Indonesia,
namun penggunaan secara optimal perlu dikaji agar diperoleh keuntungan yang
maksimal.
4.4. Pemanfaatan limbah jagung masih menghadapi banyak kendala seperti lokasi
produksi jagung yang tersebar dan densitas kamba yang kecil sehingga biaya
transportasi untuk mengumpulkan bahan baku cukup tinggi. Untuk itu, dengan
sistim kawasan terintegrasi diharapkan dapat mengatasi kendala tersebut.
5. Daftar Pustaka
Agustina, S. E. 2004. Biomass Potential as Renewable Energy Resources in
Agriculture. Proceedings of International Seminar on Advanced Agricultural
Engineering and Farm Work Operation. Bogor, 25-26 August 2004.
Alkuino E.L. 2000. Gasifying farm wastes as source of cheap heat for drying paddy
and corns. International Rice Research Organisation. Philipines.
Anon. 2002. Melirik Ethanol Sebagai Alternatif Bahan Bakar.
http://www.indomedia.com/Intisari/2002/01/khas_infotekno_tebar1.htm
Aye, L., Charters W.W.S., Suwono, A. 1999. Biomass Fuels and Usage Patterns in
Australia. Proceeding International Power and Energy Conference (INT-PEC). 26
Nov − 6 Dec 1999.
Ditjen. Pengembangan Peternakan, Dirjen. Bina Produksi Peternakan, Departemen
Pertanian, 2003. Pengembangan Kawasan Agribisnis Berbasis Peternakan.
http://www.bangnak.dijennak.go.id/
Euken, Jill and Sullivan, Tim. Using Corn Cob Creatively. www.ciras.iastate.edu/iof.
Hendrison M., Rahayu Dwi Hartati, Endang Lestari. 2003. Untung Rugi Indonesia
Meratifikasi Protokol Kyoto Ditinjau Dari Sektor Energi. Majalah P3TEK.
http://www.p3tek.com/content/publikasi/2003/publikasi03.htm.
13
Koopmans, A. 1998. Trend in Energy Use. Expert Consultation on Wood Energy,
Climate and Health. 7−9 October, 1998, Phuket, Thailand.
Koopmans, A. and Koppejan, J. 1997. Agricultural and Forest Residues-Generation,
Utilization and Avaibility. Paper presented at the Regional Consultation on Modern
Applications of Biomass Energy, 6−10 January 1997, Kuala Lumpur, Malaysia.
Lachke, Anil. 2002. Biofuel from D-xylose the Second Most Abundant Sugar.
http://www.iisc.ernet.in/academy/resonance/May2002/pdf/May2002p50-58.pdf.
Ma, F. and Hanna, M.A. 1999. Biodiesel Production: A Review. Bioresource
Technology vol. 70: pp115.
Manurung, R. 2004. Teknologi Konversi Limbah Pertanian Sebagai Sumber Energi
Terbarukan di Indonesia. Makalah dipresentasikan pada Seminar Nasional
Mekanisasi Pertanian, di Balai Balai Besar Pengembangan Mekanisasi Pertanian
Serpong, 12 Agustus 2004.
Mochidzuki, K. Lloyd S. Paredes, and Michael J. Antal, Jr. 2002. Flash
Carbonization of Biomass. Http://www.hnei.hawai.edu/flash_carb_biomass.pdf.
Prasetyo, T, Joko Handoyo, dan Cahyati Setiani. 2002. Karakteristik Sistem
Usahatani Jagung-Ternak di Lahan Irigasi. Prosiding Seminar Nasional: Inovasi
Teknologi Palawija, Buku 2- Hasil Penelitian dan Pengkajian. Pusat Penelitian dan
Pengembangan Sosial Ekonomi Pertanian, Badan Litbang Pertanian, hal. 581-605.
Prastowo, B.; R. Hanif; T.M. Lando. 1998. Rekayasa Teknologi Pengeringan dan
Penyimpanan Jagung di Daerah Tadah Hujan. .
http://bbpmektan.litbang.deptan.go.id/abstrak/th_1998/tek._pengeringan_penyimpanan_jagung.ht
m.
Sudradjat, R. 2004. The Potential of Biomass Energy Resources in Indonesia for the
Possible Development of Clean Technology Process (CTP). Proceedings (Complete
Version) International Workshop on Biomass & Clean Fossil Fuel Power Plant
Technology: Sustainable Energy Development & CDM, pp. 36−59.

Weitere Àhnliche Inhalte

Was ist angesagt?

Pengambilan contoh benih (materi analisis mutu benih)
Pengambilan contoh benih (materi analisis mutu benih)Pengambilan contoh benih (materi analisis mutu benih)
Pengambilan contoh benih (materi analisis mutu benih)
Issuchii Liescahyani
 
Saduran membangun kandang sapi yang baik dan benar
Saduran membangun kandang sapi yang baik dan benarSaduran membangun kandang sapi yang baik dan benar
Saduran membangun kandang sapi yang baik dan benar
Sang Thothon
 
Budidaya Tanaman Tebu
Budidaya Tanaman Tebu Budidaya Tanaman Tebu
Budidaya Tanaman Tebu
Citra Recha Sari
 
Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004
Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004
Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004
Tata Naipospos
 
Konsep peningkatan-rendemen
Konsep peningkatan-rendemenKonsep peningkatan-rendemen
Konsep peningkatan-rendemen
Agus Wiyanto
 
Agrostologi penanaman
Agrostologi penanamanAgrostologi penanaman
Agrostologi penanaman
Hasan Addiny
 

Was ist angesagt? (20)

Laporan praktikum tekben deoooo
Laporan praktikum tekben deooooLaporan praktikum tekben deoooo
Laporan praktikum tekben deoooo
 
Pertemuan i nutrisi unggas- zatmakanan
Pertemuan i nutrisi unggas- zatmakananPertemuan i nutrisi unggas- zatmakanan
Pertemuan i nutrisi unggas- zatmakanan
 
