SlideShare ist ein Scribd-Unternehmen logo
1 von 4
Downloaden Sie, um offline zu lesen
The	
  Levitation	
  of	
  Objects	
  Using	
  
Magnetic	
  Repulsion	
  
Lucian	
  Parisi	
  
Bungalow	
  A	
  
	
  
May	
  19,	
  2011	
  
	
  


Purpose	
  
	
  
I	
  have	
  designed	
  an	
  experiment	
  to	
  see	
  how	
  much	
  weight	
  a	
  magnet	
  can	
  lift.	
  I	
  already	
  
know	
  that	
  magnets	
  fly	
  apart	
  when	
  they	
  repel.	
  Magnets	
  repel	
  when	
  the	
  same	
  type	
  of	
  
pole	
  faces	
  each	
  other	
  (north	
  to	
  north	
  or	
  south	
  to	
  south).	
  
	
  

History	
  and	
  Background	
  
	
  
People	
  in	
  ancient	
  Greece	
  and	
  China	
  discovered	
  that	
  magnets	
  attracted	
  to	
  iron.	
  
However,	
  scientists	
  did	
  not	
  manage	
  to	
  explain	
  how	
  magnetism	
  worked	
  until	
  the	
  
mid-­‐1800’s.	
  The	
  region	
  around	
  a	
  magnet	
  where	
  the	
  force	
  of	
  magnetism	
  can	
  be	
  felt	
  is	
  
said	
  to	
  contain	
  a	
  magnetic	
  field.	
  Magnetic	
  fields	
  are	
  invisible.	
  In	
  1824,	
  scientists	
  
discovered	
  that	
  you	
  could	
  create	
  a	
  magnet	
  by	
  wrapping	
  a	
  coil	
  of	
  wire	
  around	
  
ordinary	
  iron.	
  This	
  is	
  called	
  an	
  electromagnet.	
  
	
  
A	
  magnetic	
  levitation	
  train,	
  also	
  called	
  a	
  maglev	
  train,	
  is	
  a	
  vehicle	
  that	
  uses	
  magnetic	
  
force	
  to	
  float	
  above	
  a	
  fixed	
  track	
  without	
  touching	
  it.	
  The	
  train’s	
  speed	
  is	
  not	
  limited	
  
by	
  the	
  friction	
  or	
  vibration	
  that	
  contact	
  with	
  a	
  track	
  would	
  cause.	
  Maglev	
  trains	
  use	
  
electromagnetism	
  to	
  produce	
  a	
  repulsive	
  force.	
  A	
  maglev	
  train	
  is	
  a	
  real-­‐life	
  example	
  
of	
  my	
  experiment.	
  


Hypothesis	
  
	
  
Something	
  I	
  am	
  curious	
  about	
  is	
  when	
  magnets	
  repel,	
  and	
  they	
  are	
  made	
  sure	
  not	
  to	
  
fly	
  off	
  in	
  a	
  random	
  direction,	
  what	
  will	
  happen?	
  I	
  hypothesize	
  that	
  they	
  will	
  be	
  able	
  
to	
  hold	
  up	
  a	
  small	
  amount	
  of	
  weight.	
  Since	
  magnets	
  have	
  a	
  strong	
  enough	
  force	
  to	
  
repel	
  themselves	
  away	
  from	
  each	
  other,	
  they	
  should	
  be	
  able	
  to	
  lift	
  something	
  up.	
  
	
  




1	
   	
  
Experiment	
  Design	
  
	
  
This	
  experiment	
  requires	
  magnets	
  to	
  be	
  placed	
  so	
  that	
  their	
  same	
  poles	
  face	
  each	
  
other,	
  making	
  them	
  repel	
  and	
  lift	
  an	
  object.	
  To	
  keep	
  the	
  magnets	
  from	
  flying	
  off	
  in	
  a	
  
random	
  direction,	
  I	
  use	
  a	
  clear	
  plastic	
  tube	
  and	
  circular	
  magnets.	
  That	
  way,	
  when	
  
the	
  magnets	
  repel	
  they	
  will	
  levitate,	
  and	
  if	
  the	
  hypothesis	
  is	
  accepted,	
  they	
  will	
  also	
  
lift	
  the	
  object.	
  