Pemeliharaan Ternak Sapi Potong
Pemeliharaan Ternak Sapi PotongPemeliharaan Ternak Sapi Potong
Pemeliharaan Ternak Sapi Potong
 
Molecular Farming: Kelebihan dan Prospek Jangka Panjang by Statmat Indonesia
Molecular Farming: Kelebihan dan Prospek Jangka Panjang by Statmat IndonesiaMolecular Farming: Kelebihan dan Prospek Jangka Panjang by Statmat Indonesia
Molecular Farming: Kelebihan dan Prospek Jangka Panjang by Statmat Indonesia
 
Inseminasi Buatan
Inseminasi BuatanInseminasi Buatan
Inseminasi Buatan
 
Manfaat biokimia dlm pertanian
Manfaat biokimia dlm pertanianManfaat biokimia dlm pertanian
Manfaat biokimia dlm pertanian
 
Pengambilan contoh benih (materi analisis mutu benih)
Pengambilan contoh benih (materi analisis mutu benih)Pengambilan contoh benih (materi analisis mutu benih)
Pengambilan contoh benih (materi analisis mutu benih)
 
Pala
PalaPala
Pala
 
Saduran membangun kandang sapi yang baik dan benar
Saduran membangun kandang sapi yang baik dan benarSaduran membangun kandang sapi yang baik dan benar
Saduran membangun kandang sapi yang baik dan benar
 
Budidaya Tanaman Tebu
Budidaya Tanaman Tebu Budidaya Tanaman Tebu
Budidaya Tanaman Tebu
 
Penilaian Mutu Makanan
Penilaian Mutu MakananPenilaian Mutu Makanan
Penilaian Mutu Makanan
 
10 kerusakan produk pascapanen
10 kerusakan produk pascapanen10 kerusakan produk pascapanen
10 kerusakan produk pascapanen
 
Pemuliaan Tanaman dan Produksi Benih
Pemuliaan Tanaman dan Produksi BenihPemuliaan Tanaman dan Produksi Benih
Pemuliaan Tanaman dan Produksi Benih
 
Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004
Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004
Analisis Risiko Pangan Hewani - BPPH R-4 Yogyakarta, 31 Mei 2004
 
Konsep peningkatan-rendemen
Konsep peningkatan-rendemenKonsep peningkatan-rendemen
Konsep peningkatan-rendemen
 
Kapasitas lapang (pertemuan 4)
Kapasitas lapang (pertemuan 4)Kapasitas lapang (pertemuan 4)
Kapasitas lapang (pertemuan 4)
 
Budidaya Pepaya California
Budidaya Pepaya CaliforniaBudidaya Pepaya California
Budidaya Pepaya California
 
Rumus statistik
Rumus statistikRumus statistik
Rumus statistik
 
Kapasitas tampung padang penggembalaan 2021.pptx
Kapasitas tampung padang penggembalaan 2021.pptxKapasitas tampung padang penggembalaan 2021.pptx
Kapasitas tampung padang penggembalaan 2021.pptx
 
Agrostologi penanaman
Agrostologi penanamanAgrostologi penanaman
Agrostologi penanaman
 

Ähnlich wie Bio energi berbasis jagung dan pemanfaatan limbahnya

ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi
 
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
ryki periwaldi
 
Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_
ryki periwaldi
 
Green hejo
Green hejoGreen hejo
Green hejo
jay fajar
 
Makalah bioetanol dari singkong
Makalah bioetanol dari singkongMakalah bioetanol dari singkong
Makalah bioetanol dari singkong
Eka FitryAlone
 
Bioetanol dari tongkol jagung
Bioetanol dari tongkol jagungBioetanol dari tongkol jagung
Bioetanol dari tongkol jagung
10DEKY
 
Copy of ths peran bioenergidanarahutamalitbangrap
Copy of ths peran bioenergidanarahutamalitbangrapCopy of ths peran bioenergidanarahutamalitbangrap
Copy of ths peran bioenergidanarahutamalitbangrap
Adi Intan Mulyana
 
Snlb 1609-647-653 nimah-et_al_
Snlb 1609-647-653 nimah-et_al_Snlb 1609-647-653 nimah-et_al_
Snlb 1609-647-653 nimah-et_al_
Lailan Ni'mah
 
Contoh karya ilmiah
Contoh karya ilmiahContoh karya ilmiah
Contoh karya ilmiah
Kokoro Tomoko
 

Ähnlich wie Bio energi berbasis jagung dan pemanfaatan limbahnya (20)

BAB I.docx
BAB I.docxBAB I.docx
BAB I.docx
 
ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_ryki periwaldi_makalah OSN-PTI 2010_
ryki periwaldi_makalah OSN-PTI 2010_
 
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
Ryki periwaldi_makalah OSN-PTI 2010_Konsep dan Strategi Pengembangan Bisnis B...
 
Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_Ryki periwaldi_osn pti 2010_
Ryki periwaldi_osn pti 2010_
 
Rdhp bioindustri pasut
Rdhp bioindustri pasutRdhp bioindustri pasut
Rdhp bioindustri pasut
 
Green hejo
Green hejoGreen hejo
Green hejo
 
Makalah bioetanol dari singkong
Makalah bioetanol dari singkongMakalah bioetanol dari singkong
Makalah bioetanol dari singkong
 
Bionergi
BionergiBionergi
Bionergi
 
Proposal Derivat
Proposal DerivatProposal Derivat
Proposal Derivat
 
Bioetanol dari tongkol jagung
Bioetanol dari tongkol jagungBioetanol dari tongkol jagung
Bioetanol dari tongkol jagung
 
Ringkasan lca semen holsim
Ringkasan lca semen holsimRingkasan lca semen holsim
Ringkasan lca semen holsim
 
Rptp kajian kedelai lahan kering masam
Rptp kajian kedelai lahan kering masamRptp kajian kedelai lahan kering masam
Rptp kajian kedelai lahan kering masam
 
Rptp integrasi 2018
Rptp integrasi  2018Rptp integrasi  2018
Rptp integrasi 2018
 
Desamandirienergi 090330041333-phpapp02
Desamandirienergi 090330041333-phpapp02Desamandirienergi 090330041333-phpapp02
Desamandirienergi 090330041333-phpapp02
 
Paper penelitian biji bintaro
Paper penelitian biji bintaroPaper penelitian biji bintaro
Paper penelitian biji bintaro
 
Copy of ths peran bioenergidanarahutamalitbangrap
Copy of ths peran bioenergidanarahutamalitbangrapCopy of ths peran bioenergidanarahutamalitbangrap
Copy of ths peran bioenergidanarahutamalitbangrap
 
Snlb 1609-647-653 nimah-et_al_
Snlb 1609-647-653 nimah-et_al_Snlb 1609-647-653 nimah-et_al_
Snlb 1609-647-653 nimah-et_al_
 
Bab 1 puput
Bab 1   puputBab 1   puput
Bab 1 puput
 
Rdhp peningkatan ip 2018
Rdhp peningkatan ip 2018Rdhp peningkatan ip 2018
Rdhp peningkatan ip 2018
 
Contoh karya ilmiah
Contoh karya ilmiahContoh karya ilmiah
Contoh karya ilmiah
 

Mehr von Bagas Prayitna (9)

Jurnal Ekonomi
Jurnal EkonomiJurnal Ekonomi
Jurnal Ekonomi
 
Prinsip Kesetimbangan Kimia
Prinsip Kesetimbangan KimiaPrinsip Kesetimbangan Kimia
Prinsip Kesetimbangan Kimia
 
Entropi dan Kespontanan
Entropi dan KespontananEntropi dan Kespontanan
Entropi dan Kespontanan
 
Jurnal Kimia Industri
Jurnal Kimia IndustriJurnal Kimia Industri
Jurnal Kimia Industri
 
Model Atom Terkini
Model Atom TerkiniModel Atom Terkini
Model Atom Terkini
 
Teori ikatan berdasarkan kimia kuantum
Teori ikatan berdasarkan kimia kuantumTeori ikatan berdasarkan kimia kuantum
Teori ikatan berdasarkan kimia kuantum
 
Tatanan materi berwujud gas
Tatanan materi berwujud gas Tatanan materi berwujud gas
Tatanan materi berwujud gas
 
Penentuan rumus dari data percobaan
Penentuan rumus dari data percobaanPenentuan rumus dari data percobaan
Penentuan rumus dari data percobaan
 
Reaksi reaksi kimia
Reaksi reaksi kimia Reaksi reaksi kimia
Reaksi reaksi kimia
 

KĂŒrzlich hochgeladen

ppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptx
ppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptxppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptx
ppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptx
Arisatrianingsih
 
Abortion Pills In Doha // QATAR (+966572737505 ) Get Cytotec
Abortion Pills In Doha // QATAR (+966572737505 ) Get CytotecAbortion Pills In Doha // QATAR (+966572737505 ) Get Cytotec
Abortion Pills In Doha // QATAR (+966572737505 ) Get Cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...
Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...
Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...
rororasiputra
 
LAJU RESPIRASI.teknologi hasil pertanianpdf
LAJU RESPIRASI.teknologi hasil pertanianpdfLAJU RESPIRASI.teknologi hasil pertanianpdf
LAJU RESPIRASI.teknologi hasil pertanianpdf
IftitahKartika
 
Manajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptx
Manajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptxManajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptx
Manajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptx
arifyudianto3
 
Presentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptx
Presentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptxPresentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptx
Presentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptx
yoodika046
 
UTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptx
UTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptxUTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptx
UTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptx
Andimarini2
 
SOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptx
SOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptxSOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptx
SOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptx
FahrizalTriPrasetyo
 
2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx
2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx
2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx
EnginerMine
 
Presentasi gedung jenjang 6 - Isman Kurniawan.ppt
Presentasi gedung jenjang 6 - Isman Kurniawan.pptPresentasi gedung jenjang 6 - Isman Kurniawan.ppt
Presentasi gedung jenjang 6 - Isman Kurniawan.ppt
arifyudianto3
 
397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx
397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx
397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx
VinaAmelia23
 

KĂŒrzlich hochgeladen (20)

ppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptx
ppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptxppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptx
ppt hidrolika_ARI SATRIA NINGSIH_E1A120026.pptx
 
Pengolahan Kelapa Sawit 1 pabrik pks.pdf
Pengolahan Kelapa Sawit 1 pabrik pks.pdfPengolahan Kelapa Sawit 1 pabrik pks.pdf
Pengolahan Kelapa Sawit 1 pabrik pks.pdf
 
Abortion Pills In Doha // QATAR (+966572737505 ) Get Cytotec
Abortion Pills In Doha // QATAR (+966572737505 ) Get CytotecAbortion Pills In Doha // QATAR (+966572737505 ) Get Cytotec
Abortion Pills In Doha // QATAR (+966572737505 ) Get Cytotec
 
PEMELIHARAAN JEMBATAN pada Ujian Kompete
PEMELIHARAAN JEMBATAN pada Ujian KompetePEMELIHARAAN JEMBATAN pada Ujian Kompete
PEMELIHARAAN JEMBATAN pada Ujian Kompete
 
POWER POINT TEKLING UNTUK SARJANA KEATAS
POWER POINT TEKLING UNTUK SARJANA KEATASPOWER POINT TEKLING UNTUK SARJANA KEATAS
POWER POINT TEKLING UNTUK SARJANA KEATAS
 
sample for Flow Chart Permintaan Spare Part
sample for Flow Chart Permintaan Spare Partsample for Flow Chart Permintaan Spare Part
sample for Flow Chart Permintaan Spare Part
 
Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...
Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...
Lecture 02 - Kondisi Geologi dan Eksplorasi Batubara untuk Tambang Terbuka - ...
 