	
  
The	
  constants	
  in	
  this	
  experiment	
  are:	
  
	
  
                                The	
  tube	
  material	
  
                                The	
  size	
  of	
  the	
  tube	
  
                                The	
  type	
  of	
  magnet	
  
                                The	
  type	
  of	
  object	
  to	
  be	
  levitated	
  
                                The	
  procedure	
  used	
  
	
  
The	
  manipulated	
  variable	
  used	
  is	
  the	
  number	
  of	
  magnets	
  on	
  top	
  and	
  bottom.	
  The	
  
responding	
  variable	
  is	
  the	
  weight	
  lifted.	
  
	
  
To	
  measure	
  the	
  weight	
  lifted,	
  I	
  will	
  put	
  penny	
  rolls	
  into	
  to	
  the	
  tube	
  until	
  the	
  two	
  
groups	
  of	
  repelling	
  magnets	
  are	
  forced	
  to	
  touch.	
  Using	
  a	
  kitchen	
  scale,	
  I	
  weigh	
  one	
  of	
  
the	
  penny	
  rolls	
  and	
  multiply	
  the	
  weight	
  of	
  a	
  single	
  roll	
  times	
  the	
  number	
  of	
  rolls	
  
held	
  up.	
  
	
  


Materials	
  
	
  
	
  
                      Number	
           Item	
  
                                    1	
   36	
  in.	
  clear	
  plastic	
  tube	
  (1	
  in.	
  diameter)	
  
                                  18	
   Circular	
  magnets	
  (1	
  in.	
  diameter)	
  
                                  15	
   Penny	
  rolls	
  
                                    1	
   Kitchen	
  scale	
  
                                    1	
   Magazine	
  (to	
  put	
  under	
  tube)	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  


2	
   	
  
Procedure	
  
	
  
	
  
                                     1. Using	
  the	
  kitchen	
  scale,	
  weigh	
  one	
  penny	
  roll	
  and	
  record	
  the	
  
                                        result.	
  
                                     2. Place	
  the	
  plastic	
  tube	
  in	
  front	
  of	
  you.	
  
                                     3. Get	
  six	
  magnets	
  and	
  split	
  into	
  two	
  equal	
  groups	
  of	
  3	
  each.	
  
                                     4. Place	
  the	
  magnets	
  into	
  the	
  tube,	
  making	
  sure	
  they	
  repel.	
  
                                     5. Drop	
  penny	
  rolls	
  inside	
  the	
  tube	
  until	
  the	
  magnets	
  are	
  forced	
  to	
  
                                        touch.	
  
                                     6. Record	
  how	
  many	
  penny	
  rolls	
  it	
  took	
  to	
  force	
  the	
  magnets	
  to	
  
                                        touch.	
  
                                     7. Do	
  steps	
  3-­‐6	
  again,	
  using	
  6	
  magnets	
  on	
  top	
  and	
  bottom,	
  9	
  
                                        magnets	
  on	
  top	
  and	
  bottom,	
  and	
  12	
  magnets	
  on	
  top	
  and	
  bottom.	
  
	
  
	
  


Measurements	
  and	
  Results	
  
	
  
The	
  following	
  table	
  and	
  graph	
  show	
  my	
  measurements.	
  
	
  
                                                                    	
  
     Number	
  of	
         Penny	
  Rolls	
  (Weight)	
            	
  
     Magnets	
              Lifted	
                                	
  
                      6	
                 9	
  (42	
  ¾	
  oz.)	
   	
  
                    12	
                11	
  (52	
  ¼	
  oz.)	
   	
  
                    18	
                13	
  (61	
  ¾	
  oz.)	
   	
  
                    24	
                15	
  (71	
  ¼	
  oz.)	
   	
  
	
  

       Weight	
  (oz.)	
                                             Results	
  
        80	
  	
  	
  	
  	
  
        70	
  	
  	
  	
  	
  
        60	
  	
  	
  	
  	
  
        50	
  	
  	
  	
  	
  
        40	
  	
  	
  	
  	
  
                                                                                                                     Weight	
  (oz.)	
  