LAJU RESPIRASI.teknologi hasil pertanianpdf
LAJU RESPIRASI.teknologi hasil pertanianpdfLAJU RESPIRASI.teknologi hasil pertanianpdf
LAJU RESPIRASI.teknologi hasil pertanianpdf
 
Manajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptx
Manajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptxManajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptx
Manajer Lapangan Pelaksanaan Pekerjaan Gedung - Endy Aitya.pptx
 
Presentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptx
Presentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptxPresentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptx
Presentation Bisnis Teknologi Modern Biru & Ungu_20240429_074226_0000.pptx
 
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdfTEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
TEKNIS TES TULIS REKRUTMEN PAMSIMAS 2024.pdf
 
Laporan Tinjauan Manajemen HSE/Laporan HSE Triwulanpptx
Laporan Tinjauan Manajemen HSE/Laporan HSE TriwulanpptxLaporan Tinjauan Manajemen HSE/Laporan HSE Triwulanpptx
Laporan Tinjauan Manajemen HSE/Laporan HSE Triwulanpptx
 
UTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptx
UTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptxUTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptx
UTILITAS BANGUNAN BERUPA PENANGKAL PETIR.pptx
 
SOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptx
SOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptxSOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptx
SOAL UJIAN SKKhhhhhhjjjjjjjjjjjjjjjj.pptx
 
2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx
2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx
2024.02.26 - Pra-Rakor Tol IKN 3A-2 - R2 V2.pptx
 
Presentasi gedung jenjang 6 - Isman Kurniawan.ppt
Presentasi gedung jenjang 6 - Isman Kurniawan.pptPresentasi gedung jenjang 6 - Isman Kurniawan.ppt
Presentasi gedung jenjang 6 - Isman Kurniawan.ppt
 
B_Kelompok 4_Tugas 2_Arahan Pengelolaan limbah pertambangan Bauksit_PPT.pdf
B_Kelompok 4_Tugas 2_Arahan Pengelolaan limbah pertambangan Bauksit_PPT.pdfB_Kelompok 4_Tugas 2_Arahan Pengelolaan limbah pertambangan Bauksit_PPT.pdf
B_Kelompok 4_Tugas 2_Arahan Pengelolaan limbah pertambangan Bauksit_PPT.pdf
 
BAB_3_Teorema superposisi_thevenin_norton (1).ppt
BAB_3_Teorema superposisi_thevenin_norton (1).pptBAB_3_Teorema superposisi_thevenin_norton (1).ppt
BAB_3_Teorema superposisi_thevenin_norton (1).ppt
 
397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx
397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx
397187784-Contoh-Kasus-Analisis-Regresi-Linear-Sederhana.pptx
 
Konsep rangkaian filter aktif berbasis operational amplifier
Konsep rangkaian filter aktif berbasis operational amplifierKonsep rangkaian filter aktif berbasis operational amplifier
Konsep rangkaian filter aktif berbasis operational amplifier
 

Bio energi berbasis jagung dan pemanfaatan limbahnya

  • 1. 1 Bio Energi Berbasis Jagung dan Pemanfaatan Limbahnya Teguh Wikan Widodo, A. Asari, Ana N.dan Elita, R. Balai Besar Pengembangan Mekanisasi Pertanian Serpong Badan Litbang Pertanian, Departemen Pertanian Tromol Pos 2 Serpong, Tangerang 15310 BANTEN Tel.: (021) 537 6780, Fax: (021) 537 6784 Email: teguh_wikan_widodo@yahoo.com Abstrak Berdasarkan karakteristik fisik dan kimianya, tanaman jagung (Zea mays) memiliki banyak kegunaan, berpotensi sebagai sumber bio energi dan produk samping yang bernilai ekonomis tinggi. Pemanfaatan jagung dan limbahnya sebagai sumber bio energi dengan teknologi konversi energi yang ada saat ini, di antaranya adalah (1) sebagai bahan bakar tungku untuk proses pengeringan atau pemanasan, (2) sebagai bahan bakar padat untuk proses pirolisis dan gasifikasi, (3) sebagai bahan baku pembuatan ethanol dan (4) sebagai bahan baku potential pembuatan biodiesel. Meskipun pemanfaatan limbah jagung dan turunan produk berbahan baku jagung sebagai sumber energi terbarukan cukup potensial untuk dikembangkan di Indonesia, namun penggunaan secara optimal perlu dikaji agar diperoleh keuntungan yang maksimal. Pemanfaatan limbah jagung masih menghadapi banyak kendala seperti lokasi produksi jagung yang tersebar dan densitas kamba yang kecil sehingga biaya transportasi untuk mengumpulkan bahan baku cukup tinggi. Dengan sistem kawasan terintegrasi diharapkan dapat mengatasi kendala tersebut. Keberhasilan dalam meningkatkan produktivitas tanaman jagung, diperlukan pula diversifikasi pemanfaatan produknya agar nilai ekonomisnya meningkat. Oleh karena itu, tulisan ini diharapkan dapat memberikan wacana untuk keperluan tersebut. Kata kunci: energi terbarukan, teknologi konversi energi, biomasa, jagung
  • 2. 2 Bio- Energy (Corn based) and The Utilization Its Waste Teguh Wikan Widodo, Ana N., A.Asari and Elita R. Indonesian Center for Agricultural Engineering Research and Development (ICAERD), AARD, Ministry of Agriculture Tromol Pos 2 Serpong, Tangerang 15310 BANTEN Tel.: (021) 537 6780, Fax: (021) 537 6784 Email: teguh_wikan_widodo@yahoo.com Abstract Based on its physical and chemical properties, corn (Zea mays) has some potential uses as bio-energy material and by products. The possible utilizations of corn and its waste as bio – energy with available conversion technology such as (1) fuel stove for drying and heating process (2) fuel for pirolysis and gasification (3) material for ethanol production and (4) material for bio-diesel production. Although the utilization of corn waste and other corn based products as renewable energy are potential to be developed in Indonesia, the economic should be studied. The utilization of corn waste still faces some barriers such as the scattered production area and the density of corn is bulky and therefore the transportation cost of collecting the product may be expensive. Integrated system of production location, its processing unit and users may reduce the barriers. The corn productivity should also be increased and the diversification of product should be promoted. This paper will discuss the possible utilization of corn based bio-energy and its barriers to be developed in Indonesia. Keywords: renewable energy, energy conversion technology, biomass, corn 1. Pendahuluan Kenaikan harga bahan bakar minyak dan menipisnya cadangan sumber minyak bumi di Indonesia dapat menjadi penghambat pembangunan pertanian berkelanjutan. Atas dasar masalah tersebut, maka diperlukan upaya untuk mencari sumber-sumber energi alternatif. Salah satu potensi energi alternatif adalah limbah biomasa yang dihasilkan dari aktivitas produksi pertanian yang jumlahnya sangat besar.
  • 3. 3 Biomasa bersifat mudah didapatkan, ramah lingkungan dan terbarukan. Secara umum potensi energi biomassa berasal dari limbah tujuh komoditi yang berasal dari sektor kehutanan, perkebunan dan pertanian. Potensi limbah biomassa terbesar adalah dari limbah kayu hutan, kemudian diikuti oleh limbah padi, jagung, ubi kayu, kelapa, kelapa sawit dan tebu. Secara keseluruhan potensi energi limbah biomassa Indonesia diperkirakan sebesar 49.807,43 MW. Dari jumlah tersebut, kapasitas terpasang hanya sekitar 178 MW atau 0,36 % dari potensi yang ada (Hendrison, 2003; Agustina, 2004). Selain sebagai sumber energi biomasa, limbah jagung dapat dimanfaatkan sebagai bahan pakan ternak dan pupuk kompos. Beberapa kendala dalam pengembangan energi terbarukan adalah ketersediaan bahan, keamanan supply, harga, kemudahan penanganan dan penggunaannya. Faktor-faktor eksternal seperti pengembangan teknologi, subsidi, isu-isu lingkungan dan perundang-undangan memainkan peranan dalam pengembangan energi terbarukan (Koopmans, 1998). Dengan mempertimbangkan potensi limbah pertanian dan penggunaannya di pedesaan, penelitian-penelitian energi terbarukan dalam hal pengelolaan konservasi energi dan penggunaan secara efisien adalah penting untuk dilakukan untuk mendukung pembangunan pertanian berkelanjutan. Tulisan ini bertujuan untuk mengetahui potensi limbah jagung, produk turunannya sebagai sumber bio energi dan potensi lain limbah jagung sebagai bahan baku industri. 2. Potensi Limbah Jagung Untuk Energi Terbarukan Jagung (Zea mays) adalah merupakan tanaman pangan yang penting di Indonesia. Pada tahun 2006, luas panen jagung adalah 3,5 juta hektar dengan produksi rata-rata 3,47ton/ha, produksi jagung secara nasional 11,7 juta ton. Menurut Prasetyo (2002) limbah batang dan daun jagung kering adalah 3,46 ton/ha sehingga limbah pertanian yang dihasilkan sekitar 12.1juta ton. Dengan konversi nilai kalori 4370 kkal/kg (Sudradjat, 2004) potensi energi limbah batang dan daun jagung kering sebesar 66,35 GJ. Energi tongkol jagung dapat dihitung dengan menggunakan nilai