        30	
  	
  	
  	
  	
  
        20	
  	
  	
  	
  	
  
        10	
  	
  	
  	
  	
  
             0	
  	
  	
  	
  	
                                                                              Number	
  of	
  
                                          6	
              12	
              18	
              24	
           magnets	
  
                                                                                                                                           	
  


3	
   	
  
Conclusion	
  
	
  
My	
  hypothesis	
  was	
  accepted.	
  Magnetic	
  force	
  is	
  very	
  strong	
  –	
  stronger	
  than	
  I	
  
expected.	
  I	
  was	
  expecting	
  that	
  six	
  magnets	
  could	
  only	
  hold	
  up	
  one	
  penny	
  roll.	
  
However,	
  they	
  held	
  up	
  many	
  more.	
  I	
  conclude	
  that	
  magnetic	
  repulsion	
  can	
  levitate	
  
objects.	
  
	
  
For	
  future	
  experiments,	
  I	
  could	
  try	
  using	
  the	
  same	
  experiment	
  design	
  to	
  make	
  a	
  
projectile	
  and	
  see	
  how	
  far	
  it	
  will	
  go.	
  Or	
  I	
  could	
  try	
  the	
  original	
  experiment	
  with	
  
larger	
  objects	
  and	
  more	
  magnets.	
  
	
  




4	
   	
  

Weitere ähnliche Inhalte

Ähnlich wie The Levitation of Objects Using Magnetic Repulsion

Physics 226 Fall 2013 Problem Set #1 NOTE Sh.docx
Physics 226 Fall 2013  Problem Set #1  NOTE  Sh.docxPhysics 226 Fall 2013  Problem Set #1  NOTE  Sh.docx
Physics 226 Fall 2013 Problem Set #1 NOTE Sh.docxrandymartin91030
 
Physics Meteor
Physics MeteorPhysics Meteor
Physics MeteorMert ?nan
 
Mineralization of Mammoth Teeth
Mineralization of Mammoth TeethMineralization of Mammoth Teeth
Mineralization of Mammoth TeethMicayla Menchel
 
A unification of gravity with electromagnetism and quantum
A unification of gravity with electromagnetism and quantumA unification of gravity with electromagnetism and quantum
A unification of gravity with electromagnetism and quantumJeffrey Huang
 
Black Holes and its Effects
Black Holes and its EffectsBlack Holes and its Effects
Black Holes and its EffectsRanjith Siji
 
Group5_Newton univeral gravitational law .pptx
Group5_Newton univeral gravitational law .pptxGroup5_Newton univeral gravitational law .pptx
Group5_Newton univeral gravitational law .pptxNhokRean
 

Ähnlich wie The Levitation of Objects Using Magnetic Repulsion (8)

Physics 226 Fall 2013 Problem Set #1 NOTE Sh.docx
Physics 226 Fall 2013  Problem Set #1  NOTE  Sh.docxPhysics 226 Fall 2013  Problem Set #1  NOTE  Sh.docx
Physics 226 Fall 2013 Problem Set #1 NOTE Sh.docx
 
Physics Meteor
Physics MeteorPhysics Meteor
Physics Meteor
 
Mineralization of Mammoth Teeth
Mineralization of Mammoth TeethMineralization of Mammoth Teeth
Mineralization of Mammoth Teeth
 
Bead Dynamics
Bead DynamicsBead Dynamics
Bead Dynamics
 
A unification of gravity with electromagnetism and quantum
A unification of gravity with electromagnetism and quantumA unification of gravity with electromagnetism and quantum
A unification of gravity with electromagnetism and quantum
 
Magnet ab
Magnet abMagnet ab
Magnet ab
 
Black Holes and its Effects
Black Holes and its EffectsBlack Holes and its Effects
Black Holes and its Effects
 
Group5_Newton univeral gravitational law .pptx
Group5_Newton univeral gravitational law .pptxGroup5_Newton univeral gravitational law .pptx
Group5_Newton univeral gravitational law .pptx
 