  • 4. 4 Residue to Product Ratio (RPR) tongkol jagung adalah 0,273 (pada kadar air 7,53%) dan nilai kalori 4451 kkal/kg (Koopmans and Koppejan, 1997; Sudradjat, 2004). Potensi energi tongkol jagung adalah 55,75 GJ. Potensi energi limbah pada komoditas jagung sangat besar dan diharapkan akan terus meningkat sejalan dengan program pemerintah dalam meningkatkan produksi jagung secara nasional. Namun, limbah jagung memiliki banyak kegunaan, diantaranya adalah untuk pakan ternak, dalam hal ini pemerintah telah mencanangkan program pengembangan peternakan secara terintegrasi (Crop Livestock System/ CLS). Oleh karena itu, optimasi pemanfaatan limbah jagung sangat diperlukan untuk mendapatkan keuntungan yang optimal. Untuk memperkirakan potensi riil energi limbah jagung, penggunaan tongkol jagung untuk keperluan bahan bakar sekitar 90% sedangkan limbah batang dan daun sekitar 30% dari potensi yang ada. Gambar 1. Potensi riil energi limbah jagung di Indonesia tahun 2006 0 5 10 15 20 25 1 2 3 4 5 6 Provinsi PotensiEnergi,GJ. Tongkol Batang+daun Sumatera Utara Lampung Jawa Tengah Jawa Timur Nusa Tenggar a Timur Sulawesi Selatan
  • 5. 5 3. Bentuk-Bentuk Energi Terbarukan Dari Jagung Sumber energi terbarukan yang berasal dari komoditas jagung di Indonesia belum dimanfaatkan secara optimal. Studi mengenai pengembangan potensi sumber energi terbarukan yang berasal dari komoditas jagung telah dilakukan di berbagai negara. Potensi pemanfaatan dan pengembangan sumber energi terbarukan tersebut di antaranya adalah sebagai berikut: 3.1. Bahan Bakar Padat Sifat tongkol jagung yang memiliki kandungan karbon yang tinggi. Hasil penelitian menunjukkan bahwa untuk mengeringkan 6 ton jagung dari kadar air 32.5% sampai 13.7% bb selama 7 jam diperlukan sekitar 30 kg tongkol jagung kering per jam (Alkuino 2000). Tabel 1. Analisis kimia tongkol jagung (Lachke, 2002) Kadar air a) 13,9 Abu b) 1,17 Analisa kandungan zat kimia c) C H O N S Abu HHV (MJ/kg) 43,42 6,32 46,69 0,67 0,07 2,30 14,7 – 18,9 a) ASTM E 1756-95, b) ASTM E-1755-95, c) jasa analisa komersial (Huffman Labs, Inc. USA). Dalam bentuk arang (char), efisiensi penggunaan energi tongkol jagung dapat ditingkatkan. Proses pembentukan arang (carbonization) menggunakan prinsip dasar proses pirolisa cepat/karbonasi cepat, dimana terjadi proses pembakaran pada suhu
  • 6. 6 berkisar 150−600o C dengan udara yang sangat terbatas. Hasil Flash Carbonization dari tongkol jagung (Lachke, 2002), adalah sebagai berikut: Kandungan (%) Kadar air 13,6 Karbon tetap (fixed carbon) 83,7 Abu 2,7 y char (%) 33,1 y fc (%) 28,0 HHV (MJ/kg) 32,0 y char = m char / m bio y fc = y char { % fc / (100 - %ash)} y char : produktivitas arang m char : masa kering arang m bio : masa kering bahan y fc : produktivitas fixed-carbon y char : produktivitas arang % fc : persentase kandungan fixed-carbon % ash : persentase kandungan abu HHV : Higher Heating Value Karbonisasi pada tekanan 1,2 Mpa, menyala setelah 2 menit pemanasan dan aliran udara pada autoclave dihentikan setelah 18 menit. Produktivitas fixed-carbon mencapai 100%. Kandungan energi tongkol jagung: 3.500–4.500 kkal/ kg atau 14.7−18.9 MJ/kg, suhu pembakaran dapat mencapai 205o C Sedangkan sumber pustaka lain menyebutkan bahwa dengan karbonisasi tongkol jagung, kandungan energinya dapat
  • 7. 7 mencapai 32 MJ/kg (Watson, 1988 dalam Prostowo, dkk., 1998; Mochidzuki, et al., 2002). Energi termal dari hasil pembakaran merupakan teknologi konversi biomasa yang paling tua, dan menghasilkan efisiensi panas hanya sekitar 12% (Manurung, 2004). Pemanfaatan panas langsung yang paling banyak dilakukan orang adalah untuk memasak atau pengeringan dengan menggunakan tungku. Jika panas yang dihasilkan dipergunakan untuk memanaskan ketel uap maka dapat dimanfaatkan untuk membangkitkan tenaga mekanis atau listrik. 3.2. Bahan Padat Untuk Proses Pirolisa dan Gasifikasi Pirolisa merupakan proses pemanfaatan limbah dengan cara pembakaran tidak sempurna pada suhu yang relatif rendah yaitu sekitar 400−500o C. Proses pirolisa menghasilkan gas dengan nilai kalor 4000 kJ/Nm3 gas, minyak cair (bio-oil) dengan nilai kalor 16000−17000 kJ/kg dan arang. Gas yang terbentuk dapat dipergunakan untuk menghasilkan udara panas, menggerakkan motor atau membangkitkan tenaga listrik. Limbah jagung dapat dimanfaatkan sebagai bahan bakar padat untuk proses thermal gasifikasi. Pada proses gasifikasi, terjadi pembakaran tidak sempurna pada suhu yang relatif tinggi, yaitu sekitar 900−1200o C. Proses gasifikasi menghasilkan produk tunggal berupa gas dengan nilai kalori 4000−5000 kJ/Nm3 . Gas yang diperoleh dapat dimanfaatkan untuk menghasilkan udara panas, menggerakkan motor dan dapat digunakan sebagai pembangkit listrik. Konversi energi dengan cara gasifikasi efisiensi panasnya mencapai 50−70%. Proses pembentukan gas pada sistem ini merupakan kelanjutan dari proses pirolisa di mana reaksi yang terjadi adalah: C + CO2 2 CO C + H2O H2 + CO C + 2 H2 CH4 Pada fase gas beberapa reaksi tambahan dapat terjadi:
  • 8. 8 CO + H2O O2 + H2 CO + 3H2 CH4 + H2O Penelitian pendahuluan mengenai kemungkinan penggunaan tongkol jagung sebagai bahan padatan proses gasifikasi telah dilakukan dan presentasi gas, abu arang, tar dan liquida terkondensasi pada berbagai suhu pembakaran adalah sebagai berikut: Tabel 2. Gas, abu arang, tar dan likuida terkondensasi pada proses karbonisasi tongkol jagung. Temperature (o K) 550 650 750 850 950 1050 1150 Abu arang (%) Gas (%) Liquida terkondensasi (%) Tar 31.8 20.2 36.7 11.3 26.0 24.4 40.2 10.5 23.2 24.4 40.2 10.5 21.5 39.8 31.7 7.0 20.2 61.4 13.3 5.1 19.8 64.7 12.3 3.2 19.1 72.0 6.0 1.7 3.3. Ethanol dan 2,3 butanadiol Biomasa mengandung selulosa dan hemiselulosa. Produk akhir dari hidrolisa selulosa adalah glukosa. Glukosa dikenal sebagai gula dengan 6 gugus karbon (dapat difermentasi), sedangkan bagian hemiselulosa adalah D-xylosa adalah gula dengan 5 gugus karbon. D-xylosa adalah jumlah gula nomor dua terbanyak di alam dan bahan potensial untuk makanan dan bahan bakar. Gula hemiselulosa (D-xylosa) dapat diperoleh dengan produktivitas 80−90% dari xylan dengan asam atau hidrolisa enzimatik. Penggunaan D-xylose pada produksi komersial dari zat-zat kimia bernilai ekonomis tinggi seperti ethanol, asam asetat, 2,3-butanadiol, aseton, isopropanol dan n-butanol dengan menggunakan mikroorganisme (Lachke, 2002). Riset dalam rangka mempelajari peranan mikroorganisme pada gula pentosa masih dalam taraf pengembangan. Peneliti dari universitas Purdue-AS telah mengembangkan ragi dengan modifikasi genetika, dimana diharapkan dapat memfermentasikan selulosa menjadi etanol secara efisien. Ragi hasil rekayasa genetika paling tidak mampu menghasilkan lebih dari 30% etanol dari sejumlah
  • 9. 9 bahan tanaman. Tujuannya adalah membuat etanol dengan harga yang kompetitif dengan bensin (Anon, 2002; Lachke, 2002). Ethanol dan 2,3 butanadiol merupakan bahan bakar alkohol yang berasal dari proses fermentasi gula atau molase (Gambar 2). Ethanol mempunyai nilai energi 122 MJ/kg, sedangkan 2,3-butanediol nilai energinya 114 MJ/kg. Penggunaan ethanol sebagai bahan bakar baik sebagai campuran bahan bakar bensin dan solar atau sebagai pengganti bensin telah dilakukan di beberapa negara. Sebagai contoh dalam rangka kebijakan penggunaan bahan bakar yang ramah lingkungan, Australia telah mengeluarkan kebijakan pencampuran ethanol pada bensin untuk konsumsi kendaraan bermotor pada rasio 1:14. Sumber ethanol di Australia dihasilkan dari limbah industri penghasil gula, pati dan gluten. Penggunaan ethanol sebagai bahan bakar pengganti bensin dan solar sebagai program nasional pernah berhasil dilakukan oleh Brazil pada tahun 70-an yang sumber utamanya berasal dari limbah pengolahan tebu. Kajian produksi bahan bakar alkohol ini perlu terus dilakukan, mengingat secara ekonomi ongkos produksi untuk konsumsi masal pada saat ini masih cukup tinggi sehingga belum mampu bersaing dengan bahan bakar fosil (Aye, 1999). Gambar 2. Proses produksi ethanol secara ringkas S ubstrat (m olase) K arbohidrat (gula) K ham ir (ragi) atau Z ym om onas m obilis E thanol (alkohol) L im bah m en gandun g selulosa/ tepun g P retreatm en t
  • 10. 10 3.4. Biodiesel Biodiesel merupakan alternative energi bahan bakar solar yang sumber- sumbernya berasal dari minyak sayur (vegetable oil) dan lemak hewani (animal fat). Minyak dan lemak secara umum bersifat water-insoluble; namun terdapat kandungan bahan-bahan hydrophobic yang berasal glycerol dan fatty acids yang dikenal dengan nama triglycerides (Ma & Hanna,1999). Secara umum ada empat cara pemanfaatan dan pembuatan biodiesel, yaitu: (1) minyak digunakan langsung atau sebagai bahan campuran, (2) microemulsi, (3) pirolisa, (4) transesterifikasi (Ma & Hanna,1999). Proses yang paling umum dilakukan adalah proses tranesterifikasi. Pada proses transesterfikasi, reaksi bertahap dari triglycerida menjadi diglycerida, kemudian menjadi monoglycerida dan monoglycerida diubah menjadi fatty acid esters. Penggunaan minyak atau minyak bekas (used oil) secara langsung dapat dilakukan, namun dapat mengkontaminasi oli pelumas dan dapat mengakibatkan tingginya karbon deposit yang disebabkan oleh viskositas bahan yang cukup tinggi. Komoditas jagung merupakan salah satu sumber potential penghasil biodiesel, namun seiring dengan bertambahnya populasi, kebutuhan untuk sumber pangan dan pakan akan semakin meningkat. Kebutuhan untuk sumber pangan dan pakan yang berasal dari komoditas jagung di Indonesia dan beberapa negara di Asia sangat besar dan harga minyak jagung cukup mahal, sehingga pengembangannya untuk biodisel tidak dapat diperlakukan sebagai sumber utama bahan bakar. 3.5. Pemanfaatan limbah jagung dan pengembangan produk samping Jagung memiliki banyak kegunaan, diantaranya yaitu: daun sebagai hijauan pakan ruminansia, biji jagung sebagai sumber energi ternak unggas, sedangkan limbah jagung lainnya seperti kulit jagung, bonggol jagung dan dedak jagung dapat dimanfaatkan sebagai pakan ternak. Pemanfaatan tongkol jagung untuk pakan ternak