Mehr von Tony Parisi

The New Fine Arts
The New Fine ArtsThe New Fine Arts
The New Fine ArtsTony Parisi
 
Face the Future: Computing in an Augmented World
Face the Future: Computing in an Augmented WorldFace the Future: Computing in an Augmented World
Face the Future: Computing in an Augmented WorldTony Parisi
 
Powering the VR/AR Ecosystem 2017-01-17
Powering the VR/AR Ecosystem 2017-01-17Powering the VR/AR Ecosystem 2017-01-17
Powering the VR/AR Ecosystem 2017-01-17Tony Parisi
 
WebVR: Developing for the Immersive Web
WebVR: Developing for the Immersive WebWebVR: Developing for the Immersive Web
WebVR: Developing for the Immersive WebTony Parisi
 
Introduction to WebVR Autodesk Forge 2016
Introduction to WebVR Autodesk Forge 2016Introduction to WebVR Autodesk Forge 2016
Introduction to WebVR Autodesk Forge 2016Tony Parisi
 
WebVR Ecosystem and API Update
WebVR Ecosystem and API UpdateWebVR Ecosystem and API Update
WebVR Ecosystem and API UpdateTony Parisi
 
Foundations of the Immersive Web
Foundations of the Immersive WebFoundations of the Immersive Web
Foundations of the Immersive WebTony Parisi
 
The Immersive Web
The Immersive WebThe Immersive Web
The Immersive WebTony Parisi
 
Virtually Anyone
Virtually AnyoneVirtually Anyone
Virtually AnyoneTony Parisi
 
React-VR: An Early Experiment with React and WebGL for VR Development
React-VR: An Early Experiment with React and WebGL for VR DevelopmentReact-VR: An Early Experiment with React and WebGL for VR Development
React-VR: An Early Experiment with React and WebGL for VR DevelopmentTony Parisi
 
WebGL: The Next Generation
WebGL:  The Next GenerationWebGL:  The Next Generation
WebGL: The Next GenerationTony Parisi
 
Vrml, or There and Back Again
Vrml, or There and Back AgainVrml, or There and Back Again
Vrml, or There and Back AgainTony Parisi
 
The Coming Distribution War
The Coming Distribution WarThe Coming Distribution War
The Coming Distribution WarTony Parisi
 
Browser-Based Virtual Reality April 2015
Browser-Based Virtual Reality April 2015Browser-Based Virtual Reality April 2015
Browser-Based Virtual Reality April 2015Tony Parisi
 
VR Without Borders RIVER WebVR April 2015
VR Without Borders RIVER WebVR April 2015VR Without Borders RIVER WebVR April 2015
VR Without Borders RIVER WebVR April 2015Tony Parisi
 
glTF and the WebGL Art Pipeline March 2015
glTF and the WebGL Art Pipeline March 2015glTF and the WebGL Art Pipeline March 2015
glTF and the WebGL Art Pipeline March 2015Tony Parisi
 
An Introduction to Web VR January 2015
An Introduction to Web VR January 2015An Introduction to Web VR January 2015
An Introduction to Web VR January 2015Tony Parisi
 
Up And Running With Web VR Fall 2014
Up And Running With Web VR Fall 2014Up And Running With Web VR Fall 2014
Up And Running With Web VR Fall 2014Tony Parisi
 
The Web Eats Everything In Its Path Fall 2014
The Web Eats Everything In Its Path Fall 2014The Web Eats Everything In Its Path Fall 2014
The Web Eats Everything In Its Path Fall 2014Tony Parisi
 
Hacking Reality: Browser-Based VR with HTML5
Hacking Reality: Browser-Based VR with HTML5Hacking Reality: Browser-Based VR with HTML5
Hacking Reality: Browser-Based VR with HTML5Tony Parisi
 

Mehr von Tony Parisi (20)

The New Fine Arts
The New Fine ArtsThe New Fine Arts
The New Fine Arts
 
Face the Future: Computing in an Augmented World
Face the Future: Computing in an Augmented WorldFace the Future: Computing in an Augmented World
Face the Future: Computing in an Augmented World
 