  • 11. 11 melalui proses fermentasi dengan cara mencampur tongkol jagung dengan bakteri trikoderma dan gula pasir (Prasetyo, 2002; Ditjen. Peternakan, 2003). Sebuah perusahaan di Iowa, AS berhasil memanfaatkan tongkol jagung sebagai berbagai produk yang ramah lingkungan. Tongkol memiliki sifat-sifat seperti salah satu bagiannya keras dan sebagian bersifat menyerap (absorbent), juga sifat- sifat yang merupakan gabungan beberapa sifat, seperti: tidak terjadi reaksi kimia bila dicampur dengan zat kimia lain (inert), dapat terurai secara alami dan ringan sehingga tongkol jagung berupakan bahan ideal campuran pakan, bahan campuran insektisida dan pupuk. Serta dapat digunakan sebagai alas hewan peliharaan karena alami, bersih dan dapat mengurangi bau tidak sedap (www.ciras.iastate.edu/iof). Beberapa ragi seperti Candida polymorpha dan Pichia miso secara aerob dapat merubah D-xylose mejadi xylitol sebagai produk utamanya dengan efisiensi konversi mencapai 90%. Penemuan ini membanggakan karena xylitol adalah suatu gula alkohol yang merupakan pemanis alami yang terdapat dalam jumlah kecil pada berbagai varietas buah-buahan dan sayuran. Xylitol tidak membentuk asam dan digunakan sebagai gula substitusi bagi penderita diabetes. Xylitol sering dipakai sebagai bahan permen karet dan pasta gigi. Macam-macam gula dalam residu tongkol jagung (% berat kering) adalah xylose: 65, arabinose: 10 dan glukose: 25 (Lachke, 2002). 4. Kesimpulan Dari uraian diatas, dapat ditarik beberapa kesimpulan sebagai berikut: 4.1. Tanaman jagung (Zea mays) adalah merupakan tanaman pangan terpenting kedua di Indonesia. Berdasarkan karakteristik fisik dan kimianya, tanaman jagung memiliki banyak kegunaan, berpotensi sebagai sumber energi terbarukan dan produk samping yang bernilai ekonomis tinggi. 4.2. Pemanfaatan jagung dan limbahnya sebagai sumber energi terbarukan dengan teknologi konversi energi yang ada saat ini, di antaranya adalah (1) sebagai bahan bakar tungku untuk proses pengeringan atau pemanasan, (2) sebagai
  • 12. 12 bahan bakar padat untuk proses pirolisis dan gasifikasi, (3) sebagai bahan baku pembuatan ethanol dan (4) sebagai bahan baku potential pembuatan biodiesel. 4.3. Pemanfaatan limbah jagung dan turunan produk berbahan baku jagung sebagai sumber energi terbarukan cukup potensial untuk dikembangkan di Indonesia, namun penggunaan secara optimal perlu dikaji agar diperoleh keuntungan yang maksimal. 4.4. Pemanfaatan limbah jagung masih menghadapi banyak kendala seperti lokasi produksi jagung yang tersebar dan densitas kamba yang kecil sehingga biaya transportasi untuk mengumpulkan bahan baku cukup tinggi. Untuk itu, dengan sistim kawasan terintegrasi diharapkan dapat mengatasi kendala tersebut. 5. Daftar Pustaka Agustina, S. E. 2004. Biomass Potential as Renewable Energy Resources in Agriculture. Proceedings of International Seminar on Advanced Agricultural Engineering and Farm Work Operation. Bogor, 25-26 August 2004. Alkuino E.L. 2000. Gasifying farm wastes as source of cheap heat for drying paddy and corns. International Rice Research Organisation. Philipines. Anon. 2002. Melirik Ethanol Sebagai Alternatif Bahan Bakar. http://www.indomedia.com/Intisari/2002/01/khas_infotekno_tebar1.htm Aye, L., Charters W.W.S., Suwono, A. 1999. Biomass Fuels and Usage Patterns in Australia. Proceeding International Power and Energy Conference (INT-PEC). 26 Nov − 6 Dec 1999. Ditjen. Pengembangan Peternakan, Dirjen. Bina Produksi Peternakan, Departemen Pertanian, 2003. Pengembangan Kawasan Agribisnis Berbasis Peternakan. http://www.bangnak.dijennak.go.id/ Euken, Jill and Sullivan, Tim. Using Corn Cob Creatively. www.ciras.iastate.edu/iof. Hendrison M., Rahayu Dwi Hartati, Endang Lestari. 2003. Untung Rugi Indonesia Meratifikasi Protokol Kyoto Ditinjau Dari Sektor Energi. Majalah P3TEK. http://www.p3tek.com/content/publikasi/2003/publikasi03.htm.
  • 13. 13 Koopmans, A. 1998. Trend in Energy Use. Expert Consultation on Wood Energy, Climate and Health. 7−9 October, 1998, Phuket, Thailand. Koopmans, A. and Koppejan, J. 1997. Agricultural and Forest Residues-Generation, Utilization and Avaibility. Paper presented at the Regional Consultation on Modern Applications of Biomass Energy, 6−10 January 1997, Kuala Lumpur, Malaysia. Lachke, Anil. 2002. Biofuel from D-xylose the Second Most Abundant Sugar. http://www.iisc.ernet.in/academy/resonance/May2002/pdf/May2002p50-58.pdf. Ma, F. and Hanna, M.A. 1999. Biodiesel Production: A Review. Bioresource Technology vol. 70: pp115. Manurung, R. 2004. Teknologi Konversi Limbah Pertanian Sebagai Sumber Energi Terbarukan di Indonesia. Makalah dipresentasikan pada Seminar Nasional Mekanisasi Pertanian, di Balai Balai Besar Pengembangan Mekanisasi Pertanian Serpong, 12 Agustus 2004. Mochidzuki, K. Lloyd S. Paredes, and Michael J. Antal, Jr. 2002. Flash Carbonization of Biomass. Http://www.hnei.hawai.edu/flash_carb_biomass.pdf. Prasetyo, T, Joko Handoyo, dan Cahyati Setiani. 2002. Karakteristik Sistem Usahatani Jagung-Ternak di Lahan Irigasi. Prosiding Seminar Nasional: Inovasi Teknologi Palawija, Buku 2- Hasil Penelitian dan Pengkajian. Pusat Penelitian dan Pengembangan Sosial Ekonomi Pertanian, Badan Litbang Pertanian, hal. 581-605. Prastowo, B.; R. Hanif; T.M. Lando. 1998. Rekayasa Teknologi Pengeringan dan Penyimpanan Jagung di Daerah Tadah Hujan. . http://bbpmektan.litbang.deptan.go.id/abstrak/th_1998/tek._pengeringan_penyimpanan_jagung.ht m. Sudradjat, R. 2004. The Potential of Biomass Energy Resources in Indonesia for the Possible Development of Clean Technology Process (CTP). Proceedings (Complete Version) International Workshop on Biomass & Clean Fossil Fuel Power Plant Technology: Sustainable Energy Development & CDM, pp. 36−59.