Powering the VR/AR Ecosystem 2017-01-17
Powering the VR/AR Ecosystem 2017-01-17Powering the VR/AR Ecosystem 2017-01-17
Powering the VR/AR Ecosystem 2017-01-17
 
WebVR: Developing for the Immersive Web
WebVR: Developing for the Immersive WebWebVR: Developing for the Immersive Web
WebVR: Developing for the Immersive Web
 
Introduction to WebVR Autodesk Forge 2016
Introduction to WebVR Autodesk Forge 2016Introduction to WebVR Autodesk Forge 2016
Introduction to WebVR Autodesk Forge 2016
 
WebVR Ecosystem and API Update
WebVR Ecosystem and API UpdateWebVR Ecosystem and API Update
WebVR Ecosystem and API Update
 
Foundations of the Immersive Web
Foundations of the Immersive WebFoundations of the Immersive Web
Foundations of the Immersive Web
 
The Immersive Web
The Immersive WebThe Immersive Web
The Immersive Web
 
Virtually Anyone
Virtually AnyoneVirtually Anyone
Virtually Anyone
 
React-VR: An Early Experiment with React and WebGL for VR Development
React-VR: An Early Experiment with React and WebGL for VR DevelopmentReact-VR: An Early Experiment with React and WebGL for VR Development
React-VR: An Early Experiment with React and WebGL for VR Development
 
WebGL: The Next Generation
WebGL:  The Next GenerationWebGL:  The Next Generation
WebGL: The Next Generation
 
Vrml, or There and Back Again
Vrml, or There and Back AgainVrml, or There and Back Again
Vrml, or There and Back Again
 
The Coming Distribution War
The Coming Distribution WarThe Coming Distribution War
The Coming Distribution War
 
Browser-Based Virtual Reality April 2015
Browser-Based Virtual Reality April 2015Browser-Based Virtual Reality April 2015
Browser-Based Virtual Reality April 2015
 
VR Without Borders RIVER WebVR April 2015
VR Without Borders RIVER WebVR April 2015VR Without Borders RIVER WebVR April 2015
VR Without Borders RIVER WebVR April 2015
 
glTF and the WebGL Art Pipeline March 2015
glTF and the WebGL Art Pipeline March 2015glTF and the WebGL Art Pipeline March 2015
glTF and the WebGL Art Pipeline March 2015
 
An Introduction to Web VR January 2015
An Introduction to Web VR January 2015An Introduction to Web VR January 2015
An Introduction to Web VR January 2015
 
Up And Running With Web VR Fall 2014
Up And Running With Web VR Fall 2014Up And Running With Web VR Fall 2014
Up And Running With Web VR Fall 2014
 
The Web Eats Everything In Its Path Fall 2014
The Web Eats Everything In Its Path Fall 2014The Web Eats Everything In Its Path Fall 2014
The Web Eats Everything In Its Path Fall 2014
 
Hacking Reality: Browser-Based VR with HTML5
Hacking Reality: Browser-Based VR with HTML5Hacking Reality: Browser-Based VR with HTML5
Hacking Reality: Browser-Based VR with HTML5
 

The Levitation of Objects Using Magnetic Repulsion

  • 1. The  Levitation  of  Objects  Using   Magnetic  Repulsion   Lucian  Parisi   Bungalow  A     May  19,  2011     Purpose     I  have  designed  an  experiment  to  see  how  much  weight  a  magnet  can  lift.  I  already   know  that  magnets  fly  apart  when  they  repel.  Magnets  repel  when  the  same  type  of   pole  faces  each  other  (north  to  north  or  south  to  south).     History  and  Background     People  in  ancient  Greece  and  China  discovered  that  magnets  attracted  to  iron.   However,  scientists  did  not  manage  to  explain  how  magnetism  worked  until  the   mid-­‐1800’s.  The  region  around  a  magnet  where  the  force  of  magnetism  can  be  felt  is   said  to  contain  a  magnetic  field.  Magnetic  fields  are  invisible.  In  1824,  scientists   discovered  that  you  could  create  a  magnet  by  wrapping  a  coil  of  wire  around   ordinary  iron.  This  is  called  an  electromagnet.     A  magnetic  levitation  train,  also  called  a  maglev  train,  is  a  vehicle  that  uses  magnetic   force  to  float  above  a  fixed  track  without  touching  it.  The  train’s  speed  is  not  limited   by  the  friction  or  vibration  that  contact  with  a  track  would  cause.  Maglev  trains  use   electromagnetism  to  produce  a  repulsive  force.  A  maglev  train  is  a  real-­‐life  example   of  my  experiment.   Hypothesis     Something  I  am  curious  about  is  when  magnets  repel,  and  they  are  made  sure  not  to   fly  off  in  a  random  direction,  what  will  happen?  I  hypothesize  that  they  will  be  able   to  hold  up  a  small  amount  of  weight.  Since  magnets  have  a  strong  enough  force  to   repel  themselves  away  from  each  other,  they  should  be  able  to  lift  something  up.     1    
  • 2. Experiment  Design     This  experiment  requires  magnets  to  be  placed  so  that  their  same  poles  face  each   other,  making  them  repel  and  lift  an  object.  To  keep  the  magnets  from  flying  off  in  a   random  direction,  I  use  a  clear  plastic  tube  and  circular  magnets.  That  way,  when   the  magnets  repel  they  will  levitate,  and  if  the  hypothesis  is  accepted,  they  will  also   lift  the  object.     The  constants  in  this  experiment  are:      The  tube  material    The  size  of  the  tube    The  type  of  magnet    The  type  of  object  to  be  levitated    The  procedure  used     The  manipulated  variable  used  is  the  number  of  magnets  on  top  and  bottom.  The   responding  variable  is  the  weight  lifted.     To  measure  the  weight  lifted,  I  will  put  penny  rolls  into  to  the  tube  until  the  two   groups  of  repelling  magnets  are  forced  to  touch.  Using  a  kitchen  scale,  I  weigh  one  of   the  penny  rolls  and  multiply  the  weight  of  a  single  roll  times  the  number  of  rolls   held  up.     Materials       Number   Item   1   36  in.  clear  plastic  tube  (1  in.  diameter)   18   Circular  magnets  (1  in.  diameter)   15   Penny  rolls   1   Kitchen  scale   1   Magazine  (to  put  under  tube)                   2    
  • 3. Procedure       1. Using  the  kitchen  scale,  weigh  one  penny  roll  and  record  the   result.   2. Place  the  plastic  tube  in  front  of  you.   3. Get  six  magnets  and  split  into  two  equal  groups  of  3  each.   4. Place  the  magnets  into  the  tube,  making  sure  they  repel.   5. Drop  penny  rolls  inside  the  tube  until  the  magnets  are  forced  to   touch.   6. Record  how  many  penny  rolls  it  took  to  force  the  magnets  to   touch.   7. Do  steps  3-­‐6  again,  using  6  magnets  on  top  and  bottom,  9   magnets  on  top  and  bottom,  and  12  magnets  on  top  and  bottom.       Measurements  and  Results     The  following  table  and  graph  show  my  measurements.       Number  of   Penny  Rolls  (Weight)     Magnets   Lifted     6   9  (42  ¾  oz.)     12   11  (52  ¼  oz.)     18   13  (61  ¾  oz.)     24   15  (71  ¼  oz.)       Weight  (oz.)   Results   80           70           60           50           40           Weight  (oz.)   30           20           10           0           Number  of   6   12   18   24   magnets     3    
  • 4. Conclusion     My  hypothesis  was  accepted.  Magnetic  force  is  very  strong  –  stronger  than  I   expected.  I  was  expecting  that  six  magnets  could  only  hold  up  one  penny  roll.   However,  they  held  up  many  more.  I  conclude  that  magnetic  repulsion  can  levitate   objects.     For  future  experiments,  I  could  try  using  the  same  experiment  design  to  make  a   projectile  and  see  how  far  it  will  go.  Or  I  could  try  the  original  experiment  with   larger  objects  and  more  magnets.     4